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Abstract

Invasive brain-computer interfaces with Electrocorticography (ECoG) have shown
promise for high-performance speech decoding in medical applications, but less
damaging methods like intracranial stereo-electroencephalography (sEEG) remain
underexplored. With rapid advances in representation learning, leveraging abundant
recordings to enhance speech decoding is increasingly attractive. However, popular
methods often pre-train temporal models based on brain-level tokens, overlooking
that brain activities in different regions are highly desynchronized during tasks.
Alternatively, they pre-train spatial-temporal models based on channel-level tokens
but fail to evaluate them on challenging tasks like speech decoding, which requires
intricate processing in specific language-related areas. To address this issue, we
collected a well-annotated Chinese word-reading sEEG dataset targeting language-
related brain networks from 12 subjects. Using this benchmark, we developed
the Du-IN1 model, which extracts contextual embeddings based on region-level
tokens through discrete codex-guided mask modeling. Our model achieves state-
of-the-art performance on the 61-word classification task, surpassing all baselines.
Model comparisons and ablation studies reveal that our design choices, including
(i) temporal modeling based on region-level tokens by utilizing 1D depthwise con-
volution to fuse channels in the ventral sensorimotor cortex (vSMC) and superior
temporal gyrus (STG) and (ii) self-supervision through discrete codex-guided mask
modeling, significantly contribute to this performance. Overall, our approach –
inspired by neuroscience findings and capitalizing on region-level representations
from specific brain regions – is suitable for invasive brain modeling and represents
a promising neuro-inspired AI approach in brain-computer interfaces. Code and
dataset are available at https://github.com/liulab-repository/Du-IN.
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Figure 1: Overall illustration of sEEG decoding setup and comparison with SOTA baselines.

1Du-IN refers to the phonetic transcription of "讀音" (i.e., pronunciation) in Chinese.
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1 Introduction

Brain signals refer to the biometric information collected from the brain. Their patterns provide
valuable insights toward understanding the physiological functions of the brain and the mechanism
of related diseases, leading to various applications, including speech decoding [13, 19, 37], sleep
cognition research [35, 55], neurological disorders detection [28, 54], and so on. Due to the high
signal-noise ratio, invasive recording methods (e.g., stereoElectroEncephaloGraphy (sEEG), Elec-
troCorticoGraphy (ECoG)) usually reveal these underlying mechanisms better than non-invasive
recording methods. Many previous works [29, 19] have shown that decoding speech from EEG
signals is difficult, and the performance is limited. Compared with ECoG, sEEG imposes less trauma
on patients and provides more stereotactic information from specific brain regions. Although some
studies [37, 36] have recently shown promise for building high-performance speech decoders based
on ECoG, there are few attempts made to explore the potential of sEEG-based speech decoding.

Modeling intracranial neural signals, especially sEEG, has gained significant attention, but several
issues remain unresolved. Current research on modeling neural signals is divided into two lines based
on the basic modeling units (e.g., channel-level tokens or group-level tokens2). Some studies [54, 28]
utilize shared embedding blocks to embed single channels into channel-level tokens, neglecting the
specificity of brain computation [8]; then they adopt spatial-temporal integration to model spatial
relationships among them, attempting to regain the precise state of the brain. However, these methods
mainly focus on channel-level classification tasks, e.g., seizure detection, yet fail to validate them on
more challenging group-level classification tasks, e.g., speech decoding. Other studies [19, 21] fuse
all channels (across the brain) to build brain-level tokens, overlooking the brain’s desynchronization
nature [7]; then they adopt temporal modeling to capture the rapid process of brain dynamics. Besides,
labeling data at scale in medical experiments is often impractical or costly, emphasizing the need to
maximize label efficiency. Hence, developing an efficient pre-training framework that draws on prior
neuroscience findings is highly appealing, as it can make the most of abundant unlabeled data.

The primary challenge in modeling intracranial neural signals lies in extracting meaningful tokens,
requiring careful consideration of two key factors. (1) Temporal scale. Since intracranial neural
signals have high temporal resolution and signal-noise ratio, these tokens must capture rapid dynamic
changes in brain activity. (2) Spatial scale. Considering the brain’s desynchronization nature, these
tokens should correctly capture the information of each brain region for further integration and, if
needed, decouple different parts of brain dynamics within each brain region. To better assess how
well different models capture the intricate processing within each brain region, we can evaluate these
methods on tasks mainly involving a few brain regions.

Since speech mainly involves specific brain regions related to vocal production, as demonstrated
in Section 2.1, we utilize speech decoding tasks to evaluate which model can effectively extract
information from specific brain regions. Since there are too few open source sEEG language datasets
[1, 49], we collected a well-annotated Chinese word-reading sEEG dataset (vocal production),
including 12 subjects, which makes up for the problem of missing sEEG recordings in language tasks.
Inspired by neuroscientific findings, we systematically demonstrate the locality and specificity of
brain computation and propose the Du-IN model to solve the abovementioned issues. Compared
to other existing methods for modeling brain signals, Du-IN achieves SOTA performance on the
61-word classification task, demonstrating the effectiveness of our model in extracting meaningful
tokens that can capture both the rapid changes and the precise state of specific brain regions. It marks
a promising neuro-inspired AI approach [42, 41] in BCI.

To sum up, the main contributions of our work comprise:

1. A well-annotated Chinese word-reading sEEG dataset, addressing the lack of sEEG language
dataset. The dataset will be publicly available.

2. Demonstration of brain-specific computation – achieving the best decoding performance
only requires about one electrode in specific brain regions (i.e., vSMC, STG).

3. A novel framework for sEEG speech decoding – Du-IN, which learns region-level contextual
embeddings through discrete codex-guided mask modeling.

4. SOTA performance on the sEEG speech decoding task – Du-IN achieves 62.70% top-1
accuracy on the 61-word classification task, surpassing all other baselines.

2The term "group-level" includes "brain-level" and "region-level," and is distinct from "channel-level."
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2 Related Works

2.1 Neural Basis of Language Function

Neuroscientific research [5, 17, 43] in the past has extensively explored brain regions supporting
language functionality. In neuroscience, the investigation into language functionality related to speech
has been categorized into two main streams: one dedicated to semantic processing and the other to
vocal production. Previous studies [4, 43] have shown that brain regions associated with semantic
processing primarily include left inferior frontal gyrus (IFG), left anterior temporal lobe (ATL), and
bilateral middle temporal gyrus (MTG).

As for vocal production, which is also the focus of our work, it is predominantly governed by motor
information related to language articulation, primarily involving ventral sensorimotor cortex (vSMC),
bilateral superior temporal gyrus (STG), and bilateral dorsal laryngeal motor cortex (dLMC) [5, 17, 9].
Our analysis results based on our collected word-reading sEEG dataset also confirm this point, as
illustrated in Figure 4.

2.2 Language Decoding in BCI

The keys to decoding natural language from brain signals are (1) high-quality recordings, and (2)
well-designed models with good representations. Compared to non-invasive recordings (e.g., EEG),
invasive recordings manifest advantages in providing detailed information about specific brain regions
with a high signal-noise ratio. Since speech mainly involves some specific brain regions, obtaining
detailed recordings of these brain regions will significantly enhance the decoding performance.
Existing works [13, 37, 21] have shown the great potential of building a high-performance decoder
based on invasive recordings.

The other key is well-designed models with good representations. Existing work for brain-to-language
representations can be classified into two categories: self-supervision or alignment with representation
models pre-trained on other modalities (e.g., text, audio). BrainBERT [49] learns general embeddings
through self-supervised mask modeling. DeWave [19] introduces discrete codex encoding and aligns
neural representations with text embeddings from BART [32], thus enhancing the extraction of
semantic processing-related information from EEG recordings. Metzger et al. [36] align neural
representations with acoustic embeddings to improve the extraction of vocal production-related
information from ECoG recordings.

2.3 Self-supervised Learning in BCI

In recent years, self-supervised pre-training has made significant progress in natural language
processing [16, 39, 6] and computer vision [3, 25, 11]. However, its potential in BCI is far from
being explored. BrainBERT (for sEEG) [49] embeds single channels into channel-level tokens and
utilizes mask modeling to learn general representations. Brant (for sEEG) [54, 53], PopT (for sEEG)
[10] and some works (for EEG) [28, 23] further adopt spatial-temporal integration to model spatial
relationships among them. Some works (for EEG) [31, 20, 50, 22] take the other way – fusing all
channels (across the whole brain) to build brain-level tokens, and it uses self-supervised learning to
learn contextual representations. Considering the difference among brain regions, MMM (for EEG)
[52] further splits channels into different groups to build region-level tokens.

All existing pre-training methods for sEEG primarily pre-train spatial-temporal models based on
channel-level tokens yet only evaluate them on channel-level classification tasks, e.g., seizure de-
tection. However, unlike EEG pre-training methods, their effectiveness over more challenging
group-level classification tasks, e.g., speech decoding. Besides, there is no standard channel configu-
ration for sEEG recordings, unlike EEG recordings, which makes modeling spatial relationships in
sEEG more challenging.

3 Method

The overall architecture of Du-IN is illustrated in Figure 2, where the raw sEEG signals are fused
across channels to build region-level tokens and further encoded for downstream tasks.

3
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3.1 Task Definition

Due to the lack of open-source sEEG datasets related to language tasks, we follow the experimental
design outlined by Moses et al. [37] to collect a well-annotated Chinese word-reading sEEG dataset
(vocal production). During the experiment, each subject speaks aloud 61 pre-determined Chinese
words 50 times; see Appendix A for more details. We formulate the multi-channel sEEG signals
as X ∈ RC×T , where C is the number of sEEG channels and T is the total timestamps. The
associated word label is denoted as y ∈ Y , where Y represents the set of 61 pre-determined words.
In summary, this dataset comprises paired sEEG-word data (⟨X ,y⟩), and the model aims to decode
the corresponding word y from a sequence of raw sEEG signals X .

3.2 Model Architecture
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Figure 2: The overall architecture of Du-IN Encoder. Du-IN Encoder is used as an encoder in all
Du-IN models (i.e., Du-IN VQ-VAE, Du-IN MAE, Du-IN CLS (classification)), see Appendix C for
more details.

We introduce the Du-IN Encoder, a general architecture for sEEG speech decoding tasks that can deal
with any input sEEG signals with arbitrary time length, as shown in Figure 2. The key operation for
archiving this is segmenting the sEEG signals into patches, inspired by patch embeddings in images
[18]. For each sample X , we use a W -length window without overlap to segment it into patches,
obtaining X = {xi ∈ RC×W |i = 1, ..., N}, where N = ⌊ TW ⌋ is the number of patches.

Spatial Encoder. As each sEEG patch has multiple channels, it is vital to fuse different channels
to extract meaningful features before patch-wise interaction by self-attention. We employ a spatial
encoder, which consists of a linear projection and several convolution blocks, to encode each sEEG
patch into a patch embedding. The linear projection transforms the raw sEEG signals into the hidden
neural space, and its weights are utilized for subsequent analysis. The convolution block is composed
of a 1D depthwise convolution layer and a batch normalization layer [27]. We denote the output
patch embeddings from the spatial encoder as

Ep = {epi ∈ Rd|i = 1, ..., N}, (1)
where d is the dimension of the embeddings.

Temporal Embedding. In order to enable the model to be aware of the temporal information
of patch embeddings, we utilize the parameter-free position embeddings introduced in [48], i.e.,
Et = {et1, ..., ettmax

}. Note that tmax is the hyperparameter determining the maximum number of
time patches and tmax ≥ N . Given one arbitrary patch embedding ei in Equation 1 from the spatial
encoder, we add the corresponding temporal embedding to it:

Einit = {epi + eti|i = 1, ..., N}, (2)
which forms the input embeddings Einit for the Transformer Encoder.

Transformer Encoder. Finally, the sequence of embeddings will be directly fed into the Trans-
former encoder [48] to get the final encoded E = {ei ∈ Rd|i = 1, ..., N}. To make the training
of the Transformer more stable and efficient, we incorporate some modifications [14] inspired by
LaBraM [28]. We add layer normalization to the queries and keys before the dot-product attention
mechanism, which avoids over-large values in attention logits:

Attention(Q,K, V ) = softmax(
LN(Q)LN(K)T√

dhead
)V, (3)

where dhead is the dimension of attention head and LN denotes layer normalization [2]. For down-
stream classification tasks, we flatten the output embeddings followed by a classification head.
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3.3 Du-IN VQ-VAE Training

Prior to pre-training Du-IN through mask modeling, we need to tokenize the sEEG patches into
discrete tokens. We introduce vector-quantized neural signal regression, which is trained by recon-
structing the original sEEG signals, as shown in Figure 3. The key components are the Du-IN Encoder,
which encodes the raw sEEG samples into embeddings, and the Du-IN Regressor, which reconstructs
the original sEEG signals. The idea is basically inspired by VQ-VAE [47], which encodes images
into discrete latent embeddings.
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Figure 3: Overview of Du-IN VQ-VAE training and Du-IN MAE training. (a). We train the
Du-IN Encoder in the Du-IN VQ-VAE to discretize sEEG signals into discrete neural tokens by
reconstructing the original sEEG signals. (b). During the training of Du-IN MAE, part of sEEG
patches are masked while the objective is to predict masked tokens from visible patches.

Du-IN Encoder. We define a neural codex C = {cj |j = 1, ..., Ncodex} ∈ RNcodex×dcodex , where
Ncodex is the number of the discrete neural embeddings and dcodex is the dimension of each em-
bedding. Given a sEEG sample X , the Du-IN Encoder, illustrated in Figure 2, first encodes it to
embeddings E = {ei ∈ Rd|i = 1, ..., N}. After that, we utilize a linear projection zc to get the
mapped embeddings zc(E) = {zc(ei) ∈ Rdcodex |i = 1, ..., N} in the codex space. Then, the codex
looks up the nearest neighbor of each embedding zc(ei) in the neural codex C. This procedure can
be formulated as

zq(E) = {zq(ei)|i = 1, ..., N}, zq(ei) = czi , zi = argmin
j

||ℓ2(zc(ei))− ℓ2(cj)||2, (4)

where ℓ2 represents ℓ2 normalization and zq(ei) is the quantized vector after the quantizer. This is
equivalent to finding the closest neural embedding by cosine similarity and such ℓ2 normalization
improves the codex utilization [38].

Du-IN Regressor. The Du-IN Regressor consists of a Transformer decoder and a stack of transposed
convolution layers. Given a sequence of the vector-quantized embeddings Z = {zi|i = 1, ..., N},
the Du-IN Regressor convert these discrete embeddings back into raw sEEG signals X̃ = {x̃i|i =
1, ..., N}. The mean squared error (MSE) loss is utilized to guide the regression. The total loss for
training the Du-IN VQ-VAE is defined as:

Lvqvae =
N∑
i=1

[
||x̃i − xi||22 + ||sg[zc(ei)]− zq(ei)||22 + β||zc(ei)− sg[zq(ei)]||22

]
, (5)
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where sg represents the stop-gradient operation, which is an identity at the forward pass and has zero
gradients. To stabilize the codex update, we use the exponential moving average strategy [47].

3.4 Pre-training Du-IN

Masked sEEG Modeling. To enforce Du-IN learning contextual representations, we propose
masked sEEG modeling. The whole procedure is presented in Figure 3. As illustrated in Figure 2,
given a sEEG sample X , the spatial encoder first transforms it to patch embeddings Ep = {epi |i =
1, ..., N}. Given these patch embeddings Ep, around 50% of patch embeddings are patch-wisely
chosen and masked. The masked position is termed as M. Then, a shared learnable embedding
e[M ] ∈ Rd is used to replace the original patch embeddings:

Em = {emi |i = 1, ..., N}, emi = mi ⊙ e[M ] + (1−mi)⊙ epi , (6)

where δ(·) is the indicator function and mi = δ(i ∈ M). After that, the masked embeddings Em
will be added by temporal embeddings, and then fed into the Transformer encoder. The output
embeddings E will be used to predict the indices of the corresponding codes from the codex in the
Du-IN VQ-VAE through a linear classifier:

p(zi|ei) = softmax(Linear(ei)), (7)

The training loss of mask modeling is defined as:

LM = −
∑
i∈M

mi ⊙ log p(zi|ei). (8)

Symmetric Masking. Inspired by LaBraM [28], we further introduce a symmetric masking strategy
to improve training efficiency. We calculate the inverse of the generated mask M, obtaining M̂.
Similarly, we use the new mask M̂ to perform the mask modeling, obtaining the mask modeling loss
LsymM . The total loss for pre-training the Du-IN model (i.e., Du-IN MAE model) is defined as:

Lmae = LM + LsymM . (9)

4 Experiments

4.1 Dataset

Due to the lack of open-source sEEG datasets related to language tasks, we follow the experimental
design outlined by Moses et al. [37] to collect a well-annotated Chinese word-reading sEEG dataset
(vocal production), including 12 subjects. The subjects undergo a surgical procedure to implant 7
to 13 invasive sEEG electrodes, each with 72 to 158 channels, in their brain. For each subject, the
dataset contains 15 hours of 2000Hz recordings, 3 hours of which are task recordings.

Pre-training dataset. For each subject, the pre-training dataset contains all sEEG recordings (with
about 54 million timestamps) of that subject. To stabilize computing resource usage, the time length
of sEEG sample X is set to 4 seconds.

Downstream dataset. For each subject, 3 hours of the sEEG recordings are task recordings. The
sEEG signals are segmented into about 3000 3-second samples, each of which is paired with the
corresponding word label (from 61 pre-determined words).

4.2 Implementation Details

Preprocess. We first filter the sEEG signals between 0.5Hz and 200Hz to remove low-frequency
noise. Then, a notch filter of 50Hz is applied to avoid power-line interference. After that, all
sEEG signals are resampled to 1000Hz and bi-polar re-referenced [33]. Finally, we perform z-score
normalization on each channel to guarantee normalized data scales across all channels.
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Model Configurations. The length of the sEEG patch is 100ms, resulting in 40 patches per sample
in the pre-training dataset and 30 patches per sample in the downstream dataset. The "Spatial
Encoder" contains one linear projection and three 1D convolution layers, transforming the original
sEEG patches into patch embeddings with d = 160. The following "Transformer Encoder" contains
an 8-layer Transformer encoder with model dimension d = 160, inner dimension (FFN) dff = 320,
and 8 attention heads. See Appendix C for more details.

Pre-training. During the pre-training, we use either all sEEG recordings (15 hours) or the sEEG
recordings without task recordings (12 hours) to train the Du-IN VQ-VAE and Du-IN MAE models.
To enhance the robustness of the learned codex and representations, we further use data augmentation
described in Appendix D. For each subject, the model is pre-trained on a Linux system with 2 CPUs
(Intel Xeon Gold 6230 40-Core Processor) and 1 GPU (NVIDIA Tesla V100 32GB) for ∼ 1.2 days.

Fine-tuning. During the downstream evaluation, we split the task recordings into training, valida-
tion, and testing splits with a size roughly proportional to 80%, 10%, and 10%. All experiments are
conducted on the same machine with the same set of random seeds. The train/validation/test splits
are the same across different models. We also use data augmentation, as described in Appendix D, to
make the most of the gathered dataset. We employ cross-entropy loss (multi-class classification) as
the training loss. Our experiments are conducted on one V100 GPU by Python 3.11.7 and PyTorch
2.1.2 + CUDA 12.3. The best models are trained based on the training set, selected from the validation
set according to accuracy, and finally evaluated on the test set. For model comparison, we report the
average and standard error values (of all subjects) on six different random seeds to obtain comparable
results. For the results of the subject-wise evaluation, we report the average and standard deviation
values (of each subject) in Appendix K.

4.3 Channel Contribution and Selection

As demonstrated in Section 2.1, previous neuroscience studies reveal that vocal production predomi-
nantly engages specific brain regions. Given the sparse distribution of implanted sEEG electrodes
(each containing 8-16 channels), it’s vital to exclude redundant electrodes unrelated to vocal produc-
tion, thus improving decoding performance. We retain electrodes implanted in relevant brain regions
and evaluate the performance based on the remaining electrodes. Table 1 demonstrates that excluding
approximately 85% electrodes even leads to a dramatic increase in decoding performance.

Table 1: The performance of Du-IN with or without electrode selection.
Methods # of Channels (Averaged) Accuracy (%) ± Ste (%)
Du-IN (w/o electrode selection) 109.75 30.12±5.64
Du-IN (w/ electrode selection) 12.25 55.92±4.96

To further understand the detailed contribution of each channel, we analyze the weights of linear
projection in the spatial encoder. In detail, we calculate the contribution scores of channels per subject
and organize them accordingly, as described in Appendix H. Figure 4 demonstrates that (1) the brain
regions effective for speech decoding align with findings from previous neuroscience research, and
(2) our model achieves optimal decoding performance with approximately 10 channels, 80% of which
originate from the same electrode. To streamline, we utilize these top 10 channels (selected according
to train-set) for both pre-training and downstream evaluation.

4.4 Comparasion with Other Models

Table 2 presents the results of our Du-IN model and the advanced baselines that are designed for either
brain signals or general time series. See Appendix B and Appendix C.3 for detailed descriptions of
models. The results demonstrate that our Du-IN model outperforms all baselines. It’s worth noting
that the models (i.e., the foundation models designed for brain signals) that adopt spatial-temporal
integration to model spatial relationships among channel-level tokens perform worse than the models
that adopt temporal modeling based on region-level tokens, challenging the generalizability of current
strategies to model spatial relationships among channels with Transformer.
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Figure 4: The channel contribution analysis. (a). The channel contribution map. (b). The effect of
the number of channels (sorted according to channel contribution scores) on decoding performance.

Table 2: The performance of different methods (with the best in bold and the second underlined).

Methods Token Level Config Model Size Accuracy (%) ± Ste (%)
PT1 MS2

TS-TCC[20] Region ! % 0.32M 24.85±4.42
CNN-BiGRU[37] Region % - 0.54M 32.04±5.45
EEG-Conformer[44] Region % - 2.34M 45.82±4.66
Neuro-BERT[50] Region ! % 2.14M 49.51±4.43
DeWave[19] Region % - 5.70M 32.43±4.48

BrainBERT[49] Channel ! % 43.58M 6.72±1.59
BrainBERT[49] Channel ! ! 43.58M 7.50±1.76
Brant[54] Channel ! % 69.35M 11.16±3.56
Brant[54] Channel ! ! 69.35M 12.42±4.10
LaBraM[28] Channel ! % 6.85M 11.53±2.63
LaBraM-PopT[28, 10] Channel ! ! 6.85M 11.78±2.70

Du-IN Region % - 4.38M 56.29±5.20
Du-IN (vqvae+vq) Region ! % 4.38M 44.17±4.04
Du-IN (vqvae) Region ! % 4.38M 58.24±4.83
Du-IN (mae) Region ! % 4.38M 62.70±4.69

Du-IN (poms) Region ! ! 5.18M 59.18±4.63
1 PT: Whether the model is pre-trained before evaluation.
2 MS: Whether the model is pre-trained across multiple subjects.

As BrainBERT [49] doesn’t consider the spatial relationships among channels, we mainly focus on
understanding why Brant [54], LaBraM [28] and LaBraM-Popt [28, 10] fail to effectively capture
the discriminative features on the speech decoding task. These models typically build channel-level
tokens by segmenting non-overlapping patches with large receptive fields (e.g., 1 second) from single
channels. However, this approach makes it challenging to capture the rapid process of brain dynamics.
Moreover, while these models further utilize Transformer to capture the spatial relationships among
these tokens, they do not encourage region-level embeddings, either through their architecture [52] or
their pre-training objective [10]. Therefore, the effectiveness of building brain foundation models
based on these spatial-temporal backbones is still under exploration, especially for cognitive tasks
(e.g., speech decoding), which are of great value in the field of neuroscience.

Besides, unlike LaBraM [28], Brant doesn’t introduce spatial embeddings to identify the spatial
location of each channel. Since the electrodes are sparsely distributed in the brain and the raw
sEEG signals on the same electrode are highly correlated, it’s fairly easy to identify their spatial
relationships through their values. As demonstrated in iTransformer [34], this modeling approach
is well suited for detecting time-delay events, e.g., seizure detection. For speech decoding tasks,
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sEEG often requires bi-polar re-reference (or Laplacian re-reference) to remove the high correlations
among channels, thus avoiding model overfitting [49]. Once the correlations among channels have
been removed, Brant will lose the ability to model spatial relationships among channels.

For other baselines that use temporal modeling based on region-level tokens, we provide a detailed
explanation of their performance differences as follows. TS-TCC [20] tokenizes raw sEEG signals
into region-level tokens with a stack of 1D depthwise convolution blocks, but it lacks a temporal
Transformer for further integration over time. CNN-BiGRU [37] introduces a stack of GRU layers
on top of these tokens to perform temporal integration. EEG-Conformer [44] introduces a temporal
Transformer to better integrate global temporal information, which makes it outperform CNN-
BiGRU. However, EEG-Conformer tokenizes raw sEEG signals with the temporal-spatial convolution,
applying the same convolutional kernel across different channels, which overlooks the specificity of
brain computation [8]. This also raises a challenge for the effectiveness of current sEEG foundation
models, which rely on shared convolution blocks across individual channels. Neuro-BERT [50]
further introduces mask modeling to learn contextual embeddings, which makes it outperform EEG-
Conformer. DeWave [19] utilizes the Conformer model [24] for tokenization, which involves more
parameters but is less effective than 1D depthwise convolution.

4.5 Ablation Study

Self-Supervision Initialization. As illustrated in Figure 3, the Du-IN model entails a two-stage
pre-training process, wherein both the Du-IN VQ-VAE model and the Du-IN MAE model are trained.
Previous studies utilize different strategies [19, 12, 28] to leverage these pre-trained models to enhance
the performance of downstream tasks. Here, we evaluate these different strategies for comparison; see
Appendix C.3 for detailed definitions. Table 2 shows that initializing weights from the Du-IN MAE
model captures contextual embeddings effectively, resulting in the highest decoding performance.

Pre-training with/without Downstream Datasets. During the pre-training stage, we hope that
the Du-IN VQ-VAE model can extract general tokens of that brain region, thus guiding the Du-IN
MAE model to learn general representations that are not specific to any particular task. Although no
label data is used during the pre-training stage, to eliminate the influence of the pre-training data on
downstream tasks, we compare the results with or without incorporating the downstream task dataset
into the pre-training stage. Table 3 shows a slight performance drop when excluding downstream
datasets. However, the decoding performance is still higher than the baseline performance without
pre-training, which means that the degradation is mainly due to the decrease of the pre-training dataset.
We hope that, with more pure recordings, our model can achieve better decoding performance.

Table 3: Ablation study on whether pre-training with the downstream dataset (DD) or not.
Methods Pre-training Dataset Size Accuracy (%) ± Ste (%)
Du-IN (mae w/o DD) 12 hours per subject 60.02±4.34
Du-IN (mae w/ DD) 15 hours per subject 62.70±4.69

Discrete Codex. During the Du-IN VQ-VAE training stage, the Du-IN VQ-VAE model encodes
sEEG patches into discrete codes and then reconstructs the original signal from these codes. We
evaluate performance against varying codex sizes (512 to 8192) to ascertain if codex size affects
the quality of the learned codex. As illustrated in Figure 5, while extremely small codex size lacks
representation diversity, extremely large codex size often leads to codex collapse. We suspect that our
existing training data might not be adequate for larger codex sizes. Furthermore, our experiments
suggest that the model performs optimally when the codex dimension, denoted as dcodex = 64, is
slightly less than the model dimension, d = 160, yielding a more effective regularization effect.

Perception Time Window. We also conduct the ablation study on the model structure for the
spatial encoder described in Section 3.2. As the spatial encoder transforms the sEEG signals within a
given patch to a patch embedding, it compresses the sEEG signals for perception. As described in
Section 4.2, the model utilizes a receptive field of 100ms. We conduct an ablation study of different
receptive fields and report it in Figure 5. The model performance notably drops with a receptive field
smaller than 60ms and gradually declines as the receptive field exceeds 160ms. The model reaches a
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small peak around 100ms to 140ms. We think this phenomenon is rational since sEEG is known for
its ability to capture the rapid dynamics of specific brain regions precisely.

(b)(a) (c)

Figure 5: Ablation study on different codex sizes, codex dimensions, and receptive fields.

5 Limitations

Despite Du-IN’s enhancements in speech decoding via discrete codex-guided mask modeling, it is
still restricted to close-set speech decoding tasks (i.e., the word set only includes 61 pre-determined
words). However, a parallel to our work, Feng et al. [21], which follows previous works [26, 45],
build an acoustic-inspired model that can decode arbitrary Chinese words by predicting syllable
components (initials, finals, tones). Although their method requires a large amount of labeled data,
their experimental design mirrors ours closely. The difference lies in the requirement for the subject
to repeat syllable components, instead of entire words. Therefore, with slight modifications, our
model can support open-set speech decoding tasks.

Additionally, the experiments in this paper are restricted to the vocal production part of language
decoding, i.e., speech decoding. A more interesting but difficult task is to decode language from
the semantic level, in which large language models have been wildly used to improve the model
performance [46, 19]. However, due to the locality of sEEG recordings, it is still under exploration
whether sEEG recordings can fully capture semantic-related information across brain regions.

6 Conclusion

This paper proposes Du-IN, a framework for speech decoding, which learns contextual embeddings
through discrete codex-guided mask modeling on specific brain regions. To evaluate our model, we
collect a well-annotated Chinese word-reading sEEG dataset to address the lack of sEEG language
dataset. Inspired by neuroscientific findings, we analyze the effective brain regions for speech
decoding and achieve the best decoding performance with about one electrode in specific brain regions,
which dovetails with the past neuroscientific research on language. Comprehensive experiments
demonstrate that our model outperforms both supervised and sEEG-based self-supervised baselines,
effectively capturing the intricate processing within specific brain regions. It marks a promising
neuro-inspired AI approach in BCI. In the end, we hope our work can have implications for future
developments in sEEG-based self-supervised models with more consideration over how to build the
basic representation units so that the model can maximally benefit from the pre-training stage.

7 Broader Impacts

Our method advances the feasibility of invasive BCI technology by being the first to demonstrate
speech decoding using a single sEEG electrode, which holds significant potential for clinical ap-
plications. For patients who have lost their ability to communicate or perform daily tasks due to
neurological conditions like locked-in syndrome or amyotrophic lateral sclerosis (ALS), our approach
offers a less invasive alternative to technologies like ECoG or microelectrode arrays, thereby reducing
the risk of brain damage.
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A Experiment Design

Time

Next TrialPrepare Read Rest

0.5s 2s 0.5s

+苹果苹果

Figure 6: The experiment design of our sEEG word-reading task.

Due to the lack of open-source sEEG datasets related to language tasks, we follow the experimental
design outlined by Moses et al. [37] to collect a well-annotated Chinese word-reading sEEG dataset,
including 12 subjects (9 male, 3 female; aged 15-53, µ 27.8, σ 10.4) with pharmacologically
intractable epilepsy.

In the word-reading task, the subject speaks aloud individual words from a 61-word set while we
simultaneously record his brain activity (measured by sEEG) and voice. The word set is chosen based
on the following criteria:

• The versatility of the words in generating a range of sentences.
• The simplicity of using the words to express fundamental caregiving requirements.
• The diversity of word pronunciations to cover as many Chinese pronunciation combinations

as possible.

A list of the words contained in this 61-word set is provided in Table 4.

All data are collected as a series of "blocks" (25 blocks in total), with each block lasting about 10
minutes and consisting of multiple trials. During each block of this task, all words (from the 61-word
set) are presented individually twice, leading to a total of 122 trials.

Each trial in a block of this task starts with one word shown on the screen in white text. After 0.5
seconds, the text will turn green and remain on the screen for 2 seconds. This color transition from
white to green represents the go cue for each trial, and the subject is instructed to speak the word
aloud as soon as the text turns green. Afterward, the text will be replaced with a blank screen with a
centered cross. After 0.5 seconds, the task continues to the next trial. The word presentation order is
randomized within each task block.

Besides, we also collected non-task recordings of subjects in their daily life. Apart from sleep periods,
there are roughly 12 hours of non-task recordings during wakefulness. In summary, for each subject,
we collect about 15 hours of sEEG recordings, of which 3 hours are task recordings.
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Table 4: The Chinese words and their corresponding English translations in the 61-word set.
Words Translations Words Translations Words Translations

嘴巴 mouth 菠萝 pineapple 帮助 help

把 get 朋友 friend 脸盆 washbasin

平静 calm 漂亮 pretty 衣服 clothes

豆腐 tofu 米饭 rice 放在 put on

面条 noodle 毛巾 towel 关门 close the door

电脑 computer 凳子 stool 小刀 knife

头疼 headache 软糖 gummies 醋 vinegar

青菜 vegetables 厕所 toilet 葱花 chopped green onion

手机 cell phone 篮球 basketball 钢琴 piano

心情 mood 丝瓜 loofah 蒜泥 garlic paste

怎样 how 香肠 sausage 需要 need

你 you 拿 hold 橙汁 orange juice

找 look for 猪肉 pork 吃 eat

穿 wear 是 be 家人 family

热水 hot water 护士 nurse 换药 change dressing

喝 drink 口渴 thirsty 看 look

碗 bowl 鱼块 steak 感觉 feel

给 give 玩 play 问题 problem

外卖 takeouts 有 have 音乐 music

预约 reserve 汤圆 sweet dumpling 愿意 willing

我 I - - - -
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B Details of Baselines

In experiments, we compare our model to the existing supervised or self-supervised methods on brain
signals. The details of these baseline models are given here:

• TS-TCC[20]: A self-supervised model that consists only of a CNN module to capture local
features. This model learns robust temporal and discriminative representations from time
series by designing a tough cross-view prediction task and a contextual contrasting module.
Since sEEG is a unique type of time series, this model is suitable to serve as a baseline for
comparison.

• CNN-BiGRU[37]: A supervised model that consists of both CNN module and Bi-GRU
module, to capture contextual features from EEG signals. This model is mainly designed
for ECoG-based vocal production tasks, similar to ours. Since ECoG and sEEG are both
intracranial neural signals of the brain, this model is suitable to serve as a baseline for
comparison.

• EEG-Conformer[44]: A supervised model that consists of both CNN module and Trans-
former module, to encapsulate local and global features in a unified EEG classification
framework. EEG-Conformer is mainly designed for EEG-based motor imagination tasks.
Since the data modes of EEG and sEEG are similar, and the signals primarily pertain to
vocal production, this model is suitable to serve as a baseline for comparison.

• Neuro-BERT[50]: A self-supervised model that consists of both CNN module and Trans-
former module, to encapsulate local and global features. This model learns robust contextual
representations from EEG by introducing mask modeling. Since the data modes of EEG and
sEEG are similar, this model is suitable to serve as a baseline for comparison.

• DeWave[19]: A supervised model that consists of both Conformer module [24] and Trans-
former module, to encapsulate local and global features for language decoding. We adopt its
encoder, which consists of a 6-layer Conformer and a 6-layer Transformer. Then, we add
a classification head, which is also used in our model, for downstream word classification.
Since DeWave is also designed for language decoding, this model is suitable to serve as a
baseline for comparison.

• BrainBERT[49]: A self-supervised model for sEEG recordings that bridges modern repre-
sentation learning approaches to neuroscience. BrainBERT builds universal representation
based on the superlet spectrograms of one single sEEG channel without modeling the spatial
relationships among channels. Since the downstream tasks for BrainBERT are also related
to language decoding (e.g., sentence-onset detection, speech vs. non-speech detection, etc.),
this model is suitable to serve as a baseline for comparison.

• Brant[54]: A self-supervised model for sEEG recordings that can capture both long-term
temporal dependency and spatial correlation from neural signals. Brant is mainly designed
for medicine, serving as a sEEG foundation model. Although Brant mainly evaluates its
performance on the low-level modeling tasks [51] (e.g., neural signal forecasting, imputation,
etc.), Brant achieves SOTA performance on some high-level modeling tasks (e.g., seizure
detection). As a foundation model in sEEG pre-training field, this model is suitable to serve
as a baseline for comparison.

• LaBraM[28]: A self-supervised model for EEG recordings that learns generic representa-
tions with tremendous EEG data. LaBraM serves as an EEG foundation model, achieving
SOTA performance on various downstream EEG tasks. Since the spatial embeddings are
pre-defined according to the EEG caps, LaBraM can only be trained within one subject
under the sEEG setting. Since the data modes of EEG and sEEG are similar, this model is
suitable to serve as a baseline for comparison.

• LaBraM+PopT[28, 10]: A self-supervised model based on LaBraM, simply replacing the
learnable spatial embeddings with hard-coded spatial embeddings from PopT [10] to enable
multi-subject pre-training under the sEEG setting.

The detailed implementations of these baseline models are given here:

• For the TS-TCC method [20], the hyper-parameters are optimized for better performance,
as they also have different hyper-parameter settings for different datasets in their original
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implementation. The data samples are resampled to 400Hz. The sizes of convolution kernels
are changed to {25, 8, 8} (other attempts include {8, 8, 8}, {15, 8, 8}, {20, 8, 8}, and {30, 8,
8}); the sizes of pooling kernels are changed to {10, 2, 2} (other attempts include {2, 2, 2},
{5, 2, 2}, and {20, 2, 2}); the numbers of pooling strides are changed to {10, 2, 2} (other
attempts include {2, 2, 2}, {5, 2, 2}, and {20, 2, 2}). All other hyper-parameters are the
same as the original implementation.

• For the CNN-BiGRU method [37], the hyper-parameters are the same as the original
implementation. The data samples are resampled to the specified sampling rate.

• For the EEG-Conformer method [44], the hyper-parameters are the same as the original
implementation. The data samples are resampled to the specified sampling rate.

• For the Neuro-BERT method [50], the hyper-parameters are optimized for better perfor-
mance, as they also have different hyper-parameter settings for different datasets in their
original implementation. The data samples are sampled to 400Hz. The sizes of convolution
kernels are changed to {40,} (other attempts include {20,} and {80,}); the numbers of
convolution strides are changed to {40,} (other attempts include {20,} and {80,}).

• For the DeWave method [19], the hyper-parameters are the same as the original implementa-
tion. The data samples are resampled to the specified sampling rate.

• For the BrainBERT method [49], the hyper-parameters are optimized for better performance.
We change the "nperseg" and "noverlap" arguments of "scipy.signal.stft" function from {400,
350} to {1600, 1400} (other attempts include {200, 175}, {800, 700} and {3200, 2800}).

• For the Brant method [54], the hyper-parameters are optimized based on the Brant-Tiny
model for better performance. We change the length of the patch segment from 6 seconds
to 1 second. Besides, we change the linear embedding layer to the convolution embedding
layer, which is also used in LaBraM [28]. The numbers of convolution filters are {96, 96,
96} (other attempts include {192, 192, 192}); the sizes of convolution kernels are {9, 9, 3}
(other attempts include {19, 9, 3} and {9, 9, 3}); the numbers of convolution strides are {5,
5, 1} (other attempts include {10, 5, 1}) and {5, 5, 2}).

• For the LaBraM method [28], the hyper-parameters are the same as the original implementa-
tion of the LaBraM-Base model. The data samples are resampled to the specified sampling
rate.

• For the LaBraM-PopT method [28, 10], the hyper-parameters are the same as the original
implementation of the LaBraM-Base model. The data samples are resampled to the specified
sampling rate.

When evaluating the decoding performance of these baseline models, we follow the same experiment
setup of the Du-IN CLS model:

• For one subject, we split the downstream dataset into training, validation, and testing splits
with a size roughly proportional to 80%, 10%, and 10%.

• The data samples are 3 seconds with the specified sampling rate corresponding to each
model.

• The samples in the train-set are augmented following the pipeline defined in Appendix D.

For the self-supervised methods, the pre-training setup follows the original setup of each model:

• For the TS-TCC model, we use all sEGG recordings for each subject to pre-train it. The
data samples are 4 seconds.

• For the Neuro-BERT model, we use all sEGG recordings for each subject to pre-train it.
The data samples are 4 seconds.

• For the BrainBERT model, we use around 180 hours of sEEG recordings from either each
subject or 12 subjects for pre-training. This pre-training dataset is larger than the one
(approximately 45 hours) used in the original paper. The data samples are 4 seconds.

• For the Brant model, we also use all sEEG recordings from either each subject or 12 subjects
to pre-train it. While the total pre-training dataset is smaller than the one (around 2700
hours) used in the original paper, the number of subjects (i.e., the number of sEEG location
configurations) is greater than in the original paper. The data samples are 4 seconds.
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• For the LaBraM model, we use all sEGG recordings for each subject to pre-train it. The
data samples are 4 seconds.

• For the LaBraM-PopT model, we use all sEEG recordings from 12 subjects to pre-train it.
The data samples are 4 seconds.
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C Model Details

C.1 Du-IN VQ-VAE

The architecture of the Du-IN VQ-VAE model contains three parts: (1) Du-IN Encoder, (2) Vector
Quantizer, and (3) Du-IN Regressor. The overall architecture of "Du-IN Encoder" is shown in Figure
2. The "Vector Quantizer" is implemented similarly in LaBraM[28]. The "Du-IN Regressor" contains:

• Transformer Decoder: A stack of Transformer layers.
• Time Regression Head: A stack of 1D Transposed Convolution layers and one linear

projection layer.

The hyperparameters for Du-IN VQ-VAE training are shown in Table 5.

Table 5: The hyperparameters for Du-IN VQ-VAE training.
Module Sub-Module Name Value

Du-IN Encoder

Spatial Encoder

Linear Projection 10 → 16
# of Input Channels {16,128,128}

# of Output Channels {128,128,16}
Kernel Size {19,3,3}

Stride {10,1,1}
Padding {9,1,1}

Transformer Encoder

# of Transformer Layers 8
Hidden Size 160
MLP Size 320

MLP Dropout Ratio {0.2,0.}
# of Attention Heads 8
Attention Head Size 64

Attention Dropout Ratio 0.2

Vector Quantizer -
Codex Size 2048× 64

Embedding-to-Codex Projection 160 → 160(Tanh) → 64
Codex-to-Embedding Projection 64 → 160

Du-IN Regressor

Transformer Decoder

# of Transformer Layers 4
Hidden Size 160
MLP Size 320

MLP Dropout Ratio {0.2,0.}
# of Attention Heads 8
Attention Head Size 64

Attention Dropout Ratio 0.2

Time Regression Head

# of Input Channels {160,128,128,128,128}
# of Output Channels {128,128,128,128,16}

Kernel Size {3,3,10,9,19}
Stride {1,1,10,1,10}

Padding -
Output Padding -

Linear Projection 16 → 10

Optimizer -

Batch Size 64
Maximum Learning Rate 3e-4
Minimum Learning Rate 5e-5
Learning Rate Scheduler Cosine

Optimizer Type AdamW
Adam β (0.9, 0.99)

Weight Decay 0.01
Total Epochs 400

Warm-up Epochs 40
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C.2 Du-IN MAE

The architecture of the Du-IN MAE model contains two parts: (1) Du-IN Encoder, and (2) Token
Prediction Head. The overall architecture of the "Du-IN Encoder" is shown in Figure 2. The
hyperparameters of "Du-IN Encoder" are the same as those in Du-IN VQ-VAE. It’s worth noting that
when training Du-IN MAE, the weights of the "Du-IN Encoder" are randomly initialized, instead of
loaded from the pre-trained Du-IN VQ-VAE model. The hyperparameters for Du-IN MAE training
are shown in Table 6.

Table 6: The hyperparameters for Du-IN MAE training.
Module Sub-Module Name Value

Token Prediction Head - Linear Projection 160 → 2048

Optimizer -

Batch Size 64
Maximum Learning Rate 3e-4
Minimum Learning Rate 5e-5
Learning Rate Scheduler Cosine

Optimizer Type AdamW
Adam β (0.9, 0.99)

Weight Decay 0.05
Total Epochs 400

Warm-up Epochs 40

C.3 Du-IN CLS

The architecture of the Du-IN CLS model contains two parts: (1) Du-IN Encoder, and (2) Label
Prediction Head. The overall architecture of the "Du-IN Encoder" is shown in Figure 2. The
hyperparameters of "Du-IN Encoder" are the same as those in Du-IN VQ-VAE. It’s worth noting that
the "Du-IN Encoder" weights in Du-IN CLS can be loaded from either the pre-trained Du-IN MAE
or the pre-trained Du-IN VQ-VAE. In the ablation experiments shown in Table 2, our models have
different suffixes:

• Du-IN: The original Du-IN CLS model. All weights of this model are randomly initialized.
• Du-IN (vqvae+vq): The weights of the "Du-IN Encoder" in the Du-IN CLS model are

loaded from the pre-trained Du-IN VQ-VAE. When fine-tuning it on the downstream task,
the "Vector Quantizer" in the pre-trained Du-IN VQ-VAE is inserted between "Du-IN
Encoder" and "Label Prediction Head". This is the same operation in DeWave[19].

• Du-IN (vqvae): The weights of the "Du-IN Encoder" in the Du-IN CLS model are loaded
from the pre-trained Du-IN VQ-VAE. This is the same operation in EEGFormer [12].

• Du-IN (mae): The weights of the "Du-IN Encoder" in the Du-IN CLS model are loaded
from the pre-trained Du-IN MAE. This is the same operation in LaBraM [28].

• Du-IN (poms): The weights of the "Du-IN Encoder" in the Du-IN CLS model are loaded
from the Du-IN MAE, which is pre-trained on multiple subjects. The modification of
the Du-IN VQ-VAE and the Du-IN MAE to support multi-subject pre-training includes
(1) initializing different spatial encoders for different subjects and (2) sharing the same
transformer encoder and neural codex.

The "Label Prediction Head" is an MLP with one hidden layer, flattens the output embedding
sequence from upstream, and maps this feature embedding to the final prediction through MLP. The
hyperparameters for Du-IN CLS training are shown in Table 7.
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Table 7: The hyperparameters for Du-IN CLS training.
Module Sub-Module Name Value

Label Prediction Head - Flatten -
Linear Projection 30× 160 → 128(ReLU) → 61

Optimizer -

Batch Size 32
Maximum Learning Rate 2e-4
Minimum Learning Rate 5e-6
Learning Rate Scheduler Cosine

Optimizer Type AdamW
Adam β (0.9, 0.99)

Weight Decay 0.05
Total Epochs 200

Warm-up Epochs 20
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D Data Augmentation

To enhance the robustness of learned representations during both the pre-training and fine-tuning
stages, we apply data augmentation in both datasets.

Pre-training Dataset. In our implementation, we segment sEEG recordings into 8-second samples
with a 4-second overlap. When fetching a sample, we randomly select a starting point between 0 and
4 seconds, then extract a 4-second sample beginning from that point.

Downstream Dataset. Since a trial lasts for 3 seconds, employing the jittering mentioned above
leads to the blending of information from other trials. In our implementation, we segment sEEG
recordings into 3-second samples. When fetching a sample, we randomly choose a shift step between
0 and 0.3 seconds, then shift the sample either to the left or right, padding it with zeros.

E Du-IN Pre-training Analysis

The pre-training of Du-IN can be interpreted as the training of a variational autoencoder [30, 3]. Let x
denote the original sEEG signal, x̃ the corrupted sEEG by mask, and z the neural tokens. Considering
the evidence lower bound (ELBO) of the log-likelihood p(x|x̃), i.e., recovering the original sEEG
signal from its corrupted version:∑
(xi,x̃i)∈D

log p(xi|x̃i) ≥
∑

(xi,x̃i)∈D

(
Ezi∼qϕ(z|xi)[log pψ(xi|zi)]︸ ︷︷ ︸
Neural Token Reconstruction

−DKL[qϕ(z|xi), pθ(z|x̃i)]
)
, (10)

where (1) qϕ(z|x) denotes the Du-IN Encoder in the Du-IN VQ-VAE that obtains neural tokens; (2)
pψ(x|z) decodes the original sEEG signal given input neural tokens; (3) pθ(z|x̃) recovers the neural
tokens based on the masked sEEG signal, which is our Du-IN pre-training task.

The whole framework is optimized through a two-stage procedure as [47, 40]. For the first stage, we
train the Du-IN Encoder in the Du-IN VQ-VAE as a discrete variational autoencoder by minimizing
the reconstruction loss −Ezi∼qϕ(z|xi)log pψ(x̃i|zi) with a uniform prior. For the second stage, we
set qϕ as well as pψ fixed and learn the prior pθ by minimizing the loss DKL. For simplicity, qϕ(z|xi)
is defined as a one-point distribution with the most likely neural tokens ẑi = argmax

z
qϕ(z|xi).

Consequently, we can rewrite Equation 10 as∑
(xi,x̃i)∈D

log p(xi|x̃i) ≥
∑

(xi,x̃i)∈D

(
Ezi∼qϕ(z|xi)[log pψ(x̃i|zi)]︸ ︷︷ ︸
Neural Token Reconstruction

+ log pθ(ẑi|x̃i)︸ ︷︷ ︸
Masked sEEG Modeling

)
, (11)

where the first term is the objective for vector-quantized neural signal regression in the first stage
(i.e., the Du-IN VQ-VAE model), and the second term is the objective for Du-IN pre-training in the
second stage (i.e., the Du-IN MAE model).

F Visualization of Vector-Quantized sEEG Regression

We further visualize how the sEEG signals are reconstructed. As depicted in Figure 7, although some
details are missing, the overall trend of the signals is reconstructed well. Meanwhile, there is a stable
decrease in the reconstruction loss during training, which indicates the discrete codex does learn
high-level information from sEEG signals.

G Visualization of Mask sEEG Modeling

Figure 8 demonstrates the convergence curves of the total pre-training loss and masked sEEG
modeling accuracy of the Du-IN MAE model. We observe that there is a stable decrease in the mask
modeling loss, and the mask modeling accuracy achieves about 20%, which is similar to [28].
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Original sEEG signals Reconstructed sEEG signals(a) (b)

Figure 7: The visualization of Vector-Quantized sEEG Regression. (a). The reconstruction
loss curve during the training process of the Du-IN VQ-VAE model. (b). The visualization of
reconstructed sEEG signals.

(a) (b)

Figure 8: The loss curve and accuracy curve during the training process of the Du-IN MAE model.

H Channel Contribution Analysis

For each subject, after training the Du-IN model (with random initialization) on the downstream
dataset, we utilize the weights W ∈ RC×D of linear projection in the spatial encoder to calculate the
contribution scores S of channels:

S = {si|i = 1, ..., C}, si =
1

D

D∑
j=1

|Wij |, (12)

where C is the number of channels, D is the dimension of projected embedding and | · | gets the
absolute value. Then, we normalize S using its maximum value to ensure it falls within the [0,1] range.
Finally, given the variability in model performance across subjects, we further adjust the channel
contribution scores based on the decoding performance of that subject, i.e., S = {si · p|i = 1, ..., C},
where p represents the decoding performance of that subject.

After calculating the channel contribution scores of all subjects, we project them to the standard brain
template according to the MNI (Montreal Neurological Institute) locations of channels, using Nilearn
0.9.2. Since the electrodes are sparsely distributed within the brain, we use Scipy 1.8.1 to interpolate
and smooth the channel contribution matrix and use NiLearn to plot the channel contribution map
demonstrated in Figure 4 (a).

With the sorted channels within each subject, we evaluate the effect of the number of channels on the
decoding performance. For each subject, we evaluate the Du-IN model with {5, 10, 15, 20, 30, 60}
channels (sorted by channel contribution scores), and the averaged performance (across subjects) is
demonstrated in Figure 4 (b).
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I Effectiveness of Region-Specific Channel Selection

DeWave [19] successfully reconstructs 128-channel EEG signals with the same setting of vector-
quantizer. However, this is not the case under the sEEG setting, which is shown in Table 8. It’s
worth noting that sEEG signals are fundamentally different from EEG signals due to (1) the high
information density and (2) the high specificity of different regions. Due to the desynchronization
nature [7] of the brain during awake tasks, only specific brain regions are related to tasks. Therefore,
only after region-specific channel selection, the Du-IN VQ-VAE model can successfully reconstruct
the original signals, thus identifying the fine-grained state of brain regions.

Table 8: Ablations to validate the effectiveness of region-specific channel selection.
Settings Setting 1 Setting 2 Setting 3

MSE 0.2969±0.0376 0.5211±0.0492 0.9673±0.0148
1 Setting 1: Select top-10 channels relevant to speech decoding for neural signal reconstruction.
2 Setting 2: Randomly select 10 channels for neural signal reconstruction.
3 Setting 3: Use all channels (109.75 channels on average) for neural signal reconstruction.

J Additional Group-Wise Evaluation

The cross-entropy loss of different methods from each subject is provided in Table 9, with the best in
bold and the second underlined. For model comparison, we report the average and standard deviation
values (within each subject) on six different random seeds to obtain comparable results. "Std" means
standard deviation.

Table 9: The cross-entropy loss of different methods (with the best in bold and the second underlined).

Methods Token Level Config Model Size Cross-Entropy ± Ste
PT1 MS2

TS-TCC[20] Region ! % 0.32M 3.8871±0.3072
CNN-BiGRU[37] Region % - 0.54M 4.0294±0.7621
EEG-Conformer[44] Region % - 2.34M 3.8165±0.3456
Neuro-BERT[50] Region ! % 2.14M 3.6416±0.4360
DeWave[19] Region % - 5.70M 4.1891±0.5722

BrainBERT[49] Channel ! % 43.58M 4.6254±0.1984
BrainBERT[49] Channel ! ! 43.58M 4.6190±0.2132
Brant[54] Channel ! % 69.35M 4.7962±0.7082
Brant[54] Channel ! ! 69.35M 5.0294±1.0621
LaBraM[28] Channel ! % 6.85M 4.8591±0.2723
LaBraM-PopT[28, 10] Channel ! ! 6.85M 4.6564±0.1893

Du-IN Region % - 4.38M 3.5083±0.3003
Du-IN (vqvae+vq) Region ! % 4.38M 3.7244±0.3104
Du-IN (vqvae) Region ! % 4.38M 3.4309±0.2781
Du-IN (mae) Region ! % 4.38M 3.3707±0.2882

Du-IN (poms) Region ! ! 5.18M 3.4429±0.2754
1 PT: Whether the model is pre-trained before evaluation.
2 MS: Whether the model is pre-trained across multiple subjects.
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K Subject-Wise Evaluation

The detailed performance of different methods from each subject is provided in Table 10, Table 11,
and Table 12, with the best in bold and the second underlined. For model comparison, we report the
average and standard deviation values (within each subject) on six different random seeds to obtain
comparable results. "Std" means standard deviation.

Table 10: The performance of different methods from subjects (01-04).

Methods Config Accuracy (%) ± Std (%)
PT1 MS2 subj-01 subj-02 subj-03 subj-04

TS-TCC[20] ! % 26.90±1.72 61.57±1.21 6.65±1.09 20.66±0.79
CNN-BiGRU[37] % - 46.46±4.03 68.06±1.56 4.35±0.44 17.68±3.88
EEG-Conformer[44] % - 58.41±1.03 69.82±1.22 19.50±1.71 49.65±2.38
Neuro-BERT[50] ! % 60.44±2.23 72.97±1.47 28.38±4.23 52.76±3.41
DeWave[19] % - 43.31±5.80 57.12±3.01 3.70±5.35 33.52±3.98

BrainBERT[49] ! % 5.30±0.90 23.49±1.29 2.74±0.40 5.18±0.38
BrainBERT[49] ! ! 6.76±0.64 25.64±1.23 2.97±0.66 5.09±0.44
Brant[54] ! % 8.64±1.59 47.97±1.30 3.06±0.36 2.74±0.68
Brant[54] ! ! 7.47±2.83 54.26±1.63 3.34±0.38 4.15±1.35
LaBraM[28] ! % 12.55±1.17 39.20±1.53 3.54±0.47 13.30±1.19
LaBraM-PopT[28, 10] ! ! 14.14±1.28 39.50±1.35 3.28±0.55 12.77±1.72

Du-IN % - 71.25±1.44 77.99±0.87 23.04±4.76 59.91±4.58
Du-IN (vqvae+vq) ! % 50.15±3.80 62.79±4.67 20.72±2.15 48.24±2.65
Du-IN (vqvae) ! % 72.36±1.55 79.16±1.12 29.21±2.38 63.83±1.83
Du-IN (mae) ! % 78.60±0.79 83.61±0.38 38.80±2.52 70.98±0.81

Du-IN (poms) ! ! 73.23±0.67 79.12±1.07 28.89±1.96 64.24±1.29
1 PT: Whether the model is pre-trained before evaluation.
2 MS: Whether the model is pre-trained across multiple subjects.
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Table 11: The performance of different methods from subjects (05-08).

Methods Config Accuracy (%) ± Std (%)
PT1 MS2 subj-05 subj-06 subj-07 subj-08

TS-TCC[20] ! % 34.53±1.34 9.73±0.97 24.83±1.15 20.08±1.60
CNN-BiGRU[37] % - 51.26±4.93 31.52±1.48 47.75±1.12 24.64±4.44
EEG-Conformer[44] % - 65.44±1.31 31.06±2.58 47.89±1.86 42.12±2.08
Neuro-BERT[50] ! % 71.61±1.97 36.63±2.15 50.23±2.63 43.24±1.36
DeWave[19] % - 45.20±3.08 26.88±1.92 38.24±2.15 29.15±3.28

BrainBERT[49] ! % 9.59±0.90 2.67±0.31 4.79±0.64 5.10±0.59
BrainBERT[49] ! ! 11.28±1.17 3.00±0.47 5.31±0.55 5.22±0.76
Brant[54] ! % 24.10±2.14 5.09±1.27 7.74±1.46 8.66±1.07
Brant[54] ! ! 28.83±1.93 5.28±1.48 9.70±1.85 8.93±1.39
LaBraM[28] ! % 15.52±1.48 6.63±0.33 12.65±0.50 7.41±0.86
LaBraM-PopT[28, 10] ! ! 17.73±1.11 5.81±1.61 12.90±1.26 6.41±1.85

Du-IN % - 77.60±1.20 41.91±1.80 59.63±2.20 52.35±2.18
Du-IN (vqvae+vq) ! % 63.46±2.28 34.84±1.98 45.20±2.44 40.14±1.77
Du-IN (vqvae) ! % 78.56±1.24 43.29±1.67 62.29±1.49 54.10±1.34
Du-IN (mae) ! % 81.56±1.11 46.90±1.02 65.45±1.74 59.09±0.98

Du-IN (poms) ! ! 76.91±1.38 47.01±1.76 61.68±0.95 55.17±1.37
1 PT: Whether the model is pre-trained before evaluation.
2 MS: Whether the model is pre-trained across multiple subjects.

Table 12: The performance of different methods from subjects (09-12).

Methods Config Accuracy (%) ± Std (%)
PT1 MS2 subj-09 subj-10 subj-11 subj-12

TS-TCC[20] ! % 37.75±1.22 5.71±0.38 35.72±0.95 14.12±0.68
CNN-BiGRU[37] % - 44.03±5.88 7.11±0.71 28.44±3.42 13.17±3.41
EEG-Conformer[44] % - 56.51±1.98 22.22±1.07 57.10±2.03 29.87±1.44
Neuro-BERT[50] ! % 54.12±4.11 24.66±1.28 62.99±0.93 36.07±2.36
DeWave[19] % - 41.98±4.60 6.22±0.94 44.60±3.35 19.22±2.95

BrainBERT[49] ! % 6.82±1.42 2.55±0.49 8.73±0.92 3.71±1.02
BrainBERT[49] ! ! 7.20±1.37 2.49±0.43 10.60±1.22 4.41±0.88
Brant[54] ! % 6.82±1.44 2.84±0.26 8.76±1.55 7.53±1.29
Brant[54] ! ! 6.46±1.66 3.00±0.31 9.82±1.71 7.82±1.66
LaBraM[28] ! % 8.97±0.52 3.50±0.30 7.92±0.61 7.19±0.54
LaBraM-PopT[28, 10] ! ! 9.35±1.09 3.91±0.31 7.84±0.92 7.74±1.24

Du-IN % - 66.39±0.47 27.07±2.24 73.56±1.09 44.76±3.74
Du-IN (vqvae+vq) ! % 60.06±1.61 22.05±1.76 50.31±4.69 32.06±3.28
Du-IN (vqvae) ! % 67.18±1.22 31.06±1.59 72.41±1.98 45.38±2.26
Du-IN (mae) ! % 69.18±1.96 34.23±1.17 75.52±1.27 48.54±0.56

Du-IN (poms) ! ! 70.71±1.48 36.90±1.34 72.80±1.38 43.53±3.20
1 PT: Whether the model is pre-trained before evaluation.
2 MS: Whether the model is pre-trained across multiple subjects.
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L Effectiveness of Vector-Quantized Neural Signal Prediction

To verify the effectiveness of vector-quantized neural signal prediction, we elaborate on two types
of experimental settings as illustrated in Table 13. The comparison between Du-IN and Setting 1
demonstrates that the codex is effective for masked sEEG modeling. The comparison between Du-IN
and Setting 2 demonstrates that introducing the codex can prevent the model from focusing too much
on reconstructing details, thus enabling the Du-IN MAE to learn better contextual embeddings.

Table 13: Ablations to validate the effectiveness of vector-quantized neural signal prediction.
Model Du-IN (mae) Setting 1 Setting 2

Acc. (%) ± Ste (%) 62.70±4.69 60.92±4.38 58.72±5.02
1 Setting 1: We directly predict output embeddings of the Du-IN Encoder in the Du-IN VQ-VAE

by maximizing cosine similarity instead of predicting the discrete neural tokens from the codex.
2 Setting 2: We discard the Du-IN Encoder in the Du-IN VQ-VAE and directly reconstruct raw

EEG patches by minimizing MSE loss.

M Ablation on Mask Ratio

In this experiment, we conduct different mask ratio settings to explore its impact. It is noted that we
introduce the symmetric masking strategy, so we only need to validate half of the mask ratios. As
the mask ratio is set to r, the symmetric masking will mask 1− r proportion of sEEG patches. The
ablation results are provided in Table 14. It can be induced that the best mask ratio is 0.5 (0.5) for our
dataset.

Table 14: Ablations to explore the impact of mask ratios.
Mask Ratio 0.5 (0.5) 0.4 (0.6) 0.3 (0.7) 0.2 (0.8) 0.1 (0.9)

Acc. (%) ± Ste (%) 62.70±4.69 60.58±4.33 59.58±4.98 58.92±4.07 58.55±3.94

N Ablation on Pre-training Epochs

The impact of the number of pre-training epochs (of the Du-IN VQ-VAE model) is demonstrated in
Table 15. We use the checkpoints according to the specified epochs to pre-train the Du-IN MAE model
for 400 epochs. Once the reconstruction loss of the Du-IN VQ-VAE model converges, the Du-IN
VQ-VAE model can extract the state of the brain region well, thus leading to better performance.

The impact of the number of pre-training epochs (of the Du-IN MAE model) is demonstrated in Table
16. We use the checkpoints according to the specified epochs for downstream classification. Once
the mask modeling loss of the Du-IN MAE model converges, the Du-IN MAE model learns robust
contextual embeddings, thus leading to better performance.

Table 15: Ablations to explore the impact of the pre-training epochs (of the Du-IN VQ-VAE model).
# of Epochs 5 10 50 100 400

Acc. (%) ± Ste (%) 50.02±4.91 52.29±5.09 61.09±4.28 62.59±4.32 62.70±4.69

Table 16: Ablations to explore the impact of the pre-training epochs (of the Du-IN MAE model).
# of Epochs 5 10 50 100 400

Acc. (%) ± Ste (%) 57.87±4.58 58.12±4.49 61.89±4.62 62.47±4.77 62.70±4.69
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O Subject-Wise Electrode Locations

We provide detailed information on the locations of the implanted sEEG electrodes for each subject.
Red channels are the top 10 channels (selected through channel contribution analysis) for both
pre-training and downstream evaluation, as described in Section 4.3. As the majority of subjects
have sEEG electrodes implanted on only one side of their brains to locate the source of epilepsy, we
provide side views of either the left or right brain areas here.

subj-04

L R

subj-01

L R

L

subj-02

R

subj-03

L R

Figure 9: Electrode locations from subjects (01-04).
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Figure 10: Electrode locations from subjects (05-08).
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Figure 11: Electrode locations from subjects (09-12).
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P Subject-Wise Selected Channels

The MNI coordinates, and brain region labels (according to Harvard-Oxford cortical and subcortical
structural atlases [15]) for selected channels are listed below. The channels for each subject are
arranged in descending order based on their contribution scores.

Table 17: The MNI coordinates and brain region labels of selected channels from subjects (01-04).

Subjects MNI coordinate Brain Region Du-IN Accuracy (%)x y z

subj-01

-57 -16 19 Central Opercular Cortex L

71.25

-61 -16 20 Postcentral Gyrus L
-54 -16 17 Central Opercular Cortex L
-67 -15 23 Postcentral Gyrus L
-25 -30 49 White L
-64 -15 21 Postcentral Gyrus L
-51 -17 16 Central Opercular Cortex L
-22 -31 49 White L
-48 -17 15 Central Opercular Cortex L
-18 -32 49 White L

subj-02

33 -27 7 White R

77.99

37 -28 7 Heschls Gyrus R
30 -27 6 White R
48 -29 9 Planum temporale R
51 -29 10 Planum temporale R
41 -28 8 White R
46 -3 -9 Insula R
55 -29 11 Planum temporale R
49 -3 -7 Planum temporale R
43 -3 -10 Insula R

subj-03

-38 -30 6 White L

23.04

-58 -31 4 Superior Temporal Gyrus L
-31 -30 7 White L
-35 -30 7 White L
49 -11 1 Heschls Gyrus R
48 -36 26 Parietal Operculum Cortex R
42 -11 -1 Insula R
-55 -31 5 Superior Temporal Gyrus L
-41 -30 6 Planum temporale L
45 -11 0 Heschls Gyrus R

subj-04

-44 -10 32 Precentral Gyrus L

59.91

-45 -11 35 Precentral Gyrus L
-53 -6 -1 Planum temporale L
-44 -9 28 Precentral Gyrus L
-46 -12 39 Precentral Gyrus L
-52 -5 2 Planum temporale L
-43 -8 24 White L
-38 -3 6 Insula L
-53 -7 -5 Superior Temporal Gyrus L
-16 43 25 White L
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Table 18: The MNI coordinates and brain region labels of selected channels from subjects (05-08).

Subjects MNI coordinate Brain Region Du-IN Accuracy (%)x y z

subj-05

-48 -16 33 Postcentral Gyrus L

77.60

-46 15 29 Postcentral Gyrus L
-43 -14 22 White L
-51 -17 39 Postcentral Gyrus L
-44 -15 26 White L
-53 -17 43 Postcentral Gyrus L
-50 -16 36 Postcentral Gyrus L
-41 -14 19 Insula L
-55 -18 46 Postcentral Gyrus L
-49 -37 9 White L

subj-06

56 -1 10 Central Opercular Cortex R

41.91

58 -4 4 Planum temporale R
52 4 21 Precentral Gyrus R
53 3 17 Precentral Gyrus R
57 -2 7 Central Opercular Cortex R
54 1 14 Precentral Gyrus R
51 6 24 Precentral Gyrus R
64 -25 -4 Middle Temporal Gyrus R
21 -1 11 White R
49 7 28 Precentral Gyrus R

subj-07

-38 -18 2 Insula L

59.63

-44 -23 1 Heschls Gyrus L
-41 -21 1 Heschls Gyrus L
-35 -16 2 Insula L
-50 -28 0 Superior Temporal Gyrus L
-47 -26 1 Planum temporale L
-52 -30 0 Superior Temporal Gyrus L
-26 -16 40 White L
-42 0 -8 Insula L
-39 -22 41 Postcentral Gyrus L

subj-08

-40 -20 4 Heschls Gyrus L

52.35

-43 -21 4 Heschls Gyrus L
-37 -20 4 Insula L
-50 -22 4 Heschls Gyrus L
-47 -21 4 Heschls Gyrus L
-55 3 24 Precentral Gyrus L
-64 -24 3 Superior Temporal Gyrus L
-61 -23 3 Superior Temporal Gyrus L
-54 -22 3 Planum temporale L
-52 2 22 Planum temporale L
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Table 19: The MNI coordinates and brain region labels of selected channels from subjects (09-12).

Subjects MNI coordinate Brain Region Du-IN Accuracy (%)x y z

subj-09

-58 -13 21 Postcentral Gyrus L

66.39

-55 -12 19 Central Opercular Cortex L
-53 -11 17 Central Opercular Cortex L
-50 -10 15 Central Opercular Cortex L
-61 -15 23 Postcentral Gyrus L
-63 -16 25 Postcentral Gyrus L
-45 -8 10 Central Opercular Cortex L
-47 -9 12 Central Opercular Cortex L
-42 -7 8 Insula L
52 -2 26 Precentral Gyrus R

subj-10

-34 -47 41 Supramarginal Gyrus L

27.07

-42 -55 41 Angular Gyrus L
-39 -53 41 Angular Gyrus L
-37 -50 41 Supramarginal Gyrus L
-25 -37 42 White L
-44 -58 41 Angular Gyrus L
-27 -39 42 White L
-18 -41 48 Postcentral Gyrus L
-34 -34 -23 Temporal Fusiform Cortex L
-13 -40 43 Precuneous Cortex L

subj-11

39 -22 3 Heschls Gyrus R

73.56

36 -23 3 Insula R
47 -22 2 White R
32 -23 4 White R
43 -22 2 Planum temporale R
53 -9 16 Central Opercular Cortex R
57 -8 17 Postcentral Gyrus R
50 -10 16 Central Opercular Cortex R
61 -21 0 Superior Temporal Gyrus R
39 -14 13 Insula R

subj-12

45 -20 11 Heschls Gyrus R

44.76

38 -20 12 Insula R
42 -20 11 Heschls Gyrus R
49 -20 10 Heschls Gyrus R
53 -19 10 Heschls Gyrus R
60 -19 9 Planum temporale R
56 -19 9 Planum temporale R
60 -58 3 Middle Temporal Gyrus R
56 -57 3 Middle Temporal Gyrus R
35 -21 12 Insula R
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Three of the four contributions mentioned at the end of the "Introduction"
section are explicitly included. The contribution related to neuroscience-inspired analysis is
simplified as "inspired by neuroscience findings" at the end of the "Abstraction" section.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We provide a separate "Limitations" section; see Section 5 for more details.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: The paper does not include theoretical results.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide detailed information related to our model and baselines in
Appendix C and Appendix B, respectively. Besides, we provide code and dataset in
https://github.com/liulab-repository/Du-IN.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide code and dataset in https://github.com/liulab-repository/Du-IN.
Due to the lack of open-source sEEG datasets related to language, we collected a well-
annotated Chinese word-reading sEEG dataset, and evaluated our model on this dataset.
However, respecting the efforts of the data collectors, we only provide the dataset of some
subjects to reproduce the experimental results in the main text. The whole dataset will be
publicly available to ensure the reproducibility of this work.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide detailed information related to our model and baselines in Appendix
C and Appendix B, respectively.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: For the main results, we report the average and standard error values (of all
subjects) on six random seeds. For detailed subject-wise evaluation, we report the average
and standard deviation values (of each subject) on six random seeds.
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8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Detailed information related to the training process is provided in Section 4.2

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conforms, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines.

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [No]
Justification: This work aims to explore the feasibility of intracranial neural signals to
decode speech, which mainly has positive impacts on society.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [No]
Justification: The paper poses no such risks.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The creators or original owners of assets (e.g., code, data, models), used in the
paper, are properly credited and are the license and terms of use explicitly mentioned and
properly respected.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [Yes]
Justification: The ethics statements are provided in Section 7.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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Answer: [Yes]
Justification: The ethics statements are provided in Section 7.
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