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Abstract

Many studies have revealed that large language models (LLMs) exhibit uneven
awareness of different contextual positions. Their limited context awareness can
lead to overlooking critical information and subsequent task failures. While several
approaches have been proposed to enhance LLMs’ context awareness, achieving
both effectiveness and efficiency remains challenging. In this paper, for LLMs
utilizing RoPE as position embeddings, we introduce a novel method called “Mix-
ture of In-Context Experts” (MoICE) to address this challenge. MoICE comprises
two key components: a router integrated into each attention head within LLMs
and a lightweight router-only training optimization strategy: (1) MoICE views
each RoPE angle as an ‘in-context’ expert, demonstrated to be capable of direct-
ing the attention of a head to specific contextual positions. Consequently, each
attention head flexibly processes tokens using multiple RoPE angles dynamically
selected by the router to attend to the needed positions. This approach mitigates the
risk of overlooking essential contextual information. (2) The router-only training
strategy entails freezing LLM parameters and exclusively updating routers for
only a few steps. When applied to open-source LLMs including Llama, Mistral
and Qwen, MoICE surpasses prior methods across multiple tasks on long context
understanding and generation, all while maintaining commendable inference effi-
ciency. Moreover, we also demonstrate the effectiveness of MoICE in pre-training
a language model from scratch.

1 Introduction

Although large language models (LLMs) have demonstrated impressive capabilities across diverse
NLP tasks, several studies [27, 8, 31] have pointed out that the contextual awareness of LLMs is
not as powerful as widely believed, constraining their application in tasks demanding extensive
contextual awareness, such as in-context learning [28, 46], coherent long text generation [49, 26]
and Retrieval-Augmented Generation (RAG, [19, 6, 10]) tasks necessitating in-context retrieval [8].
Liu et al. [27] identified a common issue termed the “lost-in-middle” phenomenon, indicating that
LLMs often exhibit a weaker awareness of information situated in the middle of the long context
compared to the beginning or end. Chen et al. [8] highlighted challenges arising from a mathematical
property of RoPE [38], a wide-used positional embedding in LLMs, which impedes attention to
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Figure 1: Some methods developed to enhance LLMs’ context awareness. (a) Attention Buckets [8]
selects N different RoPEs and conducts N parallel inferences for each input. The outputs are then
aggregated in the final layer. (b) Ms-PoE [49] employs a unique RoPE angle for each attention head.
However, it needs an additional forward pass for RoPE angle assignment. (c) MoICE integrates a
router within each attention head. This novel plug-in selects several of the most suitable RoPE angles
for each token. The selected RoPE angles collectively contribute to computing the attention scores.
MoICE demonstrates superior memory efficiency and performance.

specific positions within the long context. Consequently, if critical information coincides with such
positions, task performance suffers.

Many works [23, 49, 8, 48] have attempted to enhance the long-context awareness of LLMs. Central
to these efforts is the enhancement of attention heads which serve as the linchpin for contextual
awareness, given that FFNs in language models do not introduce token interaction. Chen et al. [8]
proposed an inference algorithm named Attention Buckets (AB), which enhanced the context aware-
ness of LLMs by executing N inference instances, each with a distinct RoPE angle, and aggregated
the outputs at the final layer. Zhang et al. [49] observed the varying awareness of attention heads to
contextual positions. They proposed an inference algorithm named Ms-PoE. Ms-PoE enhances the
utility of position-aware heads by re-scaling the positional embedding indices, equivalent to assigning
each head a unique RoPE angle. Figure 1 illustrates these approaches. However, these approaches
each come with their own drawbacks: AB conducts excessive redundant FFNs calculations, leading
to high memory consumption. In Ms-PoE, determining a distinct re-scale factor for every attention
head needs an additional forward pass. Meanwhile, each attention head still depends on a single
re-scaled static RoPE. As highlighted by AB [8], this leads to limited awareness of certain contextual
positions, thereby constraining its potential. Moreover, a significant drawback of both AB and
Ms-PoE lies in their static assignment of the RoPE angle for each attention head throughout the
generation. However, as the generation progresses, the positions of crucial tokens shift, necessitating
corresponding adjustments in the required RoPE angles for each head.

In this study, we present Mixture of In-Context Experts (MoICE), a novel plug-in of LLMs for
enhancing context awareness. Specifically, We conceptualize a unique RoPE angle as an “in-context
expert,” as it can allocate a head’s more attention to certain contextual positions [8]. We integrate
a router within each attention head, which discerns the potentially important tokens for the head
and dynamically selects K RoPE angles that provide comprehensive awareness of these tokens for
attention computation. Through the re-computation of only a few query-key dot products, attention
patterns computed with selected RoPE angles are aggregated to produce the final attention pattern.
This approach yields two primary advantages: (1) It eliminates unnecessary computational overhead
in AB, enhancing efficiency. (2) The dynamic expert selection of each head for arbitrary tokens
introduces flexibility not attained in previous studies. This minimizes the risk of the initial RoPE
angle assigned to a head failing to work due to crucial token positions shifting during generation.

Consequently, MoICE not only surpasses AB’s effectiveness but also achieves commendable effi-
ciency. We name our approach as “Mixture of In-Context Experts” (MoICE) due to the aggregation
of attention patterns calculated with different RoPE angles resembling the concept of “Mixture of
Experts” (MoE, [37]). When applying MoICE to open-source LLMs, we freeze LLMs’ parameters
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and conduct lightweight training only on the MoICE routers. With only a few quick updates, MoICE
surpasses many competitive baselines in tasks involving long-context generation and understanding.

In summary, our main contribution is the introduction of MoICE, a novel plug-in for enhancing LLMs’
context awareness. It achieves head-and token-specific dynamic multiple RoPE angles assignment,
outperforms previous methods across various tasks, and maintains commendable inference efficiency.

2 Background

We introduce some background of Mixture of In-Context Experts, including (1) the rotary position
embeddings commonly used by mainstream LLMs, (2) the primary problem addressed in this
paper: the limited context awareness of LLMs, (3) an explanation of the underlying reasons for this
limitation.

Position embedding Positional embedding is crucial for Transformer [43] to perceive sequence
order and compensate for the position-agnostic nature of the attention mechanism. In this paper,
we mainly focus on LLMs using Rotary Position Embedding (RoPE, [38]) which is the prevalent
position embedding in current LLMs. We discuss other position embeddings in Appendix D.

In a Transformer layer with H attention heads employing RoPE, where d represents the hidden state
dimension of each attention head, let qh

n and kh
m denote the query vector at position n and key vector

at position m in the h-th head. To encode position information, RoPE initially applies a rotary matrix
to the query and key vectors:

q̂h
n = RΘj ,n · qn ∈ Rd, k̂h

m = RΘj ,m · km ∈ Rd, (1)

RΘj ,n =


rθj,0,n O · · · O
O rθj,1,n · · · O
...

...
. . .

...
O O · · · rθj,d/2−1,n

 , where rθj,i,n =

[
cosnθj,i − sinnθj,i
sinnθj,i cosnθj,i

]
, O =

[
0 0
0 0

]
.

(2)
Here, θj,i = B

−2i/d
j , i ∈ [0, · · · , d/2− 1], is termed as the rotary angle of RoPE, and Bj is typically

a fixed base. The subscript j serves to differentiate various RoPE angles Θ, each associated with a
distinct Bj , a distinction necessary for discussions in Section 3. This approach effectively incorporates
relative position information between m and n in the query-key product during attention computation:

q̂h⊤
n · k̂h

m =
(
RΘj ,n · qh

n

)⊤ (
RΘj ,m · kh

m

)
= qh⊤

n ·RΘj ,m−n · kh
m, (3)

Attnh
nm = Softmax

(
q̂h⊤
n · k̂h

m√
d

)
= Softmax

(
qh⊤
n ·RΘj ,m−n · kh

m√
d

)
. (4)

Here, Attnh
nm denotes the attention score assigned by the h-th head at position n to position m.
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Figure 2: Different Θj alter the up-
per bounds of attention scores be-
tween a token and its x-distance
neighbors. Each angle is distin-
guished by its own base value Bj .

Context awareness of LLMs LLMs struggle with limited
context awareness, significantly impacting their performance
in tasks like long-text generation [49], Retrieval-Augmented
Generation (RAG, [19, 6, 10, 40]), and multi-turn human-agent
interactions [8] involving complex contexts. Liu et al. [27] iden-
tified a problem known as “Lost-in-the-Middle,” where LLMs
process the beginning and end of the context well but have
reduced awareness of the middle. Chen et al. [8] observed that
LLMs using RoPE exhibit uneven context awareness, favoring
certain positions. Peysakhovich et al. [34] further highlighted
that LLMs exhibit variable attention to document-level token
segments based on their contextual positions. Lv et al. [29]
observed that language models develop context awareness, es-
pecially in their ability to copy, through “grokking [35].” They
suggest pre-training models with increased regularization to
enhance this capability.
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Attention waveforms According to Chen et al. [8], LLM’s uneven awareness of different contextual
positions is due to RoPE’s mathematical characteristics. Within RoPE, the attention score exhibits
“waveforms” when retrieving the same token from the context, based on their relative positions.
The troughs in these waveforms can impair task performance, especially when critical tokens are
situated at these positions during generation. Different RoPE angles produce waveforms with troughs
occurring at different positions. These phenomena are depicted in Figure 2. A detailed derivation of
the depicted curves in Figure 2 is provided in Appendix B.

3 Mixture of In-Context Experts

In this section, we first introduce the core component of MoICE, the MoICE router, detailed in
Section 3.1. Subsequently, we delve into the optimization of MoICE in Section 3.2. Figure 3 provides
an overview of MoICE. The discussion in this section focuses solely on a single layer of transformer
for clarity, with the same principles applying to any other layers.

3.1 Architecture

𝚯𝟏

Q   K   V   

FFN     

Head h

𝚯𝟐 𝚯𝟑

𝑾𝟑   

.
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MoICE

Router

Softmax(     )

Figure 3: The structure of MoICE. Only
the router’s parameters are trainable
when plugged into an LLM. For clarity,
the figure illustrates a single head, with
N=3 and K=2 as toy demonstration ex-
amples.

We aim to design an enhanced attention mechanism in
LLMs that dynamically attends to crucial information
across various contextual positions required for complet-
ing the head’s function. As a result, we can mitigate the
performance drop caused by inadequate context awareness.
Motivated by insights of Chen et al. [8], who demonstrated
that a distinct RoPE angle Θj could direct the attention
heads more focus on specific contextual positions, we pro-
pose the integration of a contextual-aware routing mech-
anism. This routing mechanism is designed to select the
appropriate RoPE angles for processing a token. We im-
plement the router as a Multi-Layer Perceptron (MLP)
with the SiLU activation function:

Router (q) := W3 (SiLU (W1q)⊙ (W2q)) . (5)

Here, q is the query vector that encapsulates the contextual
information for the task. This router input indicates the
specific information for which the current token is “query-
ing.” W1,W2 ∈ RN×d, and W3 ∈ RN×N are weight
matrices, where N denotes the number of the number of
RoPE angle candidates. Considering each head’s distinct
function [32, 45, 30], we integrate a router into every at-
tention head in the LLM. Notably, a router’s decision is
independent of other heads and dynamic to the context.

As defined in Eq. 5, the router outputs an N -tuple distribution, indicating the weight it allocates for
each RoPE angle. In each step in generation, the router selects K angles from a set of N angles
{Θ1,Θ2, ...... ,ΘN} for attention computation. Specifically, we first identify the K RoPE angles
with the highest routing weights and normalize their relative weights using the Softmax function,
resulting in ph

n ∈ RK , representing the probability distribution over the selected RoPE angles within
the h-th head:

TopK-Indiceshn = argsort(Router
(
qh
n

)
)[: K],

ph
n = Softmax

(
Router

(
qh
n

)
[TopK-Indiceshn]

)
,

(6)

where qh
n represents the query at position n within the h-th attention head in a Transformer layer.

Subsequently, we aggregate the attention scores computed with these chosen K in-context experts
based on their routing weights to derive the final attention scores for head h from position n to
position m:

Attnh
nm =

∑
j∈TopK-Indiceshn

ph
n[j] · Softmax

(
qh⊤
n ·RΘj ,m−n · kh

m√
d

)
. (7)
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Considering RoPE angles impact how attention heads allocate attention and focus on specific contex-
tual positions, we view each distinct RoPE angle as an in-context expert, in contrast to traditional
in-weight experts [16, 21, 12, 18], where the experts are learnable parameter weights. Given that
these in-context experts together augment LLMs’ context awareness, we term this method Mixture of
In-Context Experts (MoICE, Section 3). Figure 3 illustrates the overview of MoICE. Our proposed
MoICE has three major advantages:

(1) We only add additional computational overhead to the query-key dot products, resulting in a
minimal increase in memory usage and a negligible impact on inference speed (Section 4.2).

(2) MoICE dynamically selects suitable RoPE angles token-wise and head-wise, offering unprece-
dented flexibility and unlocking the full potential of each attention head.

(3) Concerning LLMs’ context awareness enhancement, MoICE addresses a longstanding issue: the
relative position of the relevant information will shift during generation, leading to previous static
modification of the attention heads [8, 47] will be sub-optimal during practical generation. The
contextual-aware dynamic routing in MoICE is not bothered by this issue.

3.2 Router-only training

To train the newly incorporated MoICE routers in LLMs, the most straightforward way is to simulta-
neously update the LLMs’ parameters alongside the routers. However, updating the original LLMs’
parameters can result in catastrophic forgetting. Therefore, we propose a more effective and efficient
strategy, the router-only training strategy, which freezes the LLMs’ parameters and solely optimizing
the routers.

Given an input sequence, we calculate the negative log-likelihood loss (Lnll) for language modeling.
During backward propagation, only the parameters of MoICE routers are updated. To mitigate
the possibility of a router favoring specific experts disproportionately [16, 44], we incorporate an
auxiliary loss Laux following [16]. An ablation study on this auxiliary loss is in Table 11. Given an
input of T tokens and N experts, we calculate the Llb by the scaled dot-product between frequency
vector F and probability vector P:

Laux = α ·N ·
N∑
j=1

Fj ·Pj . (8)

Eq. 8 avoids the router falling into a sub-optimal solution favoring specific experts overwhelmingly,
as its minimal is achieved when the routing probability is uniform. Here, α is the weighting factor for
load balancing loss. Fj denotes the proportion of the j-th expert selected across all positions and
attention heads, while Pj denotes the proportion of router weight assigned to expert j:

Fj =
1

T ×H

T∑
t=1

H∑
h=1

1{j ∈ TopK-Indicesht },

Pj =
1

T ×H

T∑
t=1

H∑
h=1

1{j ∈ TopK-Indicesht } · ph
t [j].

(9)

Our overall training objective is to minimize the following loss:

L = Lnll + Laux. (10)

4 Experiment

4.1 Setup

To evaluate the efficacy of MoICE, we implement it with open-source LLMs, which we will introduce
later, and conduct lightweight training of MoICE routers on a small and general dataset. Subsequently,
we evaluate the enhanced LLM’s capability to zero-shot undertake multiple tasks in long context
understanding and generation, as detailed in Section 4.2 and Section 4.3.
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Training data We use a training dataset3 which extracts the one thousand longest entries from
OpenHermes [41]. OpenHermes is a multi-source integrated dataset containing high-quality syn-
thetically generated instruction and chat samples. A detailed analysis of other training data is in
Section 5.3.

Hyperparameters for MoICE-router-only training We froze all the original parameters of the
open-source LLMs we used and only trained the MoICE router. Following Attention Buckets [8],
we employed the RoPE angle set of N = 7 items, each assigned with base values as follows:
{1.0× 104, 1.75× 104, 1.8× 104, 1.9× 104, 2.0× 104, 2.25× 104, 2.5× 104} for Llama2-7B and
Mistral-7B, {1.0 × 106, 1.25 × 106, 1.4 × 106, 1.8 × 106, 1.9 × 106, 2.25 × 106, 2.5 × 106} for
Qwen1.5-7B. By default, unless otherwise specified, the attention head selects K=7 bases to ensure a
fair comparison with [8]. Section 4.2 introduces our baselines in detail. Section 5 delves into the
impact of set size and the number of selected items.

We implement a warm-up strategy comprising 20% of the total steps, with a maximum learning rate
of 0.0001. The batch size is 128. α is set as 0.3. We train the MoICE routers for 1 epoch (about 8
minutes) on four A800-80G GPUs.

4.2 Long context understanding and generation

Following the L-Eval benchmark [1], we evaluated the LLM with tasks categorized into two main
groups: closed-ended and open-ended tasks. Closed-ended tasks primarily focus on the capacity for
understanding and reasoning within long contexts, including tasks like multiple-choice questions from
QuALITY [5], Coursera, 4 TOEFL [11], and True/False question answering from SFiction. 5 On the
other hand, open-ended tasks include summarization generation and open-format question-answering
tasks, requiring extracting information from lengthy in-context documents. The open-ended tasks
comprise a subset of 181 questions drawn from 29 diverse long documents.

Baselines and open-source LLMs In evaluating the efficacy of our proposed MoICE, we compare
it against several state-of-the-art methods known for enhancing the capacity of LLMs to understand
and generate long contexts. These baselines include two context extrapolation techniques: Positional
Interpolation (PI, [7]) and Dynamic NTK [15]. Additionally, we consider two inference algorithms
for context-awareness enhancement: Ms-PoE [49] and Attention Buckets [8].

We evaluate all these methods alongside our MoICE on three representative open-source LLMs that
utilize RoPE for positional embeddings: Llama2-7B-Chat [42], Mistral-7B-Instruct-v0.1 [20] and
Qwen1.5-7B-Chat [2]. Llama2-7B and Qwen1.5-7B support a pre-trained context length of 4,096
and 32,768, respectively. Mistral-7B employs a sliding window attention (SWA) mechanism with a
window size of 4,096 tokens, enabling it to accommodate longer contexts than the default. Therefore,
we conduct experiments with a context length of 8,192 on Mistral-7B, using SWA as the exclusive
baseline for comparison. For PI and Dynamic NTK, we apply a scaling ratio of 1.5, while for the
remaining baselines, we adhere to the hyperparameters specified in their original papers. All methods
are tested on a single A800-80G GPU, except for applying AB to Mistral-7B-8k, which needs 2
GPUs due to substantial memory requirements.

Evaluation metrics We adopt the exact match for closed-ended tasks. For open-ended tasks, we
employ GPT-4-Turbo [33] as the judge to evaluate the effectiveness of various enhancement methods
on open-source LLMs. This evaluation compares their performance against GPT3.5-Turbo-16k-0613
across 181 questions.

Results and analysis We report our experimental results in Table 1. MoICE significantly enhances
the overall performance of Llama-2-7B-chat (with p-value < 0.02 in the t-test) in both closed-ended
and open-ended tasks. On Mistral, MoICE outperforms all baseline models significantly (p-value <
0.02). We also report the mean and standard deviation of MoICE in Table 10. Standard fine-tuning
degrades the performance of original LLMs, demonstrating catastrophic forgetting and proving that
the improvement of MoICE does not stem from more training. These results underscore MoICE’s

3https://huggingface.co/datasets/HuggingFaceH4/OpenHermes-2.5-1k-longest
4https://coursera.org/
5https://github.com/nschaetti/SFGram-dataset
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Table 1: Experimental results on the L-Eval Benchmark [1]. Applying to various models, MoICE
demonstrate superior performance compared to previous competitive approaches. We emphasize the
highest score in bold.

Method Closed - Ended Task Open - Ended Task

Coursera QuALITY TOEFL SFiction Average wins ties win-rate%*

Llama2-7B-Chat [42] 36.77 38.12 55.02 60.16 47.52 68 117 34.94

+ Fine-tuning 32.85 30.20 51.30 59.38 43.43 65 91 30.52
+ PI [7] 38.23 38.61 56.51 61.72 48.77 76 112 36.46
+ Dynamic NTK [15] 40.26 39.11 55.76 62.50 49.41 82 112 38.12
+ Ms-PoE [49] 39.24 40.10 55.76 63.28 49.60 86 110 38.95
+ AB [8] 40.41 41.09 56.88 61.72 50.02 85 114 39.23
+ MoICE (Ours) 39.83 42.08 56.13 64.84 50.72 89 118 40.88

Mistral-7B-Instruct-8k [20] 45.20 44.06 62.08 61.72 53.27 71 105 34.11

+ Fine-tuning 25.29 26.73 25.65 50.00 31.92 53 85 26.38
+ SWA 44.77 42.57 62.08 60.94 52.59 73 89 32.45
+ PI [7] 44.19 44.06 64.68 62.50 53.86 73 96 33.43
+ Dynamic NTK [15] 45.35 42.08 62.08 63.28 53.20 78 103 35.77
+ Ms-PoE [49] 46.37 45.05 61.34 57.03 52.45 84 106 37.84
+ AB [8] 46.08 42.57 62.08 62.50 53.31 87 110 39.22
+ MoICE (Ours) 47.82 46.53 64.68 62.50 55.38 85 117 39.36

Qwen1.5-7B-Chat [2] 78.44 61.88 61.19 69.53 67.76 83 119 40.83

+ PI [7] 76.58 61.88 60.32 70.31 67.27 83 107 39.11
+ Dynamic NTK [15] 78.07 62.38 60.32 70.31 67.77 84 111 40.20
+ Ms-PoE [49] 75.47 60.89 60.47 71.88 67.18 OOM OOM N/A
+ AB [8] 78.44 OOM OOM OOM N/A OOM OOM N/A
+ MoICE (Ours) 78.44 62.87 61.77 71.09 68.54 91 105 41.59

* Following [1], win-rate = (win counts + 0.5 * tie counts)

Table 2: Practical inference time (in minutes) / GPU memory costs (GB) on a single A800-80G GPU
for each method applied to Llama2-7B-Chat (top) and Mistral-7B-Instruct-8k (bottom), respectively.
Due to out-of-memory issues, AB can not accomplish many tasks, denoted as OOM in the table.

Method Coursera ↓ QuALITY ↓ TOEFL ↓ SFiction ↓ Open-Ended ↓ Average ↓
AB [8] 10.9 / 78.7 18.1 / 62.5 19.9 / 56.5 5.0 / 33.2 45.9 / 78.2 20.0 / 61.8
Ms-PoE [49] 4.1 / 27.2 6.0 / 27.8 6.7 / 28.6 6.0 / 27.8 20.2 / 28.9 8.6 / 28.1
MoICE (Ours) 5.0 / 19.6 11.0 / 19.7 10.2 / 19.5 1.6 / 15.2 34.2 / 23.2 12.4 / 19.4

AB [8] OOM OOM 37.2 / 71.4 OOM OOM N/A
Ms-PoE [49] 14.1 / 50.3 11.2 / 48.4 9.8 / 25.4 4.5 / 50.3 72.8 / 62.4 22.5 / 47.4
MoICE (Ours) 13.4 / 25.7 7.7 / 22.9 11.3 / 20.4 2.3 / 22.8 77.8 / 29.3 22.5 / 24.2

efficacy in enhancing LLMs’ ability to understand and generate long contexts, both of which require
high context awareness. Furthermore, these results underscore the broad applicability of MoICE
across different LLMs.

Regarding efficiency, we provide practical inference time and memory costs associated with AB,
Ms-PoE, and MoICE in Table 2. For a fair comparison, we utilize Flash Attention 2 [13] across all
approaches. While achieving superior overall performance, MoICE remains at an inference speed
similar to Ms-PoE and notably excels in memory efficiency compared to these two baselines.

We also perform further experiments on one additional long context benchmark LongBench [4],
which are detailed in Appendix A.

4.3 Retrieval-augmented generation (RAG)

Retrieval-augmented generation (RAG) tasks involve retrieving numerous documents related to the
current generation. The retrieved documents are arranged in the context. RAG necessitates that
LLMs have robust context awareness to pinpoint crucial documents, process the retrieved information
effectively, and integrate it to generate responses.

Following [8, 49], we employ the MDQA task to evaluate the efficacy of MoICE in enhancing LLMs’
performance in RAG tasks. Meanwhile, MDQA offers the bonus of allowing flexible control over
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Table 3: The experiment results on the MDQA task. MoICE achieve superior average performance
compared to previous competitive approaches. We emphasize the highest score in bold.

Method 1 3 5 7 10 Gap Avg.
Llama2-7B-Chat 64.14 65.95 64.97 62.67 67.53 4.86 65.05

+ Ms-PoE [49] 66.06 64.29 63.99 62.22 64.75 3.84 64.34
+ AB [7] 66.36 66.14 65.25 63.20 64.93 3.16 65.18
+ MoICE (Ours) 65.50 66.33 65.61 64.11 65.84 2.22 65.48

Method 1 8 15 23 30 Gap Avg.
Mistral-7B-Instruct-8k 58.38 47.42 46.97 49.68 50.81 11.41 50.65

+ Ms-PoE [49] 52.76 41.24 42.80 42.90 43.58 11.52 44.66
+ AB [7] 58.57 47.57 47.12 49.83 50.96 11.45 50.81
+ MoICE (Ours) 61.81 52.54 52.43 50.36 49.34 12.47 53.30

the location of documents, enabling a more precise evaluation of LLMs’ context awareness across
various contextual positions.

Our MDQA experiments leverage a subset of NaturalQuestions-Open [25, 24], consisting of 2,655
queries, following [49, 27]. Each query is paired with a context consisting of 10 or 30 documents
(with an average of 1,722 or 5,046 tokens), depending on the model (Llama-2-7B-chat or Mistral-7B-
Instruct-8k), tasked with answering based on this contextual information. Only one document among
these comprises useful information for the given query. We compare Ms-PoE, AB, and MoICE,
testing each method through 5 iterations. For Llama, the relevant document is positioned 1st, 3rd,
5th, 7th, and 10th within the context, while for Mistral, it is positioned 1st, 8th, 15th, 23rd, and 30th,
respectively.

In Table 3, MoICE on Llama demonstrates the highest average performance across most positions,
showcasing its remarkable stability. Its accuracy scores show minimal variation, with only a marginal
difference of 2.22 points between its highest and lowest values. On Mistral, MoICE exhibits significant
average improvement (p-value < 0.02). Notably, when the relevant document is positioned at the end
of the context, all methods on Llama exhibit a decrease compared to the original model, although
MoICE shows a minimal decline. This phenomenon also happens in the Mistral model. We posit
that this decline may stem from the original model predominantly directing attention towards nearest
documents [27, 34]. However, as approaches enhance awareness of various contextual positions,
the model’s attention to the nearest documents is diffused by other positions, as its overall capacity
for context awareness is constant and limited. Nevertheless, MoICE consistently emerges as the
superior-performing method overall across language models.

5 Method analysis

In this section, we delve into a comprehensive analysis of the properties of MoICE. We illustrate
how N , the total number of in-context experts (Section 5.1), and K, the specific number of selected
in-context experts (Section 5.2), influence MoICE. We further demonstrate that MoICE is robust to
training data (Section 5.3) Additionally, we present a case study demonstrating the dynamic selection
of in-context experts for tokens during generation (Section 5.4). Finally, we verify the effectiveness
of language model with MoICE architecture in pretraining stage (Section 5.5).

5.1 The effect of expert total numbers N

We investigate the impact of the total number of experts. Employing the search algorithm proposed by
Chen et al. [8], we obtain various sets of different sizes, each comprising complementary base values.
The searched expert sets are detailed in Appendix E. We apply MoICE to Llama-2-7B-chat and test
the model on L-Eval tasks. The results are presented in Table 4. The results of the original Llama are
denoted as (N=1) in the table. As the table illustrates, MoICE demonstrates improvement to LLMs’
context awareness with increasing N , with noticeable improvements even when N is as small as 3.
However, as N reaches 9, the average performance is close to N=7, indicating a performance plateau.
This suggests that having N=7 experts is sufficient for general usage.
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Table 4: The performance of Llama-2-7B-chat enhanced by MoICE with N in-context experts. We
show results marked with color to emphasize the improvements over the original model.

Method Coursera QuALITY TOEFL SFiction Avg.
Original (N=1) 36.77 38.12 55.02 60.16 47.52

N=3 37.65 40.10 55.76 62.50 49.00
N=5 38.23 39.60 56.13 63.28 49.32
N=7 39.83 42.08 56.13 64.84 50.72
N=9 40.26 41.58 56.13 64.84 50.70

Table 5: The improvement of context awareness of Llama-2-7B-chat by MoICE, wherein each head
dynamically selects diverse K experts (N=7). We show results marked with color to emphasize the
improvements over the original model.

Method Coursera QuALITY TOEFL SFiction Avg.
Original (N=1) 36.77 38.12 55.02 60.16 47.52

K=1 35.03 35.64 56.51 61.72 47.22
K=3 39.83 41.58 56.13 64.84 50.60
K=5 38.52 39.60 56.13 64.84 49.77
K=7 39.83 42.08 56.13 64.84 50.72

Equal Weights 36.48 38.12 53.90 61.72 47.56
Random Weights 15.55 28.71 21.75 8.59 18.65

5.2 The effect of selected experts number K

With a fixed number of experts (N=7), we examine the effect of different numbers of chosen experts
K with values of 1, 3, 5, and 7. We consider two additional setups where 7 experts are selected
with equal weights (“Equal Weights”) and with random weights (“Random Weights” ), using Llama-
2-7B-chat as the case study. The results are presented in Table 5. Setting K = 1 doesn’t enhance
or significantly degrade the model’s performance, aligning with our assertion in the Introduction
(Section 1): assigning a single and unique RoPE angle to each head inadequately explores the head’s
functionality. For K greater than 3, performance improvements become evident. This shows that the
MoICE router in our method can select the appropriate combination of experts to better aware the
context. Randomly selecting experts ruins the model’s language modeling ability, leading to aberrant
outputs.

5.3 MoICE is robust to training data

We further analyze the impact of the data for training routers. We additionally use three instruction
fine-tuning datasets from different sources: a self-instruct dataset, Airoboros [22]; and two datasets
for LLM alignment with long context, Long-Alpaca [9], and LongAlign [3]. The hyperparameters
remain consistent as mentioned in Section 4. As presented in Table 6, MoICE exhibits almost
identical scores when trained on different data, showcasing the robustness of our method.

Table 6: The improvement of context awareness of Llama-2-7B-chat by MoICE trained on various
data.

Training Data Coursera QuALITY TOEFL SFiction Avg.
OpenHermes [41] 39.83 42.08 56.13 64.84 50.72

Airoboros [22] 39.68 41.58 56.13 64.84 50.56
Long-Alpaca [9] 39.68 42.08 56.13 64.84 50.68
LongAlign [3] 39.68 41.58 56.13 64.84 50.56

5.4 The visualization of dynamic routing states

We provide a case study exemplifying the dynamic routing mechanism within MoICE during text
generation. Depicted in Figure 4 in the Appendix, the MoICE router of each head independently
selects distinct experts. At each step of the generation process, these heads dynamically choose
experts for each new token. This dynamic utilization of diverse RoPE angles within each attention
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head maximizes the potential of attention heads across various inputs, a capability not attained in
prior research, including both Attention Buckets and Ms-PoE.

5.5 Applying MoICE to the pretraining stage

We further evaluate the performance of a language model with MoICE architecture in pretraining
stage. Specifically, we train a language model with a Llama architecture of 49M parameters, with and
without MoICE respectively. We pretrain a small model from scratch and observe the effectiveness of
MoICE. More experimental details can be found in Appendix C. We measure the model’s context
awareness on the Key-Value Retrieval [27] task, which uses multiple randomly generated key-value
string pairs as prompts to evaluate the model’s ability to extract the correct value corresponding to a
given query from the context. One prompt example can be found in Figure 6.

Table 7: Experimental results on the Key-Value Retrieval task [4], We evaluate the model’s awareness
of different positions by controlling the position index of the key-value pair corresponding to the
query among 10 key-value pairs in the prompt.

Position 1 3 5 7 9
Baseline 0.476 0.324 0.328 0.344 0.502
+ MoICE 0.652 0.762 0.634 0.622 0.814

From the results in Table 7, we can see that our model can significantly increase the contextual
capabilities of the pretrained language model, which indicates the potential of scaling up our method
in pretraining stage.

6 Conclusion

In this paper, we introduce a novel approach to enhancing the context awareness of LLMs termed
Mixture of In-Context Experts (MoICE). Through lightweight training, open-source LLMs such as
Llama and Mistral, enhanced by MoICE, demonstrate improved context awareness. Across numerous
tasks demanding substantial context awareness, MoICE-enhanced LLMs consistently outperform
competitive baselines, all the while maintaining commendable efficiency. A distinctive feature of
MoICE is that it first implements head- and token-specific RoPE angles assignment for attention
heads, a pivotal factor contributing to its success. This paper underscores the need to address the
inherent limitations in current LLMs and advocates for a thorough exploration of their existing
capabilities.
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A Results on LongBench

LongBench [4] is a benchmark for bilingual, multitask, and comprehensive assessment of long context
understanding capabilities of large language models. We choose 16 tasks from LongBench, spanning
five long-text application scenarios: Single-Doc QA (NarrativeQA, Qasper, and MultiFieldQA-en),
Multi-Doc QA (HotpotQA, 2WikiMQA and Musique), Summarization (GovReport, QMSum and
MultiNews), Few-shot Learning (TREC, TriviaQA, SAMSum and LSHT) and Synthetic Tasks
(Passage Count, PassageRetrieval-en and PassageRetrieval-zh).

For evaluation, we follow the setup of the LongBench benchmark. The input length of LLama2-7B
is set to 4k, Mistral-7B to 8k, and Qwen1.5-7B to 32k. We report the average task scores for each
scenario for all methods in Table 8.

Table 8: Experimental results on the LongBench Benchmark [4]. We emphasize the highest score in
bold.

Method Single-Doc QA Multi-Doc QA Summarization Few-shot Learning Synthetic Tasks Average
Llama2-7B-Chat [42] 25.54 18.47 23.37 51.78 3.94 24.62
+ PI [7] 23.42 23.73 25.34 51.63 7.63 26.35
+ NTK [15] 24.73 23.67 25.41 51.97 8.33 26.82
+ Ms-PoE [49] 23.68 24.59 25.33 51.66 8.04 26.66
+ AB [8] 27.06 22.94 25.52 52.84 8.62 27.40
+ MoICE (Ours) 26.31 23.70 25.60 52.34 9.71 27.53

Mistral-7B-Instruct-8k [20] 27.20 19.89 24.22 52.41 5.06 25.76

+ PI [7] 30.94 24.94 26.24 49.34 9.35 28.16
+ NTK [15] 30.46 21.21 23.89 52.41 8.44 27.28
+ Ms-PoE [49] 27.90 17.89 20.28 48.59 8.95 24.72
+ AB [8] 29.81 21.95 25.58 54.42 7.89 27.93
+ MoICE (Ours) 31.09 22.98 26.69 55.76 8.02 28.91

Qwen1.5-7B-Chat [2] 34.66 35.91 25.77 56.89 33.83 37.41

+ PI [7] 28.28 17.08 24.60 57.51 32.67 32.03
+ NTK [15] 31.35 23.98 24.95 56.64 32.50 33.88
+ Ms-PoE [49] OOM OOM OOM OOM OOM N/A
+ AB [8] OOM OOM OOM OOM OOM N/A
+ MoICE (Ours) 39.37 37.35 25.81 57.29 34.83 38.93

MoICE consistently shows improved average performance across models with 4k, 8k, and 32k context
lengths, surpassing previous competitive approaches.

B Attention waveforms

In this section, we will elaborate on attention waveforms and the concept of complementarity.
Assuming q̂h

n · k̂h
m is the attention score (before softmax) of the n-th position to m-th position on the

h-th attention head. The attention score can be formulated as follows:

q̂h
n · k̂h

m = (RΘ,nqn)
T
(RΘ,mkm)

= Re

d/2−1∑
j=0

qh
n[2j : 2j + 1]kh∗

m [2j : 2j + 1]ei(n−m)θj


=

d/2−1∑
j=0

(
qhn2j · k

h
m2j + qhn2j+1 · k

h
m2j+1

)
cos ((n−m)θj)

+
(
qhn2j · km2j+1 − qhn2j+1 · k

h
m2j

)
sin ((n−m)θj) ,

where θj = B−2j/d, B is the rotary base of RoPE. Considering a context-awareness task, basic
context awareness relies on attending to the same token and then copying its next token as outputs [32].
To simplify the calculation, we set both qh

n and kh
m as all-one vectors to observe the impact of relative

positions on the attention when retrieving the same token from the context. This impact (or the
intensity of attention) is dubbed as attention waveform W by [8].
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W ≤
d/2−1∑
j=0

2 cos ((n−m)θj) .

As illustrated in Figure 2, the waveform exhibits two notable mathematical properties concerning
attention scores: it demonstrates fluctuations and undergoes a gradual decay with the increasing
relative position (i.e., long-term decay).

Chen et al. [8] observed that crucial information falling within the troughs of a waveform might
diminish the performance of models employing RoPE. Meanwhile, they pointed out the waveform,
characterized by peaks and troughs, vary across RoPE bases. When leveraging the peaks of one
attention wave to compensate for the overlook of the troughs in another, the model’s capability to
perceive and process information from diverse contextual positions can be enhanced. When a set of
bases possesses this waveform characteristic, they are termed “complementary.”

C Experimental details on pretraining

In this section, we provide detailed experimental setup in Section 5.5. The model we has 4 layers,
6 heads per layer, a hidden layer dimension of 512 and an intermediate size of 1280. We train the
model using the OpenWebText pretraining [17] dataset. We use four GTX A800-80Gs for training
for 600k steps, with a context window of 512. During pretraining, we use a learning rate of 0.004
with a cosine annealing schedule and 6,000 warm-up steps.

D Discussions on more position embeddings

In this section, we discuss other position embeddings and demonstrate why they are not studied, e.g.,
discarded in LLMs, do not exhibit attention waveform pattern, or are in the same family of RoPE:
Firstly, the waveform pattern only exists in position embeddings constructed by cosine functions.
Regarding the cosine embedding used in the original Transformer, it does exhibit long-term decay
and periodic waveforms. However, this embedding is disregarded in modern LLMs. Moreover,
these embeddings are incorporated before the initial model layer rather than during the attention
computation, making it hard to assess their impact on attention patterns. Secondly, the learned
positional embeddings utilized in BERT [14] lack mathematical constraints to display periodic
patterns. They are similarly added before the first model layer. Thirdly, Alibi [36] introduces a
linear bias to attention scores. The linear bias is devoid of wave patterns. The remaining popular
positional embeddings used in LLMs such as xPos [39] are RoPE-based variants. These variants
are predominantly modified for long-context extrapolation rather than better context awareness.
Therefore, they share the same shortcoming: tokens in attention trough are less focused on, thereby
limiting context awareness, which is the study focus in our paper.

E Details on expert sets

Utilizing the RoPE-base searching algorithm as proposed by Chen et al. [8], Table 9 illustrates the
resulting sets for different values of N .

Table 9: Searched Sets for Different N

N Searched Set
3 {10,000, 18,000, 19,000}
5 {10,000, 17,500, 18,000, 19,000, 20,000}
7 {10,000, 17,500, 18,000, 19,000, 20,000, 22,500, 25,000}
9 {10,000, 13,500, 17,500, 18,000, 19,000, 20,000, 22,500, 24,000, 25,000}
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Figure 4: The routing weights across two distinct attention heads at the 27th layer in Llama-2-7B-
chat. The input tokens are randomly sampled from the training data, and the attention heads under
observation are also randomly selected. The horizontal axis depicts the input tokens, while the
vertical axis represents experts with varying RoPE angles. Due to their distinct functions, each head
dynamically chooses different experts to process individual tokens. Input text can be found in Figure
5.

F Limitations

In this paper, we introduce a plug-in module called MoICE, which is integrated into the attention
heads of open-source LLMs to enhance their context awareness. One limitation is that, due to limited
computational resources, we did not investigate the effectiveness of pretraining a language model
with more parameters using the MoICE architecture. Furthermore, our proposed method exploits
the potential for context awareness within LLMs, but it does not imbue the models with additional
inherent context awareness abilities. Achieving this may necessitate more extensive data to train all
model parameters.

G Broader impacts and safety issues

Our novel lightweight plug-in approach efficiently enhances the context awareness of open-source
LLMs. This advancement holds great promise for enhancing the effectiveness of LLMs across
diverse scenarios characterized by extensive and complex contexts, such as RAG, tool utilization, and
role-playing. The safety issue of our method mainly comes from the large language models we used,
as they might output toxic and biased texts, which is a common safety issue regarding LLM research.

Table 10: The mean and standard deviation of MoICE. We repeat L-eval [1] experiments 5 times with
different random seeds. The randomness of MoICE results from the initialization of MoICE router
when training, which causes slight differences in performance.

Method Closed - Ended Task Open - Ended Task
Coursera QuALITY TOEFL SFiction Average wins ties win-rate%

Llama2-7B-Chat [42] 36.77 ± 0.00 38.12 ± 0.00 55.02 ± 0.00 60.16 ± 0.00 47.52 ± 0.00 68.00 ± 0.00 117.00 ± 0.00 34.94 ± 0.00

+ MoICE 39.65 ± 0.32 41.88 ± 0.27 56.28 ± 0.21 64.84 ± 0.00 50.66 ± 0.05 89.00 ± 1.00 117.20 ± 1.48 40.77 ± 0.20

Mistral-7B-Instruct-8k [20] 45.20 ± 0.00 44.06 ± 0.00 62.08 ± 0.00 61.72 ± 0.00 53.27 ± 0.00 71.00 ± 0.00 105.00 ± 0.00 34.11 ± 0.00

+ MoICE 48.08 ± 0.24 46.73 ± 0.27 65.35 ± 0.81 62.18 ± 1.19 55.59 ± 0.16 85.00 ± 1.10 115.20 ± 2.05 39.39 ± 0.21
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… Here's how to retrieve the top tracks of an artist: 
```java import 
org.apache.http.client.methods.HttpGet; import 
org.apache.http.impl.client.HttpClientBuilder; 
public class SpotifyAPI { private static final String 
ARTIST_ID = "spotify_artist_id"; public static 
void main(String[] args) throws Exception { String 
accessToken = "your_access_token"; HttpGet
httpGet = new 
HttpGet(String.format("https://api.spotify.com/v1/
artists/%s/top-tracks?country=US", ARTIST_ID)); 
httpGet.setHeader(HttpHeaders.AUTHORIZATIO
N, "Bearer " + accessToken); JSONObject
response = new 
JSONObject(EntityUtils.toString(HttpClientBuilde
r.create().build().execute(httpGet).getEntity())); for 
(Object trackObj : response… 

Figure 5: The input text in Figure 4. To clearly display, we only show part of the input text, where
the text with a yellow background corresponds to the decoded tokens.

"eb098018-bdb5": "970cbed8-3665", 
"0a9d957f-2256": "be09fd63-4dfa", 
"e2b49af9-d0e3": "c5ed6251-085d", 
"8ece1451-05e1": "2d5932f7-acd8", 
"eb2f4a8d-e0b7": "e0acbc2c-d478", 
"0c8c0695-dd3c": "086d71cb-35c0",
"79a1c002-4ba6": "e69f5f62-250e", 
"b0c1c9df-c13f": "3ce6b12e-6223", 
"ee17cc77-6342": "41c410e1-776c", 
"483f6a4d-9aa4": "3711356c-6df1", 
"ee17cc77-6342": "41c

Figure 6: The input prompt example in Section 5.5. We use 10 key-value pairs as examples in prompt,
which includes a query key. We insert the query key-value pair in different positions of examples
(In the prompt example above, the query key is inserted in the 9th position). The model’s task is to
find the value corresponding to the query key and output it, which evaluates its ability of context
awareness.

Table 11: The ablation study on the auxiliary loss of MoICE. To assess the impact of this loss term,
we perform an ablation experiment on two LLMs by removing it from Eq. 10. The results show a
significant drop in performance, highlighting the positive impact of the auxiliary loss.

Method Coursera QuALITY TOEFL SFiction Average
Llama2-7B-chat [42]

MoICE w/o aux loss 39.83 41.58 56.13 62.50 50.01
MoICE w/ aux loss 39.83 42.08 56.13 64.84 50.72

Mistral-7B-Instruct-8k [20]
MoICE w/o aux loss 47.67 46.04 64.68 58.59 54.25
MoICE w/ aux loss 47.82 46.53 64.68 62.50 55.38
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We propose an effective and efficient approach for enhancing the context
awareness of LLMs.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We create a separate "Limitations" section in Appendix.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: Our paper does not introduce theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We’ve shared the link to the code. We promise to open source.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We promise to open code. We have posted an anonymous code link.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: See Section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report the p-value in the t-test in the “Results and Analysis” paragraph of
Section 4.2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See Section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have conformed the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: See Section "Broader Impacts and Safeguards."

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: See Section "Broader Impacts and Safety Issues."

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have correctly cited all the data, scripts, and models we used.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We have a README document for our code.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing experiments.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing experiments.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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