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Abstract

3D human shape reconstruction under severe occlusion due to human-object or
human-human interaction is a challenging problem. Parametric models i.e. SMPL(-
X), which are based on the statistics across human shapes, can represent whole
human body shapes but are limited to minimally-clothed human shapes. Implicit-
function-based methods extract features from the parametric models to employ
prior knowledge of human bodies and can capture geometric details such as clothing
and hair. However, they often struggle to handle misaligned parametric models and
inpaint occluded regions given a single RGB image. In this work, we propose a
novel pipeline, MHCDIFF, Multi-hypotheses Conditioned Point Cloud Diffusion,
composed of point cloud diffusion conditioned on probabilistic distributions for
pixel-aligned detailed 3D human reconstruction under occlusion. Compared to
previous implicit-function-based methods, the point cloud diffusion model can
capture the global consistent features to generate the occluded regions, and the
denoising process corrects the misaligned SMPL meshes. The core of MHCDIFF
is extracting local features from multiple hypothesized SMPL(-X) meshes and
aggregating the set of features to condition the diffusion model. In the experiments
on CAPE and MultiHuman datasets, the proposed method outperforms various
SOTA methods based on SMPL, implicit functions, point cloud diffusion, and their
combined, under synthetic and real occlusions. Our code is publicly available at
https://donghwankim0101.github.io/projects/mhcdiff.

Figure 1: Image to 3D shape. From the segmented images, containing occlusion due to interaction,
MHCDIFF reconstructs 3D human shapes as point clouds.
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1 Introduction

Realistic virtual humans play a significant role in various industries, such as metaverse, tele-presence,
and game modeling. However, conventional methods require expensive artist efforts and complex
scanning equipments, so they are not readily applicable. A more practical approach is to reconstruct
high-fidelity 3D humans from 2D images taken in the wild. This is still an ongoing research task due
to its challenges; people wear a wide variety of clothing styles and adopt diverse poses. Furthermore,
human-object and human-human interaction, fundamental aspects of daily social life, make it more
challenging due to severe occlusions.

Existing 3D human reconstruction methods cannot predict the pixel-aligned 3D shapes of humans
robustly from occluded images. The parametric body models [27, 48, 67, 93, 75] have been widely
used to reconstruct 3D human shapes. Several methods [11, 28, 34, 83, 26, 15, 10, 44, 82] predict the
parameters of the statistical models and are robust to occlusion because they can be trained on large
scale datasets [23, 56] and parametric models are well regularized with human body priors. However,
the parametric models lack geometric details like clothing and hair, so these approaches cannot align
the results to the subjects with loose clothing. More recently, 3D clothed human reconstruction
methods [76, 77, 106, 92, 7, 91, 90, 95, 96], which are based on implicit functions and integrate the
human body prior from the 3D body models, i.e SMPL [48, 67], present pixel-aligned detail shapes.
Despite the impressive advances of the previous methods, they are not robust to occlusion because (1)
small misalignment of estimated parametric models ruins the final shapes, (2) the implicit function
takes features independently and cannot inpaint the invisible regions with missing image features,
and (3) datasets [74, 87, 66] usually consists of segmented full-body images.

To address the aforementioned limitations, we propose MHCDIFF (Multi-hypotheses Conditioned
Point Cloud Diffusion). (1) Several existing methods [6, 60, 73, 78, 79, 35, 8, 61, 81, 14] predict
multiple SMPL meshes to model uncertainty due to occlusions. The sampled distribution is also
important prior knowledge of human motions, but none of the existing work utilizes the distribution
for pixel-aligned 3D human reconstruction. We leverage the multi-hypotheses to be robust on the
misalignment of each sample. (2) We adopt denoising diffusion probabilistic models (DDPMs)
[20] to take global consistent features and generate the invisible regions. Diffusion based methods
generate 3D shapes by denoising point clouds [50, 108, 63, 22], latent [101, 62, 36], neural fields [69],
3D Gaussian [84] or meshes [46]. We adopt the unstructured point clouds to project pixel-aligned
image features at each diffusion step. (3) Additionally, we synthesize partial body images by random
masking [107], augmenting the limited datasets.

Specifically, our goal is pixel-aligned and detailed 3D human reconstruction in a robust manner
to occlusion in images. Given a single occluded RGB image, we extract 2D features and generate
multiple plausible SMPL hypotheses using an off-the-shelf method [4, 14]. The proposed method,
MHCDIFF, Multi-hypotheses Conditioned Point Cloud Diffusion, performs the diffusion process to
denoise a randomly-sampled point cloud into a target human shape. To reconstruct a pixel-aligned
3D shape and leverage the human body prior, the diffusion process is conditioned on the projected
image feature (Sec. 3) and local features extracted from SMPL (Sec. 4.2). The key of MHCDIFF
is a novel conditional diffusion process with multiple hypotheses (Sec. 4.3), which is not sensitive
to misaligned SMPL estimation. Given global 2D features and the distribution of hypotheses, the
denoising diffusion model can generate the occluded parts (Sec. 4.4)

We train MHCDIFF on randomly masked THuman2.0 dataset [85]. Our experiments on CAPE
dataset [53, 68] with synthesized occlusion and MultiHuman dataset [105] with real-world interaction
demonstrate that MHCDIFF reconstructs pixel-aligned 3D human shapes robustly to various occlusion
ratios and achieves state-of-the-art performance. Our main contributions are as follows:

• We introduce a novel multi-hypotheses conditioning mechanism that effectively captures
the distribution of multiple plausible SMPL meshes. It is robust to the noise of each SMPL
estimation due to the occlusion of given images. To the best of our knowledge, MHCDIFF
is the first work that extends the multi-hypotheses SMPL estimation to pixel-aligned 3D
human reconstruction.

• We adopt point cloud diffusion model to capture the global consistent features and inpaint
the invisible parts. Unlike the previous implicit function, the misaligned SMPL estimation
can be corrected during the denoising process. The point cloud diffusion model also offers
detailed human meshes.
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• MHCDIFF, trained on synthesized partial body images, outperforms previous methods on
occluded and even full-body images.

2 Related Work

2.1 Diffusion models for point clouds

Over the past years, denoising diffusion probabilistic models (DDPMs) [20] have been applied to
point clouds. For unconditional generation, Luo et al. [50], Zhou et al. [108] and LION [101] use
PointNet [70], Point-Voxel-CNN [47] and latent space, respectively. PointInfinity [22] tackles the
quadratic complexity of transformer [89], and generates high-resolution point clouds with a fixed-size
latent vector. Otherwise, Point-E [63] is a text-conditioned generation model using CLIP [72] and
PDR [51] is a point cloud completion method from partial point clouds. PC2 [57], which is the
baseline of MHCDIFF, reconstructs the point cloud conditioned on projected image features (please
refer to Sec. 3 for more details).

2.2 Explicit-shape-based human reconstruction

Parametric models [27, 48, 67, 93, 75] have been primary representations for 3D human reconstruction.
Due to the strength that they capture the statistics across a large corpus of human shapes, a lot of
work [11, 28, 34, 83, 26, 15, 10, 44, 82] reconstructs 3D body meshes from an RGB image. To
reduce the gaps between the image and parameter space of the statistical models and improve image
alignment, they propose intermediate representations or additional supervisions, such as semantic
segmentation [64, 94, 33, 100] and keypoints [9, 41]. To model the uncertainty due to occlusions
or depth ambiguities, some work proposes multi-hypotheses [6], heatmaps [60], probability density
functions [73, 78, 79, 35] or diffusion models [8, 61, 102, 81, 39]. ProPose [14] adopts the matrix
Fisher distribution [13, 30] over SO(3) for the joint rotation conditioned on the von Mises-Fisher
distribution [55] for the unit directions of bones, which is not only mathematically correct but also
learning friendly (please refer to Sec. 3 for more details). However, these methods are limited
to recovering minimally-clothed humans and lack the ability to capture geometric details such as
clothing and hair.

Several works aim at modeling geometric details in explicit shapes such as meshes, voxels, depth
maps and point clouds. Mesh-based methods [1, 2, 3, 37, 109, 5, 25] model 3D offsets on the vertices
of SMPL [48], but they do not generalize on loose clothing such as skirts and dresses. Voxel-based
methods [24, 88, 17, 86] reconstruct 3D human shapes in fine-grained voxel representations. However,
free-form 3D reconstruction is challenging without prior, and they need high computation costs to
output high-resolution 3D shapes. Point-cloud-based methods [52, 99, 54, 19, 85] model point clouds
of clothing humans. Han et al. [19] estimate depth maps based on different body parts, and convert
the depth maps into point clouds. Tang et al. [85], the most related work, reconstruct 3D humans with
point cloud diffusion from an RGB image. First, they convert the estimated SMPL mesh and depth
map from the RGB image to point clouds. Conditioned on this point cloud, the conditional diffusion
model refines the point cloud. However, they only handle complete images without occlusion and are
not robust to misaligned SMPL estimation.

2.3 Implicit-function-based human reconstruction

Implicit-function-based methods regress occupancy fields [58] or signed distance fields (SDF)
[65] utilizing Multi-Layer Perceptron (MLP) decoders as implicit functions (IF). PIFu [76] and
PIFuHD [77], which are pioneering works, extract pixel-aligned image features for clothed 3D human
reconstruction. Later works [106, 92, 7, 91, 90, 40, 95, 103, 104, 96] leverage parametric models or
body keypoints as prior information on the human body. They extract global features from voxelized
SMPL meshes with a 3D encoder [106, 90] or local features such as signed distances and normals
from SMPL meshes [92, 95, 103, 104] or both [7, 96]. The use of global features helps regularize
global shapes and ensure consistency and local features help reconstruct local details. However, the
global encoder is sensitive to global pose changes of SMPL and decreases the performance given
misaligned SMPL estimation due to occlusion. The local features do not contain the global consistent
features and cannot inpaint the occluded parts. Wang et al. [90] aim to reconstruct complete 3D
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shapes from occluded images by primarily using the generative global encoder with a discriminator,
but only assuming the accurate SMPL meshes.

3 Preliminary

PC2 [57]. The projection-conditioned point cloud diffusion model is proposed for single-view 3D
shape reconstruction. Denoising diffusion probabilistic model [20], which is the foundation of this
framework, learns to recurrently transform noise XT ∼ N (0, I) into a sample from the target data
distribution X0 ∼ q(X0) over a series of steps. In order to learn this denoising process, a neural
network is trained Fθ(Xt−1|Xt) ≈ q(Xt−1|Xt). To reconstruct geometrically consistent 3D point
clouds from single RGB images I ∈ RH×W×3, 2D feature map E(I) ∈ Rh×w×c is projected onto the
partially denoised points at each step in the diffusion process. Therefore, Fθ(·) : R(3+c)N → R3N is
a function that predicts the noise ϵ ∈ R3N from the point cloud Xt ∈ R3N and the projected features
Xproj

t ∈ RcN , where c is the number of feature channels.

ProPose [14]. Recovering accurate body meshes and 3D joint rotations from single images remains
a challenging problem, particularly in cases of severe occlusion, including self-occlusion and occlu-
sion from other subjects or objects. ProPose [14] addresses this limitation by modeling the probability
distributions for human mesh recovery. Since the pose parameters θ ∈ R72 of SMPL [48] represent
the 3D rotation of each joint and the root orientation, they adopt the matrix Fisher distribution [13, 30]
over SO(3). Due to the gaps between the RGB images and the rotation representations, the neural
network cannot easily model the distribution. ProPose [14] also introduces 3D unit vectors for bone
directions as the corresponding observation on the previous matrix Fisher distribution as the prior.
Leveraging Bayesian inference, they model the posterior distribution of the joint rotations from the
prior distribution and observation.

4 MHCDIFF: Multi-hypotheses Conditioned Point Cloud Diffusion

4.1 Overview

Our work aims at reconstructing pixel-aligned 3D human shape as a point cloud given a single
occluded RGB image via conditional point cloud diffusion, as shown in Fig. 2. Formally, the
diffusion model Fθ(·) learns the conditional distribution q(X0|I) of 3D human shapes given the RGB
images I ∈ RH×W×3. Following PC2, we extract the 2D feature map E(I) ∈ Rh×w×c using ViT
[12], to capture the details in the images. The image features are projected onto the partially denoised
points: Xproj

t = Π(E(I), Xt), where Π is the projection function. This helps obtain pixel-aligned
detailed body shapes. Additionally, the diffusion model is conditioned on the local features XSMPL

t
from SMPL mesh S to exploit statistical human body priors to complete 3D shapes from occluded
body parts (Sec. 4.2). However, the SMPL estimation from single occluded RGB images has a
high probability of large errors. To tackle this, we propose a novel multi-hypotheses conditioned
diffusion model that considers the distribution of multiple plausible SMPL meshes {Si}i∈{1,...,s}

(Sec. 4.3). Given the partially denoised point cloud Xt, the projected image features Xproj
t , and the

local features from SMPL XSMPL
t , MHCDIFF predicts the noise ϵ:

Fθ(Xt, X
proj
t , XSMPL

t ) = ϵ. (1)

We also discuss how MHCDIFF takes the generative property and the global consistent features to
reconstruct occluded parts (Sec. 4.4).

4.2 Local features from SMPL

Given the SMPL (or SMPL-X) mesh S and the partially denoised point cloud Xt at t-th diffusion
step, we extract the local features XSMPL

t as:

XSMPL
t = [γ(d(Xt|S)),n(Xt|S)], (2)

4
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Figure 2: (Left) Overview of MHCDIFF. Given an occluded image I , MHCDIFF reconstructs 3D
human shape as a point cloud. First, we extract the 2D feature map E(I) and hypothesize pose and
shape parameters of multiple plausible SMPL meshes {Si}i∈{1,...,s}. Our method consists of the
conditioned point cloud diffusion model (Sec. 4.4). We project the 2D image features to capture
details of the image (Sec. 3) and extract local features from multiple hypothesized SMPL meshes
to leverage human body priors (Sec. 4.3) (Upper Right) The details of local features (Sec. 4.2).
The signed distance field is visualized in positive and negative regions. The arrows indicate normal
vectors n. (Lower Right) The details of multi-hypotheses (Sec. 4.3). We can consider the whole
distribution during denoising process with the argmin ī, and the denoising can be approximated by
red arrows. However, it is sensitive to extreme samples of the distribution, so we condition the mean
of occupancy values, which is visualized by transparency, and the denoising can be approximated by
blue arrows.

where d(·) : R3 → R and n(·) : R3 → R3 are the signed distance and normal obtained from the
closest surface of SMPL mesh respectively. In order to map scalar values to a higher dimensional
space, we adopt an encoding inspired by the positional encoding in NeRF [59]:

γ(d) = (sin(20πd), cos(20πd), ..., sin(sL−1πd), cos(sL−1πd)). (3)

The local features XSMPL
t ∈ R(2L+3)N , which contain the signed distance and normal vector from

SMPL, are used to predict the noise ϵ of the point cloud Xt. The local property, which is independent
of global pose, helps MHCDIFF to generalize well in diverse SMPL estimation due to occlusion and
capture local details.

4.3 Multi-hypotheses condition

The local features are robust to noisy SMPL estimation, but cannot correct the SMPL estimation
errors. Following previous multi-hypotheses human pose estimation [6, 43, 18, 21, 8], MHCDIFF
takes multi-hypotheses SMPL meshes from estimated distributions and predicts the most plausible
outputs. We modify Eq. 2 to handle multiple sampled SMPL meshes {Si}i∈{1,...,s} using ProPose
[14] as an off-the-shelf method:

XSMPL
t = [γ(d(Xt|Sī)),n(Xt|Sī)], (4)

where ī = argmini∈{1,...,s}|d(Xt|Si)|, which semantically means that each point follows the closest
SMPL mesh Sī to consider all plausible samples in denoising steps. However, each point gets
conditions from only one sample and cannot leverage off-the-shelf probability distributions. In
addition to the local features, we also adopt occupancy values:
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XSMPL
t = [

1

s

s∑
i=1

γ(o(Xt|Si)), γ(d(Xt|Sī)),n(Xt|Sī)], (5)

where o(·) : R3 → {0, 1} is the occupancy function of the given SMPL mesh, which is a binary
signal while the signed distance is continuous. With the mean occupancy and closest signed distance,
MHCDIFF can assume all distributions with their respective probabilities. The proposed multi-
hypotheses conditioning can take an arbitrary number of SMPL, SMPL-X, and their combined.

4.4 Conditioned point cloud diffusion model

Finally, Fθ(·) : R(3+c+4L+3)N → R3N predicts the noise ϵ ∈ R3N given the concatenation of
partially denoised point cloud Xt ∈ R3N , projected image features Xproj

t ∈ RcN , and local features
from SMPL XSMPL

t ∈ R(4L+3)N (Eq. 1). Notably, we do not need any learnable parameters to
extract the local features from SMPL and aggregate the features of multiple SMPL meshes. We
freeze the pre-trained 2D image encoder, so it is straightforward to train the diffusion model without
additional training strategies.

The point cloud diffusion model of MHCDIFF takes the role of the decoder of previous implicit-
function-based methods. Given the encoded features from RGB images or SMPL meshes, the decoder
predicts 3D shapes such as point clouds, occupancy fields, or signed distance fields. The implicit-
function-based methods need to sample the query points randomly, so the decoder has been primarily
Multi-Layer Perceptron (MLP), which takes the input points independently. MHCDIFF consists of
the point cloud diffusion model instead of MLP because (1) the point cloud model considers the
global consistent features, (2) the diffusion model has the generative properties, and (3) the denoising
process approximates correcting the misaligned SMPL estimation. Given the globally encoded image
features Xproj

t and the local features from SMPL XSMPL
t , MHCDIFF can inpaint or restore invisible

body parts and is robust to noisy SMPL estimation due to occlusion.

Algorithm 1 Pseudocode of learning pipeline of MHCDIFF

Require: α1:T : diffusion noise scheduling
1: repeat
2: Sample X0 from q(X0)
3: Load the corresponding image I and ground truth SMPL-X S
4: t ∼ Uniform({1, ..., T})
5: ϵ ∼ N (0, I)
6: Xt =

√
ᾱtX0 +

√
1− ᾱtϵ

7: Xproj
t = Π(E(I), Xt) ▷ Project image features (Sec. 3)

8: XSMPL
t = [γ(o(Xt|S)), γ(d(Xt|S)),n(Xt|S)]

▷ Extract local features from SMPL (Sec. 4.2
9: Take gradient descent step on

∇θ

∥∥∥ϵ−Fθ(Xt, X
proj
t , XSMPL

t )
∥∥∥2 ▷ Point cloud diffusion model (Sec. 4.4)

10: until converged

5 Experiments

Implementation. We use the Pytorch3D library [71] for image feature projection (Sec. 3) and the
kaolin library [16] to extract local features from SMPL (Sec. 4.2). MHCDIFF is trained with batch
size 8 in 100,000 steps. We use MSN [4] as the image feature encoder. We use AdamW [31] with
β = (0.9, 0.999) and a learning rate which is decayed linearly from 0.0002 to 0. For diffusion noise
schedule, we use linear scheduling from 1 · 10−5 to 8 · 10−3 with warmup. For inference, we denoise
the point cloud for 1, 000 steps. The training process takes approximately 1 day on a single 24GB
NVIDIA RTX 4090 GPU with 28M learnable parameters.

Learning. We synthesize the THuman2.0 dataset [98], which contains 526 high-fidelity textured
scans with corresponding SMPL-X fits. We use 500 subjects for training and the others for validation.
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Algorithm 2 Pseudocode of inference pipeline of MHCDIFF

Require: Input image I
1: Sample XT from N (0, I)
2: Estimate single or multi SMPL(-X) meshes {Si}i∈{1,...,s}
3: for all t from T to 1 do
4: z ∼ N (0, I) if t > 1 else z = 0

5: Xproj
t = Π(E(I), Xt) ▷ Project image features (Sec. 3)

6: for all i from 1 to s do
7: Compute o(Xt|Si), d(Xt|Si), and n(Xt|Si) ▷ Can be accelerated by kaolin [16]
8: end for
9: ī← argmini∈{1,...,s}|d(Xt|Si)|

10: XSMPL
t = [ 1s

∑s
i=1 γ(o(Xt|Si)), γ(d(Xt|Sī)),n(Xt|Sī)]

▷ Multi-hypotheses conditioning (Sec. 4.3)
11: ϵ̂← Fθ(Xt, X

proj
t , XSMPL

t )
12: Xt−1 ← 1√

αt
(Xt − 1−αt√

1−ᾱt
ϵ̂) + σtz ▷ DDPM [20] sampling

13: end for
14: return X0

We render each human subject from 36 multiple viewpoints and randomly mask the images, resulting
in partially occluded body images. We use the farthest point sampling operation to sample 16,384
points from each GT scan. During the training, local features XSMPL

t are extracted from a single
corresponding GT SMPL-X. The learning pipeline is presented in Algorithm 1.

Inference. First, we use the CAPE dataset [53, 68] with 150 textured scans. Similar to the training
stage, we render each subject from 3 multiple viewpoints and randomly mask the images. During
the inference, local features XSMPL

t are extracted from multiple sampled SMPL or single estimated
SMPL-X. We sample 10 SMPL meshes for our experiments. To further show the generalizability
on the real-world interaction, we also evaluate MHCDIFF on the MultiHuman [105] and Hi4D [97]
dataset. MultiHuman, which includes the diverse interaction with objects and people, provides 3D
textured scans, so we render each subject from 3 multiple viewpoints. We evaluate the performance of
MHCDIFF qualitatively on Hi4D, which includes close human-human interaction with high-fidelity
meshes. The inference pipeline is presented in Algorithm 2.

Baseline models. We compare MHCDIFF with parametric models and pixel-aligned reconstruction
methods. For parametric models, which are robust for occlusion, we select ProPose [14] as SMPL
estimator and PIXIE [15] as SMPL-X estimator. For pixel-aligned reconstruction methods, which can
capture geometric details, we select PaMIR [106] for global features, ICON [92] for local features,
and HiLo [96] and SIFU [104] for both. For the fair comparison, we primarily condition with the
mean of SMPL distribution estimated via ProPose, and PIXIE is also used for ICON, which supports
SMPL-X. We use pre-trained weights and evaluate under our test setting.

Evaluation metrics. We employ Point-to-Surface distance and Chamfer Distance as evaluation
metrics. MHCDIFF outputs a point cloud, so Chamfer Distance is the average L2 distance from
the reconstructed point cloud to vertices of ground-truth scans and vice versa, and Point-to-Surface
distance is the average point-to-surface from the reconstructed point cloud to ground-truth scans.
The outputs of implicit-function-based methods can be converted meshes via the Marching Cubes
algorithm [49]. For fair comparison, we sample the same number of points from the reconstructed
meshes uniformly.

5.1 Comparison with state-of-the-art methods

MHCDIFF outperforms prior implicit-function-based methods and SMPL estimation methods on
occluded and even full-body images. Fig. 3 presents the robustness of 3D human reconstruction
to the occlusion ratio. PaMIR and HiLo cannot handle the occlusions because the global feature
encoder is sensitive to misaligned SMPL estimation. SIFU does not use the 3D encoder, but the
cross-attention from the normal map of SMPL takes global features and is sensitive to occlusion

7

80891 https://doi.org/10.52202/079017-2570



Methods Chamfer Distance (cm) Point-to-Surface (cm)
A PaMIR [106] 12.912 12.619

ICON [92] 2.896 2.789
ICON (PIXIE estimation) 3.329 3.212

SIFU [104] 14.397 14.087
HiLo [96] 13.711 13.405

B PIXIE (SMPL-X) [15] 2.705 2.662
ProPose (SMPL) [14] 2.370 2.307

Ours MHCDIFF 1.872 1.810
Table 1: Quantitative evaluation on CAPE dataset. We report the average Chamfer Distance
(cm) and Point-to-Surface distance (cm) on CAPE dataset. We randomly mask the images about
40% in average. We compare the performance with respect to (A) implicit-function-based methods;
and (B) SMPL estimation methods used to condition MHCDIFF and (A). Best in bold, second-best
underlined.

Methods single occluded single two natural-inter two closely-inter three
A PaMIR [106] 0.690 2.349 5.154 3.752 4.714

ICON [92] 0.555 0.549 0.563 0.786 0.669
SIFU [104] 0.644 3.335 4.796 3.503 3.264
HiLo [96] 0.606 2.808 4.139 3.346 4.398

B PIXIE (SMPL-X) [15] 0.868 0.813 0.755 0.951 0.809
ProPose (SMPL) [14] 0.675 0.567 0.574 0.766 0.688

Ours MHCDIFF 0.591 0.491 0.536 0.703 0.673
Table 2: Quantitative evaluation on MultiHuman dataset. We report the average Chamfer
Distance (cm) for each category. We compare the performance similar to Tab. 1.

Chamfer Distance (cm) Point-to-Surface (cm)
full MHCDIFF 1.872 1.810
A w/o occupancy 1.893 1.831

w/o signed distance 2.016 1.949
w/o normal 1.888 1.827

w/o encoding 1.928 1.863
PC2 [57] 3.640 3.533

B conditioned on PIXIE estimation 2.314 2.237
conditioned on single ProPose estimation 1.939 1.869

C trained with ProPose estimation 2.708 2.624
w/o random masking 1.940 1.868

Table 3: Ablation study on CAPE dataset. We validate the effectiveness of (A) each component;
(B) conditioning strategies; and (C) training strategies.

The number of SMPL sampled Chamfer Distance (cm) Point-to-Surface (cm) Evaluation time on
CAPE dataset (hours)

1 1.939 1.869 4
5 1.882 1.817 8

10 1.872 1.810 12
15 1.833 1.773 16
20 1.836 1.777 20

Table 4: The correlation between the number of SMPL sampled and the reconstruction quality.
We report the average Chamfer Distance (cm), Point-to-Surface distance (cm) and evaluation time of
the various number of SMPL sampled.
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Figure 3: A cumulative occlusion-to-reconstruction test. This figure shows the performance of
different models from the images of various occlusion ratios. From the whole-body images, which is
0% occlusion, we randomly mask the images from 10% to 40%. MHCDIFF is robust to the occlusion
ratio, showing the best performance.

Figure 4: Qualitative results on CAPE dataset. We evaluate our method with SMPL estimation
method and implicit-function-based methods. Given the upper image, PaMIR, ICON, and HiLo
cannot generate the occluded regions. They cannot also handle the misaligned SMPL mesh on the
arms, creating incomplete bodies. ProPose predicts the full-body shape, but cannot capture the details
like the blazer of the lower image. However, MHCDIFF is robust to the occlusion and misalignment,
and can capture pixel-aligned details.

and misaligned SMPL estimation. ICON shows comparable robustness due to its locality, but worse
quality than ProPose estimation used to condition as the occlusion ratio increases. On the contrary,
MHCDIFF is as robust as the statistical models, showing the most accurate results for all occlusion
ratios. The results of 40% occlusion ratio are also displayed in numbers in Tab. 1. Tab. 2 presents the
performance on real-world interaction scenarios with MultiHuman dataset. The dataset is divided
into 5 categories by the level of occlusions: "occluded single" and "two closely-inter" show the most
severe occlusion, and "single" and "three" show the least occlusion. We compare the performance in
each category and similar to randomly masked settings, MHCDIFF achieves state-of-the-art on severe
occluded images, and comparable performance on full-body images. The major improvements of
MHCDIFF are (1) correcting the misaligned SMPL estimation as shown in Tab. 1, and (2) inpainting
the invisible regions as shown in Fig. 3. The qualitative results on CAPE dataset are shown in Fig. 4,
and MultiHuman and Hi4D datasets are shown in the appendices Sec. E.

5.2 Ablation study

We conduct an ablation on MHCDIFF to validate the effectiveness of each component. In Tab.
3-B, we condition the diffusion model with single SMPL-X (PIXIE) or SMPL (ProPose) estimation.
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We improve the performance with multi-hypotheses condition (Sec. 4.3). In Tab. 4, we show the
correlation between the number of SMPL sampled and the reconstruction quality. More SMPL
hypotheses may include more accurate samples and improve the quality (15 samples), as well as
extreme samples and decrease the quality (20 samples). From PC2 [57], which only takes image
condition, we also validate the local features from SMPL in Tab. 3-A. All of these features improve
the performance, especially the signed distance. In Tab. 3-C, MHCDIFF is trained without random
masking or by conditioning the distribution estimated by ProPose [14] instead of GT SMPL-X.

Figure 5: Qualitative results on in-the-wild images. Two images on the left show occlusions due
to interactions, and the rightmost image shows loose clothes. From internet photos, we use [32] to
segment images.

6 Conclusion

In this paper, We present MHCDIFF, which robustly reconstructs pixel-aligned and detailed 3D
humans from single occluded images. Rather than implicit-function-based methods, we choose
the point cloud diffusion model to generate invisible regions capturing the features globally. Our
multi-hypotheses conditioning mechanism extracts local features from multiple SMPL estimations
and integrates them without learnable parameters, so MHCDIFF is robust to a single erroneous
SMPL due to occlusion. We augment the limited training data by random masking to synthesize
occlusion by diverse interaction. The experiments demonstrate that our proposed method outperforms
state-of-the-art methods from various levels of occlusion and interaction. In the future, the point
cloud of human shapes can be applied to intermediate stages for implicit function [58] and human
body deformation [45] or motion flow [38].
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A Broader impact

Our method can be potentially used for AR/VR applications. The real-world interaction can be cap-
tured and modeled in virtual scenes, which can be extended to reinforcement learning. However, there
are potential risks associated with falsifying human avatars, which could inadvertently compromise
personal privacy. Consequently, there is a pressing need to establish regulations that clarify the fair
use of such technology.

B Limitations

Our method, based on DDPM [20] sampling with 1, 000 steps, has limitation on efficiency. The
training time is reasonable because we do not need query point sampling, which yields CPU bottleneck
to learn implicit-function. However, evaluation on CAPE dataset takes about 12 hours, while other
implicit-function-based methods take about 30 minutes. We can apply DDIM [80] sampling with
fewer steps to shorten the inference time.

C Pointcloud to mesh

Following previous work [85, 19], we try to convert our reconstructed point cloud to mesh with
Screened Poisson surface reconstruction [29]. However, the process takes about 10 hours per sample
with 16, 384 points. The implicit function [58] converts the point clouds to occupancy fields by
encoding features with a PointNet [70]. This two-stage pipeline can generate occluded regions and
capture details. We will try this pipeline in our future work.

D Statistical significance

We evaluate MHCDIFF on CAPE dataset [53, 68] with 10 different random seeds. The random seeds
effect on random noise in the diffusion process and SMPL sampling from the estimated distribution
vis ProPose [14]. The Chamfer Distance and Point-to-Surface are 1.872(±0.008) and 1.810(±0.008)
with 1-sigma error bars, respectively.

E Qualitative results

For the real-world interaction, we evaluate MHCDIFF on MultiHuman [105] and Hi4D [97] datasets.
We render the textured scans with Pytorch3D library [71] for MultiHuman dataset, and segment each
subject with pre-trained network [42] for Hi4D dataset. Our proposed method is robust not only to
the occlusion but also to noise in full images or segmentation process.
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Figure 6: Qualitative results on MultiHuman dataset.

Figure 7: Qualitative results on Hi4D dataset.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Please refer to Abstract and Introduction Sections.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Please refer to Sec. B.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: The paper is based on experiments.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Please refer to Implementation paragraph in Sec. 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: The code will be public after cleansing.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Please refer to Sec. 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Please refer to Sec. D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Please refer to Implementation paragraph in Sec. 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The paper conform the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Please refer to Sec. A.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our method poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite the creators of the assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [Yes]
Justification: We submit the code as a zip file.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing, and we only use public datasets for
human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing, and we only use public datasets for
human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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