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Abstract

Enhancing node-level Out-Of-Distribution (OOD) generalization on graphs remains
a crucial area of research. In this paper, we develop a Structural Causal Model
(SCM) to theoretically dissect the performance of two prominent invariant learning
methods—Invariant Risk Minimization (IRM) and Variance-Risk Extrapolation
(VREx)—in node-level OOD settings. Our analysis reveals a critical limitation:
due to the lack of class-conditional invariance constraints, these methods may
struggle to accurately identify the structure of the predictive invariant ego-graph
and consequently rely on spurious features. To address this, we propose Cross-
environment Intra-class Alignment (CIA), which explicitly eliminates spurious
features by aligning cross-environment representations conditioned on the same
class, bypassing the need for explicit knowledge of the causal pattern structure.
To adapt CIA to node-level OOD scenarios where environment labels are hard
to obtain, we further propose CIA-LRA (Localized Reweighting Alignment) that
leverages the distribution of neighboring labels to selectively align node represen-
tations, effectively distinguishing and preserving invariant features while removing
spurious ones, all without relying on environment labels. We theoretically prove
CIA-LRA’s effectiveness by deriving an OOD generalization error bound based
on PAC-Bayesian analysis. Experiments on graph OOD benchmarks validate the
superiority of CIA and CIA-LRA, marking a significant advancement in node-
level OOD generalization. The codes are available at https://github.com/
NOVAglow646/NeurIPS24-Invariant-Learning-on-Graphs.

1 Introduction

Generalizing to unseen testing distributions that differ from the training distributions, known as Out-
Of-Distribution (OOD) generalization, is one of the key challenges in machine learning. Invariant
learning, which aims to capture predictive features that remain consistent under distributional shifts,
is a crucial strategy for addressing OOD generalization. Numerous invariant learning methods have
been proposed to tackle OOD problems in computer vision (CV) tasks [Arjovsky et al., 2020, Krueger
et al., 2021, Bui et al., 2021, Rame et al., 2022, Wang et al., 2019, Mahajan et al., 2021, Zhang et al.,
2021a, Wang et al., 2022a, Yi et al., 2022, Wang et al., 2022b, Xin et al., 2023]. While in recent years,
enhancing OOD generalization on graph data is an emerging research direction attracting increasing
attention. In this work, we focus on the challenge of node-level OOD generalization on graphs.

Straightforwardly adapting the above methods to node-level graph OOD scenarios presents several
challenges: 1) the prediction of a node’s label depends on its neighbored samples in an ego-subgraph,
causing a gap from conventional CV OOD scenarios where samples are independently predicted;
and 2) environment labels in node-level tasks are often unavailable [Wu et al., 2021, Li et al., 2023a,
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Liu et al., 2023], rendering invariant learning methods based on environment partitioning infeasible.
To illustrate the failure of directly adapting traditional invariant learning to graphs, we evaluate two
representative OOD approaches, Invariant Risk Minimization (IRM [Arjovsky et al., 2020]) and
Variance-Risk Extrapolation (VREx [Krueger et al., 2021]), in OOD node classification scenarios. We
choose IRM and VREx for two reasons: 1) Numerous node-level graph OOD strategies [Zhang et al.,
2021b, Wu et al., 2021, Liu et al., 2023, Tian et al., 2024] utilize VREx as invariance regularization
(details in Appendix A.2). Therefore, analyzing VREx can cover a significant portion of graph-OOD
methods; and 2) IRM and VREx are two prominent OOD methods that we can theoretically prove
to be effective on non-graph data (Proposition 2.2). By testing their performance on graph data, we
can better reveal the differences between graph and non-graph data. We choose real-world graph
datasets: Arxiv, Cora, and WebKB; synthetic datasets: CBAS and a toy graph OOD dataset with
spurious correlations between node features and labels for evaluation. From Table 1, we observe
that IRM and VREx offer marginal or no improvement over ERM on both real-world and synthetic
node-level graph OOD datasets. This naturally raises some questions here:

On graphs, why do traditional invariant learning methods fail? How to make them
work again?

Algorithms Large-Cov. Large-Con. Toy

ERM 57.74 59.57 33.6

IRM 57.59 59.46 34.9

VREx 58.46 59.83 33.9

CIA (ours) 59.68 60.89 37.0

CIA-LRA (ours) 61.94 63.03 39.1

Table 1: Real-Cov./Con. are aver-
age OOD accuracy on the covari-
ate/concept shift of Arxiv, Cora,
CBAS, and WebKB. Toy denotes
results on our toy synthetic graph
OOD dataset.

To theoretically analyze their failure modes, we build a Struc-
tural Causal Model (SCM) to model the data generation process
under two types of distributional shifts: concept shift and covari-
ate shift, and gain a high-level understanding of the challenges
in node-level OOD generalization: To correctly predict a node’s
label, the structure of a predictive invariant neighboring ego-
graph (which we call it a causal pattern) and their invariant
node features must be learned. However, identifying the correct
structure of the causal pattern presents additional optimization
requirements (compared to CV scenarios) for Graph Neural
Networks (GNNs) since they must adjust the aggregation pa-
rameters (such as the attention weights in GAT [Veličković et al.,
2018]) to achieve this. IRM and VREx lack class-conditional
invariance constraints, which causes insufficient supervision for regularizing the training of these
aggregation parameters, leading to non-unique solutions of GNN parameters and potentially resulting
in the learning of spurious features. (detailed analysis is in Section 2). To overcome this, we propose
Cross-environment Intra-class Alignment (CIA) that further considers class-conditional invariance
to identify causal patterns2. We theoretically demonstrate that by aligning node representations
of the same class and different environments, CIA can eliminate spurious features and learn the
correct causal pattern, as same-class different-environment samples share similar causal patterns
while exhibiting different spurious features. Table 1 shows CIA’s empirical gains. To leverage the
advantage of CIA and adapt it to scenarios without environment labels, we further propose CIA-LRA
(Localized Reweighting Alignment), utilizing localized label distribution to find node pairs with
significant differences in spurious features and small differences in causal ones for alignment, to
eliminate the spurious features while alleviating the collapse of the causal ones. Our contributions
are summarized as follows:

1. By constructing an SCM, we provide a theoretical analysis revealing that VREx and IRM
could rely on spurious features when using a GAT-like GNN (Section 2.2) in node-level
OOD scenarios, revealing a key challenge of invariant learning on graphs.

2. We propose CIA and theoretically prove its effectiveness in learning invariant representations
on graphs (Section 3.1). To adapt CIA to node-level OOD scenarios where environment
labels are unavailable, we further propose CIA-LRA that requires no environment labels or
complex environmental partitioning processes to achieve invariant learning (Section 3.2),
with theoretical guarantees on its generalization performance (Section 4).

3. We evaluate CIA and CIA-LRA on the Graph OOD benchmark (GOOD) [Gui et al., 2022]
on GAT and GCN [Kipf and Welling, 2016]. The results demonstrate CIA’s superiority over

2Although numerous node-level OOD strategies from different perspectives have been proposed such as
GNN architecture design [Wu et al., 2024] or feature augmentation [Li et al., 2023b], we focus on developing
an invariant learning objective that could be integrated into and improve other graph-OOD frameworks in a
plug-and-play manner (validated in Section 5.3), serving as a general solution.

2
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non-graph invariant learning methods, and CIA-LRA achieves state-of-the-art performance
(Section 5.2).

We leave comparisons of our method and existing node-level OOD works in Appendix A.3.

2 Dissecting Invariant Learning on Graphs

For OOD node classification, we are given a single training graph G = (A,X, Y ) containingN nodes
V = {vi}Ni=1 from multiple training environments e ∈ Etr. A ∈ {0, 1}N×N is the adjacency matrix,
Ai,j = 1 iff there is an edge between vi and vj . X ∈ RN×D are node features. The i-th rowXi ∈ RD
represents the original node feature of vi. Y ∈ {0, 1, ..., C − 1}N are the labels, C is the number of
the classes. Denote the subgraph containing nodes of environment e as Ge = (Ae, Xe, Y e), which
follows the distribution pe. Let Ae ∈ {0, 1}N

e×Ne

and De be the adjacency matrix and the diagonal
degree matrix for nodes from environment e respectively, whereDe

ii =
∑
j=1A

e
ij , Ne is the number

of samples in e. Denote the normalized adjacency matrix as Āe = (De + INe)−
1
2Ae(De + INe)−

1
2 ,

INe is the identity matrix. Let Ãe = Ā + (De + INe)−
1
2 INe(De + INe)−

1
2 . Suppose the unseen

test environments are e′ ∈ Ete. The test distribution pe′ ̸= pe∀e′ ∈ Ete, ∀e ∈ Etr. OOD generalization
aims to minimize the prediction error over test distributions.

To understand the obstacles in invariant learning on graphs, we start by examining whether IRMv1
(practical implementation of the original challenging IRM objective, proposed by Arjovsky et al.
[2020]) and VREx can be successfully transferred to node-level graph OOD tasks. Their objectives
are as follows:

(IRMv1) min
w,ϕ

Ee[L (w ◦ ϕ(Xe), Y e) + β∥∇w|w=1.0L (w ◦ ϕ(Xe), Y e) ∥22],

(VREx) min
w,ϕ

Ee[L (w ◦ ϕ(Xe), Y e)] + βVare[L (w ◦ ϕ(Xe), Y e)],
(1)

where w and ϕ denote the classifier and feature extractor, respectively. L is the cross-entropy loss. β
is some hyperparameter.

2.1 A Causal Data Model on Graphs

𝐺

𝑌𝐶 𝑆

𝐸

(a) concept
shift

𝐺

𝑌𝐶 𝑆

𝐸

(b) covariate
shift

Figure 1: Causal graphs of the
SCMs considered in our work.

Data generation process. We construct an SCM to character-
ize two kinds of distribution shifts: concept shift (Figure 1a)
and covariate shift (Figure 1b). C and S denote unobservable
causal/spurious latent variables that affect the generation of the
graph G, and dashed E are environmental variables usually
unobservable. We consider a simple case that each node v
in environment e has a 2-dim feature [x1v, x

2
v]

⊤, x1v, x
2
v ∈ R.

Denote the concatenated node features of all nodes in e as
X1 ∈ RNe×1 and Xe

2 ∈ RNe×1 corresponding to x1v and x2v,
respectively. For the SCM in Figure 1a3, the data generation
process of environment e is

Y e = (Ãe)kX1 + n1, X
e
2 = (Ãe)mY e + n2 + ϵe, (2)

where k ∈ N+ represents the "depth" (number of hops) of the causal pattern, and m ∈ N+ is the
depth of the ego-graph determining the spurious node features. n1 ∈ RNe×1 and n2 ∈ RNe×1

represent random Gaussian noise. ϵe stands for an environmental variable, causing the spurious
correlations between Xe

2 and Y . A detailed description of the model is in Appendix F.1.

How the proposed model considers both node feature shifts and structural shifts? X1 represent
invariant node features causing Y e. Xe

2 denotes spurious node features that vary with environments.
As for structural shifts, we consider an environmental Ãe in Equation (2), which means the structure
can vary with environments. For example, there could be a spurious correlation between certain
structures and the label; or, the graph connectivity or size may shift [Buffelli et al., 2022, Xia et al.,

3Due to space limitation, we only present the concept shift case in the main text and leave the covariate shift
case in Appendix B. Our following results in Section 2 hold for both shifts.

3
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2023]. We model the invariant structural feature as the structure of a node’s k-layer neighboring
ego-graph. See Appendix F.2 for more discussions of the structural shifts.

We also have the following assumption about the stability of the causal patterns across environments:

Assumption 2.1. (Stability of the causal patterns) The k-layer causal pattern in Equation (2) is
invariant across environments for every class c.

A simple multi-layer GNN. Consider a L-layer GNN f parameterized by Θ ={
θ1, θ2, θ

1
1
(l)
, θ21

(l)
, θ12

(l)
, θ22

(l)
}

, l = 1, 2, ..., L− 1:

fΘ(A,X) = H
(L)
1 θ1 +H

(L)
2 θ2, where(

H
(l)
1 H

(l)
2

)
=
(
Ā Ī

)(θ11(l−1)
θ12

(l−1)

θ21
(l−1)

θ22
(l−1)

)(
H

(l−1)
1 0

0 H
(l−1)
2

)
, l = 2, ..., L, H

(1)
1 = X1, H

(1)
2 = X2,

(3)
where θi and θij

(l) are scalars for i, j ∈ {1, 2}, ∀l. H(l)
i ∈ RN×D are GNN representations.

Remark. In this GNN, we keep only the top-layer weight matrix [θ1 θ2]
⊤, and let the weight matrix

of lower layers 1, ..., L− 1 be an identity matrix. This architecture resembles an SGC [?]. θ1 and θ2
are for invariant/spurious features, respectively. θ11

(l), θ12
(l) are weights for aggregating features from

neighboring nodes and θ21
(l), θ22

(l) are weights for features of a centered node, this setup can be seen
as a GAT. When all lower-layer parameters equal 1, the GNN degenerates to a GCN (see Appendix
F.2 for justification of the choice of the GNN).

We consider a regression problem that we aim to minimize the MSE loss over all environments
Ee[R(e)] = Ee

[
En1,n2

[
∥fΘ(Ae, Xe)− Y e∥22

]]
. The optimal invariant parameter set Θ∗ is

θ1 = 1

θ2 = 0 or ∃l ∈ {1, ..., L− 1} s.t. θ12
(l)

= θ22
(l)

= 0

θ11
(l)

= 1, θ21
(l)

= 1, l = L− 1, ..., L− k + 1

θ11
(l)

= 0, θ21
(l)

= 1, l = L− k, L− k − 1, ..., 1

. (4)

In Equation (4), the GNN parameters for spurious features (line 2) is zero, which means it removes
spurious node features. Also, it learns the correct depth k of the causal pattern ÃkX1 (line 3-4).

2.2 Intriguing Failure of VREx and IRM on Graphs

Now we are ready to present the failure cases in this node-level OOD task: optimizing IRMv1
and VREx induces a model that relies on spurious features Xe

2 to predict, leading to poor OOD
generalization. To illustrate that this failure arises from the graph data, we first prove that IRMv1 and
VREx can learn invariant features under the non-graph version of SCM of Equation (2).

Proposition 2.2. (IRMv1 and VREx can learn invariant features for non-graph tasks, proof is in
Appendix G.1.1.) For the non-graph version of the SCM in Equation (2),

Y e = X1 + n1, X
e
2 = Y e + n2 + ϵe, (5)

VREx and IRMv1 can learn invariant features when using a linear network: f(X) = θ1X1 + θ2X2.

Now we will give the main theorem revealing the failure of VREx and IRMv1 on graphs.

Theorem 2.3. (IRMv1 and VREx will use spurious features on graphs, informal) Under the SCM
of Equation (2), the IRMv1 and VREx objectives have non-unique solutions for parameters of the
GNN (3), and there exist solutions that use spurious features, i.e. θ2 ̸= 0.

Intuitive illustration of the failure. From Theorem 2.3, we find that the main reason for the failure
lies in the message-passing mechanism in representation learning. Let’s provide some key steps in
the proof of the IRMv1 case as an illustration. For the non-graph OOD task Equation (5), we can
verify that when IRMv1 objective is solved, i.e. ∇wR(e) = 0 for all e, the invariant solution θ2 = 0

4
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leads to (θ1)
2X⊤

1 X1 − θ1X⊤
1 X1 = 0, which can be satisfied when θ = 1. However, in the graph

case, θ2 = 0 leads to

(θ1)
2((Ãe)sX1)

⊤(Ãe)sX1 − θ1((Ãe)kX1)
⊤(Ãe)sX1 = 0, ∀e, (6)

where (Ãe)sX1 is the learned representation of the GNN, 0 < s ≤ L. k is the depth of the causal
pattern. Now we explain why the invariant solution may not hold on graphs. When the depth
of the learned aggregation pattern s ̸= k, Equation (6) cannot hold for a fixed θ1 (since θ1 will
depend on e then). This means that identifying the underlying structure of the causal pattern imposes
additional difficulty for invariant learning. Moreover, even if the GNN can learn representations of
different depths (e.g. GAT)4, the proof in Appendix G.1.3 shows that IRM failed to provide sufficient
supervision to optimize the aggregation parameters θij , i, j ∈ {1, 2} such that s = k. A similar
analysis holds for VREx. In general, successful invariant learning on graphs requires capturing both
invariant node features and the structure of the causal pattern, while methods like IRM and VREx
that solely enforce a cross-environment invariance at the loss level5 may not be able to achieve these
goals. The formal versions and proof are in Appendix G.1.3 (IRM) and G.1.2 (VREx).

3 The Proposed Methods

3.1 Cross-environment Intra-class Alignment

Inspired by the examples of VREx and IRMv1, we aim to introduce additional invariance regular-
ization to guide the model in identifying the underlying invariant node features and structures. We
propose CIA (Cross-environment Intra-class Alignment), which aligns the representations from the
same class across different environments. Intuitively, since such node pairs share similar invariant fea-
tures and causal pattern structures while differ in spurious features, aligning their representations will
help achieve our targets. Denote the representation of node i as ϕΘ(i) and the classifier parameterized
by θh as hθh CIA’s objective is:

min
θh,Θ

Ee [L(hθh ◦ ϕΘ(Ae, Xe), Y e)] s.t. min
Θ
LCIA = E e,e′

e ̸=e′
EcE i,j

(i,j)∈Ωe,e′
c

[D(ϕΘ(i), ϕΘ(j))]

(7)
where Ωe,e

′

c = {(i, j)|i ̸= j ∧ Y ei = Y e
′

j = c∧Ei = e, Ej = e′} is the set of nodes with same label
c and from two different environments. L is the cross-entropy loss. D is some distance metric and
we adopt L-2 distance. Now we prove that CIA can learn invariant representations regardless of the
unknown causal patterns:
Theorem 3.1. Under the SCM of Equation (2) and Assumption 2.1, optimizing the CIA objective will
lead to the optimal invariant solution Θ∗ in Equation (4) for parameters of the GNN (3).

The proof is in Appendix G.1.4. By enforcing class-conditional invariance, which is not considered
in VREx and IRMv1, CIA overcomes the above obstacles and eliminates spurious features. As long
as a GNN has the capacity to adaptively learn the true depth of the causal pattern (such as the one
considered in Equation (3)) or a GAT), CIA can identify the invariant causal pattern.

Remark. One might note that the objective of CIA is analogous to MatchDG [Mahajan et al., 2021].
However, we are the first to adapt such an idea to node-level OOD tasks and theoretically reveal its
advantage. In Appendix A.1, we compare our extension and the original MatchDG in detail.

3.2 Localized Reweighting Alignment: an Adaptation to Graphs without Environment Labels
So far, we have theoretically and empirically validated CIA’s advantage on graphs, but it still requires
environmental labels that are challenging to obtain in most node classification tasks [Wu et al., 2021,
Liu et al., 2023, Li et al., 2023a]. In this section, we propose CIA-LRA (Localized Reweighting
Alignment) that realizes CIA’s objective without using environment labels by identifying node pairs
with significant/minor differences in spurious/invariant features and then aligning their representations.
As illustrated in Figure 2, CIA-LRA mainly incorporates three components:

4If the GNN is a GCN that has a fixed aggregation depth L, i.e. s = L, it will be even impossible to learn the
true causal pattern if we choose an L ̸= k in advance.

5IRM minimizes the loss gradient w.r.t. the classifier in each environment, and VREx minimizes the loss
variance across environments.

5
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2

• 𝜙Θ 𝑖 = 𝜙Θ 𝐴𝑚, 𝑋 [𝑖, : ] representation of 
node 𝑖

• Reweighting alignment: 𝑤𝑖,𝑗

• Localized alignment: Ω𝑐(𝑡)

Cross-entropy loss:
ℒ𝑐𝑒 = ℒ(ℎ𝜃ℎ ∘ 𝜙Θ 𝐴𝑚, 𝑋 , 𝑌)
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different 
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Pair 1

Pair 2

Pair 3Pair 4
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Neighborhood of 𝑖 Neighborhood of 𝑗
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ℒ𝑐𝑒 + 𝜆 ℒ𝐶𝐼𝐴−𝐿𝑅𝐴

Class 1 Class 2 Class 3

Localized reweighting alignment

Reweighted representation alignment
No alignment for non-local pairs

The Representation of a node 𝜙 𝑖 ∈ ℝ1×𝐷

𝐺(𝐴𝑚, 𝑋)

Figure 2: The overall framework of our proposed CIA-LRA. The invariant subgraph extractor ϕθm
identifies the invariant subgraph for each node. Then the GNN encoder ϕΘ aggregates information
from the estimated invariant subgraphs to output node representations. CIA-LRA mainly contains
two strategies: localized alignment and reweighting alignment. Localized alignment: we restrict
the alignment to a local range to avoid overalignment that may cause the collapse of invariant
features (shown in Appendix D.1). Reweighting alignment: to better eliminate spurious features and
preserve invariant features without using environment labels, we assign large weights to node pairs
with significant discrepancies in heterophilic Neighborhood Label Distribution (NLD) and minor
discrepancies in homophilic NLD. See Section 3.2 for a detailed analysis of CIA-LRA.

Localized alignment. To avoid learning a collapsed representation of invariant features, it is crucial
to align node pairs that share similar invariant features. To achieve this, we align nodes close to each
other (about 2 to 6 hops). This is based on two observations. First, we observe that spurious features
tend to exhibit larger changes within local graph areas than invariant ones, and nodes from the same
class that are too distant may differ more in their invariant features than the closer ones (evidence
in Appendix D.4). This is because invariant features are generally more stable than spurious ones,
according to Chen et al. [2022], Schölkopf et al. [2021]. Second, we empirically find that alignment
over an extensive range or too many nodes yields only marginal performance improvements, or even
leads to performance degradation (see Appendix D.1), while increasing computational costs. This
may also be attributed to the feature collapse caused by excessive alignment of too many node pairs.
Formally, the local pairs are defined as Ωc(t) = {(i, j)|i ̸= j ∧ Yi = Yj = c ∧ d(i, j) ≤ t}, where
d(i, j) represents the the shortest path length from node vi to vj , t ∈ N+ is a hyperparameter. Also,
we propose to assign smaller weights to pairs more distant away from each other.

Reweighting Alignment. Since environment labels are unavailable, we need a metric to reflect the
distribution of the spurious and invariant representations so that node pairs with significant/small
differences in spurious/invariant features can be identified. Since we assume the causal patterns
of the same class are similar (Assumption 2.1), the label distribution of homophilic (i.e., same-
class) neighbors directly affects the invariant features aggregated to the centered node (empirical
evidence in Appendix D.5.2). Therefore, pairs with smaller differences in the ratio of homophilic
neighbors should be assigned larger weights for alignment. The ratio discrepancy can be calculated
as follows: rsame(c)i,j =

∣∣rci − rcj ∣∣, where rci is the ratio of the neighbors of vi of class c within
L hops (L is the number of layers of the GNN). As for spurious features, we utilize Heterophilic
(i.e., different-class) Neighborhood Label Distribution (HeteNLD) as a measurement, as it affects
the two kinds of main distributional shifts on graphs: 1) environmental node feature shifts, and
2) Neighborhood Label Distribution (NLD) shift (both empirically verified in Appendix D.5.1).
HeteNLD determines the first kind of shift when correlations exist between labels and spurious node
features, e.g., concept shift. The second kind, NLD shift, which is affected by HeteNLD, can be
regarded as a structural shift as the discrepancy in neighborhood distribution will induce a gap in the
aggregated representations (Theorem 4.4 shows this shift increases OOD error). Although aligning the
representations significantly differing in homophilic neighbor ratio mitigates these two kinds of shifts,
it also leads to the collapsed invariant representations and suboptimal performance (Table 4 shows this
effect). Therefore we assign larger weights to the pair with a larger discrepancy in HeteNLD when
alignment. The discrepancy in HeteNLD is calculated as follows: rdiff(c)i,j =

∑
c′ ̸=c

∣∣∣rc′i − rc′j ∣∣∣.
6
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Invariant Subgraph Extractor. In Section 2.1, the structural invariant features are defined as the
k-hop neighboring ego-graph for ease of analysis. However, in practice, the invariant structure may
merely be a subgraph of the neighborhood nodes. To better capture the invariant ego subgraph, we
train an invariant subgraph extractor inspired by Li et al. [2023a]. Concretely, we learn an auxiliary
GNN encoder ϕθm (parameterized by θm) to predict an soft edge mask M ∈ RN×N , and then apply
it during training and test:

Mi,j = Sigmoid(ϕθm(i)⊤ϕθm(j)), Am = A⊙M ,where ⊙ is sample-wise multiplication. (8)

Now we are ready to present the formal objective of CIA-LRA:

min
θh,Θ,θm

L(hθh ◦ ϕΘ(Am, X), Y ) s.t. min
Θ,θm

EcE i,j
(i,j)∈Ωc(t)

[wi,jD(ϕΘ(i), ϕΘ(j))] ,

where wi,j = Norm
(

rdiff(c)i,j
d(i, j)rsame(c)i,j

)
, Norm(·) denotes a Min-Max normalization.

(9)

In Equation (9), L is the cross-entropy loss, Ωc(t), rdiff(c)i,j , rsame(c)i,j and d(i, j) are defined in the
above analysis. In practice, we use CIA-LRA as a regularization term added to the cross-entropy loss
with a weight λ as a hyperparameter. The detailed implementation of CIA-LRA is in Appendix E.

4 Theoretical Justification: an OOD Generalization Error Bound

Now will derive an OOD generalization error bound to show that optimizing CIA-LRA can minimize
OOD error. To achieve this, we adopt a PAC-Bayesian framework following Ma et al. [2021]
and establish a Contextual Stochastic Block Model (CSBM, [Deshpande et al., 2018]) for OOD
multi-classification. The proposed CSBM-OOD is as follows (more discussions are in Appendix F.4):

Definition 4.1. (CSBM-OOD). For node i of class c from environment e, its node feature xi ∈ RD
consists of two parts, xi = [x⊤inv;x

⊤
sp]

⊤, where xinv ∈ RD
2 sampled from the Gaussian distribution

N (µc, σ
2I) is the invariant feature and xsp ∈ RD

2 sampled from the N (µec, σ
2I) is the spurious

feature. 6 Suppose {µc} and {µec} for all c and e form sets of orthonormal basis. We use phm
i to

denote the homophilic ratio of node i’s one-hop neighbors and use pht
i (c

′) to denote the heterophilic
ratio of node i’s one-hop neighbors of class c′ (c ̸= c′). We assume Pr(yi = c) are the same for all
classes c.

The GNN model used for deriving the error bound (following Ma et al. [2021]): The GNN model
has a 1-layer mean aggregation g that outputs the aggregated feature gi ∈ RD for node i. The GNN
classifier h on top of g is a ReLU-activated L-layer MLP with W1, ...,WL as parameters for each
layer. h is from a function family H. The prediction for node i is hi ∈ RC with hi[c] representing
the predicted logit for class c. Denote the largest width of all the hidden layers as b.

Notations. Denote nodes of environment e as Ve. We consider the error of generalizing from a
mixed training environment etr to any test environment ete ∈ Ete, where Vetr := ∪e∈EtrVe represents
all training nodes. To guarantee the generalization, we need to characterize the distance between
Vete and Vetr : define ϵete,etr = maxj∈Vete mini∈Vetr ∥gi − gj∥2 as the aggregated feature distance
between the training and test subgroup. Define the number of nodes in environment e as Ne. We
consider the margin loss of environment e that is used by Ma et al. [2021], Mao et al. [2023]:
L̂γe (h) := 1

Ne

∑
vi∈Ve

1 [hi [yi] ≤ γ +maxc̸=yi hi[c]].

Now we introduce some assumptions adapted from Ma et al. [2021] that are used in our proof.

Assumption 4.2. (Equal-sized and disjoint near sets, adapted from Assumption 2 of Ma et al. [2021])
For each node vi ∈ Vetr , define V (i)

ete :=
{
j ∈ Vete | ∥gi − gj∥2 ≤ ϵetr,ete

}
. For any test environment

ete, assume V (i)
ete of each vi ∈ Vetr are disjoint and have the same size Nete ∈ N+.

Assumption 4.3. (concentrated expected loss difference, adapted from Assumption 3 of Ma et al.
[2021]) Let P be a distribution on H, defined by sampling the vectorized MLP parameters from

6For OOD scenarios that spurious features are not correlated with Y , we just need to let µe
c are the same for

all c in the environment e, so this this definition is without loss of generality.
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N
(
0, σ2I

)
for some σ2 ≤ (γ/8ϵete,etr)

2/L

2b(λN−α

etr +ln 2bL)
. For any L layer GNN classifier h ∈ H with model

parameters Wh
1 , . . . ,W

h
L , define Th := maxl=1,...,L ∥Wl∥2. Assume that there exists some 0 < α <

1
4 satisfying

Prh∼P

(
Lγ/4ete (h)− Lγ/2etr (h) > N−α

etr +HCϵete,etr

∣∣∣TLh ϵete,etr >
γ

8

)
≤ e−N

2α
etr

Now we present the node-level OOD generalization bound (proof in Appendix G.3):
Theorem 4.4. (Subgroup OOD Generalization Bound for GNNs, informal). Let h̃ be any classifier

in a function family H with parameters
{
W̃l

}L
l=1

. Under Assumption 4.2 and 4.3, for any ete ∈
Ete, γ ≥ 0, and large enough Netr , there exist 0 < α < 1

4 with probability at least 1− δ, we have

L0
ete(h̃) ≤ L̂γetr(h̃) +O(

1

σ2
(

C∑
c=1

∑
c′ ̸=c

(
√
|[(µc − µc′)⊤; (µete

c − µe
te

c′ )
⊤]|)ϵete,etr

︸ ︷︷ ︸
(a)

+2
C∑
c=1

(C − 1)Bete |µe
te

c − µe
tr

c |)︸ ︷︷ ︸
(b)

+
1

2σ2

1

Netr

∑
i∈Vetr

1

Nete

∑
j∈V (i)

ete

C∑
c=1

∑
c′ ̸=c

|pht
j (c

′|c)− pht
i (c

′|c)|

︸ ︷︷ ︸
(c)

) + const

(10)
where pht

i (c
′|c) is the ratio of heterophilic neighbors of class c′ when yi = c, Bete =

maxi∈Vetr∪Vete ∥gi∥2 is the maximum feature norm, V (i)
ete :=

{
j ∈ Vete | ∥gi − gj∥2 ≤ ϵetr,ete

}
. const

is a constant depending on α, δ, and γ.

The observations from Theorem 4.4 is summarized as follows: Term (a) reflects the separability
of the original features of different classes |[(µc − µc′)⊤; (µe

te

c − µe
te

c′ )
⊤]| and the distance of the

aggregated features between the training and test set ϵete,etr . The former factor is the nature of the
dataset itself. Term (b) is the distributional discrepancy between the training and test subgroups,
caused by the distribution shifts in spurious features. When there exist correlations between labels
and spurious features, CIA-LRA can minimize this term by minimizing the representation distance
of node pairs with large discrepancy in the label distribution of heterophilic neighbors7. Term (c)
measures the shift in HeteNLD between the training and test subgroups, representing the OOD error
caused by the shift in the aggregated features of the same class. CIA-LRA minimizes this term by
enforcing stronger alignment on pairs with greater HeteNLD differences.

5 Experiments

5.1 Experiment Setup

We run experiments using 3-layer GAT and GCN on GOOD [Gui et al., 2022], a graph OOD bench-
mark. We reported the results on both covariate shift and concept shift. The detailed experimental
setup and hyperparameter settings are in Appendix C. We compare our methods with the following
algorithms: ERM [Vapnik, 1999]; traditional invariant learning methods: IRM, VREx, GroupDRO
[Sagawa et al., 2019], Deep Coral [Sun and Saenko, 2016], IGA [Koyama and Yamaguchi, 2020];
graph OOD methods: EERM, SRGNN, CIT [Xia et al., 2023], CaNet [Wu et al., 2024]; graph data
augmentation: Mixup [Wang et al., 2021a], GTrans [Jin et al., 2022].

5.2 Main Results of OOD Generalization

Table 2 reports the main OOD generalization results. The observations are summarized as follows: 1)
CIA-LRA improves the best baseline methods by 2.44% and 3.23% on GAT and GCN, respectively,

7Although the term |µete

c − µetr

c | is the cross-environment distance of the original data, it can be minimized
implicitly by aligning the representation induced by the two subgroups. This is because minimizing the distance
between learnable representations of two node groups is equivalent to using a fixed mean aggregation on two
groups with closer original features (in Theorem 4.4 we fix the feature extractor to be a mean aggregation layer).
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Table 2: OOD test accuracy (%). Our methods are marked in bold. The best and second-best results
are shown in bold and underlined, respectively. The values in parentheses are standard deviations.
’OOM’ denotes Out Of Memory. Results of EERM on Cora GCN marked by ’*’ are from Gui et al.
[2022] since we got OOM during our running.

(a) Results on GAT

Non-graph-specific methods

Covariate shift Concept shift

Dataset Arxiv Cora CBAS WebKB average Arxiv Cora CBAS WebKB average
Domain degree time degree word color university degree time degree word color university

ERM 59.12(0.09) 71.53(0.16) 55.30(0.34) 63.75(0.39) 65.24(2.69) 31.48(6.12) 57.74 65.70(0.18) 65.79(0.05) 61.36(0.38) 64.38(0.13) 74.52(1.87) 25.69(1.30) 59.57

IRM 59.16(0.14) 71.60(0.13) 55.07(0.30) 63.75(0.26) 65.24(1.78) 30.69(8.63) 57.59 65.79(0.35) 66.24(0.20) 61.42(0.34) 64.31(0.39) 73.33(0.89) 25.69(1.98)) 59.46

VREx 59.10(0.12) 71.41(0.20) 55.34(0.16) 64.13(0.05) 66.67(2.93) 34.13(8.27) 58.46 65.94(0.03) 66.16(0.22) 61.77(0.30) 64.02(0.22) 73.57(3.50) 27.52(6.74) 59.83

GroupDRO 59.04(0.15) 71.30(0.04) 55.03(0.45) 63.82(0.06) 67.62(2.43) 31.75(2.82) 58.09 65.93(0.22) 66.14(0.15) 61.31(0.20) 64.07(0.25) 73.81(1.78) 26.91(2.16) 59.70

Deep Coral 59.12(0.10) 71.43(0.12) 55.35(0.45) 63.96(0.07) 64.76(2.43) 33.86(6.93) 58.08 65.76(0.21) 66.25(0.19) 61.62(0.26) 64.26(0.28) 75.95(3.21) 30.27(3.26) 60.69

IGA 59.01(0.17) 71.49(0.32) 55.56(0.12) 65.07(0.25) 65.71(5.08) 29.89(6.56) 57.79 65.87(0.19) 65.93(0.16) 62.62(0.13) 64.56(0.23) 70.95(3.51) 28.14(2.16) 59.68

MatchDG OOM OOM 55.74(0.25) 65.30(0.11) 67.15(5.08) 35.45(8.10) - OOM OOM 62.91(0.27) 64.83(0.08) 75.24(2.36) 29.36(5.40) -

CIA 59.26(0.04) 71.65(0.25) 56.34(0.35) 65.55(0.19) 69.05(3.75) 36.24(0.75) 59.68 65.96(0.07) 66.39(0.25) 62.72(0.22) 64.92(0.28) 74.76(2.63) 30.58(3.12) 60.89
Graph-specific methods

EERM OOM OOM 46.63(1.75) 62.57(0.50) 60.47(4.10) 33.33(14.60) - OOM OOM 48.05(2.03) 53.02(1.23) 60.95(3.56) 25.38(4.26) -

SRGNN 58.76(0.20) 71.37(0.37) 55.87(0.32) 64.50(0.35) 68.09(0.67) 28.84(1.35) 57.91 65.87(0.35) 66.02(0.14) 61.21(0.29) 64.10(0.28) 72.38(1.22) 23.55(1.56) 58.86

Mixup 59.32(0.11) 71.78(0.08) 56.77(0.36) 65.70(0.28) 63.33(8.60) 20.37(11.38) 56.21 63.11(0.10) 65.33(0.30) 63.97(0.18) 65.42(0.32) 73.33(1.47) 38.53(0.75) 61.62

GTrans OOM OOM 51.49(0.23) 62.48(0.25) 61.90(3.56) 21.69(7.17) - OOM OOM 60.93(0.37) 62.68(0.28) 73.57(2.10) 25.08(1.88) -

CIT OOM OOM 53.13(2.05) 63.76(0.20) 61.43(3.09) 24.60(7.47) - OOM OOM 60.89(0.36) 63.60(0.48) 70.24(1.68) 24.16(5.26) -

CaNet OOM OOM 55.35(0.14) 62.76(0.25) 68.09(1.78) 23.81(15.16) - OOM OOM 60.97(0.07) 63.73(0.44) 75.95(3.41) 24.77(3.97) -

CIA-LRA 59.44(0.10) 71.79(0.13) 57.95(0.13) 68.59(0.26) 75.24(1.78) 38.62(3.57) 61.94 66.41(0.22) 66.47(0.16) 67.08(0.26) 68.05(0.14) 78.34(3.51) 31.80(1.88) 63.03

(b) Results on GCN

Non-graph-specific methods

Covariate shift Concept shift

Dataset Arxiv Cora CBAS WebKB average Arxiv Cora CBAS WebKB average
Domain degree time degree word color university degree time degree word color university

ERM 58.92(0.14) 70.98(0.20) 55.78(0.52) 64.76(0.30) 78.57(2.02) 16.14(1.35) 57.52 62.92(0.21) 67.36(0.07) 60.24(0.40) 64.32(0.15) 82.14(1.17) 27.52(0.75) 60.75

IRM 58.93(0.17) 70.86(0.12) 55.77(0.66) 64.81(0.33) 78.57(1.17) 13.75(4.91) 57.12 62.79(0.11) 67.42(0.08) 61.23(0.08) 64.42(0.18) 81.67(0.89) 27.52(0.75) 60.84

VREx 58.75(0.16) 69.80(0.21) 55.97(0.53) 64.43(0.38) 79.05(1.78) 17.72(11.27) 57.62 63.06(0.43) 67.42(0.07) 60.69(0.42) 64.32(0.22) 82.86(1.17) 27.52(1.50) 60.98

GroupDRO 58.87(0.00) 70.93(0.09) 55.64(0.50) 64.62(0.30) 79.52(0.67) 14.29(2.59) 57.31 62.98(0.53) 67.41(0.27) 60.59(0.36) 64.34(0.25) 82.38(0.67) 28.44(0.00) 61.02

Deep Coral 59.04(0.16) 71.04(0.07) 56.03(0.37) 64.75(0.26) 78.09(0.67) 11.90(1.72) 56.81 63.09(0.28) 67.43(0.24) 60.41(0.27) 64.34(0.17) 82.86(0.58) 26.61(0.75) 60.79

IGA 58.87(0.17) 70.99(0.33) 55.94(0.58) 64.89(0.38) 79.05(1.78) 15.87(2.82) 57.60 62.04(0.02) 66.07(0.19) 61.06(0.36) 64.32(0.15) 82.38(0.89) 28.44(1.50) 60.72

MatchDG OOM OOM 56.57(0.46) 64.72(0.45) 77.14(1.17) 16.14(5.88) - OOM OOM 60.49(0.14) 64.71(0.33) 84.05(0.89) 27.83(2.41) -

CIA 59.03(0.39) 71.10(0.15) 56.80(0.54) 65.07(0.52) 80.00(2.02) 18.25(2.33) 58.38 63.87(0.26) 67.62(0.04) 61.59(0.18) 64.61(0.11) 85.71(0.72) 28.75(0.87) 61.83
Graph-specific methods

EERM OOM OOM 56.88(0.32)* 61.98(0.10)* 40.48(9.78) 16.21(5.67) - OOM OOM 58.38(0.04)* 63.09(0.36)* 61.43(1.17) 28.04(11.67) -

SRGNN 58.47(0.00) 70.83(0.10) 57.13(0.25) 64.50(0.35) 73.81(4.71) 16.40(1.63) 56.86 62.80(0.25) 67.17(0.23) 61.21(0.29) 64.53(0.27) 80.95(0.67) 27.52(0.75) 60.70

Mixup 57.80(0.19) 71.62(0.11) 57.89(0.27) 65.07(0.22) 70.00(5.34) 16.67(1.12) 56.51 62.33(0.34) 65.28(0.43) 63.65(0.37) 64.45(0.12) 65.48(0.67) 30.28(1.50) 58.58

GTrans OOM OOM 52.70(0.52) 63.37(0.27) 72.38(2.43) 10.58(0.99) - OOM OOM 59.74(0.14) 63.56(0.18) 78.81(1.47) 26.91(1.56) -

CIT OOM OOM 56.14(0.45) 64.79(0.29) 75.24(2.43) 19.31(4.32) - OOM OOM 60.12(0.30) 64.26(0.42) 83.10(0.89) 28.14(1.14) -

CaNet OOM OOM 57.35(0.04) 64.66(0.36) 80.95(0.67) 15.61(5.51) - OOM OOM 60.34(0.20) 64.65(0.39) 85.24(3.32) 26.30(0.43) -

CIA-LRA 59.85(0.14) 71.81(0.20) 58.40(0.59) 65.95(0.04) 82.86(1.17) 19.84(2.83) 59.79 64.34(0.65) 67.52(0.10) 63.71(0.32) 65.07(0.21) 94.53(0.33) 36.70(0.75) 65.31

achieving state-of-the-art performance. 2) CIA outperforms IRM and VREx on all splits, which
validates our theoretical findings in Section 2. Notably, it performs best among the non-graph-specific
methods. 3) CIA-LRA improves CIA in most cases. This suggests that our reweighting strategy can
enhance generalization on graphs even without environment labels. 4) MatchDG outperforms IRM
and VREx on 12 out of 16 splits but underperforms CIA on average (averaged over 16 splits except
on Arxiv, CIA: 57.56, MatchDG: 56.73).

5.3 CIA can be Integrated into and Improve other Graph-OOD Methods

Algorithms Cora degree Cora word CBAS WebKB

EERM 47.34 57.80 60.71 29.36

EERM-CIA 57.27 62.37 65.01 29.50

CIA 59.53 65.24 71.91 33.41

Table 3: By replacing VREx in EERM
with CIA (marked as EERM-CIA), the
performance is significantly improved.

We replace VREx with CIA in the loss function of EERM
to show that CIA can improve generalization in a plug-and-
play manner. Table 3 shows that this improves original
EERM by a large margin or has comparable performances,
indicating the performance of node-level OOD algorithms
can be limited by VREx.

5.4 Empirical Understanding of the Role of CIA-LRA

A synthetic dataset. We construct a synthetic dataset (mentioned in Section 1) to validate the role of
each module in CIA-LRA in eliminating spurious features and preventing the collapse of invariant
representations. We generate a random graph and create a 4-class OOD classification task. Each
node has a 4-dim feature, with the first/last two dimensions representing invariant/spurious features
(details in Appendix C.3), so we can disentangle the learned invariant and spurious representations.
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Figure 3 depicts the OOD accuracy, the variance of the invariant representation, and the norm of
the spurious representation across training epochs for CIA and CIA-LRA. The observations are
summarized below.
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Figure 3: Left: OOD test accuracy. Mid: the variance of the invariant
representation. Right: the norm of the spurious representation. CIA
and CIA-LRA use λ = 0.5 in this figure.

Algorithms Acc. (%)

IRM 61.14

VREx 61.32

no rdiff(c)i,j 63.22

no 1
rsame(c)i,j

63.91

no 1
d(i,j) 63.64

no M 63.39

use rsame(c)i,j in numerator 62.70

full CIA-LRA 65.42

Table 4: Ablation study
of CIA-LRA. Results are
averaged on the four
splits of Cora.

1) Aligning the large discrepancy in HeteNLD helps to eliminate spurious features on concept
shift and improves generalization. As evident from the right column, incorporating rdiff diminishes
the norm of spurious features under concept shift. For covariate shift, while rdiff will not remove
environmental spurious features due to their independence from labels, it still helps generalization
since it reduces the error caused by shifts in HeteNLD as predicted by Theorem 4.4. 2) CIA-LRA
alleviates collapse of causal representation that CIA may suffer when adopting a substantial λ. When
using a large λ (= 0.5), the performance of CIA deteriorates to the level of random guessing (25%)
after approximately 50 epochs. In contrast, CIA-LRA sustains its accuracy at a high level because it
avoids excessive alignment by aligning only local pairs and reweighting (further evidence in Appendix
D.2). The mid column shows that the invariant features learned by CIA progressively collapse, even
if CIA removes most spurious features (right column). 3) Maintaining the discrepancy in homophilic
neighboring label distribution rsame helps keep the variance of the invariant representation, slightly
improving performance.

Ablation study. We also conduct ablation studies on CIA-LRA. Table 4 shows that removing any
module causes a significant performance drop, demonstrating the effectiveness of each module.

5.5 Effects of the Hyperparameters of CIA-LRA
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Figure 4: Effect of λ and the number of hops t on
OOD test accuracy (%).

This section analyzes the effect of λ and t of
CIA-LRA. Figure 4 shows that the test accuracy
increases with λ when λ ≤ 0.5. Too small t
leads to a sub-optimal performance due to insuf-
ficient regularization from aligning only a few
pairs. Also, most parameter combinations out-
perform the baseline methods, indicating that
CIA-LRA leads to consistently superior perfor-
mance. Additional studies of the effects of λ
and t are in Appendix D.2 and D.3, respectively.

6 Conclusion

In this work, by theoretically dissecting the failure of IRM and VREx in node-level graph OOD tasks,
we attribute it to the difficulty in identifying the graph-specific causal pattern structures. To address
this, we propose CIA with additional class-conditional invariance constraints and its environment-
label-free variant CIA-LRA tailored for graph OOD scenarios. Further theoretical and experimental
results validate their efficacy. Notably, CIA can be incorporated in other graph OOD frameworks,
serving as a better invariant learning objective than the widely-used VREx on graphs.
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A Additional Related Works

A.1 Invariant Learning for OOD Generalization

Invariant learning seeks to find stable features across multiple training environments to achieve OOD
generalization [Arjovsky et al., 2020, Krueger et al., 2021, Bui et al., 2021, Rame et al., 2022, Shi
et al., 2021, Wang et al., 2020, Mahajan et al., 2021, Wang et al., 2022a, Yi et al., 2022, Wang
et al., 2022b]. IRM [Arjovsky et al., 2020] and VREx are two of the most well-known methods.
The goal of IRM is to learn a representation that elicits a classifier to achieve optimality in all
training environments. VREx [Krueger et al., 2021] reduces the variance of risks across training
environments to improve robustness against distribution shifts. Mahajan et al. [2021] argues that
the invariant features can also change across environments. Hence, they proposed MatchDG to
align the representations of the so-called same "object" of different environments. To the best of our
knowledge, we are the first work to theoretically analysis the limitations of IRM and VREx in OOD
node classification problems.

It’s worth emphasizing that although the CIA objective is similar to MatchDG [Mahajan et al., 2021],
our extensions of MatchDG on graphs are non-trivial:

1) The extensions from MatchDG to CIA are mainly theoretical.

• We extend the idea of MatchDG to the node-level OOD task by providing a theoretical char-
acterization of CIA’s working mechanism on graphs (Theorem 3.1), revealing its superiority
in node-level OOD scenarios for the first time.

• We establish the connection between node-level OOD error and two kinds of distributional
shifts: (1) environmental node feature shifts and (2) the heterophilic neighborhood label
distribution shifts (see Theorem 4.4), giving further explanation of CIA and CIA-LRA’s
performance gain in node-level OOD generalization.

2) The methodological extensions of CIA-LRA:

• It identifies the node pairs with significant differences in spurious features without using
environment labels, providing a new perspective that the widely adopted environment
partition paradigm Wu et al. [2021], Yu et al. [2023], Li et al. [2023b,a, 2022a], Liu et al.
[2023] may not be necessary for node-level OOD generalization. One can remove spurious
features by leveraging neighboring label distributions (analysis in Section 3.2), shedding
light on the role of neighborhood label distribution as compensation for the absence of
environment labels.

• It’s the first node-level OOD method explicitly considering the OOD error caused by shifts
in heterophilic neighborhood label distribution, (pointed out by term (c) in Theorem 4.4).
Such shifts can be regarded as a kind of structural shift that has been first observed in Mao
et al. [2023].

• It’s the first node-level OOD method using homophilic neighborhood label distribution
to reflect the find-grained distribution of the invariant features, avoiding the collapse of
invariant features.

A.2 Graph-OOD Works Using VREx and Similar Variants

We summarize the graph-OOD works that include VREx or IGA as part of the training objectives
below. Node-level works, which can be covered by our analysis:

• EERM [Wu et al., 2021], Equation (5):

min
θ

Var
({
L
(
gw∗

k
(G), Y ; θ

)
: 1 ≤ k ≤ K

})
+
β

K

K∑
k=1

L
(
gw∗

k
(G), Y ; θ

)
, (11)

where gw∗
k
(G) is the generated k-th environment.

• INL [Li et al., 2023a], Equation (8):
Ee supp(Einfer )R

e (f (Gv) , y; θ) + λ trace (VarEinfer (∇θRe)) , (12)
where Einfer is the inferred environment label.
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• FLOOD [Liu et al., 2023], Equation (12):
min
θ,ω,ψ

Ltrain = L(θ, ω) + αRV−REx(ω, ψ) (13)

• Zhang et al. [2021b] Equation (10):

Lglobal =
∑
e,e′∈E

(
L0,e

pred − L
0,e′

pred

)2
, (14)

as they claimed: "We note that minimizing the pair-wise distance of losses as defined in
Equation 10 is equivalent to minimizing the variance of losses."

• GLIDER [Tian et al., 2024], Equation (9):
minVe [ℓ (fc (g (Gev)) , yev)] + αEe [ℓ (fc (g (Gev)) , yev)] (15)

Graph-level works, which are not covered in our analysis:

• LiSA [Yu et al., 2023], Equation (15):
min
f
Lcls (f, {g∗i }

n
i=1) + Vare (Lcls (f, g∗i )) , i = 1 ∼ n, (16)

where g∗i are the augmented training subgraphs of representing different environments.
• G-splice [Li et al., 2023b], Equation (6):
ψ∗ := argmin

ψ
E(G,y)∼∪ε∈{E∪EA}Pε

[ℓ (fψ(G), y)]+γVarε∈{E∪EA}
[
E(G,y)∼Pε

ℓ (fψ(G), y)
]
,

(17)
where EA are the augmented environments.

• GIL [Li et al., 2022a], Equation (8):
Ee∈supp(Einfer)R

e(f(G),Y; θ) + λ trace (VarEinfer (∇θRe)) , (18)
where Einfer is the inferred environment label.

A.3 Comparison with Existing Node-level OOD Generalization Works

Among the graph OOD methods, one line of research focuses on the node-level OOD generalization
[Wu et al., 2021, Liu et al., 2023, Zhu et al., 2021, Li et al., 2023a, Xia et al., 2023]. We summarize
the drawbacks of previous node-level OOD methods as follows. 1) it is hard for environment-
inference-based methods to generate reliable environments. To generate environments, FLOOD [Liu
et al., 2023] uses random data augmentation that lacks sufficient prior. EERM [Wu et al., 2021]
generates environments by maximizing loss variance, which may not necessarily enlarge differences
in spurious features across environments that have been proven to be crucial for invariant learning
[Chen et al., 2023a]. Also, the adversarial learning of its environment generation process may lead to
unstable performance (Table 2) and high training costs. INL [Li et al., 2023a] relies on an estimated
invariant ego-graph of each node, whose quality could significantly affect performance. Moreover,
all these methods need to manually specify the number of environments, which could be inaccurate.
2) previous node-level invariant learning objectives also have some limitations. For instance, Zhang
et al. [2021b], Wu et al. [2021], Liu et al. [2023], Li et al. [2023a], Tian et al. [2024] use VREx
Krueger et al. [2021] as their invariance regularization. However, we theoretically prove its potential
failure on node-level OOD tasks in Section 2.2. SRGNN [Zhu et al., 2021] only aligns the marginal
distribution p(X) between the biased training distribution and the given unbiased distribution, which
has been proved to have failure cases [Johansson et al., 2019]. 3) some work are based on intuitive
guidelines and lacks theoretical guarantees on the OOD generalization performance [Liu et al., 2023,
Zhu et al., 2021, Yang et al., 2023]. Our proposed CIA-LRA achieves invariant learning without
complex environment inference that could be unstable through a representation alignment manner.
Additionally, we provide theoretical guarantees for our invariant learning objective and empirically
validate its working mechanism.

Comparison between our Theorem 2.3 and Theorem 1 of Wu et al. [2021] It’s worth mentioning
that Theorem 1 of Wu et al. [2021] proves minΘ Ve[R(e)] will min I(y, e|z), where q(z|x) is the
induced distribution by encoder ϕ. This seems to conflict with Theorem 2.3. This is because the upper
bound derived in Wu et al. [2021] I(y, e|z) ≤ DKL(q(y|z)∥Ee[q(y|z)]) ≤ Ve[R(e)] is not tight.
Thus, minimizing the variance of loss across training environments does not necessarily minimize
mutual information between the label and the environment given the learned representation.
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A.4 Graph-level OOD Generalization

There has been a substantial amount of work focusing on the OOD generalization problem on graphs.
The vast majority have centered on graph classification tasks[Chen et al., 2022, Wu et al., 2022a, Li
et al., 2022a, 2023b, Yang et al., 2022, Yu et al., 2023, Chen et al., 2023a, Buffelli et al., 2022, Jia
et al., 2023, Li et al., 2022b, Chen et al., 2023b, 2024, Gui et al., 2024]. Most works aim at identifying
the invariant subgraph of a whole graph through specific regularization so that the model can use it
when inference. Compared to node-level OOD generalization, the graph-level one is more akin to
traditional OOD generalization, as the individual samples (graphs) are independently distributed. We
focus on the more challenging node-level OOD generalization in this work.

B Additional Theoretical Results of the Covariate Shift Case

B.1 Theoretical Model Setup of the Covariate Shift Case

In this section, we will extend our theoretical model in the main text to the covariate shift setting.
The causal graph of the covariate shift is shown in Figure 1b. For the covariate shift setting, spurious
features are independent of Y , while X changes with environment e. Thus we can model the data
generation process for environment e as

Y e = (Ãe)kX1 + n1, Xe
2 = n2 + ϵe, (19)

where the definition of n1 and n2 are the same as Section 2, ϵe represents environmental spurious
features. ϵei (each dimension of ϵe) is a random variable that are independent for i = 1, ..., Ne.
We assume the intra-environment expectation of the environment spurious variable is Eϵi∼pe [ϵi] =
µe ∈ R since spurious features are consistent in a certain environment. We further assume the cross-
environment expectation Ee[ϵe] = 0 and cross-environment variance Ve[ϵei ] = σ2, i = 1, ..., Ne for
simplicity. This is consistent with the covariate shift case that p(X) can arbitrarily change across
different domains, and the support set of X may vary. Also, we require L ≥ k to ensure the GNN
has enough capacity to learn the causal representations.

B.2 Theoretical Results of the Covariate Shift Case

Now we will present similar conclusions as the concept shift case. Even if VREx and IRMv1 can
successfully capture invariant features in the non-graph task, they induce a model that uses spurious
features. Still, CIA can learn invariant representations under covariate shift.
Proposition B.1. (VREx and IRMv1 learn invariant features for non-graph tasks under covariate
shift, proof is in Appendix G.2.1) For the non-graph version of the SCM in Equation (19),

Y e = X1 + n1, X
e
2 = n2 + ϵe, (20)

Optimizing VREx minΘ LVREx = Ve[R(e)] and IRMv1 minΘ LIRMv1 = Ee[∥∇w|w=1.0R(e)∥2] will
learn invariant features when using a 1-layer linear network: f(X) = θ1X1 + θ2X2.
Proposition B.2. (VREx will use spurious features on graphs under covariate shift) Under the
SCM of Equation (19), the objective minΘ Ve[R(e)] has non-unique solutions for parameters of the
GNN (3) when part of the model parameters {θ11

(l)
, θ21

(l)
, θ12

(l)
, θ22

(l)} take the values

Θ0 =


θ11

(l)
= 1, θ21

(l)
= 1, l = L− 1, ..., L− s+ 1

θ11
(l)

= 0, θ21
(l)

= 1, l = L− s, L− s− 1, ..., 1

θ12
(l)

= 0, θ22
(l)

= 1, l = L− 1, ..., 1

, (21)

0 < s < L is some positive integer. Specifically, the VREx solutions of θ1 and θ2 are the sets of
solutions of the cubic equation, some of which are spurious solutions that θ2 ̸= 0 (although θ2 = 0 is
indeed one of the solutions, VREx is not guaranteed to reach this solution):{

c1σ
2(2θ1θ2 + (θ2)

2 − 2c2σ
2θ2) + c3θ2 − Ee[Ne]c1σ

2θ1θ2 + Ee[Ne]c2σ
2θ2 = 0[

c3θ2 − Ee[Ne]c1σ
2θ1θ2 + Ee[Ne]c2σ

2θ2
]
c4 − c5(θ2)2 = 0

. (22)

where c1 = E[(Ãe
s
X1)

⊤(Ãe
s
X1)], c2 = E[(Ãe

s
X1)

⊤(Ãe
k
X1)], c3 = Ee[ϵe⊤ϵeϵe⊤(Ãe

s
X1)]σ

2,

c4 = Ee
[
((Ãe)kX1)

⊤1Ne

]
σ2, c5 = Ee

[
Ne
(

tr((Ãe
k
)⊤Ãe

k
) +Ne(1 + σ2)

)]
.
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Proposition B.3. (IRMv1 will use spurious features on graphs under covariate shift) Under the
SCM of Equation (19), there exists s ∈ N+ that satisfies 0 < s < L and s ̸= k such that optimizing
the IRMv1 objective minΘ Ee[∥∇w|w=1.0R(e)∥2] will not lead to the invariant solution θ2 = 0 for

parameters of the GNN (3) when {θ11
(l)
, θ21

(l)
, θ12

(l)
, θ22

(l)} take the special solution:

Θ0 =


θ11

(l)
= 1, θ21

(l)
= 1, l = L− 1, ..., L− s+ 1

θ11
(l)

= 0, θ21
(l)

= 1, l = L− s, L− s− 1, ..., 1

θ12
(l)

= 0, θ22
(l)

= 1, l = L− 1, ..., 1

. (23)

Proposition B.4. Optimizing the CIA objective will lead to the optimal solution Θ∗:
θ1 = 1
θ2 = 0

θ11
(l)

= 1, θ21
(l)

= 1, l = L− 1, ..., L− k + 1

θ11
(l)

= 0, θ21
(l)

= 1, l = L− k, L− k − 1, ..., 1

. (24)

C Detailed Experimental Setup

C.1 Basic Settings

All experimental results were averaged over three runs with different random seeds. Following Gui
et al. [2022], we use an OOD validation set for model selection.

GAT experiments. For experiments on GAT, we adopt the learning rate of 0.01 for Arxiv, 0.001 for
Cora, 0.003 for CBAS, and 0.1 for WebKB. The reason why we didn’t use the default learning rate
in Gui et al. [2022] is that since the original GOOD benchmark didn’t implement GAT, so we chose
to tune a learning rate for adapting GAT to reach a decent performance. The settings of batch size,
training epochs, weight decay, and dropout follow Gui et al. [2022].

GCN experiments. For experiments on GCN, we follow the default settings of batch size, training
epochs, learning rate, weight decay, and dropout provided by Gui et al. [2022].

It’s worth mentioning that we choose different normalization strategies for the invariant edge mask of
CIA-LRA to achieve better performance for GCN. In Equation (8), we use Sigmoid as normalization.
However, we find it is better to use a Min-Max normalization for GCN on some of the datasets.
Specifically, for experiments on GCN, we use Sigmoid normalization for CBAS, Arxiv (time concept);
Sigmoid for training and Min-Max for testing for WebKB (covariate); Min-Max normalization for
the other dataset splits. For GAT, we use Sigmoid during training and testing for all datasets.

C.2 Hyperparameter Settings of the Main OOD Generalization Results

Most hyperparameter settings are adopted from Gui et al. [2022], except that for EERM we reduce
the number of generated environments from 10 to 7 and reduce the number of adversarial steps from
5 to 1 for memory and time complexity concerns. For each method, we conduct a grid search for
about 3∼7 values of each hyperparameter. The hyperparameter search space is presented in Table 5.

C.3 Details of the Toy Dataset

Now we introduce the setting of the toy synthetic task of Figure 3. The synthetic dataset consists of
four classes. Each node has a 4-dim node feature. The first/last two dimensions correspond to the
invariant/spurious feature for each of the four classes, as shown in Table 6a and 6b. We artificially
create both concept shift and covariate shift in this dataset.

To explicitly disentangle the learned invariant and the spurious components for quantitative analysis,
we employ a 1-layer GCN. We take the output of the first/last two dimensions of the weight matrix as
the invariant/spurious representation.
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Table 5: Hyperparameter setting of the experiments.
Algorithm Search Space

IRM λ= 0.1, 1, 10, 100

VREx λ=1, 10, 100, 1000

GroupDRO λ=0.001, 0.01, 0.1

Deep Coral λ=0.01, 0.1, 1

IGA λ=0.1, 1, 10, 100

Mixup α=0.4, 1.0, 2.0

EERM

β=0.5, 1, 3
number of generated environments k=7
adversarial training steps t=1
numbers of nodes for each node should be modified the link with s=5
subgraph generator learning rate r=0.0001, 0.001, 0.005, 0.01

SRGNN 0.000001, 0.00001, 0.0001

GTrans feature learning rate r1=0.000005, 0.00001, 0.0001
structure learning rate r2=0.01, 0.1
δ optimization steps t=5, 10

CIA λ=0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1 (GCN)
λ=0.0001, 0.0005, 0.001, 0.01, 0.05 (GAT)

CIA-LRA λ= 0.001, 0.005, 0.01, 0.05, 0.1 (GCN)
edge mask GNN learning rate r=0.001 (GCN + Arxiv, Cora, CBAS); r = 0.1 (GCN + WebKB)
λ= 0.005, 0.05, 0.1, 0.5 (GAT)
edge mask GNN learning rate r=0.0001 (GAT)
hops t=2, 3, 4, 5, 6

Table 6: Information of the toy dataset of Figure 3.

(a) The invariant part (the first two dimensions) of the
node features in the synthetic dataset.

class 0 class 1 class 2 class 3

N ((1, 1), I) N ((−1, 1), I) N ((−1,−1), I) N ((1,−1), I)

(b) The spurious part (the last two dimensions) of the
nodes features in the synthetic dataset.

environment concept shift covariate shift
class 0 class 1 class 2 class 3

training 1 N ((3, 3), I) N ((−3, 3), I) N ((−3,−3), I) N ((3,−3), I) N ((2, 2), I)

training 2 N ((−3, 3), I) N ((−3,−3), I) N ((3,−3), I) N ((3, 3), I) N ((4, 4), I)

test N ((−3,−3), I) N ((3,−3), I) N ((3, 3), I) N ((−3, 3), I) N ((6, 6), I)

D Additional Experimental Results

D.1 Excessive Alignment Leads to the Collapse of the Invariant Features.

One may wonder why CIA underperforms CIA-LRA even if CIA uses the ground truth environment
labels. In this section, we will show that CIA may suffer excessive alignment, which will lead to
the collapse of the learned invariant features and consequently hurt generalization. We use the intra-
class variance of the representation corresponding to invariant features (averaged over all classes)
to measure the degree of collapse of invariant features. Base on this measurement, the excessive
alignment can be caused by:

1) Using a that is too large. Evidence: on the toy dataset of Figure 3, a larger λ leads to smaller
intra-class variance of invariant representations. We also compute the intra-class variance of invariant
representations at epoch 50 on the toy dataset,

2) Aligning the representations of too many nodes. Evidence: we show that aligning fewer node
pairs can alleviate the collapse of invariant representation. By modifying CIA to align local pairs
(same-class, different-environment nodes within 1 hop), termed "CIA-local", the results in Table 7b
show that when by aligning local pairs instead of all pairs, CIA-local avoids the collapse that CIA
suffers and achieves better performance.

D.2 CIA-LRA Alleviates Representation Collapse Caused by Excessive Alignment

In Figure 5, we illustrate the impact of λ on OOD accuracy. Both CIA and CIA-LRA experience
a performance decline at λ = 0.5, indicating that excessive alignment can hinder generalization.
Furthermore, CIA shows an earlier and more pronounced performance drop than CIA-LRA. This
suggests that the CIA-LRA method mitigates representation collapse by aligning fewer pairs and
selectively focusing on pairs with smaller differences in invariant features.
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Table 7: Experimental evidence of the factors that can cause the collapse of the learned invariant
representations.

(a) Using a that is too large can cause the collapse.
The intra-class variance of invariant representations on
the toy dataset of Figure 3 at epoch 50.

CIA λ = 0.05 λ = 0.1 λ = 0.5

variance of the invariant representation 0.061 0.039 0.011

(b) Aligning the representations of too many nodes
can cause the collapse. Accuracy and the variance
of the invariant representations on the toy dataset of
Figure 3 at epoch 200.

CIA CIA-local

Concept shift, accuracy 0.253 0.354

Concept shift, variance of the invariant representation 0.0003 0.2327

Concept shift, accuracy 0.250 0.312

Concept shift, variance of the invariant representation 0.0002 0.1699
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Figure 5: The effect of λ on OOD accuracy. CIA exhibits an earlier and more severe performance
drop than CIA-LRA, demonstrating that CIA-LRA can alleviate the feature collapse caused by
excessive alignment.

The role of CIA-LRA in alleviating the collapse of the invariant features can also be reflected in
Figure 6, in which the representation learned by CIA collapsed to a compact region. However,
CIA-LRA does not exhibit such collapse, maintaining the diversity of the causal representation.
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Figure 6: Visualization of the learned representations at epoch 100 on the toy dataset (concept shift).
Classes are distinguished by color. λ = 0.5 for CIA and CIA-LRA.

D.3 Effect of the Number of Hops for Localized Alignment

In Figure 7, we plot the OOD accuracy curve of CIA-LRA against the number of hops t for localized
alignment (with λ = 0.05). CIA-LRA achieves optimal performance within a local range of 6 to
10 hops. Performance is notably lower at smaller hops (t = 2), due to limited regularization from
aligning only a few pairs of representations. As t increases, performance gains diminish and can even
degrade, particularly on the CBAS color covariate. This underscores the importance of localized
alignment: optimal OOD performance is attained by aligning nodes within about 10 hops. Extending
the alignment range further does not enhance performance significantly and may lead to performance
drops and higher computational costs. These findings support the hypothesis in Appendix D.4 that
invariant features distant on the graph differ substantially, and their alignment could induce invariant
feature collapse, leading to a suboptimal generalization performance.

D.4 Discussion and Validation of the Assumption on the Rate of Change of Causal and
Spurious Features w.r.t Spatial Position

To verify the intuition presented in Section 3.2 that spurious features exhibit larger changes within a
local range (about 5 to 10 hops) on a graph compared to invariant features, we conduct experiments
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Figure 7: The effect of the number of hops t for localized alignment on OOD accuracy. Too small t
will lead to suboptimal performance. Too large t brings limited performance gain or even deteriorates
the performance.

on real-world datasets Arxiv and Cora. To extract invariant features, we use a pre-trained VREx
model and take the output of the last layer as invariant features8. To obtain spurious features, we
train an ERM model to predict the environment label and take the output of the last layer as spurious
features. For each class, we randomly sample 10 nodes and generate corresponding 10 paths using
Breadth-First Search (BFS). We extract invariant and spurious features of the nodes on each path
and plot the L-2 distances between the node representations on the paths and the starting node. The
results of Cora are in Figure 8 and 9, and the results of Arxiv are in Figure 10 and 11. We chose some
of the classes to avoid excessive paper length; the results for the other classes are similar.

We observe that: despite the curve’s slight fluctuations, the invariant feature difference shows a
clear positive correlation with the distance from the starting point. Specifically, within about
5∼10 hops, the changes of spurious features grow more rapidly than those in invariant ones. This
insight led us to align the representations of adjacent nodes to better eliminate spurious features and
avoid the collapse of the invariant features. This also explains why we add a weighting term d(i, j) in
our loss function to assign smaller weight node pairs farther apart. Additional experimental evidence
supporting the importance of localized alignment is in Appendix D.3, which shows that alignment
over a large range may lead to suboptimal performance and increasing computational costs.

This assumption aligns with those adopted in a series of previous works on causality and invariant
learning [Chen et al., 2022, Burshtein et al., 1992, Schölkopf, 2022, Schölkopf et al., 2021]. These
works assume that invariant features are better clustered than spurious features. In the node-level
graph OOD scenario, we observe this phenomenon primarily within local parts of a graph. In some
cases, when two nodes are too far apart, their invariant features can vary more than the spurious
features, as seen in Figure 11 (a) path 1,2,4,6,9 and 10. Therefore, matching the representations in a
local region helps alleviate the invariant feature collapse problem.

D.5 Discussion and Validation of the Assumption on the Feature Distance and Neighborhood
Label Distribution Discrepancy

D.5.1 Heterophilic Neighborhood Labels Distribution Reflect Spurious Feature Distribution

In this section, we will empirically validate the key intuition of CIA-LRA: the label distribution of
the neighbors from different classes (which we call Heterophilic Neighborhood Label Distribution,
HeteNLD) reflects the spurious representation of the centered node. In node-level OOD scenarios, the
distributional shifts of spurious features originate from two main sources: (1) the shifts in spurious
node features associated with environments, and (2) the shifts in Neighborhood Label Distribution
(NLD), which affects the aggregated representation of the centered node. The first type of spurious
feature is analogous to those defined in Computer Vision (CV) OOD domains, while the second type
is specific to graph structures. The NLD shift is a more general instance of the graph heterophily
problem [Ma et al., 2022, Huang et al., 2023, Mao et al., 2023], where changes in the ratio of
homophilic neighbors from training to test graphs can degrade performance. This occurs because the
changes in the homophilic ratio lead to the distributional shift in the aggregated representation of the
same-class nodes. Most previous methods [Ma et al., 2022, Huang et al., 2023, Mao et al., 2023]

8though we reveal in our theory that VREx may rely on spurious features, we still use VREx here to
approximately extract invariant features as many previous graph OOD works have done since VREx already
demonstrated some advantages in their works
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(a) class 16 of Cora

(b) class 17 of Cora

Figure 8: Visualization of the rate of change of invariant features and spurious features on Cora (part
1).

22

80404https://doi.org/10.52202/079017-2556



(a) class 39 of Cora

(b) class 41 of Cora

Figure 9: Visualization of the rate of change of invariant features and spurious features on Cora (part
2).
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(a) class 25 of Arxiv

(b) class 29 of Arxiv

Figure 10: Visualization of the rate of change of invariant features and spurious features on Arxiv
(part 1).
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(a) class 13 of Arxiv

(b) class 17 of Arxiv

Figure 11: Visualization of the rate of change of invariant features and spurious features on Arxiv
(part 2).
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only focus on the binary-classification setting, where changes in the homophilic neighbor ratio are
equivalent to changes in the heterophilic neighbor ratio. However, we consider the more general multi-
classification tasks. Therefore, we propose to use HeteNLD as a measurement, considering every
class different from the central class and using their distribution to reflect shifts in the aggregated
representation. Although the ratio of homophilic neighbors also affects environmental spurious
features and NLD, it affects the invariant representation as well. Assigning larger weights to the
pair with significant differences in the ratio of homophilic neighbors will simultaneously eliminate
environmental spurious features and learn a collapsed invariant representation. As evidenced in Table
4, moving the rsame(c)i,j to the numerator of Equation (9) will lead to a significant performance
decrease. Hence we use 1

rsame(c)i,j
instead of rsame(c)i,j in wij .

In the following part, we will empirically validate our intuition that HeteNLD can reflect the two
spurious representation distributions on concept shift, where p(Y |X) varies across environments, and
covariate shift, where p(X) changes with environments, respectively. We will show that HeteNLD
affects the spurious features of the centered node in different manners under concept shift and
covariate shift.

Covariate shift. For covariate shifts on graphs, since spurious features are not necessarily correlated
with labels, the environmental spurious features cannot be reflected by HeteNLD. However, we
can still measure how HeteNLD affects the aggregated neighborhood representation. To obtain
neighborhood representation, we train a 1-layer GCN that aggregates neighboring features and
discards the features of the centered node. We hope to observe whether the gap of HeteNLD
accurately reflects the distance of neighborhood representation. To ensure that the discrepancy in the
aggregated neighboring feature is caused solely by heterophilic neighbors, we only use point pairs
with the same number of homophilic neighbors. Specifically, we compute the L-2 distance between
the neighborhood representations of two nodes with the same number of class-same neighbors, and
plot its trend w.r.t. the distance of HeteNLD (according to the definition of rdiff

i,j in Equation (9),
except that we didn’t normalize by the node degree here). We run experiments on Cora to verify
this. We evaluate on both word shifts (node feature shifts) and degree (graph structure shifts) for a
comprehensive understanding. We show the results of the first 30 classes of Cora. The results in
Figure 12 and 13 show a clear positive correlation between the neighborhood representation
distance and HeteNLD discrepancy under covariate shifts, indicating HeteNLD discrepancy
can reflect the distance of the aggregated representation.

Concept shift. As for concept shift, spurious features are correlated with labels, thus the label of a
node contains information about spurious features correlated with this class. Hence, by observing
HeteNLD, we can measure the distribution of the spurious feature. For concept shift, we train a
GNN to predict environment labels to obtain spurious representations. Table 14 and 15 also show
a clear positive correlation between spurious feature distance and HeteNLD discrepancy on
concept shift, indicating that HeteNLD discrepancy can reflect the distance of the environmental
spurious features.

D.5.2 Homophilic Neighboring Labels Reflect Invariant Feature Distribution

Now will validate that the ratio of the same-class neighbors reflects the aggregated invariant represen-
tation. We use VREx to approximately extract invariant features and compute their distance w.r.t. the
discrepancy of the ratio of the same-class neighbors. We evaluate on 4 splits of Cora: word+covariate,
word+concept, degree+covariate and degree+concept. For each data split, we randomly choose
5 classes with sufficiently large differences in homophilic neighbor ratios for visualization. The
results in Figure 16 also show a positive correlation trend between the distance of the invariant
representations and the difference in the ratio of same-class neighbors, indicating the latter can
reflect the former.

D.6 Validation of the True Feature Generation Depth

For the theoretical model in Section 2, we assume that the number of layers of the GNN L is greater
than the depth of the causal pattern k. In this section, we empirically verify how large k really is on
real-world datasets. Specifically, we use GCN with different layers to predict the ground-truth label
Y on Cora and Arxiv datasets respectively (results are in Table 9a and 9b). As mentioned above,
since a GCN with L layers will aggregate features from L-hop neighbors for prediction, if the depth
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Figure 12: The relationship between the distance of the aggregated neighborhood representation and
distance of HeteNLD on Cora word domain, covariate shift. Each sub-figure is a class, and each dot
in the figure represents a node pair in the graph. The red line is obtained by linear regression. The
positive correlation is clear.

Figure 13: The relationship between the distance of the aggregated neighborhood representation and
distance of HeteNLD on Cora degree domain, covariate shift. The positive correlation is clear.
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Figure 14: The relationship between the distance of environmental spurious features and distance of
HeteNLD on Cora word, concept shift. The positive correlation holds for most classes.

Figure 15: The relationship between the distance of environmental spurious features and distance of
HeteNLD on Cora degree, concept shift. The positive correlation holds for most classes.
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Figure 16: The relationship between the distance of invariant representations and discrepancy in the
same-class neighbor ratio (the ratios in the figure are multiplied by node degree) on Cora degree,
concept shift. Line 1 to 4 are results of Cora word+covariate, word+concept, degree+covariate
and degree+concept, respectively. Each subgraph marks a class, and each point in the subfigure
represents a node pair. There is a positive correlation between the invariant feature distance and the
difference in neighboring label ratio of the same class as the centered node.

Table 8: Time cost (seconds) to achieve optimal test performance on Arxiv using GAT on a single
RTX 3090 GPU.

ERM Coral Mixup EERM SRGNN GTrans CIT CIA-LRA (6 hops)

Arxiv degree covariate 74 551 758 OOM 34887 OOM OOM 1248

Arxiv degree concept 30 360 747 OOM 3960 OOM OOM 1132

Arxiv time covariate 46 246 1207 OOM 1993 OOM OOM 292

Arxiv time concept 440 1481 272 OOM 11628 OOM OOM 989

of the GCN is equal to the true generation depth, then the performance should be close to optimal.
Therefore, we use the layer number that yields the optimal empirical performance (denoted as L∗) to
approximate k. We find that the L∗ ≤ 4 in most cases. This indicates that our assumptions L ≤ k
hold easily.

D.7 Time Cost of CIA-LRA

To show the running time of CIA-LRA, we show the time cost to reach the best test accuracy on
our largest dataset Arxiv (with 50k 60k nodes). The results are in Table 8 below. The time cost of
CIA-LRA is comparable to baseline methods.

(a) OOD accuracy on causal prediction (%) of GCN with
different numbers of layers on Arxiv.

Dataset Shift l = 2 L = 3 L = 4 L=5

Arxiv (degree) covariate 57.28(0.09) 58.92(0.14) 60.18(0.41) 60.17(0.12)

concept 63.32(0.19) 62.92(0.21) 65.41(0.13) 63.93(0.58)

Arxiv (time) covariate 71.17(0.21) 70.98(0.20) 71.71(0.21) 70.84(0.11)

concept 65.14(0.12) 67.36(0.07) 65.20(0.26) 67.49(0.05)

(b) OOD accuracy (%) of GCN with different numbers
of layers on Cora.

Dataset Shift L = 1 l = 2 L = 3 L = 4

Cora (degree) covariate 59.04(0.15) 58.44(0.44) 55.78(0.52) 55.15(0.24)

concept 62.88(0.34) 61.53(0.48) 60.24(0.40) 60.51(0.17)

Cora (word) covariate 64.05(0.18) 65.81(0.12) 65.07(0.52) 64.58(0.10)

concept 64.32(0.15) 64.85(0.10) 64.61(0.11) 64.16(0.23)
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E Detailed training procedure

Table 1 shows the detailed training procedure (pseudo code) of CIA-LRA. We use the same GNN
encoder for the invariant subgraph extractor. Empirically, we add CIA or CIA-LRA after one epoch
of ERM training.

Algorithm 1 Detailed Training Procedure of CIA-LRA

Require:
A labeled training graph G = (A,X, Y ), a GNN fΘ, and invariant subgraph generator GNN fθm .
The number of hops t, CIA-LRA weight λ, the number of classes C, total iterations T , model
learning rate r1, invariant subgraph generator learning rate r2, the number of fΘ’s layers L

Ensure:
Updated model fΘ with parameter Θ.

1: for iterations in [1, 2, ..., T ] do
2: Randomly sample a subgraph A′ ∈ RN×N from A ∈ RN0×N0 .
3: Compute and apply the edge mask according to Equation (8) to obtain the masked adjacency

matrix Am ← A′ ⊙M ∈ RN×N .
4: Initialize LCIA-LRA ← 0.
5: Calculate the node representations ϕ(Am, X) ∈ RN×D.
6: ### Calculate At, where the (i, j)-th element of At equals the length of the shortest path from

node i to j if the length is less than t else infinity:
7: Initialize At(i, j)← Inf if i ̸= j, At(i, i)← 1, Atem ← Am
8: for hop h in [1, 2, ..., t] do
9: Atem ← AmAtem

10: if Atem(i, j) > 0 and Atem(i, j) < At(i, j) then
11: At(i, j)← h
12: end if
13: end for
14: ### Compute the ratio of neighbored nodes of each class:
15: Compute the normalized adjacency matrix Ā, where Ā’s i-th row Āi ← Ami/Di, Ami is the

i-th row of Am and Di ∈ R is the degree of node i.
16: Initialize the neighbored label ratio R ← Y ∈ RN×C , where R(i, c) is the ratio of node i’s

neighbors of class c within a L-hop range, Y are the one hop labels.
17: for l in [1, 2, ..., L] do
18: R← ĀR
19: end for
20: for c in [1, 2, ..., C] do
21: Sample the nodes of class c from At and form Atc. Use Atc to screen for pairs of nodes not

exceeding a distance of t hops Ωc(t).
22: Compute CIA-LRA loss of class c: LcCIA-LRA according to Equation (9) using Ωc(t), R, Atc

and ϕ(Am, X):
23: LCIA-LRA ← LCIA-LRA + LcCIA-LRA
24: end for
25: Compute final loss L ← Lce(fΘ(A,X), Y ) + λLCIA-LRA, Lce is the cross-entropy loss
26: Update model parameters Θ← Θ− r∇ΘL, θm ← Θm − r∇θmL
27: end for

F Additional Discussion of Theoretical Settings and Results

F.1 Detailed Setup of the Theoretical Model in Section 2

The proposed data generation process. In the theoretical model of Equation (2), each dimension of
n1 ∈ RNe×1 and n2 ∈ RNe×1 are i.i.d, following a standard Gaussian distribution. ϵe ∈ RNe×1 is
an environment spurious variable. ϵei (each dimension of ϵe) are independent random variables, i =
1, ..., Ne. We further assume the cross-environment expectation Ee[ϵe] = 0 and cross-environment
variance Ee[ϵei ] = σ2, i = 1, ..., Ne for brevity.

30

80412https://doi.org/10.52202/079017-2556



The considered multi-layer GNN. In the analyzed GNN of Equation (3), we simplify the classifier
to an identity mapping. Such simplification has been adopted by various previous theoretical works
on graphs [Wu et al., 2022b, Tang and Liu, 2023]. We assume L ≥ k to ensure the model has enough
capacity to learn invariant features. We verify this assumption by using GCNs with different numbers
of layers to predict the ground-truth labels (see Appendix D.6).

F.2 Discussion of the Structural Feature Considered in the Theoretical Model and
Justification for the Choice of the Analyzed GNN

Structural Features and Structural Shifts Considered in Section 2.1. To reflect reality as much
as possible, it is necessary to consider both nodal and structural invariant and spurious features in
the theoretical model. As mentioned in Section 2.1, we model the invariant structural feature as the
structure of the k-hop ego-subgraph. A natural question is raised here:

Can we find other ways to define the invariant/spurious structural features?

The answer is yes. For example, the invariant structure can be modeled as the subgraph of the
ego-graph of a node, following Li et al. [2023a]. However, it is fundamentally impossible for GNNs
using mean aggregation (like GCN) to learn such causal structures. This is because such GNNs will
assign fixed weights to each neighboring node feature, and they can’t split the causal substructure
from the neighbored ego-sgraph. Therefore, we make the causal structure feasible for GCN-like
GNNs to learn by defining the causal structure as the whole k-hop neighboring ego-graph, rather than
a subgraph, and show that OOD failure can still happen (Theorem 2.3). Then, under this setting, the
remaining challenge becomes identifying the true k by optimizing the shallow layer GNN parameters.
However, in real practice, the invariant causal pattern may still be an ego-subgraph. This can be
reflected in the performance gain of the invariant subgraph extractor used in CIA-LRA.

Why Do We Choose Such a GNN in Section 2.1? From the above analysis, we show that such a
choice is a compromise solution between the case of GCN (that can only extract a whole ego-graph)
and GAT-like GNNs (that can extract a subgraph from an ego-graph). Although in this GNN each
neighbored node is solely assigned the same weight, the shallow layer parameters can be optimized
to realize the aggregation of different depths to capture the causal structures of different depths.

F.3 Discussion of the Failure Solution for GNNs of VREx and IRMv1

In Theorem G.2 and G.3 (the formal version Theorem 2.3), we show that VREx and IRMv1 could
induce a model that uses spurious features. Now we’ll give an intuitive explanation of this failure
mode. When the lower-layer parameters of the GNN θ11

(l), θ12
(l), θ21

(l), θ22
(l) take the specific solution

Θ0 in Equation (21), we have

H
(L)
1 =

∂H
(L)
1

∂θi1
(l)

= Ãe
s
X1, H

(L)
2 =

∂H
(L)
2

∂θi2
(l)

= Ãe
k+m

X1, (25)

holds for i = 1, 2, l = 1, ..., L− 1 and every environment e. Thus, we get

∂L
∂θ1

=
∂L

∂(H
(L)
1 θ1)

∂(H
(L)
1 θ1)

∂θ1
=

∂L
∂(H

(L)
1 θ1)

H
(L)
1

(∗)
=

∂L
∂(H

(L)
1 θ1)

∂(H
(L)
1 )

∂θi1
(l)

=
∂L
∂θi1

(l)

1

θ1
,

i = 1, 2, l = 1, ..., L− 1

(26)

(∗) is because of Equation (25). Therefore, ∂L
∂θ1

= 0 ⇒ ∂L
∂θi1

(l) = 0. The same is true for ∂L
∂θ2

and ∂L
∂θi2

(l) . This means the solution of the top-level parameters θ1 and θ2 of the GNN will only

be constrained by two equations, ∂L
∂θ1

= 0 and ∂L
∂θ2

= 0, rather than be constrained by all gradient
functions ∂L

∂θji
= 0, i = 1, 2. By analyzing the specific loss of VREx and IRMv1, we conclude that

they will induce a non-zero θ2.
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Note that the failure solution Θ0 here is not the unique one, we choose Θ0 just for the elegant
expression and to better convey the intuition. In effect, the conclusion ∂L

∂θ1
= 0 ⇒ ∂L

∂θi1
(l) = 0 and

∂L
∂θ2

= 0⇒ ∂L
∂θi2

(l) = 0 holds as long as the lower-layer aggregation parameters satisfy

Θ′
0 =


θ11

(l)
= 1, θ21

(l)
= 1, l = L− 1, ..., L− s1 + 1

θ11
(l)

= 0, θ21
(l)

= 1, l = L− s1, L− s1 − 1, ..., 1

θ12
(l)

= 1, θ22
(l)

= 1, l = L− 1, ..., L− s2 + 1

θ12
(l)

= 0, θ22
(l)

= 1, l = L− s2, L− s2 − 1, ..., 1

, for some s1, s2 ∈ N+, 1 < s1 ≤ L, 1 < s2 ≤ L,

(27)
i.e., we don’t require the spurious branch of the GNN to be identity mapping I as equation (36) does.

This failure mode can happen to GCN (all θij = 1, i = 1, 2, j = 1, 2) and also for GAT.

F.4 The Superiority of the Proposed CSBM-OOD

Our CSBM-OOD in Section introduces several advancements over the conventional CSBMs [Ma
et al., 2021, Mao et al., 2023]: 1) It supports multi-class classification, extending beyond the
binary classification framework of traditional CSBMs; 2) It accommodates unique neighboring label
distributions for each node, in contrast to the traditional models that assume a uniform class-shared
homophily/heterophily ratio across all nodes; 3) our model integrates OOD shifts, while traditional
ones don’t.

F.5 Tightness of the Error Bound of Theorem 4.4

When there are no distributional shifts in spurious node features and heterophilic neighborhood
distribution between training and test environments, the terms (a)-(d) in Eq. (109) becomes zero, and
the upper bound becomes L̂γetr(h̃)+ const = L̂γetr(h̃)+ 1

N1−2α

etr
+ 1

N2α
etr

ln LC(2Bete )1/L

γ1/Lδ
, i.e., our bound

only larger than the ideal error L̂γetr(h̃) by a constant const. When the number of training samples
Netr is large, const will be small enough and can be negligible. Hence, the tightness of our bound is
guaranteed.

G Proofs of the Theoretical Results

G.1 Proofs of the Concept Shift Case Presented in the Main Text

In this section, we give proof of the propositions of the concept shift model presented in the main
text.

G.1.1 Proof of the non-Graph Success Case of VREx and IRMv1 under Concept Shift

We restate Proposition 2.2 as Proposition G.1 below.
Proposition G.1. For the non-graph version of the SCM in Equation (2),

Y e = X1 + n1, X
e
2 = Y e + n2 + ϵe, (28)

VREx and IRMv1 will learn invariant features when using a 1-layer linear network: f(X) =
θ1X1 + θ2X2.

Proof. VREx. Denote X1θ1 +Xe
2θ2 −X1 − n1 as le. The variance of loss across environments is:

Ve[R(e)] = Ee[R2(e)]− E2
e[R(e)]

= Ee
[(

En1,n2
∥X1θ1 + (X1 + n1 + n2 + ϵe)θ2 −X1 − n1∥22

)2]
− E2

e

[
En1,n2

∥X1θ1 + (X1 + n1 + n2 + ϵe)θ2 − (X1 − n1∥22
]
.

= Ee
[
En1,n2

[
(l⊤e le)

2
]]
− E2

e

[
En1,n2

[
l⊤e le

]]
.

(29)
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Take the derivative of Ve[R(e)] with respect to θ1:

∂Ve[R(e)]
∂θ1

= Ee
[
2En1,n2

[
l⊤e le

]
En1,n2

[
2l⊤e X1

]]
− 2Ee

[
En1,n2

[
l⊤e le

]]
Ee
[
En1,n2

[
2l⊤e X1

]] (30)

Using the fact that En1,n2 [n1] = En1,n2 [n2] = 0, En1,n2 [n
⊤
1 n2] = En1,n2 [n

⊤
2 n1] = 0 and

En1,n2 [n
⊤
1 n1] = En1,n2 [n

⊤
2 n2] = Ne if it is the noise from e, En1,n2 [n

⊤
1 ϵ

e] = En1,n2 [n
⊤
2 ϵ

e] = 0
and using the assumption that Ee[(ϵei )2] = σ2, we have

Ee
[
2En1,n2

[
l⊤e le

]
En1,n2

[
2l⊤e X1

]]
=θ1

3X1
4 + 3θ1

2θ2X1
4 + θ1θ2

2[3X2
1 (X

2
1 + σ2) + 2X2

1Ee[Ne]]

+θ32X1(X
3
1 +X1σ

2 + Ee[ϵe⊤ϵeϵe] + 2X1Ee[Ne])

−3θ21X4
1 − θ1θ2(6X4

1 + 2X2
1Ee[Ne])− θ22(3X2

1 (X
2
1 + σ2) + 4X2

1Ee[Ne])

+θ1(3X
4
1 +X2

1Ee[Ne]0) + 3θ2(X
4
1 +X2

1Ee[Ne])−X2
1 (X

2
1 + Ee[Ne])

(31)

and
Ee
[
En1,n2

[
l⊤e le

]]
Ee
[
En1,n2

[
2l⊤e X1

]]
=θ1

3X1
4 + 3θ1

2θ2X1
4 + θ1θ2

2[3X2
1 (X

2
1 + σ2) + 2X2

1Ee[Ne]]

+θ32X1(X
3
1 +X1σ

2 + 2X1Ee[Ne])

−3θ21X4
1 − θ1θ2(6X4

1 + 2X2
1Ee[Ne])− θ22(3X2

1 (X
2
1 + σ2) + 4X2

1Ee[Ne])

+θ1(3X
4
1 +X2

1Ee[Ne]0) + 3θ2(X
4
1 +X2

1Ee[Ne])−X2
1 (X

2
1 + Ee[Ne])

(32)

Plug Equation (31) and (32) back into Equation (30), we have

∂Ve[R(e)]
∂θ1

= θ32X
⊤
1 Ee[ϵe⊤ϵeϵe] (33)

Let ∂Ve[R(e)]
∂θ1

= 0, we have θ2 = 0.

Now we need to validate θ2 = 0 is also a solution to ∂Ve[R(e)]
∂θ2

= 0. Let’s calculate ∂Ve[R(e)]
∂θ2

when
θ2 = 0:

∂Ve[R(e)]
∂θ2

= Ee
[
2En1,n2

[
l⊤e le

]
En1,n2

[
2l⊤e (X1 + n1 + n2 + ϵe)

]]
− 2Ee

[
En1,n2

[
l⊤e le

]]
Ee
[
En1,n2

[
2l⊤e (X1 + n1 + n2 + ϵe)

]]
=(θ21X

2
1 − 2θ1X

2
1 +X2

1 + EeNe)(θ1X
2
1 −X2

1 − EeNe)

−(θ21X2
1 − 2θ1X

2
1 +X2

1 + EeNe)(θ1X
2
1 −X2

1 − EeNe)

=0.

(34)

So far, we have proved θ2 = 0 is the solution for VREx, hence it will learn invariant features. We
finish the proof for VREx.

IRMv1. The objective of IRMv1 is Ee∥∇wR(e)∥22. When IRMv1 loss is optimized to zero, we have
∇wR(e) = 0 for all environments e.

∇wR(e) = En1,n2
[2(θ1X1 + θ2X2 − (X1 + n1))

⊤(θ1X1 + θ2X2)]

= 2((θ1)
2X⊤

1 X1 + (θ2)
2(X⊤

1 X1 + ϵe⊤ϵe + 2Ne) + 2θ1θ2X
⊤
1 (X1 + ϵe)

− θ1X⊤
1 X1 − θ2(X⊤

1 X1 +X⊤
1 ϵ

e +Ne))

(35)

To realize ∇wR(e) = 0 for all e, we must let θ2 = 0 (and consequently θ1 = 1), otherwise the
solution of θ2 will include terms related to ϵe and Ne that vary with environments, and a single value
θ2 cannot fit all these values. Thus we finish the proof for IRMv1.
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G.1.2 Proof of the Failure Case on Graphs of VREx under Concept Shift

We present the formal version of the VREx part in Theorem 2.3 as Theorem G.2 below.
Theorem G.2. (VREx will use spurious features on graphs under concept shift, formal) Under the
SCM of Equation (2), the objective minΘ Ve[R(e)] has non-unique solutions for parameters of the
GNN (3) when part of the model parameters {θ11

(l)
, θ21

(l)
, θ12

(l)
, θ22

(l)} take the values

Θ0 =


θ11

(l)
= 1, θ21

(l)
= 1, l = L− 1, ..., L− s+ 1

θ11
(l)

= 0, θ21
(l)

= 1, l = L− s, L− s− 1, ..., 1

θ12
(l)

= 0, θ22
(l)

= 1, l = L− 1, ..., 1

, (36)

for some 0 < s < L. Specifically, the VREx solutions of θ1 and θ2 are the sets of solutions of the
cubic equation, some of which are spurious solutions that θ2 ̸= 0 (although θ2 = 0 is indeed one of
the solutions, VREx is not guaranteed to reach this solution):{

(3c1θ1θ2 + c1(θ2)
2 − 2c6θ2)σ

2 − Ee[Ne(2c1(θ1 + θ2)− c6)]σ2θ2 + c7θ2 = 0
(Ee[Ne(2c1(θ1 + θ2)− c6)]σ2θ2 − c7)(c3 − c4)θ2 − [c2(θ1 + θ2)− c5](θ2)2 = 0

. (37)

where c1 = Ee[(Ãe
s
X1)

⊤(Ãe
s
X1)], c2 = Ee[Ne(Ãe

s
X1)

⊤Ãe
s
X1], c3 = Ee[(Ãe

s
X1)

⊤1],

c4 = Ee[((Ãe
k
X1)

⊤1], c5 = Ee[Ne((Ãe
k
X1)

⊤Ãe
s
X1 + tr((Ãe

k
)⊤Ãe

k
) + Ne(1 + σ2))],

c6 = Ee[(Ãe
s
X1)

⊤(Ãe
k
X1)], c7 = Ee[ϵe⊤ϵeϵe⊤(Ãe

s
X1)].

Proof. We will use some symbols to simplify the expression of the toy GNN. Denote Ãmn1+n2+ ϵ
as η. Use the following notations to represent the components of the L-layer GNN model:

fΘ(A,X) = H
(L)
1 θ1 +H

(L)
2 θ2

=
[
θ11

(L−1)
Ā
(
...θ11

(3)
(
θ11

(2)
Ā(θ11

(1)
Ā+ θ21

(1)
Ī)X1 + θ21

(2)
(θ11

(1)
Ā+ θ21

(1)
Ī)X1

)
+ ...

)]
︸ ︷︷ ︸

C1

θ1

+
[
θ12

(L−1)
Ā
(
...θ12

(3)
(
θ12

(2)
Ā(θ12

(1)
Ā+ θ22

(1)
Ī)Ãk+mX1 + θ22

(2)
(θ12

(1)
Ā+ θ22

(1)
Ī)Ãk+mX1

)
+ ...

)]
︸ ︷︷ ︸

C2

θ2

+
[
θ12

(L−1)
Ā
(
...θ12

(3)
(
θ12

(2)
Ā(θ12

(1)
Ā+ θ22

(1)
Ī)η + θ22

(2)
(θ12

(1)
Ā+ θ22

(1)
Ī)η
)
+ ...

)]
︸ ︷︷ ︸

Z

θ2

= C1θ1 + (C2 + Z)θ2.
(38)

C1, C2, Z ∈ RN×1. We use Ce1 , Ce2 , and Ze to denote the variables from the corresponding
environment e. We further denote Ce2 = Ce2

′Ãe
s
X1, Ze = Ce2

′η.

Using these notations, the loss of environment e is

R(e) = En1,n2

[
∥fΘ(Ae, Xe)− Y e∥22

]
= En1,n2

[∥∥∥Ce1θ1 + (Ce2 + Ze)θ2 − Ãe
k
X1 − n1

∥∥∥2
2

]
.

(39)

Denote the inner term Ce1θ1 + (Ce2 + Ze)θ2 − Ãe
k
X1 − n1 as le.

The variance of loss across environments is:
Ve[R(e)] = Ee[R2(e)]− E2

e[R(e)]

= Ee

[(
En1,n2

∥∥∥Ce1θ1 + (Ce2 + Ze)θ2 − Ãe
k
X1 − n1

∥∥∥2
2

)2
]

− E2
e

[
En1,n2

∥∥∥Ce1θ1 + (Ce2 + Ze)θ2 − Ãe
k
X1 − n1

∥∥∥2
2

]
.

= Ee
[
En1,n2

[
(l⊤e le)

2
]]
− E2

e

[
En1,n2

[
l⊤e le

]]
.

(40)
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Take the derivative of Ve[R(e)] with respect to θ1:

∂Ve[R(e)]
∂θ1

= Ee
[
2En1,n2

[
l⊤e le

]
En1,n2

[
2l⊤e C

e
1

]]
− 2Ee

[
En1,n2

[
l⊤e le

]]
Ee
[
En1,n2

[
2l⊤e C

e
1

]] (41)

Calculate the derivative by terms:

En1,n2
[l⊤e le] = En1,n2

[Ce1
⊤Ce1(θ1)

2 + Ce1
⊤Ce2θ1θ2 + Ce1

⊤Zeθ1θ2 − Ce1
⊤(Ãe)kX1θ1 − Ce1

⊤n1θ1

+ Ce2
⊤Ce1θ1θ2 + Ce2

⊤Ce2(θ2)
2 + Ce2

⊤Zeθ1θ2 − Ce2
⊤(Ãe)kX1θ2 − Ce2

⊤n1θ2

+ Ze⊤Ce1θ1θ2 + Ze⊤Ce2(θ2)
2 + Ze⊤Ze(θ2)

2 − Ze⊤(Ãe)kX1θ2 − Ze⊤n1θ2
− ((Ãe)kX1)

⊤(Ce1θ1 + Ce2θ2)− ((Ãe)kX1)
⊤Zeθ2 + ((Ãe)kX1)

⊤(Ãe)kX1

+ ((Ãe)kX1)
⊤n1 − n⊤1 (Ce1θ1 + Ce2θ2)− n⊤1 Zeθ2 + n⊤1 (Ã

e)kX1 + n⊤1 n1]
(42)

Since n1 and n2 are independent standard Gaussian noise, we have En1,n2 [n1] = En1,n2 [n2] = 0,
En1,n2 [n

⊤
1 n2] = En1,n2 [n

⊤
2 n1] = 0 and En1,n2 [n

⊤
1 n1] = En1,n2 [n

⊤
2 n2] = Ne if it is the noise from

e. Also, since ϵe and n1, n2 are independent, we have En1,n2 [n
⊤
1 ϵ

e] = En1,n2 [n
⊤
2 ϵ

e] = 0.

When 
θ11

(l)
= 1, θ21

(l)
= 1, l = L− 1, ..., L− s+ 1

θ11
(l)

= 0, θ21
(l)

= 1, l = L− s, L− s− 1, ..., 1

θ12
(l)

= 0, θ22
(l)

= 1, l = L− 1, ..., 1

, (43)

we have Ce2
′ = INe ∈ RNe×Ne

and Ce1 = Ãe
s
X1. Consequently, we get En1,n2

[Ze⊤n1] =

tr(Ce2
′Ãe

k
) = tr(Ãe

k
), En1,n2

[Ze⊤Ze] = tr
(
(Ãe

k
)⊤(Ãe

k
)
)
+Ne + ϵe⊤ϵe.

Use the above conclusions and rewrite Equation (42) as (here we only plug in the value of Ce2
′):

En1,n2
[l⊤e le] =

Ce1
⊤Ce1(θ1)

2 + Ce1
⊤Ce2θ1θ2 − Ce1

⊤(Ãe)kX1θ1 + Ce2
⊤Ce1θ1θ2 + Ce2

⊤Ce2(θ2)
2 − Ce2

⊤(Ãe)kX1θ2

+tr
(
(Ãe

k
)⊤(Ãe

k
)
)
(θ2)

2 − ((Ãe)kX1)
⊤(Ce1θ1 + Ce2θ2) + ((Ãe)kX1)

⊤(Ãe)kX1 +Ne
(
1 + (θ2)

2
)

−2tr(Ãe
k
)

 (∗)

+[Ce1
⊤ϵe + Ce2

⊤ϵe + ϵe⊤Ce1 ]θ1θ2 + ϵe⊤ϵe(θ2)
2 − 2((Ãe)kX1)

⊤ϵeθ2
}

(∗∗),
(44)

(∗) and (∗∗) represent terms that are independent and associated with ϵe, respectively. Additionally,

En1,n2
[2l⊤e C

e
1 ] = 2

[
Ce1

⊤Ce1θ1 + Ce2
⊤Ce1θ2 + (Ce2

′ϵe)⊤Ce1θ2 − ((Ãe)kX1)
⊤Ce1

]
= 2

[
Ce1

⊤Ce1θ1 + Ce2
⊤Ce1θ2 + ϵe⊤Ce1θ2 − ((Ãe)kX1)

⊤Ce1

]
.

(45)

Multiplying Equation (44) and (45) and take the expectation on e, using the assumption that
Ee[(ϵei)2] = σ2 (ϵei is the i-th element of ϵe):

Ee
[
2En1,n2 [l

⊤
e le]En1,n2

[
2l⊤e C1

]]
= 4Ee

[
(∗)
(
Ce1

⊤Ce1θ1 + Ce2
⊤Ce2

′θ2 − ((Ãe)kX1)
⊤Ce1

)]
+ 4Ee

[
(Ãe

s
X1)

⊤Ãe
s
X1(3θ1θ2 + (θ2)

2)− 2(Ãe
s
X1)

⊤((Ãe)kX1)θ2

]
θ2σ

2

+ 4Ee[Neϵe⊤ϵeϵe⊤(Ãe
s
X1)]θ2.

(46)

Next target is to compute 2Ee[En1,n2
[l⊤e le]] and Ee[En1,n2

[2l⊤e C1]]. Since ϵe has zero mean, we
have:

2Ee[En1,n2
[l⊤e le]] = 2Ee[(∗)] + 2Ee[Ne](θ2)

2σ2 (47)
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and

Ee[En1,n2
[2l⊤e C

e
1 ]] = 2Ee

[
Ce1

⊤Ce1θ1 + Ce2
⊤Ce1θ2 − ((Ãe)kX1)

⊤Ce1

]
. (48)

Use Equation (46) (47) and (48) and let ∂Ve[R(e)]
∂θ1

= 0, we have:

Ee
[
3(Ãe

s
X1)

⊤(Ãe
s
X1)(θ1θ2 +

1

3
(θ2)

2)− 2(Ãe
s
X1)

⊤((Ãe)kX1)θ2

]
σ2 + Ee[ϵe⊤ϵeϵe⊤(Ãe

s
X1)]θ2

−Ee[Ne]Ee
[
2(Ãe

s
X1)

⊤(Ãe
s
X1)(θ1 + θ2)− ((Ãe)kX1)

⊤Ce1

]
θ2σ

2 = 0.

(49)

Now we start calculating the expression of ∂Ve[R(e)]
∂θ2

:

∂Ve[R(e)]
∂θ2

= Ee
[
2En1,n2

[
l⊤e le

]
En1,n2

[
2l⊤e (C2 + Ze)

]]
− 2Ee

[
En1,n2

[
l⊤e le

]]
Ee
[
En1,n2

[
2l⊤e (C

e
2 + Ze)

]]
.

(50)

Let ∂Ve[R(e)]
∂θ2

= 0:

Ee
[
(Ce1

⊤Ce2
′ + Ce2

⊤Ce2
′ + Ce2

′⊤Ce1
⊤)θ1θ2 + (Ce2

′)⊤Ce2
′(θ2)

2 − 2((Ãe)kX1)
⊤Ce2

′θ2

]
Ee
[
(Ce2

′⊤Ce2θ2 − ((Ãe)kX1)
⊤Ce2

′)
]
σ2

− Ee
[
Neσ2

(
Ce1

⊤Ce2θ1 + Ce2
⊤Ce2θ2 − ((Ãe)kX1)

⊤Ce2 + tr((Ãe
k
)⊤Ãe

k
) +Ne + Ce2

′⊤Ce2
′σ2
)
(θ2)

2
]

= 0.
(51)

Plug Equation (49) in (51), we reach:[
Ee
[
Ne(Ãe

s
X1)

⊤(Ãe
s
X1)(θ1 + θ2)− ((Ãe)kX1)

⊤Ce1

]
σ2 − Ee[ϵe⊤ϵeϵe⊤(Ãe

s
X1)]

]
θ2

Ee
(
(Ãe

s
X1)

⊤1Neθ2 − (Ãe
k
X1)

⊤1Ne

)
− Ee

[
Ne
(
(Ãe

s
X1)

⊤Ãe
s
X1(θ1 + θ2)− (Ãe

k
X1)

⊤Ãe
s
X1 + tr((Ãe

k
)⊤Ãe

k
) +Ne(1 + σ2)

)]
(θ2)

2

= 0.
(52)

Let c1 = Ee[(Ãe
s
X1)

⊤(Ãe
s
X1)], c2 = Ee[Ne(Ãe

s
X1)

⊤Ãe
s
X1], c3 = Ee[(Ãe

s
X1)

⊤1],

c4 = Ee[((Ãe
k
X1)

⊤1], c5 = Ee[Ne((Ãe
k
X1)

⊤Ãe
s
X1 + tr((Ãe

k
)⊤Ãe

k
) + Ne(1 + σ2))],

c6 = Ee[(Ãe
s
X1)

⊤(Ãe
k
X1)], c7 = Ee[ϵe⊤ϵeϵe⊤(Ãe

s
X1)],

we conclude that

{
(3c1θ1θ2 + c1(θ2)

2 − 2c6θ2)σ
2 − Ee[Ne(2c1(θ1 + θ2)− c6)]σ2θ2 + c7θ2 = 0

(Ee[Ne(2c1(θ1 + θ2)− c6)]σ2θ2 − c7)(c3 − c4)θ2 − [c2(θ1 + θ2)− c5](θ2)2 = 0
. (53)

As for the derivative respect to θ11
(l), θ21

(l), θ12
(l),θ22

(l), when they take the special value in Equation
(43), we have ∂Ve[R(e)]

∂θ1
= 0 ⇒ ∂Ve[R(e)]

∂θ11
(l) = ∂Ve[R(e)]

∂θ21
(l) = 0 and ∂Ve[R(e)]

∂θ2
= 0 ⇒ ∂Ve[R(e)]

∂θ12
(l) =

∂Ve[R(e)]

∂θ22
(l) = 0, l = 1, ..., L. So we conclude the solution induced by Equation (53) is the solution of

the objective, and θ2 = 0 is not a valid solution.
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G.1.3 Proof of the Failure Case on Graphs of IRMv1 under Concept Shift

We present the formal version of the IRM part in Theorem 2.3 as Theorem G.3 below.
Theorem G.3. (IRMv1 will use spurious features on graphs under concept shift, formal) Under the
SCM of Equation (2), there exists s ∈ N+ that satisfies 0 < s < L and s ̸= k such that optimizing
the IRMv1 objective minΘ Ee[∥∇w|w=1.0R(e)∥2] will not lead to the invariant solution θ2 = 0 for

parameters of the GNN (3) when {θ11
(l)
, θ21

(l)
, θ12

(l)
, θ22

(l)} take the special solution:

Θ0 =


θ11

(l)
= 1, θ21

(l)
= 1, l = L− 1, ..., L− s+ 1

θ11
(l)

= 0, θ21
(l)

= 1, l = L− s, L− s− 1, ..., 1

θ12
(l)

= 0, θ22
(l)

= 1, l = L− 1, ..., 1

. (54)

Proof. From the proof of non-graph IRMv1 case Appendix G.1.1 we know that when IRMv1
objective is optimized, we have ∇wR(e) = 0 for all e. For the graph case, the expected risk of
environment e is

R(e) = En1,n2 [∥θ1Ce1 + θ2(C
e
2 + Ze)− (Ãe)kX1 − n1∥22], (55)

where the definition of Ce1 , Ce2 and Ze follows Equation (38). Now let’s check if the invariant
solution θ2 = 0 is a valid solution. If θ2 = 0 holds, then the following equation must hold for every
environment e:

∇wR(e) = En1,n2
[(θ1C

e
1 + θ2(C

e
2 + Ze)− (Ãe)kX1 − n1)⊤(θ1Ce1 + θ2(C

e
2 + Ze))]

= En1,n2
[(θ1)

2Ce1
⊤Ce1 + (θ2)

2(Ce2 + Ze)⊤(Ce2 + Ze) + 2θ1θ2C
e
1
⊤(Ce2 + Ze)

− θ1Ce1
⊤((Ãe)kX1 + n1)− θ2(Ce2 + Ze)((Ãe)kX1 + n1)]

= (θ1)
2((Ãe)sX1)

⊤((Ãe)sX1)− θ1((Ãe)kX1)
⊤((Ãe)sX1)

(56)

When s ̸= k, we have θ1 = ((Ãe)kX1)
⊤((Ãe)sX1)

((Ãe)sX1)⊤((Ãe)sX1)
. The value of this solution of θ1 varies with

environment e, and thus is not a valid solution.

However, now we will show that optimizing IRMv1 does not necessarily lead to lower-layer parame-
ters such that s = k. To reveal this, by taking the derivative of LIRMv1 w.r.t. θ1 and θ2 and let them
= 0, we can get two cubic equations:

∂LIRMv1

∂θ1
=Ee[(Ce1

⊤Ce1(θ1)
2 + (Ce2

⊤Ce2 + 2Ce2
⊤ϵe + 2Ne + ϵ⊤ϵ)(θ2)

2

+(Ce1
⊤Ce2 + Ce1

⊤ϵe)θ1θ2 − (Ãe
k
X1)

⊤Ce1θ1 − [(Ãe
k
X1)

⊤ +Ne + n⊤1 ϵ
e]θ2)

(2Ce1
⊤Ce1

⊤θ1 + (Ce1
⊤Ce2 + Ce1

⊤ϵ)θ2 − (Ãe
k
X1)

⊤Ce1)] = 0

(57)

and
∂LIRMv1

∂θ2
=Ee[(Ce1

⊤Ce1(θ1)
2 + (Ce2

⊤Ce2 + 2Ce2
⊤ϵe + 2Ne + ϵ⊤ϵ)(θ2)

2

+(Ce1
⊤Ce2 + Ce1

⊤ϵe)θ1θ2 − (Ãe
k
X1)

⊤Ce1θ1 − [(Ãe
k
X1)

⊤ +Ne + n⊤1 ϵ
e]θ2)

(2(Ce2
⊤Ce2 + 2Ce2

⊤ϵe + 2Ne + ϵe⊤ϵe)θ2 + (Ce1
⊤Ce2 + Ce1

⊤ϵ)θ1

−(ÃekX1)
⊤(Ce2 + ϵe) +Ne + n⊤1 ϵ

e)] = 0

(58)

From the analysis in Appendix F.3, we know that as long as the lower-layer parameters take any
value that satisfies the form in Equation (27), even if s ̸= k, we can get ∂LIRMv1

∂θ1
= ∂LIRMv1

∂θ11
= ∂LIRMv1

∂θ21

and ∂LIRMv1
∂θ2

= ∂LIRMv1
∂θ12

= ∂LIRMv1
∂θ22

. Thus, IRM cannot necessarily learn a s = k. At this time (when
∂LIRMv1
∂θ1

= ∂LIRMv1
∂θ11

= ∂LIRMv1
∂θ21

= 0 and ∂LIRMv1
∂θ2

= ∂LIRMv1
∂θ12

= ∂LIRMv1
∂θ22

= 0 but s ̸= k), from the form of
Equations (57) and (58) we know that there exist solutions that θ2 ̸= 0, and the solution of θ1 and θ2
both depend on Ee(F (e)), where F (e) is some random variable associated with e.
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G.1.4 Proof of the Successful on Graphs Case of CIA under Concept Shift

Theorem G.4. Optimizing the CIA objective will lead to the optimal solution Θ∗:
θ1 = 1

θ2 = 0 and ∃l ∈ {1, ..., L− 1} s.t. θ12
(l)

= θ22
(l)

= 0

θ11
(l)

= 1, θ21
(l)

= 1, l = L− 1, ..., L− k + 1

θ11
(l)

= 0, θ21
(l)

= 1, l = L− k, L− k − 1, ..., 1

. (59)

Proof. For brevity, denote a node representation of Ce1c as Ci1 and the one of Ce
′

1 c as Cj1 . The same
is true for Ci2 and Cj2 . In this toy model, we need to consider the expectation of the noise, while
in real cases such noise is included in the node features so taking expectation on e will handle this.
Therefore, we add En1,n2

in this proof, and this expectation is excluded in the formal description of
the objective in the main paper.

LCIA = E e,e′

e ̸=e′
En1,n2

EcE i,j

(i,j)∈Ωe,e′

[
D(ϕΘ(Ae, Xe)[c][vi], ϕΘ(A

e, Xe′)[c][vj ])
]

= E e,e′

e ̸=e′
En1,n2EcE i,j

(i,j)∈Ωe,e′
∥Ci1θ1 + (Ci2 + Ze)θ2 − Cj1θ1 − (Cj2 + Ze

′
)θ2∥22

(60)

∂LCIA

∂θ1
= E e,e′

e ̸=e′
En1,n2EcE i,j

(i,j)∈Ωe,e′

[
Ci1θ1 + (Ci2 + Ze)θ2 − Cj1θ1 − (Cj2 + Ze

′
)θ2

]⊤
(Ci1−C

j
1)

(61)
Let ∂LCIA

∂θ1
= 0, we have:

E e,e′

e ̸=e′
EcE i,j

(i,j)∈Ωe,e′

[
(Ci1 − C

j
1)

⊤(Ci1 − C
j
1)θ1 + (Ci2 − Ck2 )⊤(Ci1 − C

j
1)θ2

]
= 0 (62)

Also, we have:
∂LCIA

∂θ2
= E e,e′

e ̸=e′
EcE i,j

(i,j)∈Ωe,e′

[
(Ci1 − C

j
1)

⊤(Ci2 − C
j
2)θ1 +

[
(Ci2 − Ck2 )⊤(Ci2 − C

j
2) + (Ze − Ze

′
)⊤(Ze − Ze

′
)
]
θ2

]
(63)

Further let ∂LCIA
∂θ2

= 0, combining Equation (62) and using Assumption 2.1 we get{
θ1 = 0 or ∃l ∈ {1, ..., L− 1} s.t. θ11

(l)
= θ21

(l)
= 0

θ2 = 0
. (64)

or, if θ1 ̸= 0 and ∀l ∈ {1, ..., L − 1}, the parameters of that layer l of the invariant branch of the
GNN are not all zero: θ11

(l) ̸= 0 or θ21
(l) ̸= 0 , then we get

θ2 E e,e′

e ̸=e′
EcE i,j

(i,j)∈Ωe,e′

[
− [(Ci1 − C

j
1)

⊤(Ci2 − C
j
2)]

2

(Ci1 − C
j
1)

⊤(Ci1 − C
j
1)

+ (Ci2 − C
j
2)

⊤(Ci2 − C
j
2) + (Ze − Ze

′
)⊤(Ze − Ze

′
)

]
︸ ︷︷ ︸

F

= 0

(65)
According to Cauchy–Schwarz inequality, F > 0 unless ∃l ∈ {1, ..., L− 1} s.t. θ12

(l)
= θ22

(l)
= 0.

To ensure ∂LCIA
∂θ2

, we conclude that θ2 = 0 or ∃l ∈ {1, ..., L− 1} s.t. θ12
(l)

= θ22
(l)

= 0.

In conclusion, to satisfy the constraint of CIA, no matter whether the invariant branch has zero output,
the spurious branch must have zero parameters, i.e.,

θ2 = 0 or ∃l ∈ {1, ..., L− 1} s.t. θ12
(l)

= θ22
(l)

= 0 (66)

Thus, CIA will remove spurious features.

Now we show that when CIA objective has been reached (the spurious branch has zero outputs), the
objective of minΘ Ee[L(fΘ(Ae, Xe), Y e)] will help to learn predictive paramters of the invariant
branch θ1, θ11

(
l) and θ21

(
l). When Equation (66) holds,
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∂Ee[L(fΘ(Ae, Xe), Y e)]

∂θ1
= 2EeEn1,n2

[(
Ce1θ1 − (Ãe)kX1 − n1

)⊤
Ce1

]
= 2Ee

[(
Ce1θ1 − (Ãe)kX1

)⊤
Ce1

] (67)

Let ∂Ee[L(fΘ(Ae,Xe),Y e)]
∂θ1

= 0, we get the predictive parameters
θ1 = 1

θ11
(l)

= 1, θ21
(l)

= 1, l = L− 1, ..., L− k + 1

θ11
(l)

= 0, θ21
(l)

= 1, l = L− k, L− k − 1, ..., 1

. (68)

Plug the final solution back in ∂LCIA

∂θ11
(l) , ∂LCIA

∂θ21
(l) , ∂LCIA

∂θ12
(l) , ∂LCIA

∂θ22
(l) , ∂Ee[L(fΘ(Ae,Xe),Y e)]

∂θ11
(l) ,

∂Ee[L(fΘ(Ae,Xe),Y e)]

∂θ21
(l) , ∂Ee[L(fΘ(Ae,Xe),Y e)]

∂θ12
(l) , ∂Ee[L(fΘ(Ae,Xe),Y e)]

∂θ22
(l) , we can verify that these

terms are all when further letting ∃l ∈ {1, ..., L− 1} s.t. θ12
(l)

= θ22
(l)

= 0.

G.2 Proof of the Covariate Shift Case

G.2.1 Proof of the non-Graph Success Case of VREx and IRMv1 under Covariate Shift

We restate Proposition B.1 as Proposition G.5 below.
Proposition G.5. (VREx and IRMv1 learn invariant features for non-graph tasks under covariate
shift, proof is in ) For the non-graph version of the SCM in Equation (19),

Y e = X1 + n1, X
e
2 = n2 + ϵe, (69)

Optimizing VREx minΘ LVREx = Ve[R(e)] and IRMv1 minΘ LIRMv1 = Ee[∥∇w|w=1.0R(e)∥2] will
learn invariant features when using a 1-layer linear network: f(X) = θ1X1 + θ2X2.

Proof. VREx. For covariate shift, denote X1θ1 + Xe
2θ2 − X1 − n1 as le, the expected risk in

environment e is R(e) = En1,n2
∥θ1X1 + θ2(n2 + ϵe) − (X1 + n1)∥22. Take the derivative of the

VREx objective Ve[R(e)] with respect to θ1:

∂Ve[R(e)]
∂θ1

= Ee
[
2En1,n2

[
l⊤e le

]
En1,n2

[
2l⊤e X1

]]
− 2Ee

[
En1,n2

[
l⊤e le

]]
Ee
[
En1,n2

[
2l⊤e X1

]] (70)

Calculate these terms:

Ee[En1,n2
[l⊤e le]En1,n2

[l⊤e X1]]

=(θ1)
3(X⊤

1 X1)
2 + θ1(θ2)

2(3X⊤
1 X1σ

2 +X⊤
1 X1Ee[Ne]) + (θ2)

3Ee[(ϵe)⊤ϵ(ϵe)⊤]X1

+(θ1)
2(X⊤

1 X1 − 2(X⊤
1 X1)

2)− (θ2)
2(X⊤

1 X1)
2(3σ2 + Ee[Ne])

+θ1(X
⊤
1 X1)

2(3(X⊤
1 X1)

2 + Ee[Ne])− (X⊤
1 X1)

2((X⊤
1 X1)

2 + Ee[Ne])

Ee[En1,n2
[l⊤e le]]Ee[En1,n2

[l⊤e X1]]

=(θ1)
3(X⊤

1 X1)
2 + θ1(θ2)

2(X⊤
1 X1σ

2 +X⊤
1 X1Ee[Ne])

+(θ1)
2(X⊤

1 X1 − 2(X⊤
1 X1)

2)− (θ2)
2(X⊤

1 X1)
2(σ2 + Ee[Ne])

+θ1(X
⊤
1 X1)

2(3(X⊤
1 X1)

2 + Ee[Ne])− (X⊤
1 X1)

2((X⊤
1 X1)

2 + Ee[Ne])

(71)

Hence,
∂Ve[R(e)]

∂θ1
= θ1(θ2)

2(2X⊤
1 X1σ

2) + (θ2)
3X1 − 2(θ2)

2X1σ
2 (72)

Let ∂Ve[R(e)]
∂θ1

= 0, we have θ2 = 0.

When θ2 = 0 and when θ1 = 1, we get

En1,n2
[l⊤e (n2 + ϵe)] = θ1X

⊤
1 ϵ−X⊤

1 ϵ
e = 0. (73)
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As a result,
∂Ve[R(e)]

∂θ2
= Ee

[
2En1,n2

[
l⊤e le

]
En1,n2

[
2l⊤e (n2 + ϵe)

]]
− 2Ee

[
En1,n2

[
l⊤e le

]]
Ee
[
En1,n2

[
2l⊤e (n2 + ϵe)

]]
= 0− 0

= 0

(74)

In conclusion, θ1 = 1 and θ2 = 0 is the solution of the VREx objective in this non-graph covariate
shift task.

IRMv1. The objective of IRMv1 is Ee∥∇wR(e)∥22. When IRMv1 loss is optimized to zero, we have
∇wR(e) = 0 for all environments e.

∇wR(e) = En1,n2
[2(θ1X1 + θ2X2 − (X1 + n1))(θ1X1 + θ2X2)]

= 2((θ1)
2X⊤

1 X1 + (θ2)
2((ϵe)⊤ϵe +Ne) + 2θ1θ2X

⊤
1 ϵ

e

− θ1X⊤
1 X1 − θ2X⊤

1 ϵ
e)

(75)

To realize ∇wR(e) = 0 for all e, we must let θ2 = 0 (and consequently θ1 = 1), otherwise the
solution of θ2 will include terms related to ϵe and Ne that vary with environments, and a single value
θ2 cannot fit all these values. Thus we finish the proof for IRMv1.

G.2.2 Proof of the Failure Case on Graphs of VREx under Covariate Shift

We restate Theorem B.2 as Theorem G.6 below:

Theorem G.6. (VREx will use spurious features on graphs under covariate shift) Under the SCM
of Equation (19), the objective minΘ Ve[R(e)] has non-unique solutions for parameters of the GNN
(3) when part of the model parameters {θ11

(l)
, θ21

(l)
, θ12

(l)
, θ22

(l)} take the values

Θ0 =


θ11

(l)
= 1, θ21

(l)
= 1, l = L− 1, ..., L− s+ 1

θ11
(l)

= 0, θ21
(l)

= 1, l = L− s, L− s− 1, ..., 1

θ12
(l)

= 0, θ22
(l)

= 1, l = L− 1, ..., 1

, (76)

0 < s < L is some positive integer, θ1 and θ2 have four sets of solutions of the quadratic equation,
some of which are spurious solutions that θ2 ̸= 0 (although θ2 = 0 is indeed one of the solutions,
VREx is not guaranteed to reach this solution):{

c1σ
2(2θ1θ2 + (θ2)

2 − 2c2σ
2θ2) + c3θ2 − Ee[Ne]c1σ

2θ1θ2 + Ee[Ne]c2σ
2θ2 = 0[

c3θ2 − Ee[Ne]c1σ
2θ1θ2 + Ee[Ne]c2σ

2θ2
]
c4 − c5(θ2)2 = 0

. (77)

where c1 = E[(Ãe
s
X1)

⊤(Ãe
s
X1)], c2 = E[(Ãe

s
X1)

⊤(Ãe
k
X1)], c3 = Ee[ϵe⊤ϵeϵe⊤(Ãe

s
X1)]σ

2,

c4 = Ee
[
((Ãe)kX1)

⊤1Ne

]
σ2, c5 = Ee

[
Ne
(

tr((Ãe
k
)⊤Ãe

k
) +Ne(1 + σ2)

)]
.

Proof. We will use some symbols to simplify the expression of the toy GNN. Denote n2 + ϵe as η.
Use the following notations to represent the components of the L-layer GNN model:

fΘ(A,X) = H
(L)
1 θ1 +H

(L)
2 θ2

=
[
θ11

(L−1)
Ā
(
...θ11

(3)
(
θ11

(2)
Ā(θ11

(1)
Ā+ θ21

(1)
Ī)X1 + θ21

(2)
(θ11

(1)
Ā+ θ21

(1)
Ī)X1

)
+ ...

)]
︸ ︷︷ ︸

C1

θ1

+
[
θ12

(L−1)
Ā
(
...θ12

(3)
(
θ12

(2)
Ā(θ12

(1)
Ā+ θ22

(1)
Ī)η + θ22

(2)
(θ12

(1)
Ā+ θ22

(1)
Ī)η
)
+ ...

)]
︸ ︷︷ ︸

Z

θ2

= C1θ1 + Zθ2.
(78)

C1, Z ∈ RN×1. We use Ce1 and Ze to denote the variables from the corresponding environment e.
We further denote Ze = Ce2

′η.
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Using these notations, the loss of environment e is

R(e) = En1,n2

[
∥fΘ(Ae, Xe)− Y e∥22

]
= En1,n2

[∥∥∥Ce1θ1 + Zeθ2 − Ãe
k
X1 − n1

∥∥∥2
2

]
.

(79)

Denote the inner term Ce1θ1 + Zeθ2 − Ãe
k
X1 − n1 as le. The variance of loss across environments

is:
Ve[R(e)] = Ee[R2(e)]− E2

e[R(e)]

= Ee

[(
En1,n2

∥∥∥Ce1θ1 + Zeθ2 − Ãe
k
X1 − n1

∥∥∥2
2

)2
]

− E2
e

[
En1,n2

∥∥∥Ce1θ1 + Zeθ2 − Ãe
k
X1 − n1

∥∥∥2
2

]
.

= Ee
[
En1,n2

[
(l⊤e le)

2
]]
− E2

e

[
En1,n2

[
l⊤e le

]]
.

(80)

Take the derivative of Ve[R(e)] with respect to θ1:

∂Ve[R(e)]
∂θ1

= Ee
[
2En1,n2

[
l⊤e le

]
En1,n2

[
2l⊤e C

e
1

]]
− 2Ee

[
En1,n2

[
l⊤e le

]]
Ee
[
En1,n2

[
2l⊤e C

e
1

]] (81)

Calculate the derivative by terms:

En1,n2 [l
⊤
e le] = En1,n2 [C

e
1
⊤Ce1(θ1)

2 + Ce1
⊤Zeθ1θ2 − Ce1

⊤(Ãe)kX1θ1 − Ce1
⊤n1θ1

+ Ze⊤Ce1θ1θ2 + Ze⊤Ze(θ2)
2 − Ze⊤(Ãe)kX1θ2 − Ze⊤n1θ2

− ((Ãe)kX1)
⊤Ce1θ1 − ((Ãe)kX1)

⊤Zeθ2 + ((Ãe)kX1)
⊤(Ãe)kX1

+ ((Ãe)kX1)
⊤n1 − n⊤1 Ce1θ1 − n⊤1 Zeθ2 + n⊤1 (Ã

e)kX1 + n⊤1 n1]

(82)

Since n1 and n2 are independent standard Gaussian noise, we have En1,n2
[n1] = En1,n2

[n2] = 0,
En1,n2

[n⊤1 n2] = En1,n2
[n⊤2 n1] = 0 and En1,n2

[n⊤1 n1] = En1,n2
[n⊤2 n2] = Ne if it is the noise from

e. Also, since ϵe and n1, n2 are independent, we have En1,n2
[n⊤1 ϵ

e] = En1,n2
[n⊤2 ϵ

e] = 0.

When 
θ11

(l)
= 1, θ21

(l)
= 1, l = L− 1, ..., L− s+ 1

θ11
(l)

= 0, θ21
(l)

= 1, l = L− s, L− s− 1, ..., 1

θ12
(l)

= 0, θ22
(l)

= 1, l = L− 1, ..., 1

, (83)

we have Ce2
′ = INe ∈ RNe×Ne

and Ce1 = Ãe
s
X1. Consequently, we get En1,n2

[Ze⊤n1] = 0,
En1,n2 [Z

e⊤Ze] = Ne + ϵe⊤ϵe.

Use the above conclusions and rewrite Equation (82) as (here we only plug in the value of Ce2
′):

En1,n2 [l
⊤
e le] =

Ce1
⊤Ce1(θ1)

2 − Ce1
⊤(Ãe)kX1θ1

−((Ãe)kX1)
⊤Ce1θ1 + ((Ãe)kX1)

⊤(Ãe)kX1 +Ne
(
1 + (θ2)

2
)} (∗)

+[Ce1
⊤ϵe + ϵe⊤Ce1 ]θ1θ2 + ϵe⊤ϵe(θ2)

2 − 2((Ãe)kX1)
⊤ϵeθ2

}
(∗∗),

(84)

(∗) and (∗∗) represent terms that are independent and associated with ϵe, respectively.

Additionally,

En1,n2
[2l⊤e C

e
1 ] = 2

[
Ce1

⊤Ce1θ1 + ϵe⊤Ce1θ2 − ((Ãe)kX1)
⊤Ce1

]
.

(85)
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Multiplying Equation (84) and (85) and take the expectation on e, using the assumption that
Ee[(ϵei)2] = σ2 (ϵei is the i-th element of ϵe):

Ee
[
2En1,n2

[l⊤e le]En1,n2

[
2l⊤e C1

]]
= 4Ee

[
(∗)
(
Ce1

⊤Ce1θ1 − ((Ãe)kX1)
⊤Ce1

)]
+ 4Ee

[
(Ãe

s
X1)

⊤Ãe
s
X1(2θ1θ2 + (θ2)

2)− 2(Ãe
s
X1)

⊤((Ãe)kX1)θ2

]
θ2σ

2

+ 4Ee[Neϵe⊤ϵeϵe⊤(Ãe
s
X1)]θ2.

(86)

Next target is to compute 2Ee[En1,n2
[l⊤e le]] and Ee[En1,n2

[2l⊤e C1]] Since ϵe has zero mean, we have:

2Ee[En1,n2 [l
⊤
e le]] = E[(∗)] + E[2Ne]σ2(θ2)

2 (87)
and

Ee[En1,n2
[2l⊤e C

e
1 ]] = 2Ee

[
Ce1

⊤Ce1θ1 − ((Ãe)kX1)
⊤Ce1

]
. (88)

Use Equation (86) (87) and (88) and let ∂Ve[R(e)]
∂θ1

= 0, we have:

Ee
[
2(Ãe

s
X1)

⊤(Ãe
s
X1)(θ1θ2 +

1

2
(θ2)

2)− 2(Ãe
s
X1)

⊤((Ãe)kX1)θ2

]
σ2 + Ee[ϵe⊤ϵeϵe⊤(Ãe

s
X1)]θ2

−Ee[Ne]Ee
[
(Ãe

s
X1)

⊤(Ãe
s
X1)θ1 − ((Ãe)kX1)

⊤Ce1

]
θ2σ

2 = 0.

(89)

Now we start calculating the expression of ∂Ve[R(e)]
∂θ2

:

∂Ve[R(e)]
∂θ2

= Ee
[
2En1,n2

[
l⊤e le

]
En1,n2

[
2l⊤e Z

e
]]

− 2Ee
[
En1,n2

[
l⊤e le

]]
Ee
[
En1,n2

[
2l⊤e Z

e
]]
.

(90)

Let ∂Ve[R(e)]
∂θ2

= 0:

Ee
[
(Ce1

⊤Ce2
′ + Ce2

′⊤Ce1
⊤)θ1θ2 + (Ce2

′)⊤Ce2
′(θ2)

2 − 2((Ãe)kX1)
⊤Ce2

′θ2

]
Ee
[
(−((Ãe)kX1)

⊤Ce2
′)
]
σ2

− Ee
[
Neσ2

(
tr((Ãe

k
)⊤Ãe

k
) +Ne + Ce2

′⊤Ce2
′σ2
)
(θ2)

2
]

= 0.
(91)

Plug Equation (89) in (91), we reach:[
Ee
[
Ne(Ãe

s
X1)

⊤(Ãe
s
X1)θ1 −Ne((Ãe)kX1)

⊤Ce1

]
θ2σ

2 − Ee[ϵe⊤ϵeϵe⊤(Ãe
s
X1)]θ2

]
Ee
(
−(ÃekX1)

⊤1Ne

)
− Ee

[
Ne
(

tr((Ãe
k
)⊤Ãe

k
) +Ne(1 + σ2)

)]
(θ2)

2

= 0.
(92)

Let c1 = E[(Ãe
s
X1)

⊤(Ãe
s
X1)], c2 = E[(Ãe

s
X1)

⊤(Ãe
k
X1)], c3 = Ee[ϵe⊤ϵeϵe⊤(Ãe

s
X1)]σ

2,

c4 = Ee
[
((Ãe)kX1)

⊤1Ne

]
σ2, c5 = Ee

[
Ne
(

tr((Ãe
k
)⊤Ãe

k
) +Ne(1 + σ2)

)]
,

we conclude that{
c1σ

2(2θ1θ2 + (θ2)
2 − 2c2σ

2θ2) + c3 − Ee[Ne]c1σ
2θ1θ2 + Ee[Ne]c2σ

2θ2 = 0[
c3θ2 − Ee[Ne]c1σ

2θ1θ2 + Ee[Ne]c2σ
2θ2
]
c4 − c5(θ2)2 = 0

. (93)

As for the derivative respect to θ11
(l), θ21

(l), θ12
(l),θ22

(l), when they take the special value in Equation
(83), we have ∂Ve[R(e)]

∂θ1
= 0 ⇒ ∂Ve[R(e)]

∂θ11
(l) = ∂Ve[R(e)]

∂θ21
(l) = 0 and ∂Ve[R(e)]

∂θ2
= 0 ⇒ ∂Ve[R(e)]

∂θ12
(l) =

∂Ve[R(e)]

∂θ22
(l) = 0, l = 1, ..., L. So we conclude the solution induced by Equation (93) is the solution of

the objective, and θ2 = 0 is not a valid solution.
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G.2.3 Proof of the Failure Case on Graphs of IRMv1 under Covariate Shift

We restate Theorem B.3 as Theorem G.7 below:
Theorem G.7. (IRMv1 will use spurious features on graphs under covariate shift) Under the SCM
of Equation (19), there exists s ∈ N+ that satisfies 0 < s < L and s ̸= k such that optimizing
the IRMv1 objective minΘ Ee[∥∇w|w=1.0R(e)∥2] will not lead to the invariant solution θ2 = 0 for

parameters of the GNN (3) when {θ11
(l)
, θ21

(l)
, θ12

(l)
, θ22

(l)} take the special solution:

Θ0 =


θ11

(l)
= 1, θ21

(l)
= 1, l = L− 1, ..., L− s+ 1

θ11
(l)

= 0, θ21
(l)

= 1, l = L− s, L− s− 1, ..., 1

θ12
(l)

= 0, θ22
(l)

= 1, l = L− 1, ..., 1

. (94)

Proof. From the proof of non-graph IRMv1 case Appendix G.1.1 we know that when the IRMv1
objective is optimized, we have ∇wR(e) = 0 for all e. For the graph case, the expected risk of
environment e is

R(e) = En1,n2 [∥θ1Ce1 + θ2Z
e − ÃkeX1 − n1∥22], (95)

where the definition of Ce1 and Ze follows Equation (78). Now let’s check if the invariant solution
θ2 = 0 is a valid solution. Let θ2 = 0,

∇wR(e) = En1,n2
[(θ1C

e
1 + θ2Z

e − (Ãe)kX1 − n1)⊤(θ1Ce1 + θ2Z
e)]

= (θ1)
2((Ãe)sX1)

⊤((Ãe)sX1) + (θ2)
2[Ne + (ϵe)⊤ϵe] + 2θ1θ2((Ãe)

sX1)
⊤ϵ

− θ1((Ãe)sX1)
⊤((Ãe)kX1)− θ2(Ne + (ϵe)⊤)((Ãe)kX1)

(96)

If θ2 = 0 is a feasible solution, then the following equation must hold for every environment e:

(θ1)
2((Ãe)sX1)

⊤((Ãe)sX1)− θ1((Ãe)sX1)
⊤((Ãe)kX1) = 0. (97)

When s ̸= k, we get θ1 = ((Ãe)sX1)
⊤((Ãe)sX1)

((Ãe)sX1)⊤((Ãe)kX1)
(we discard the trivial solution of θ1 = 0). The value

of this solution of θ1 varies with environment e, and thus is not a valid solution. However, now we
will show that optimizing IRMv1 does not necessarily lead to lower-layer parameters such that s = k.
To reveal this, by taking the derivative of LIRMv1 w.r.t. θ1 and θ2 and let them = 0, we can get two
cubic equations:

∂LIRMv1

∂θ1
=Ee[(Ce1

⊤Ce1(θ1)
2 + (Ne + ϵ⊤ϵ)(θ2)

2 + Ce1
⊤ϵeθ1θ2 − (Ãe

k
X1)

⊤Ce1θ1)

(2Ce1
⊤Ce1

⊤θ1 + Ce1
⊤ϵθ2 − (Ãe

k
X1)

⊤Ce1)] = 0

(98)

∂LIRMv1

∂θ2
=Ee[(Ce1

⊤Ce1(θ1)
2 + (Ne + ϵ⊤ϵ)(θ2)

2 + Ce1
⊤ϵeθ1θ2 − (Ãe

k
X1)

⊤Ce1θ1)

(2(Ne + ϵe⊤ϵe)θ2 + (Ce1
⊤Ce2 + Ce1

⊤ϵ)θ1)] = 0

(99)

From the analysis in Appendix F.3, we know that as long as the lower-layer parameters take any
value that satisfies the form in Equation (27), even if s ̸= k, we can get ∂LIRMv1

∂θ1
= ∂LIRMv1

∂θ11
= ∂LIRMv1

∂θ21

and ∂LIRMv1
∂θ2

= ∂LIRMv1
∂θ12

= ∂LIRMv1
∂θ22

. At this time (when ∂LIRMv1
∂θ1

= ∂LIRMv1
∂θ11

= ∂LIRMv1
∂θ21

= 0 and ∂LIRMv1
∂θ2

=
∂LIRMv1
∂θ12

= ∂LIRMv1
∂θ22

= 0 but s ̸= k), from the form of Equations (98) and (99) we know that there exist
solutions that θ2 ̸= 0, and the solution of θ1 and θ2 both depend on Ee(F (e)), where F (e) is some
random variable associated with e.

G.2.4 Proof of the Successful Case on Graphs of CIA under Covariate Shift

Theorem G.8. Optimizing the CIA objective will lead to the optimal solution Θ∗:
θ1 = 1
θ2 = 0

θ11
(l)

= 1, θ21
(l)

= 1, l = L− 1, ..., L− k + 1

θ11
(l)

= 0, θ21
(l)

= 1, l = L− k, L− k − 1, ..., 1

. (100)
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Proof. For brevity, denote a node representation of Ce1c as Ci1 and the one of Ce
′

1 c as Cj1 . The same
is true for Ci2 and Cj2 . In this toy model, we need to consider the expectation of the noise, while
in real cases such noise is included in the node features so taking expectation on e will handle this.
Therefore, we add En1,n2

in this proof, and this expectation is excluded in the formal description of
the objective in the main paper.

LCIAc = E e,e′

e ̸=e′
En1,n2

EcE i,j

(i,j)∈Ωe,e′

[
D(ϕΘ(Ae, Xe)[c][vi], ϕΘ(A

e, Xe′)[c][vj ])
]

= E e,e′

e ̸=e′
En1,n2

EcE i,j

(i,j)∈Ωe,e′
∥Ci1 + Ze − Cj1 − Ze

′
∥22

(101)

∂LCIA

∂θ1
= E e,e′

e ̸=e′
En1,n2

EcE i,j

(i,j)∈Ωe,e′

[
Ci1θ1 + Zeθ2 − Cj1θ1 − Ze

′
θ2

]⊤
(Ci1 − C

j
1) (102)

Let ∂LCIA
∂θ1

= 0, we have:

E e,e′

e ̸=e′
EcE i,j

(i,j)∈Ωe,e′

[
(Ci1 − C

j
1)

⊤(Ci1 − C
j
1)θ1

]
= 0 (103)

Thus, we get two possible solutions of the invariant branch. The first valid solution is the optimal one:
θ1 = 1

θ11
(l)

= 1, θ21
(l)

= 1, l = L− 1, ..., L− k + 1

θ11
(l)

= 0, θ21
(l)

= 1, l = L− k, L− k − 1, ..., 1

. (104)

The second valid solution is a trivial one:

θ1 = 0 or ∃l ∈ {1, ..., L− 1} s.t. θ11
(l)

= θ21
(l)

= 0 (105)

Take the derivative of the objective w.r.t. θ2:

∂LCIA

∂θ2
= E e,e′

e ̸=e′
EcE i,j

(i,j)∈Ωe,e′

[[
(Ze − Ze

′
)⊤(Ze − Ze

′
)
]
θ2

]
= 2σ2θ2 (106)

Let ∂LCIA
∂θ2

= 0, we get θ2 = 0. Thus, CIA will remove spurious features.

Now we show that when CIA objective has been reached (the spurious branch has zero outputs), the
objective of minΘ Ee[L(fΘ(Ae, Xe), Y e)] will help to learn predictive parameters of the invariant
branch θ1, θ11

(
l) and θ21

(
l). When θ2 = 0:

∂Ee[L(fΘ(Ae, Xe), Y e)]

∂θ1
= 2EeEn1,n2

[(
Ce1θ1 − (Ãe)kX1 − n1

)⊤
Ce1

]
= 2Ee

[(
Ce1θ1 − (Ãe)kX1

)⊤
Ce1

] (107)

Let ∂Ee[L(fΘ(Ae,Xe),Y e)]
∂θ1

= 0, we get the predictive parameters
θ1 = 1

θ11
(l)

= 1, θ21
(l)

= 1, l = L− 1, ..., L− k + 1

θ11
(l)

= 0, θ21
(l)

= 1, l = L− k, L− k − 1, ..., 1

. (108)

Plug the final solution back in ∂LCIA

∂θ11
(l) , ∂LCIA

∂θ21
(l) , ∂LCIA

∂θ12
(l) , ∂LCIA

∂θ22
(l) , ∂Ee[L(fΘ(Ae,Xe),Y e)]

∂θ11
(l) ,

∂Ee[L(fΘ(Ae,Xe),Y e)]

∂θ21
(l) , ∂Ee[L(fΘ(Ae,Xe),Y e)]

∂θ12
(l) , ∂Ee[L(fΘ(Ae,Xe),Y e)]

∂θ22
(l) , we can verify that these

terms are all 0.
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G.3 Proof of Theorem 4.4

The following proof of Theorem 4.4 is adapted from Ma et al. [2021] and Mao et al. [2023]. We
restate Theorem 4.4 as Theorem G.9 below.

Theorem G.9. (Subgroup Generalization Bound for GNNs). Let h̃ be any classifier in a function

family H with parameters
{
W̃l

}L
l=1

. Under Assumption 4.2 and 4.3, for any ete ∈ Ete, γ ≥ 0, and

large enough Netr , with probability at least 1− δ, we have

L0
ete(h̃) ≤ L̂γetr(h̃)

+O(
1

σ2
(

C∑
c=1

∑
c′ ̸=c

(
√
|[(µc − µc′)⊤; (µete

c − µe
te

c′ )
⊤]|+ 2

√
2)ϵete,etr

︸ ︷︷ ︸
(a)

+ 2

C∑
c=1

(C − 1)Bete |µe
te

c − µe
tr

c |)︸ ︷︷ ︸
(b)

+
1

2σ2

1

Netr

∑
i∈Vetr

1

Nete

∑
j∈V (i)

ete

C∑
c=1

∑
c′ ̸=c

|pht
j (c

′|c)− pht
i (c

′|c)|

︸ ︷︷ ︸
(c)

+
b
∑L
l=1

∥∥∥W̃l

∥∥∥2
F

(γ/8)2/LNα
etr

(ϵete,etr)
2/L

︸ ︷︷ ︸
(d)

+const)

(109)

where pht
i (c

′|c) is the ratio of heterophilic neighbors of class c′ when yi = c, const = 1
N1−2α +

1
N2α

etr
ln LC(2Bete )1/L

γ1/Lδ
is a term independent of aggregated feature distance and the difference in

neighboring heterophilic label distribution, where Bete = maxi∈Vetr∪Vete ∥gi∥2 is the maximum
feature norm.

To prove Theorem G.9, we need the following lemma that bounds the expected loss discrepancy
between the train and the test node subgroups.

Lemma G.10. Given a distribution P over H, for λ > 0, define the expected loss discrepancy
between Ve and Ve′ with respect to (P, γ, λ) as Dγ

e,e′(P ;λ) := lnEh∼P eλ(L
γ/2
e (h)−Lγ

e′ (h)). Under
Assumption 4.2, we have

D
γ/2
ete,etr ≤

1

σ2
(

C∑
c=1

∑
c′ ̸=c

(
√
|[(µc − µc′)⊤; (µete

c − µe
te

c′ )
⊤]|+ 2

√
2)ϵete,etr + 2

C∑
c=1

(C − 1)Bete |µe
te

c − µe
tr

c |)

+
1

2σ2

1

Netr

∑
i∈Vetr

1

Nete

∑
j∈V (i)

ete

C∑
c=1

∑
c′ ̸=c

|pht
j (c

′|c)− pht
i (c

′|c)|

(110)
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Proof. According to Eq. (14) of Lemma 5 in Ma et al. [2021], under 4.2, we already have

L0
ete(h̃)− L̂γetr(h̃)

≤ 1

Netr

∑
i∈Vetr

1

Nete

∑
j∈V (i)

ete

C∑
c=1

(
1 ·
(
L

γ
2 (hj , c)− Lγ(hi, k)

)
+ (Pr(yj = c|gj)− Pr(yi = c|gi)) · 1

)

≤ 1

Netr

∑
i∈Vetr

1

Nete

∑
j∈V (i)

ete

C∑
c=1

(Pr(yj = c|gj)− Pr(yi = c|gi))

(111)
In the following proof, the main goal is to bound the term (Pr(yj = c|gj)− Pr(yi = c|gi)) under the
multi-classification OOD generalization setting. Using the Bayes theorem, we have

1

Netr

∑
i∈Vetr

1

Nete

∑
j∈V (i)

ete

C∑
c=1

(Pr(yj = c|gj)− Pr(yi = c|gi))

=
1

Netr

∑
i∈Vetr

1

Nete

∑
j∈V (i)

ete

C∑
c=1

Pr(gj |yj = c)
∑
c′ ̸=c Pr(gi|yj = c′)− Pr(gi|yi = c)

∑
c′ ̸=c Pr(gj |yj = c′)

(
∑C
c′=1 Pr(gj |yj = c′))(

∑C
c′=1 Pr(gi|yi = c′))

(112)
Let consider the term Pr(gj |yj=c)Pr(gi|yj=c′)−Pr(gi|yi=c)Pr(gj |yj=c′)

(
∑C

c′=1
Pr(gj |yj=c′))(

∑C
c′=1

Pr(gi|yi=c′))
for each c′ ̸= c, and bound all these

terms respectively. When yi = c, denote µi(c) ∈ RD×(C−1) as the matrix composed of all the class
means of node vi’s heterophilic neighbors, i.e. the columns of µi(c) are µ′

c, c
′ ∈ {1, 2, ..., C}/{c}.

The elements of pht
i ∈ RC−1 are corresponding pht

i (c
′), c′ ∈ {1, 2, ..., C}/{c}. According to

Definition 4.1, we have

Pr(gi|yi = c) =
1√

(2πσ2)D
exp(− 1

2σ2
∥gi−[phm

i µ
⊤
c +(µi(c)p

ht
i )

⊤; phm
i µ

ete

c

⊤
+(µi(c)

ete

pht
i )

⊤]⊤∥22)

(113)
Denote (

∑C
c′=1 Pr(gj |yj = c′))(

∑C
c′=1 Pr(gi|yi = c′)) as exp(M) ∈ [0, C], where M > 0 is a

constant, we have

|Pr(gj |yj = c)Pr(gi|yj = c′)− Pr(gi|yi = c)Pr(gj |yj = c′)

(
∑C
c′=1 Pr(gj |yj = c′))(

∑C
c′=1 Pr(gi|yi = c′))

|

=| exp(− 1

2σ2
∥gj − [phm

j µ
⊤
c + (µi(c)p

ht
j )

⊤; phm
j µ

ete

c

⊤
+ (µj(c)

ete

pht
j )

⊤]⊤∥22)

exp(− 1

2σ2
∥gi − [phm

i µ
⊤
c′ + (µi(c

′)pht
i )

⊤; phm
i µ

etr

c′
⊤
+ (µi(c

′)
etr

pht
i )

⊤]⊤∥22)

− exp(− 1

2σ2
∥gj − [phm

j µ
⊤
c′ + (µi(c

′)pht
j )

⊤; phm
j µ

ete

c′
⊤
+ (µj(c

′)
ete

pht
j )

⊤]⊤∥22)

exp(− 1

2σ2
∥gi − [phm

i µ
⊤
c + (µi(c)p

ht
i )

⊤; phm
i µ

etr

c

⊤
+ (µi(c)

etr

pht
i )

⊤]⊤∥22)|/| exp(−M)|

(114)

Further arranging the formula, we obtain:

|Pr(gj |yj = c)Pr(gi|yj = c′)− Pr(gi|yi = c)Pr(gj |yj = c′)

(
∑C
c′=1 Pr(gj |yj = c′))(

∑C
c′=1 Pr(gi|yi = c′))

|

=| exp(−
∥gj − [phm

j µ
⊤
c + (µi(c)p

ht
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Using Lagrange mean value theorem, we have

| exp(−x)− exp(−y)| = exp(−ξ)|y − x| ≤ |x− y| (116)

for x, y > 0 and ξ ∈ [x, y] (or ξ ∈ [y, x]). Using Equation (116), we get
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Let’s bound (A), (B) and (C) respectively.
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(a) uses the fact that |gjphm
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Using these results, we have
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Now we can proceed with the proof of Theorem G.9.

Proof. Directly replace the result of Lemma 5 in Ma et al. [2021] with that of Lemma G.10 and
following the proof of Lemma 6 and Theorem 3 in Ma et al. [2021], under Assumption 4.3, we finish
the proof of Theorem G.9.

H Limitations

The theoretical analysis is limited to linear GNNs. However, there some justification for using a
linear GNN. 1) Some recent works [Zhu and Koniusz, 2021, Wang et al., 2021b] observed that linear
GNNs achieve comparable performance to nonlinear GNNs. Tang and Liu [2023] also theoretically
proved that SGC can outperform GCN under some mild assumptions. 2) many recent works on the
theoretical analysis of graphs/OOD generalization adopt linear networks [Lin et al., 2023, Wu et al.,
2022b, Mao et al., 2023]. 3) Our theory matches the experimental results on the nonlinear GCN and
GAT that CIA outperforms IRM and VREx.

We didn’t implement some of the node-level OOD methods in our main experiments including Li
et al. [2023a], Liu et al. [2023] because they didn’t release the code. Another limitation is that we
didn’t provide an in-depth theoretical comparison between our method and existing node-level OOD
methods, but only revealed the difficulty of invariant learning on graphs through the examples of
VREx and IRM. However, this theoretical finding is sufficient to inspire the CIA solution and its
enhanced version, CIA-LRA. We reserve a more comprehensive analysis of the failure of OOD
methods on graphs and broader guidance for designing graph-OOD work for future research.

I Broader Impacts

Our work contributes to improving the node-level OOD generalization of GNN models. We believe
our work could positively impact various fields by improving predictive accuracy in areas like
healthcare, social networking, etc., potentially leading to better-personalized services and enhanced
safety.
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J Compute Resources

We use one NVIDIA GeForce RTX 3090 or 4090 GPU for each single experiments. All algorithms
except EERM and GTrans can be executed on a single 24GB GPU when processing the largest
dataset, Arxiv, without encountering out-of-memory.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction concisely state how we dissect the challenges of
invariant learning on graphs and out strategies to tackle it. In the introduction, we list all our
contributions and indicate the sections in which they are made.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We point out the limitations in Appendix H: we didn’t compare the empirical
results with some of the node-level OOD works because their codes are unavailable; we
didn’t theoretically analyze all invariant learning methods.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: All supplementary assumptions, formal versions of the theorems, and full
proofs can be found in Appendix G.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have provided all basic experimental settings and the hyperparameter
search space in Appendix C to reproduce all our results. The detailed training procedure
of CIA-LRA is provided in Appendix 1. We will release our implementation of CIA and
CIA-LRA following the acceptance of our work.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: The datasets utilized in our paper are publicly accessible and remain unmodi-
fied. We will release our code following the acceptance of our work, complete with detailed
instructions to ensure the faithful reproduction of the main experimental results.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We adopt the default training details open-source GOOD benchmark, and we
have stated some modifications of the setting in the main text and the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The improvements offered by CIA-LRA exceed the error bars of the best
existing methods. Also, CIA significantly outperforms VREx and IRM across most dataset
splits.
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Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: In Appendix J, we report the type of GPU we use and the memory costs.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research conforms, in every respect, to the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
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Justification: We discuss the potential impacts of out work in Appendix I.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: [TODO]
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Yes. All assets used in our research, including code, data, and models, are
properly credited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: [TODO]
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: [TODO]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: [TODO]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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