Automated Label Unification for Multi-Dataset
Semantic Segmentation with GNNs

Rong Ma; Jie Chen; Xiangyang Xue, and Jian Pu’
Fudan University
rma22@m.fudan.edu.cn, {chenjl19,xyxue,jianpu}@fudan.edu.cn

Abstract

Deep supervised models possess significant capability to assimilate extensive train-
ing data, thereby presenting an opportunity to enhance model performance through
training on multiple datasets. However, conflicts arising from different label spaces
among datasets may adversely affect model performance. In this paper, we propose
a novel approach to automatically construct a unified label space across multiple
datasets using graph neural networks. This enables semantic segmentation models
to be trained simultaneously on multiple datasets, resulting in performance improve-
ments. Unlike existing methods, our approach facilitates seamless training without
the need for additional manual reannotation or taxonomy reconciliation. This sig-
nificantly enhances the efficiency and effectiveness of multi-dataset segmentation
model training. The results demonstrate that our method significantly outperforms
other multi-dataset training methods when trained on seven datasets simultaneously,
and achieves state-of-the-art performance on the WildDash 2 benchmark. Our code
can be found in https://github.com/Mrhonor/AutoUniSeg.

1 Introduction

Recent advances in computer vision [35, 21]] have shown the advantages of large datasets in training
robust visual models [2]. However, for deep supervised visual models that rely on annotated data,
the collection of such extensive annotated datasets can be prohibitively costly [L1]]. To address this
expense and expand the data available for training, several efforts [4} 23 [30] focus on the challenges
of multi-dataset training, enabling the use of diverse datasets to train more robust and generalizable
models.

Models trained on multiple datasets must confront the challenge of reconciling conflicting annotation
standards and label spaces. For example, the class road in the BDD dataset [46]] can be further divided
into several classes in the Mapillary dataset [33]]: road, lane marking and crosswalk. Similarly, the
Mapillary dataset labels both barrier and curb as distinct classes, while in the IDD dataset [42], they
are combined under the single label curb. These conflicts impact the supervised learning of models,
as they may be incorrectly penalized for predicting finer-grained classes from other datasets.

Another challenge is the task of unifying diverse dataset labels to produce outputs in a standardized
format 29} 24]. Several methods [[11}30] attempt to address this by concatenating the label spaces of
all datasets and using language models to encode label names into a text embedding space. However,
there approaches introduce redundancy and fail to handle issues where labels share names but differ
in annotation granularity. Other methods involve manually constructing universal taxonomies [4, [24]]
or relabeling [23], both of which are time-consuming and labor-intensive. Recent approaches aim to

“These authors contributed to the work equally and should be regarded as co-first authors.
"Corresponding author.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

80141 https://doi.org/10.52202/079017-2547

https://github.com/Mrhonor/AutoUniSeg

Label Encoding Automated Label Unification @ @ Dataset-specific Label Node

Dataset Label Mappings

Dataset Labels @ Unified Label Node

|
road Fez‘:ztres Graph l road | Prediction in the
lane marking = Language i Neural —y train : - Dataset Label Space
Y ——) -
on rails Model Networks : road | LR, <8
Dataset 1 . ; |
Unified Label lane markin,
DatasetN l E I ®- ‘
| |

Embedding |
Space // / | I
Prediction in the

Unified Label Space
T »

L

Segmentation in Unfied Label Space

..

Input Image Segmentation Network B Ground Truth

Figure 1: Our method consists of three modules. The label encoding provides the semantic text
features of the dataset labels. The GNNs learn the unified label embedding space and dataset label
mappings based on the textual features and input images. The segmentation network leverages the
unified label embedding space to produce segmentation results in the unified label space.

automatically construct universal taxonomies [6, 41]], but these methods typically identify inter-label
relations between only two datasets, involving a time-consuming iterative training process.

In this paper, we propose a novel approach leveraging Graph Neural Networks (GNNs) [20] to
automatically construct unified label space, enabling segmentation model to be trained simultaneously
on multiple datasets. In contrast to previous approaches [11} 4, [6], our approach eliminates the need
for manual re-annotation or iterative training procedures to construct universal taxonomies, while
also addressing the limitation of language-based methods in distinguishing categories with identical
semantics. As depicted in[Figure I] we utilize a language model to convert the dataset labels into
text features. Then, we apply GNNss to learn the relationships and associations among these labels.
The process creates a unified label embedding space and dataset label mappings. The output head
of the segmentation network incorporates the unified label embedding space to generate unified
segmentation results within this unified space. The dataset label mappings are subsequently utilized
to align the unified segmentation results with the label spaces relevant to each dataset. This enables
the training of segmentation models and graph neural networks with dataset-specific annotations.

2 Related work

Multi-datasets Semantic Segmentation. In recent years, numerous studies [52, 29] focused on train-
ing semantic segmentation models on multiple datasets. A simple approach involved incorporating
dataset-specific modules in the model, such as dataset-specific output heads [28] or dataset-specific
batch normalization layers [44]], to produce predictions tailored to each dataset domain. While these
methods effectively avoided issues of dataset label space conflicts, they offered limited applicabil-
ity in real-world scenarios as they could not deliver unified predictions. MSeg addressed the
problem at the data level via manual re-annotation processes to resolve label conflicts. However, this
approach was time-consuming, error-prone and not easily scalable. Recent methods employed manual
[3]] or automatic techniques [6]] to construct universal taxonomies and establish label relationships
between datasets label space and the unified label space. These methods, leveraging partial label
learning approaches [12]], enabled training with dataset-specific annotations and producing unified
predictions.

Construct Universal Taxonomies. Each dataset has its unique domain, necessitating the construction
of universal taxonomies to enable the model to cover all domains. Several approaches 30]
attempted to concatenate dataset label spaces and differentiated similar classes by aligning text
embedding encoded by language model. However, this approach struggled with classes that had the
same name but different levels of annotation granularity, and direct concatenation of label spaces
could lead to semantic conflicts. Other research 29] attempted to establish a unified label space

https://doi.org/10.52202/079017-2547 80142

Training Datasets

Sampled Image
from Dataset i
= -

Pixel
Embedding

Dataset i
Annotation

Dataset-specific
Prediction

Encoder-

=)

=)

i

=

Dataset 1 ataset N

Decoder

HXW XL

/UniSegHead

Dataset i Pixel
Embedding

HxWxC
.

— Projected to Unified —
Label Embedding Space LR

Unified
Prediction

HXWXL;

-
Label Relation Learning

3

®

Unified Label
Embedding Space

|
I °o0
|) .
Dataset 1 Dat'as.et Label | N —— /// 6 0 o | Label Mappings
ey Description by GPT | LXL LXL
| road -~ Road: An | Dataset cxL i N
: curb | image of road | Embedding \ 0000
from dataset 1.
== —I Road is a paved Text / } ‘ 8

= Surface... s : _.@—»

g ercoder 0P > "o HEEE
Dataset N | Walk An -/ ‘ i P
FEER=RT | image of wall L | / Initialized Bipartite
| wall I from dataset N. | // Graph Matrix
| table Wall is a solid | i "

(F e 1l [structare.. Text | Randomized Unified @ mm———— e ——— ey
- ol Features} Nerle Featuies | % Frozen Parameters (@ Trainable Parameters| |

Dataset-specific

Figure 2: Illustration of our method that training with dataset-specific annotations through label
mappings constructed by GNNs. We leverage a unified segmentation head (UniSegHead) to enable
simultaneous training on multiple datasets. In the UniSegHead, we compute the matrix product
between pixel embedding and augmented unified node features output by the GNNs, resulting in
predictions for the unified label space. We finally utilize the label mappings constructed by GNNs to
map the unified predictions to dataset-specific prediction for training.

through the expertise of human annotators. Additionally, other studies [41}, 53] aimed to address
this issue by developing automated mechanisms to create universal taxonomies. However, these
methods either could only construct a unified label space between two datasets at a time [6] or could
not handle complex class relationships [53]]. Our approach stands out by automatically constructing
universal taxonomies in a single training session with multiple datasets, resulting in significant time
savings compared to methods that require multiple training iterations.

Graph Neural Networks demonstrated exceptional effectiveness in dealing with complex topo-
logical data structures, as highlighted in recent research [43]]. The applicability extended across
various domains, including recommendation systems [18]], knowledge graph construction [50]], and
skeletal action recognition [54]. In the context of our problem, discovering label relations can be
conceptualized as a link prediction task [49, 22]. However, conventional approaches for graph link
prediction [9} [TQ] are not suitable for our model since we do not possess ground truth links. We use
the values of the learnable adjacency matrix as predictions of whether nodes are linked. Supervision
of the linked predictions relys on the segmentation results of the segmentation network and the
corresponding image annotations.

3 Proposed Method

The comprehensive framework is depicted in [Figure 2] We first define the unified representation of
the multi-dataset label space. Utilizing this representation, we build a graph neural network to learn
the unified label space. Finally, leveraging the unified label space, we train our segmentation network
and the graph neural network using the dataset annotations.

3.1 Unification of Multi-dataset Label Space

Unified Label Space. Given K datasets with their respective label space {L1, Lo, . .., Lk }, multi-
dataset semantic segmentation requires a model to predict within a consistent label space that

80143

https://doi.org/10.52202/079017-2547

encompasses all dataset label spaces Ljreq = U1K:1 L;. Each pixel must be assigned to a label
in this unified label space. We define N unified label nodes A = {«1,as,...,an}, serving as
the nodes in the graph neural networks. Their corresponding D-dimensional learnable embedding
{x1,X2,...,xy} represent the unified label embedding space. The number of unified label nodes
N is often smaller than the total number of dataset classes |L|, because we aim to merge multiple
identical classes into a single unified label. The image is first encoded into pixel embedding P by the
segmentation network, which is then projected into the unified label embedding space to assign a
unified label to each pixel.

Label Mappings. We define a mapping from the unified label space to the dataset-specific label space
M, : A — L;, which is used to train the model with dataset-specific annotations. Mathematically,
M; € {0,1}V*IEil is a boolean linear transformation. Each unified class « is at most linked to a
class ¢ within a specific dataset ¢ to prevent label conflicts: M1 < 1. To handle different annotation
granularities, we use label mappings to merge multiple unified label nodes representing fine-grained
classes into one super-class c: M| 1 > 1. For example, the curb from IDD can be simultaneously
mapped by unified label nodes represented curb and barrier. We use unified label nodes as input
nodes for the GNNs, which learn the label mappings and unified label embedding space, thus enabling
the automated unification of multi-dataset label spaces.

3.2 Learning Unified Label Space with Graph Neural Networks

Learning the label mappings between dataset label spaces and the unified label space can be viewed
as a bipartite graph matching problem. This makes graph neural networks well-suited to address this
issue. Below, we detail our approach of constructing GNNs for learning a unified label space.

Input Nodes. To construct the input feature of dataset-specific label nodes, as illustrated in
we used the dataset labels in the template "An image of <label> from the dataset <dataset>" as
plain text input and employed ChatGPT to complete the detailed description of each label. Then,
we employ llama-2 [40] to encode these label descriptions and generate text features. To further
distinguish nodes from different datasets, we introduce learnable dataset embedding for each dataset

{d1,da,...,dk}. The dataset embedding is combined with the text features to form the input
features for dataset-specific label nodes:
Xim = ft(li,m) + dia (1)

where x; ,, is the input feature of the m-th label from dataset 4, and f,(I; ,,) is the text feature of
the label description ; ,, encoded by language model. The input features of unified label nodes
are randomly initialized to the same dimension as the dataset-specific label node. To determine
the appropriate number of unified label nodes, inspired by the approach in [53]], we used cross-
validation results across different datasets to identify the number of mergeable categories, which
served as the initial selection for the unified label nodes. The specific algorithm can be found in
Together, dataset-specific label nodes and unified label nodes constitute the input nodes
of GNNs. During the training process, we maintain a constant number of nodes. After the training is
completed, we will remove inactive unified label nodes, meaning those that were not assigned to any
dataset-specific label.

Learnable Adjacency Matrix. To enable label mappings to be updated via gradient descent, we
embed the label mappings as a continuous, learnable graph adjacency matrix M. Values in the
adjacency matrix represent the weights of corresponding edges. Only the edges between unified label
nodes and dataset-specific nodes are learnable, while others are fixed to zero. We apply a softmax
operation to the edges connecting each unified label node with nodes of a particular dataset, ensuring
that the sum of the edge weights w between each unified label node and nodes of this dataset equals
one. The element at the intersection of the r-th row and the c-th column in the lower triangular
portion of M, is formulated as:

eWr,e

Mﬁc = Zc’GLi,T’GA €
0 otherwise.

o ifr>[Ljandc<|[L]|

(@)

Unified Label Embedding. The forward propagation of our graph model follows the GraphSAGE
framwork [[17] as formulated in WF and X* are the weight and feature of the k-th GNNs
layer. The o indicates nonlinear activation function, implemented as the tanh in this work. The output

https://doi.org/10.52202/079017-2547 80144

Table 1: Training and test datasets in our experiments.

Dataset Domain Training and Validation datasets Unseen test datasets
Driving scene CityScapes [13], Mapillary [33], BDD [46], IDD [42] WildDash 2 [47], KITTI [16], CamVid [§],
Indoor scene SUN RGBD [37] ScanNet-20 [14]

Everyday objects ADE20K [51], COCO [25] PASCAL VOC [15], PASCAL Context [32]

features of the unified label nodes from the final layer serve as the unified label embedding space,
X, = [x1,%X2,...,xn] "
XFH = o (WHXF M, XF)). 3)

To obtain the dataset label mappings, we partition the adjacency matrix into submatrices, each
corresponding to a specific dataset. Each submatrix contains only the unified label nodes and the
label nodes specific to that dataset. We compute the label mappings for each dataset based on the
values in its corresponding submatrix, divided into the following two cases. During training, we will
alternately train the segmentation network and the GNNs. When training the GNNs, we directly use
the value of the learnable adjacency matrix to establish label mappings, thereby facilitating weight
updates through gradient descent. When training the segmentation network, we utilize the unbalanced
optimal transport algorithm to solve for the boolean label mappings that satisfies the many-to-one
mapping constraints. This algorithm detailed in effectively handles the conversion of the
continuous adjacency matrix into a discrete dataset label mappings required for training segmentation
network.

3.3 Training a Universal Model with Dataset-specific Annotations

Training a universal model is divided into two steps. The first step involves training a robust encoder-
decoder to provide the pixel embedding for each pixel position in the image, where similar objects
should have similar features. The second step focuses on learning label mappings and unified label
embedding space by GNNs. During the training phase, we alternate between these two steps, freezing
one network while training another network. Both of these steps require supervised training using
dataset-specific annotations. Here, we primarily focus on the training of GNNs, while further details

of the training strategies are provided in the

Training with Dataset-specific Annotations. During training, an image is randomly sampled from
dataset ¢ and fed into an segmentation network, which provides embedding for each pixel position
P ={p1,pP2,...,P;}, where py is D-dimensional vectors. We utilize a unified segmentation head
(UniSegHead) to assign a dataset label to each pixel. In the UniSegHead, We first project the pixel
embedding into the unified label embedding space by multiplying the pixel embedding by the output
feature of unified label node X,,, as shown in[Equation 4] Then, to train the universal model with
dataset-specific annotations, we need to map the predictions in unified label space to dataset-specific
label space to obtain the probabilities of dataset-specific classes. This is achieved by computing
per-pixel dataset-specific logits s by multiplying the dataset-specific label mappings M, at each pixel:

u, = Xy Pk, 4)
S = Miuk. (5)

Finally, probabilities of dataset-specific classes are computed by per-pixel softmax operation over the
logits s. This allows us to use dataset-specific annotations to compute the pixel-wise loss function,
train the network, and update the label mappings. We formulate the cross-entropy loss for a specific
pixel to train the segmentation network:

[L;]|
Lee(y,s) =— Z Y log(softmax(s).), 6)

c=1

where y is the pre-pixel annotation, |L;| represents the total number of classes in the dataset ¢ from

which the image originates.

Orthogonality Loss. To achieve a conflict-free unified label space and avoid redundant unified label
nodes that represent the same class or have overly similar features, we introduce soft constraints to
promote orthogonality among the unified label node features, inspired by [39]]. This orthogonality
loss encourages unified label node embedding to be mutually orthogonal. It not only aligns the unified

80145 https://doi.org/10.52202/079017-2547

Table 2: Multi-dataset performance compared with other methods.

Methods Backbone Venue Label space’| CS MPL SUN BDD IDD ADE COCO Mean
MSeg [23] HRNet-W48 CVPR 20 MR 763 5197 46.1 63.5 618 4287 48.6% 559
NLL+ [4] SNp-RN18 WACV 22 MC 726 39.1 417 585 54.4° 310 354 47.5
Uni NLL+ [5] SNp-DN161 1CV 24 MC 76.1 442 469 604 5677 356 393 51.3
Single dataset HRNet-W48 - DS 770 302 439 624 668 345 38.0 50.4
Multi-SegHead | HRNet-W48 - DS 79.5 361 473 656 67.0 305 36.7 51.8
Auto univ. [6] SNp-RN18 BMVC 22 Auto 727 358 423 59.6 552° 30.7 35.6 47.4
Ours HRNet-W48 - Auto 80.7 437 475 655 68.6 42.0 46.7 56.4

! Approach to construct label space. MC:Manually Construct, MR:Manually Relabel, DS:Dataset-specific, Auto:Automatically Construct.

2 MSeg train and evaluate on 43 of 65 class in Mapillary dataset, 117 of 150 class in ADE dataset, 122 of 133 class in COCO dataset.

3 These methods were trained and evaluated using 30 classes from the IDD dataset, while we trained and evaluated using the officially
recommended 26 classes.

Table 3: Performance comparison with two baselines on training and unseen datasets.

Trained dataset | Mean results across training datasets Mean results across unseen datasets
or label space | Single dataset Multi-SegHead Single dataset Multi-SegHead
CS 239 30.9 31.4 37.9
MPL 30.6 36.1 36.9 41.0
SUN 12.9 22.0 16.7 28.9
BDD 24.8 29.1 30.4 35.7
IDD 26.0 34.0 28.9 36.4
ADE 28.5 40.3 372 49.8
COCO 30.5 38.8 45.1 53.2
Ours 56.4 56.9

label nodes with annotation standards for practical use but also enhances the diversity of the model
and helps in finding a better label mappings:

N
Lorth = — Z softmax (X, x;); log(softmax (X, x;);). @)
i=1

The final loss function used to train the GNNs is represented as follows, with As as hyperparameters
to adjust the weights of different loss functions:

L= Alﬁce +)\2£orth‘ (8)

4 Experiments

Datasets. We list the semantic segmentation datasets used for training and testing in[Table T} Our
training datasets cover a wide range of scenarios, from indoor scenes to driving scenes. We also
introduce corresponding test datasets, which are not used in the training process, for the respective
scenes to evaluate our generalization capability.

Implementaion Details. Our segmentation model is based on the HRNet-W48 architecture [38]],
while the GNN model is a three-layer GraphSAGE [17]]. We utilize the llama-2-7B model to encode
label descriptions into 4096-dimensional text features. These text features, augmented with dataset
embedding of the same dimensionality, are then employed as node features input into the GraphSAGE.
When forming a minibatch from multiple datasets, we evenly sample 3 images per dataset within a
batch for each GPU. For all images, We first apply random resizing with a ratio ranging from 0.5 to
2, followed by a random crop operation to achieve a final image size of 768 x 768 pixels. We use
AdamW optimizer [27] with warmup and polynomial learning rate decay, starting with a learning
rate of 0.0001. We train our model for 300k iterations on four 80G A100 GPUs.

4.1 Comparison on Multiple Datasets

In we present the accuracy of our methods and compare them to other approaches on the
seven training datasets. We use mean Intersection over Union (mlIoU) to quantify the performance
of models, a common metric used to evaluate the performance of segmentation models. Different
methods adopt various approaches to construct their label spaces: Dataset-Specific represents a lack
of a unified label space, where the model outputs a separate label space for each dataset. Manually

https://doi.org/10.52202/079017-2547 80146

Our 7ds Model

Ground Truth BDD Model MPL Model ADE Model
: ws R N "y =

Figure 3: Visual comparisons with Single dataset model on different training datasets.

Relabel means manually re-annotating each image. Manually Construct means the label space is
constructed through human expertise. Automatically Construct includes methods where the unified
label space is automatically constructed by the model. We also establish two baseline methods: Single
dataset and Multi-SegHead. Single dataset demonstrates the results of training on individual dataset
only, while Multi-SegHead trains on multiple datasets by using dataset-specific segmentation heads.

The results demonstrate that our method achieves the best average performance in multi-dataset
training, while also achieving significant performance improvements on datasets with a large number
of classes such as the ADE and COCO datasets. We attribute this to the construction of a robust
unified label space. Leveraging visual connections from the samples, our unified label space can
discover label relationships beyond textual similarities. For instance, the visual appearance of the
fireplace in ADE is similar to the tunnel in Mapillary. Despite their different semantic meanings, our
model merges these labels for prediction, as detailed in[subsection 4.3] This approach saves model
capacity and facilitates knowledge transfer across datasets for improved prediction.

In as a supplement to we compare our model with various models trained on
single dataset, as well as each segmentation head output of the Multi-SegHead. Detailed data for

each dataset can be found in the[Appendix D] From the table, it can be observed that training with
multiple datasets helps improve the model’s generalization performance. However, the performance
of different segmentation head outputs in Multi-SegHead model shows significant differences due to
the lack of a unified form of output that performs well across all datasets. In contrast, our approach
provides a unified label space covering all datasets, resulting in a significant advantage in average
performance. We also list the performance on the five unseen test datasets mentioned in [Table 1} To
evaluate the performance of our model on unseen datasets, we first evaluate the model results on its
training dataset. We search for the optimal label mappings based on the accuracy of label predictions.
There are no updates to any model parameters except the label mappings in this process. This process
can actually be done manually without any annotation information. The results indicate that our
model exhibits better generalization performance. It can handle various scenarios and consistently
achieve excellent performance on the test set. Compared to Multi-SegHead model, our automatically
constructed label space has advantages over dataset label spaces. The unified label space can integrate
the semantic information from multiple dataset label spaces.

presents the segmentation results on multiple datasets predicted in unified label space.
Compared to models trained only on Single dataset, our model successfully provides consistent
predictions on all datasets. It’s worth noting that in the BDD dataset, annotations are not provided for
lane marking, crosswalk and manhole, which are only annotated in the Mapillary dataset. Our model
successfully integrates the label space of the Mapillary dataset, thereby predicting these classes in the

BDD dataset. More results are presented in[Appendix F|

4.2 Results on WildDash 2 Benchmark.

WildDash 2 [47] provides a benchmark for semantic segmentation, designed to test the robustness
of algorithms in real-world driving scenarios. Due to the insufficient number of training samples

80147 https://doi.org/10.52202/079017-2547

Table 4: Performance comparison on WildDash 2 benchmark.

Model Venue Trained Meta Avg Classic Classic Classic Classic Negative
mloU Class mloU Class iloU Class mloU Cat. iloU Cat. mloU class
EffPS [31] Cv 21 X 322 35.7 24.4 63.8 56.0 20.4
MSeg [23] CVPR 20 X 352 38.7 354 65.1 50.7 24.7
SeamSeg [34] CVPR 19 X 37.9 41.2 37.2 63.1 58.1 30.5
UniSeg [19] ECCV 22 X 394 41.7 353 65.8 574 34.8
Ours - X 40.5 41.2 33.7 65.4 54.2 434
SNpRN152 [3] arXiv 20 v 45.4 48.9 427 70.1 64.8 32.5
NLL+ [4] WACV 22 v 46.8 51.0 43.9 71.4 65.5 32.6
Uni NLL+ [5] 1ICcv 24 v 46.9 51.6 45.9 72.8 67.5 29.0
FAN [45] arXiv 22 v 47.5 50.8 44.0 74.2 67.5 344
MIX6D [26] arXiv 22 v 48.5 51.2 46.5 724 66.1 40.8
Ours - v 50.0 52.2 47.5 72.4 68.6 44.6
Table 5: Comparison of Different Methods of Construct Label Spaces.

Methods [L] | CS M™MPL SUN BDD IDD ADE COCO Mean

Direct concatenation 448 1 79.2 388 469 643 66.7 333 38.2 52.5

Clustered by text features 320 | 799 40.8 473 656 68.6 338 38.0 534

Without GNN training 231 | 79.8 397 477 661 68.1 378 453 54.9

Without GPT’s label description | 226 | 80.2 434 472 647 688 40.1 46.0 55.8

Our proposed method 217 | 80.7 4377 475 655 68.6 42.0 46.7 56.4

provided by this dataset, the official recommendation is to use multiple datasets for training. Therefore,
this benchmark is well-suited to evaluate the effectiveness of multi-dataset training methods. The
WildDash 2 dataset includes negative test cases to challenge the robustness of the model. These
negative test cases mainly consist of unconventional driving scenarios, and even non-driving scenarios.
Across all pixels within negative test images, a robust model is expected to predict the void label for
open-set classes and anomalous objects. The WildDash 2 benchmark refers to the metric named Meta
Avg mloU Class, which calculates the mean Intersection over Union for each class by weighting
negative and positive test cases according to their occurrence in the benchmark dataset.

presents the current results on the WildDash 2 leaderboard. We present results for zero-shot
generalization using our 7ds model. To evaluate in an unseen setting, we map the non-evaluated
classes in the unified label space to a void label for both positive and negative test frames. To
ensure a fair comparison with other works, we also provide evaluation results for models trained
using the training datasets from the Robust Vision Challenge 2022[1]], which include CityScapes,
ADE20K, Vistas, VIPER [36], ScanNet, and WildDash 2. The results indicate that our method
achieves state-of-the-art performance in both zero-shot and trained settings. Our method exhibits
significant performance improvements compared to other methods on negative test cases. We attribute
this to the robustness of our model, which has been trained on diverse datasets, enabling it to perform
well in unconventional scenarios. Our zero-shot model has been trained on a wider range of datasets
compared to the trained model. Therefore, even without training on the WildDash 2 dataset, it
achieves similar performance on negative test cases.

4.3 Ablation Study

To further explore the ability of our GNNs to construct a unified label space, we compared it with
four alternative methods. The first method concatenates all dataset label spaces into a single unified

space Ui’;l L;. The second approach constructs a unified label space by clustering text features based
on cosine similarity using the DBSCAN [7] algorithm. In the third method, we train a segmentation
network using an initial adjacency matrix, as outlined in[Appendix B] without incorporating GNN
training. The final method involves an ablation experiment, removing the label description module
to observe its impact. Experimental results, presented in demonstrate that the label space
constructed based on GNNSs can better assist in the learning of segmentation models. Unlike the first
approach, our method optimizes model capacity by focusing on label relationships rather than dataset
recognition. Compared to the second approach, our method can differentiate between classes with
identical names but differing levels of granularity. By leveraging label descriptions to enrich semantic
context, our approach constructs a more refined and functional label space.

https://doi.org/10.52202/079017-2547 80148

Datasets

cv

Domaln-speciie Table 6: Performance on unseen
% dataset.

Driving Non-Driving
Model Cv KT VOC SN
General | 71.1 655 69.2 40.6
Specific | 744 674 287 8.1

Figure 4: The composition of the training datasets.

4.4 Exploring the Impact of Training Datasets

To explore the impact of training dataset selection on model performance, we train a domain-specific
model focusing on road driving scenes and a domain-general model on more datasets, as shown in
We conduct four sets of comparisons to evaluate the performance across datasets that were
trained on both models, trained on one model and not on the other, and not trained on either model.
As shown in Table[6]and [Appendix F] the domain-specific model can focus more on learning features
specific to the particular scene, resulting in slightly better performance on both trained and unseen
driving scene datasets compared to domain-general model. On the other hand, domain-general model
trained on more scenes and more data exhibit better generalization performance. Therefore, while it
does not lag too far behind in performance on driving scene datasets, it demonstrates overwhelming
advantages on other scene datasets.

4.5 Qualitative Results

[Figure 3| presents the qualitative analysis results of the label space learned by our model. We compare
the label space learned by our model with the label space constructed using text features. The class
curb in the IDD dataset actually encompasses both the classes curb and barrier in Mapillary, whereas
the constructed label space by text features cannot handle such subclass/superclass relations. In
contrast, our GNNs learned label space splits the IDD curb into two classes for prediction, effectively
handling such label relationships. Similar situations also include the class tunnel or bridge in the
IDD dataset. However, since the proportion of bridge pixels is orders of magnitude greater than that
of tunnels (108 pixels for bridge and 10* pixels for tunnel), a more reasonable approach is to merge
it with the class bridge, as our GNNs have done. Additionally, it is worth noting that due to visual
similarities, the Mapillary funnel has been merged with the ADE fireplace. This does not actually
introduce any conflict because no dataset simultaneously annotates both the tunnel and fireplace. The
model will construct the label space in a way that facilitates its learning process.

5 Conclusion

We propose a novel approach that leverages graph neural networks to construct a unified label space
for training semantic segmentation models across multiple datasets. Our method addresses the
challenge of label conflicts in multi-dataset semantic segmentation and demonstrates performance
improvements across various datasets. The unified label space generated during training, generalizes
well to unseen datasets, showcasing the effectiveness of our approach.

Broader Impact. Our work explores the use of graph neural networks to unify label spaces between
datasets, providing a new direction for achieving robust and efficient multi-dataset training. By
enabling semantic segmentation models to be trained on multiple datasets with a unified label space,
our method can potentially reduce human effort required for re-labeling images and facilitate the
expansion of training datasets. This can lead to the development of models that are more universally
applicable across various datasets, benefiting a wide range of applications.

Limitations. Although our approach does not require manual relabeling efforts, it still relies on
fully annotated datasets for training, in contrast to weakly-supervised and unsupervised methods.
We aim to explore ways to integrate these alternative methods in future research. Errors in the fully
automated construction of a unified label space do present some safety risks for autonomous driving
tasks. Therefore, we recommend introducing a manual review mechanism to address these issues.
Additionally, using ChatGPT may generate inaccurate label descriptions, which could affect the

80149 https://doi.org/10.52202/079017-2547

IDD Dataset: IDD Dataset: MPL Dataset: MPL Dataset: Constructed by text features
curb curb barrier curb MPL: IDD: MPL:

curb curb barrier
=) | w
Ground Truth *-n ‘ A by - ey e
- MPL: IDD: MPL:

curb curb barrier
Our 7ds Model

i

@ @

IDD Dataset: MPL Dataset: MPL Dataset: ADE Dataset:
tunnel or bridge brid tunnel fireplace
noge P Constructed by text features

& MPL: IDD:tunnelor ADE: MPL: ADE:
Image : i3) tunnel bridge fireplace bridge bridge

@

8 Learned by GNNs
MPL: ADE: |DD:tunnelor MPL: ADE:

tunnel fireplace bridge bridge bridge

Ground Truth

_I
Our 7ds Model | "
, 1 PR ()

Figure 5: Comparison of unified label space learned by GNNs with constructed by text features.

prediction of label relationships. Therefore, we aim to improve the accuracy of label descriptions by
incorporating label descriptions provided by official datasets as prompts.

6 Acknowledgments

This work was supported in part by NSFC Project (62176061), Shanghai Municipal Science and
Technology Major Project (2021SHZDZX0103). The computations in this research were performed
using the CFFF platform of Fudan University.

References

[1] Robust vision challenge. http://www.robustvision.net/index.php. Accessed: 2022-
12-02.

[2] Muhammad Awais, Muzammal Naseer, Salman Khan, Rao Muhammad Anwer, Hisham

Cholakkal, Mubarak Shah, Ming-Hsuan Yang, and Fahad Shahbaz Khan. Foundational models
defining a new era in vision: A survey and outlook. arXiv preprint arXiv:2307.13721, 2023.

[3] Petra Bevandi¢, Marin Orsi¢, Ivan Grubisié, Josip §arié, and SiniSa §egvié. Multi-domain
semantic segmentation with pyramidal fusion. arXiv preprint arXiv:2009.01636, 2020.

[4] Petra Bevandi¢, Marin Orsi¢, Ivan Grubisié, Josip Sari¢, and Sinisa gegvié. Multi-domain
semantic segmentation with overlapping labels. In Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision, pages 2615-2624, 2022.

[5] Petra Bevandi¢, Marin OrSi¢, Josip Sari¢, Ivan Grubisié, and Sinisa §egvic’. Weakly supervised
training of universal visual concepts for multi-domain semantic segmentation. International
Journal of Computer Vision, pages 1-23, 2024.

[6] Petra Bevandié and SiniSa Segvié. Automatic universal taxonomies for multi-domain semantic
segmentation. British Machine Vision Conference, 2022.

[7] FM Bi, WK Wang, and L Chen. Dbscan: density-based spatial clustering of applications with
noise. J. Nanjing Univ, 48(4):491-498, 2012.

[8] Gabriel J Brostow, Julien Fauqueur, and Roberto Cipolla. Semantic object classes in video: A
high-definition ground truth database. Pattern Recognition Letters, 30(2):88-97, 2009.

[9] Lei Cai and Shuiwang Ji. A multi-scale approach for graph link prediction. In Proceedings of
the AAAI conference on artificial intelligence, pages 3308-3315, 2020.

https://doi.org/10.52202/079017-2547 80150

http://www.robustvision.net/index.php

[10] Lei Cai, Jundong Li, Jie Wang, and Shuiwang Ji. Line graph neural networks for link prediction.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(9):5103-5113, 2021.

[11] Yanbei Chen, Manchen Wang, Abhay Mittal, Zhenlin Xu, Paolo Favaro, Joseph Tighe, and
Davide Modolo. Scaledet: A scalable multi-dataset object detector. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 72887297, 2023.

[12] Jestus Cid-Sueiro. Proper losses for learning from partial labels. Advances in neural information
processing systems, 25, 2012.

[13] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo
Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset for semantic
urban scene understanding. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 3213-3223, 2016.

[14] Angela Dai, Angel X Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, and Matthias
NieBiner. Scannet: Richly-annotated 3d reconstructions of indoor scenes. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 5828-5839, 2017.

[15] Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew Zisserman.
The pascal visual object classes (voc) challenge. International journal of computer vision,
88:303-338, 2010.

[16] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. Vision meets robotics: The
kitti dataset. The International Journal of Robotics Research, 32(11):1231-1237, 2013.

[17] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. Advances in neural information processing systems, 30, 2017.

[18] Junheng Hao, Tong Zhao, Jin Li, Xin Luna Dong, Christos Faloutsos, Yizhou Sun, and Wei
Wang. P-companion: A principled framework for diversified complementary product recommen-
dation. In Proceedings of the 29th ACM International Conference on Information & Knowledge
Management, pages 2517-2524, 2020.

[19] Dongwan Kim, Yi-Hsuan Tsai, Yumin Suh, Masoud Faraki, Sparsh Garg, Manmohan Chan-
draker, and Bohyung Han. Learning semantic segmentation from multiple datasets with label
shifts. In European Conference on Computer Vision, pages 20-36. Springer, 2022.

[20] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In International Conference on Learning Representations, 2016.

[21] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson,
Tete Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. arXiv
preprint arXiv:2304.02643, 2023.

[22] Ajay Kumar, Shashank Sheshar Singh, Kuldeep Singh, and Bhaskar Biswas. Link prediction
techniques, applications, and performance: A survey. Physica A: Statistical Mechanics and its
Applications, 553:124289, 2020.

[23] John Lambert, Zhuang Liu, Ozan Sener, James Hays, and Vladlen Koltun. Mseg: A composite
dataset for multi-domain semantic segmentation. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 2879-2888, 2020.

[24] Feng Lin, Wenze Hu, Yaowei Wang, Yonghong Tian, Guangming Lu, Fanglin Chen, Yong Xu,
and Xiaoyu Wang. Universal object detection with large vision model. International Journal of
Computer Vision, 132(4):1258-1276, 2024.

[25] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollar, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer
Vision—ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014,
Proceedings, Part V 13, pages 740-755. Springer, 2014.

[26] Yajie Liu, Pu Ge, Qingjie Liu, Shichao Fan, and Yunhong Wang. An empirical study on
multi-domain robust semantic segmentation. arXiv preprint arXiv:2212.04221, 2022.

[27] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

[28] Shota Masaki, Tsubasa Hirakawa, Takayoshi Yamashita, and Hironobu Fujiyoshi. Multi-
domain semantic-segmentation using multi-head model. In 2021 IEEE International Intelligent
Transportation Systems Conference (ITSC), pages 2802-2807. IEEE, 2021.

80151 https://doi.org/10.52202/079017-2547

[29] Panagiotis Meletis and Gijs Dubbelman. Training semantic segmentation on heterogeneous
datasets. arXiv preprint arXiv:2301.07634, 2023.

[30] Lingchen Meng, Xiyang Dai, Yinpeng Chen, Pengchuan Zhang, Dongdong Chen, Mengchen
Liu, Jianfeng Wang, Zuxuan Wu, Lu Yuan, and Yu-Gang Jiang. Detection hub: Unifying
object detection datasets via query adaptation on language embedding. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 11402-11411, 2023.

[31] Rohit Mohan and Abhinav Valada. Efficientps: Efficient panoptic segmentation. International
Journal of Computer Vision, 129(5):1551-1579, 2021.

[32] Roozbeh Mottaghi, Xianjie Chen, Xiaobai Liu, Nam-Gyu Cho, Seong-Whan Lee, Sanja Fidler,
Raquel Urtasun, and Alan Yuille. The role of context for object detection and semantic
segmentation in the wild. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 891-898, 2014.

[33] Gerhard Neuhold, Tobias Ollmann, Samuel Rota Bulo, and Peter Kontschieder. The mapil-
lary vistas dataset for semantic understanding of street scenes. In Proceedings of the IEEE
international conference on computer vision, pages 4990-4999, 2017.

[34] Lorenzo Porzi, Samuel Rota Bulo, Aleksander Colovic, and Peter Kontschieder. Seamless scene
segmentation. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 8277-8286, 2019.

[35] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning,
pages 8748-8763. PMLR, 2021.

[36] Stephan R. Richter, Zeeshan Hayder, and Vladlen Koltun. Playing for benchmarks. In IEEE
International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017,
pages 2232-2241, 2017.

[37] Shuran Song, Samuel P Lichtenberg, and Jianxiong Xiao. Sun rgb-d: A rgb-d scene understand-
ing benchmark suite. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 567-576, 2015.

[38] Ke Sun, Yang Zhao, Borui Jiang, Tianheng Cheng, Bin Xiao, Dong Liu, Yadong Mu, Xinggang
Wang, Wenyu Liu, and Jingdong Wang. High-resolution representations for labeling pixels and
regions. arXiv preprint arXiv:1904.04514, 2019.

[39] Marco Toldo, Umberto Michieli, and Pietro Zanuttigh. Unsupervised domain adaptation
in semantic segmentation via orthogonal and clustered embeddings. In Proceedings of the
IEEE/CVF Winter conference on Applications of Computer Vision, pages 1358-1368, 2021.

[40] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open
foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

[41] Jasper Uijlings, Thomas Mensink, and Vittorio Ferrari. The missing link: Finding label relations
across datasets. In European Conference on Computer Vision, pages 540-556. Springer, 2022.

[42] Girish Varma, Anbumani Subramanian, Anoop Namboodiri, Manmohan Chandraker, and
CV Jawahar. Idd: A dataset for exploring problems of autonomous navigation in unconstrained
environments. In 2019 IEEE Winter Conference on Applications of Computer Vision (WACV),
pages 1743-1751. IEEE, 2019.

[43] Petar Velickovi¢. Everything is connected: Graph neural networks. Current Opinion in
Structural Biology, 79:102538, 2023.

[44] Li Wang, Dong Li, Han Liu, Jinzhang Peng, Lu Tian, and Yi Shan. Cross-dataset collabora-
tive learning for semantic segmentation in autonomous driving. In Proceedings of the AAAI
Conference on Artificial Intelligence, pages 2487-2494, 2022.

[45] Junfei Xiao, Zhichao Xu, Shiyi Lan, Zhiding Yu, Alan Yuille, and Anima Anandkumar. 1st

place solution of the robust vision challenge 2022 semantic segmentation track. arXiv preprint
arXiv:2210.12852, 2022.

[46] Fisher Yu, Wenqi Xian, Yingying Chen, Fangchen Liu, Mike Liao, Vashisht Madhavan, Trevor
Darrell, et al. Bdd100k: A diverse driving video database with scalable annotation tooling.
arXiv preprint arXiv:1805.04687, 2(5):6, 2018.

https://doi.org/10.52202/079017-2547 80152

[47] Oliver Zendel, Matthias Schorghuber, Bernhard Rainer, Markus Murschitz, and Csaba Beleznai.
Unifying panoptic segmentation for autonomous driving. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 21351-21360, 2022.

[48] Min-Ling Zhang, Fei Yu, and Cai-Zhi Tang. Disambiguation-free partial label learning. /IEEE
Transactions on Knowledge and Data Engineering, 29(10):2155-2167, 2017.

[49] Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. Advances in
neural information processing systems, 31, 2018.

[50] Lingfeng Zhong, Jia Wu, Qian Li, Hao Peng, and Xindong Wu. A comprehensive survey on
automatic knowledge graph construction. arXiv preprint arXiv:2302.05019, 2023.

[51] Bolei Zhou, Hang Zhao, Xavier Puig, Tete Xiao, Sanja Fidler, Adela Barriuso, and Antonio
Torralba. Semantic understanding of scenes through the ade20k dataset. International Journal
of Computer Vision, 127:302-321, 2019.

[52] Qiang Zhou, Yuang Liu, Chaohui Yu, Jingliang Li, Zhibin Wang, and Fan Wang. Lmseg:
Language-guided multi-dataset segmentation. In The Eleventh International Conference on
Learning Representations, 2022.

[53] Xingyi Zhou, Vladlen Koltun, and Philipp Kréhenbiihl. Simple multi-dataset detection. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
7571-7580, 2022.

[54] Guangming Zhu, Liang Zhang, Hongsheng Li, Peiyi Shen, Syed Afaq Ali Shah, and Mohammed
Bennamoun. Topology-learnable graph convolution for skeleton-based action recognition.
Pattern Recognition Letters, 135:286-292, 2020.

80153 https://doi.org/10.52202/079017-2547

A Training Strategy

The training process is divided into three distinct stages: Multi-SegHead Training Stage, Alternating
GNN s Training Stage and Alternating SegNet Training Stage, as shown in Initially,
we commence with the Multi-SegHead Training Stage for 100k iterations. After completing Multi-
SegHead Training Stage, we discard the multi-heads and initialize the UniSegHead for predicting class
probabilities during subsequent training phases. Subsequently, we alternate between the Alternating
GNNss Training Stage and Alternating SegNet Training Stage for a total of three cycles, each lasting
20k iterations. Notably, we prioritize the Alternating GNNs Training stage at the beginning of each
cycle.

Multi-SegHead Training Stage aims to equip the segmentation network with fundamental segmen-
tation capabilities. By commencing with a Multi-SegHead model, we provide a robust starting point
for the subsequent stages, enhancing both performance and training efficiency. During this stage,
the network is trained on multiple datasets using specific segmentation heads for each dataset. Each
segmentation head comprises feature weights W; of dimension C' X |L;|, where | L;| represents the
number of classes of dataset 7. Pixel embedding P is multiplied by the i-th feature weight to make
predictions within the i-th dataset’s label space. This facilitates the utilization of dataset-specific
annotations and cross-entropy loss for network training.

|Ls]
Ln(y,s) == yeclog(softmax(W,p).). ©)

c=1

Alternating GNNs Training Stage. Training SegNet and GNNs simultaneously is challenging
and impractical because training the segmentation network requires a discrete label mapping, while
training the GNNs necessitates a continuous and differentiable adjacency matrix. Hence, we alter-
nately training the GNNs and the segmentation network. The Alternating GNNs Training Stage
focuses on optimizing a unified label space. During this stage, the GNNs are trained while keeping
the segmentation network frozen. When mapping the prediction from the unified label space to the
dataset label space, we directly multiply the adjacency matrix M. We calculate the loss according
to

Alternating SegNet Training Stage. During this stage, the GNNs remain frozen while the seg-
mentation network is trained. We will use the technique detailed in to convert the
continuous adjacency matrix into a discrete label mappings that satisfies the constraints, and then
use it to compute the cross-entropy loss function and train according to During the last
Alternating SegNet training stage, we extend the training procedure to 100k iterations and drop the
entire GNNs but retain the dataset label mappings {M;, i = 1, ..., K'}. The unified label embedding
X, in this stage is no longer keep frozen and trained with the SegNet. In the latter part of this
stage, we will use training dataset to evaluate the model’s performance. Those links between the
unified label space and dataset-specific label space which is not activated during the evaluation will be
removed. After removing the unused connections, we continue training with the new label mappings.
And thus, we obtain the final model. When applying the final model to predict in the wild, we could
manually assign each unified label node a class name accord to their prediction and semantics.

B Selection of Unified Label Node Quantity and Initialization of Adjacency
Matrix

The appropriate quantity of unified label nodes is crucial for balancing model performance and
computational expenses. An excessive number of unified label nodes not only increases computational
costs but may also result in redundancy in both the model and semantic space, leading to situations
where multiple unified label nodes represent similar semantic concepts. Conversely, an insufficient
number of unified label nodes can prevent the model from fully expressing the entire semantic space
UZ1 L;, making it difficult to learn certain classes in the datasets, thus impacting model performance.
Inspired by [53]], we determine the number of unified label nodes using the following steps. We first
enumerate all feasible schemes for merging dataset labels, which form the Cartesian product of all
dataset label sets . = Ly X Lo X ... X L. Label merging does not require the participation of all
datasets simultaneously, so L; can be an empty element, indicating no participation in label merging.

https://doi.org/10.52202/079017-2547 80154

Algorithm 1 The training pipeline of our model

Input: the number of datasets &, the Segmentation Network SegN et, the Graph Neural Networks
G N N s, Multi-head iters I),, GNNSs training iters I, and SegNet training iters I
Stage = Multi-head stage; iter = 0
for a multi-datasets sampled mini-batch {z;,v;} 1| do
if Stage == Multi-SegHead Training:
Calculate £,,, by [Equation 9|
Update SegNet to minimize L,
if iter++ > I,,;: Replace Multi-SegHead with UniSegHead; Stage = GNNSs training; iter = 0
if Stage == GNN:ss training:
Calculate £, by
Update GN N s to minimize L,
if iter++ > I,: Solve dataset label mappings by [Algorithm 2} Stage = Seg training; iter = 0
if Stage == SegNet training:
Calculate L. by
Update SegNet to minimize L.
if iter++ > I: Stage = GNNs training; iter = 0
end switch
end for

We evaluate the quality of label merging using the predefined loss function £, where merging classes
with the same semantic meaning results in smaller losses. Additionally, we require that the merging
satisfies the constraint: each dataset node has only one corresponding merged node. It is worth noting
that this constraint is stronger than our label mapping constraint described in thus
ensuring that our adjacency matrix is always valid. We formulate optimization objective function as:

minimize, Y, z:Fs, l > L. (Sf,Sf) + AL

teT c€L|t(c)=1 (10)
subject to Sooxg=1 V,

teT[t.=1

where T represents the set of all feasible edges connecting dataset label nodes to unified label nodes,
x4 € {0, 1} indicates whether edge t € T is selected, with z; = 1 indicating the presence of edge
t and O indicating its absence. Sy denotes the dataset to which edge ¢ belongs, Lj represents the
label space of Sy, and t(c) is the label connected by edge ¢. A|L] is the penalty term for the number
of nodes, encouraging the optimizer to merge similar nodes to obtain a more compact unified label
space. Based on experimental insights and referencing paper [52], we selected the hyperparameter

A=0.5. L, (Sf, Sf) is primarily used to evaluate the quality of label merging, where S* represents

the output results on class c using the original dataset segmentation head, and Sf represents the
output results on class c using segmentation heads from other datasets participating in the merging.

L. (Sf,éf) = 3 IoU(S¥) — IoU(s.), (11

scegé"

where, IoU is a metric commonly used to measure the performance of semantic segmentation models.
Therefore, we use this metric here to evaluate the assistance of merged nodes to the model. By using
a linear optimization solver to solve the optimization objective we can obtain a unified
label space. We use the number of labels in this label space as the quantity of our unified label nodes
and initialize our adjacency matrix based on their label mapping relationships.

C Solving the dataset Label Mappings

Given the definition of the label mappings and the constraints outlined in solving
the dataset label mappings could be conceptualized as a weighted bipartite graph matching problem.
The weight of each edge is determined by the values of the GNNs learnable adjacency matrix. The
objective is to maximize the sum of edge weights while ensuring that each node of the specific dataset
is connected. The unbalanced optimal transport algorithm offers an approximate solution to such

80155 https://doi.org/10.52202/079017-2547

Algorithm 2 The procedure of solving the dataset label mappings

Input: Submatrix of adjacency matrix for each dataset {S(®) i = 1,..., K}, the classes of each
dataset {¢(,i = 1, ..., K'}, the number of unified label node N
Output: Mapping matrices M) ..., M(K)

R 1 , 1 .
Initialize o = NlNXl’ B0 = {Elcmxhz =1,.,.K},d=0,u

for i ?)1 to K do
i , ,

Qi = UOT(a, 0, 5)
Assign the label to the node with the highest score
M](flz = arg mng{ng%, ey Qg?l)\l}
for j = 1to ¢ do

Find an unlinked dataset-specific node

if max " == 0 then

aj = sort(Q}”)
Find first multi-mapped node, where sum/(} /,/(",)) > 1
j', k' = findFirstMulMapped(g;, M)
Replace the corresponding label mappings
@ _ @ _
M/ = 0, My, = 1
end if
end for

10 @ i

ﬂ;) = 2= Qi -

B = uBW + (1 - B0
end for

problems, but it does not guarantee adherence to the constraint of connecting each node in the specific
dataset. Therefore, based on the optimal matching result obtained from the algorithm, we employ a
greedy strategy to adjust the matching scheme for all unconnected nodes within the specific dataset.

Initially, for every unconnected dataset-specific node, we sort all unified label nodes based on their
matching preferences, from highest to lowest. Subsequently, we examine these unified label nodes
and their associated dataset-specific nodes. In cases where the associated dataset-specific node is also
connected by another unified label node, we adjust the edge so that this unified label node links to the
unconnected specific dataset node, following this process until all nodes are connected. The specific

procedure is outlined in

D Comparison with Baselines on Multiple Datasets

lists the results of mutual evaluation among training datasets. The results indicate that
individually-trained models generally demonstrate good accuracy when tested on the same dataset,
but perform poorly on other datasets. Our method can leverage knowledge from multiple datasets to
improve performance on individual datasets. lists the results of the Multi-SegHead model’s
predictions on different datasets using different segmentation head outputs. It can be observed that
none of the segmentation head outputs could consistently provide accurate predictions across all
datasets, indicating that their label spaces do not effectively cover all datasets. [Table 9]and [Table 10|
list the performance of different models on unseen datasets. The results indicate that our method has
better generalization performance on unseen datasets compared to other methods. Additionally, the
unified label space we construct contains richer semantic information, enabling flexible adaptation to
datasets from different scenarios.

https://doi.org/10.52202/079017-2547 80156

Table 7: Semantic segmentation accuracy (mloU) on training datasets compared with Single dataset
model.

Train\Test | CS MPL SUN BDD IDD ADE COCO Mean
CS 710 72 37 434 304 26 2.8 239
MPL 656 302 48 545 484 47 59 30.6
SUN 130 34 439 124 95 5.1 3.0 12.9
BDD 589 121 36 624 309 27 2.7 24.8
IDD 509 104 43 435 668 3.1 2.8 26.0
ADE 427 115 355 347 215 345 12.8 28.5
COCO 455 140 291 420 30.1 1438 38.0 30.5
Ours 80.7 437 475 655 68.6 420 46.7 56.4

Table 8: Semantic segmentation accuracy (mloU) on training datasets compared with Multi-SegHead.

Label space\Test | CS MPL SUN BDD IDD ADE COCO Mean
CS 795 161 104 616 428 25 3.6 30.9

MPL 729 361 129 604 547 7.0 8.9 36.1

SUN 335 93 473 295 227 64 53 22.0

BDD 67.1 166 89 656 390 26 3.6 29.1

IDD 723 203 108 598 67.0 3.3 43 34.0

ADE 62.7 208 435 576 46.6 305 20.5 40.3
COCO 595 214 344 575 444 180 36.7 38.8
Ours 80.7 437 475 655 68.6 42.0 46.7 56.4

Table 9: Semantic segmentation accuracy (mloU) on unseen datasets compared with Single dataset.
Train\Test | KT T SN CV VOC CT Mean
CS 623 43 675 16.1 7.0 314
MPL 673 6.1 731 246 133 369
SUN 124 322 202 132 54 16.7
BDD 56.0 53 667 173 6.7 30.4
IDD 506 6.1 626 177 7.4 28.9
ADE 456 258 51.7 390 237 372
COCO 454 274 539 630 358 45.1
Ours 655 406 71.1 692 381 569

Table 10: Semantic segmentation accuracy (mloU) on unseen datasets compared with Multi-SegHead.

Label space\Test | KT SN CV VOC CT Mean
CS 597 146 723 290 93 379

MPL 63.7 183 728 336 164 41.0

SUN 270 429 349 299 100 289

BDD 61.0 157 712 219 87 35.7

IDD 56.8 163 69.0 298 103 364

ADE 564 40.8 65.1 562 307 498
COCO 559 376 646 69.6 382 532
Ours 655 406 711 692 381 569

80157 https://doi.org/10.52202/079017-2547

Table 11: Performance on both trained Table 12: Unseen domain-general model vs.

datasets. Trained domain-specific model.
Driving scene dataset Driving scene dataset
Model | Trained | CS MPL BDD IDD Model | Trained WwD2
General v 80.7 4377 655 68.6 General X 40.5
Specific v 822 457 688 714 Specific v 50.2

Table 13: Trained domain-general model vs. Table 14: Performance on both unseen datasets.

Unseen domain-specific model. Driving Non-Driving

Non-Driving scene dataset Model | Trained | CV. KT VOC SN

Model | Trained | SUN ADE COCO General | X | 711 655 692 40.6

General v 475 420 46.7 .
Specific X Al sS4 73 Specific X 744 674 28.7 8.1

E Exploring the Impact of Training Datasets

Tables|11]to|14] present a performance comparison between the domain-general and domain-specific
models across various training settings and datasets. [Figure 6]illustrates the segmentation results of
these models on the different datasets.

Performance Comparison on Both Trained Datasets. From it can be concluded that
the performance of the domain-specific model focusing on driving scenes is higher on all trained
datasets compared to the domain-general model, despite the domain-general model being trained on
five times more samples than the domain-specific model. This is likely attributed to the fact that the
domain-specific model needs to predict fewer classes and is less affected by label space conflicts.
The model can therefore focus on learning features specific to the particular scene.

Performance Comparison: Unseen Domain-general Model vs. Trained Domain-specific Model.
In we selected a driving scene dataset that the domain-specific model was trained on, while
the domain-specific model was not trained on it, for comparison. As expected, the domain-specific
model demonstrates superior performance, and the domain-general model closely follows suit.

Performance Comparison: Trained Domain-general Model vs. Unseen Domain-specific Model.
In we selected several non-driving scene datasets that the domain-general model was
trained on, while the domain-specific model was not trained on it. The domain-specific model fails
to predict in non-driving scenes. Compared to the generalization performance of the
domain-specific model in unseen scenes markedly trails behind the domain-general model. Although
the domain-specific model may have encountered similar objects in driving scene datasets like wall,

it still struggles to predict these seen objects well in non-driving scene datasets, as shown in || 6

Performance Comparison on Both Unseen Datasets. In we selected datasets that were
unseen to both models, including driving scene datasets and non-driving scene datasets. We can
observe that the generalization performance of the domain-specific model is slightly better in driving
scenes, but its performance in other scenes lags far behind that of the domain-general model. Overall,
models trained on more scenes and more data tend to achieve better generalization performance.

https://doi.org/10.52202/079017-2547 80158

BDD MPL ADE KT SN VOC

GT

General

Figure 6: Visual comparisons of different training dataset models.

80159 https://doi.org/10.52202/079017-2547

F Visualization

[Figure 7| presents the visual comparisons of models trained on single dataset and our model predicted
in universal label space. From the figure, it is evident that our model achieves consistently strong
performance across all training datasets while integrating label spaces from different datasets. For
example, it predicts class lane marking and crosswalk for the ADE and BDD datasets, and predicts
class books for the SUN dataset. shows our universal predictions on test datasets. The results
demonstrate that our method generalizes well across multiple unseen datasets from different domains.
shows the visual comparisons of different models on the WildDash 2 benchmark.

CS MPL SUN BDD IDD “ADE COCO

Figure 7: Visual comparisons on training datasets.

https://doi.org/10.52202/079017-2547 80160

Our trained

Our unseen

‘WD2 SN v voc CT

Figure 8: Visual comparisons on unseen test datasets.

Figure 9: Visual comparisons on WildDash 2 benchmark.

80161 https://doi.org/10.52202/079017-2547

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The final paragraph of our introduction (section 1)) provides a comprehensive
summary of the paper’s contributions, which align with the claims made in the abstract.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: In the third paragraph of our conclusion (section 5)), we discuss the limita-
tions of our work, including factors influencing performance, and computational efficiency
considerations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: Our paper does not include theoretical results.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: In|section 3| [Appendix A] we provide detailed implementation steps, ensuring
that our experiments can be replicated. Additionally, in[section 4] we thoroughly describe
the settings of our experiments, further facilitating reproducibility.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide reproducible code along with detailed instructions, ensuring that
the main experimental results can be faithfully reproduced.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: In[section 4] we provide comprehensive details of our experimental setting.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Training on numerous datasets is time-consuming, with each experiment taking
over a week. During our experiments, we observed consistent and stable performance in
terms of mloU for our model.

8. Experiments Compute Resources

https://doi.org/10.52202/079017-2547 80162

10.

11.

12.

13.

14.

15.

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: In we specify that our experiments were conducted on four 80G
A100 GPUs.

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have read and adhered to the NeurIPS Code of Ethics in conducting our
research.

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: In the first paragraph of our conclusion (section 3)), we thoroughly discuss the
broader impacts of our work.

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible

release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our research utilizes openly available datasets for training, and our models are
primarily used for semantic segmentation tasks. Therefore, there are no such risks associated
with our work.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: In we clearly specify the assets used in our work, including datasets
and models. We provide proper citations to the original papers and ensure that the licenses
and terms of use are explicitly mentioned and respected.

New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We provide our code as an asset and include comprehensive documentation
alongside it, covering details such as training procedures, licensing, limitations, and any
necessary consent obtained from individuals whose assets are used.

Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing experiments or research with human
subjects.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

80163 https://doi.org/10.52202/079017-2547

https://neurips.cc/public/EthicsGuidelines

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our work does not involve human subjects.

https://doi.org/10.52202/079017-2547 80164

