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Abstract

Large language models (LLMs) often hallucinate and lack the ability to provide
attribution for their generations. Semi-parametric LMs, such as kNN-LM, approach
these limitations by refining the output of an LM for a given prompt using its
nearest neighbor matches in a non-parametric data store. However, these models
often exhibit slow inference speeds and produce non-fluent texts. In this paper, we
introduce Nearest Neighbor Speculative Decoding (NEST), a novel semi-parametric
language modeling approach that is capable of incorporating real-world text spans
of arbitrary length into the LM generations and providing attribution to their
sources. NEST performs token-level retrieval at each inference step to compute a
semi-parametric mixture distribution and identify promising span continuations
in a corpus. It then uses an approximate speculative decoding procedure that
accepts a prefix of the retrieved span or generates a new token. NEST significantly
enhances the generation quality and attribution rate of the base LM across a variety
of knowledge-intensive tasks, surpassing the conventional KNN-LM method and
performing competitively with in-context retrieval augmentation. In addition,
NEST substantially improves the generation speed, achieving a 1.8x speedup
in inference time when applied to Llama-2-Chat 70B. Code will be released at
https://github.com/facebookresearch/NEST/tree/main.

1 Introduction

Large language models (LLMs) have demonstrated strong potential as multi-task solvers, excelling
in a wide range of applications (Brown et al., 2020; Chowdhery et al., 2022; Touvron et al., 2023a;
Anil et al., 2024). Despite their advanced capabilities, LLMs frequently encounter the problem of
hallucination, particularly when dealing with long-tail knowledge that is less represented in their
training data (Kandpal et al., 2023; Asai et al., 2023a). To address this limitation, retrieval augmenta-
tion incorporates information retrieval and nearest neighbour search from a non-parametric data store
to enhance evidence-based and situated reasoning with LLMs. The resulting semi-parametric LMs
exhibit a reduced tendency to generate unsupported content (Khandelwal et al., 2020; Borgeaud et al.,
2022; Shi et al., 2024a,b; Asai et al., 2023a).

However, the effectiveness of retrieval-augmented language models (RALMs) in ensuring accurate
and reliable content generation varies. The widely used in-context retrieval-augmentation (RA)
regime (Ram et al., 2023; Shi et al., 2024a,b) softly biases the LM output distribution by prepending
retrieved content to the input, which does not reliably guarantee faithful attribution of information.
Approaches such as kNN-LM (Khandelwal et al., 2020) modify the LM output with a non-parametric
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token distribution derived from nearest-neighbor matches in a corpus, which provide more direct
attribution but has also been shown to degrade the quality of text generation (Wang et al., 2023a).
Additionally, retrieval augmentation can significantly increase the generation latency due to the time
required for the retrieval processes to complete and the subsequent expansion of the LM’s context.

In this work, we propose Nearest Neighbor Speculative Decoding (NEST). This new semi-parametric
language modeling approach is capable of incorporating real-world text spans of arbitrary length
into the generations of an off-the-shelf LM, leading to improved quality and latency. NEST extends
the standard kKNN-LM approach, which interpolates the output distribution of an LM using the
distribution of possible next tokens retrieved from a corpus (Khandelwal et al., 2020). It conducts an
additional passage retrieval step at the beginning to limit the need to store and search over all tokens
in the corpus, offering a balanced trade-off between search accuracy and efficiency. At each inference
step, NEST performs content generation with three sub-steps:

1) Confidence-based interpolation. We use a novel Relative Retrieval Confidence (RRC) score to
measure the uncertainty of the token retriever and use it as the interpolation coefficient of the output
probability mixture. This enables flexible adaptation of the LM’s output to different downstream
tasks through dynamic interpolation with the token retrieval results.

2) Dynamic span selection. Inspired by the Copy Generator (COG) (Lan et al., 2023), NEST selects
not only the best token predicted by the mixture probability but also extends to the span continuing
from that token in the corpus when the token retrieval confidence exceeds a predefined threshold.

3) Relaxed speculative decoding. If a span of more than one token is selected, it undergoes
evaluation based on the mixture probability. Through a rejection procedure similar to that in
speculative decoding (Leviathan et al., 2023), only a prefix deemed highly likely by the mixture
probability is accepted.

Evaluated on various free-form generation tasks—including question answering, text completion,
and factuality-aware generation—using Llama-2-Chat models (Touvron et al., 2023b) of different
sizes, NEST demonstrates superior performance compared to both the base LM and the standard
kNN-LM under a zero-shot setting. For example, combined with NEST, the Llama-2-Chat 70B
model demonstrates 42.3% improvement of ROUGE-1 on WikiText-103 and 21.6% improvement of
FACTSCORE on Biography. Furthermore, NEST performs competitively with respect to in-context
retrieval-augmentation on MMLU, Pile-of-Law, and Truthful QA. We further demonstrate that the
two approaches can be combined to enhance generation quality and attribution. Additionally, by
generating multiple tokens at each time step, NEST significantly improves the efficiency of long-
form generation. For Llama-2-Chat 70B, it achieves a 1.8 x speedup in inference time without
compromising attribution or fluency.

2 Background

2.1 Problem Definition

Given an input z, a mixture model M predicts the output y consisting of segments {y1, Y2, ..., Y1 }.
In our setting, M may produce multiple tokens at a time step ¢, and therefore y; indicates the t-th
segment consisting of at most n tokens where 1 < |y;| < n. Let {wgl),wf), ...,wt(")} be the
tokens in segment y;, we use paq(w|z, y<+) to denote the distribution of the next token, and use

pm(w = w,gl) |z, y<+) to denote the probability of wgl) of the next segment ;.

2.2 Nearest Neighbor Language Models (xNN-LM)

The mixture model M involves a pre-trained LM and key-value datastore (XC,)) that enables
approximate nearest neighbors search without further training or fine-tuning.

Key-value datastore. To create the datastore (K, V) using the LM for a corpus D, let f(-) be the
mapping from input sequence c to the hidden states h of the LM at some fixed layer. Let w be the
next word of ¢ in the corpus D. For a sample (¢;, w;) in D after segmentation, we define the i-th
key-value pair (k;,v;) in (IC, V) as (h;, w;), where h; = f(c;). The whole datastore is thus defined
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Figure 1: The NEST approach first locates the tokens in the corpus using the LM hidden states. The
retrieval distribution py.nN is dynamically interpolated with pp s based on the retriever’s uncertainty
At. The token and its n-gram continuation are then selected from the mixture distribution p ¢, while
the final span length is determined by speculative decoding to remove undesired tokens. The spans
incorporated in the final generation provide direct attribution and amortize the generation latency.

as the set of all possible key-value pairs in D:
(’C,V) = {(hi, wi)|(ci,wi) S D} (1)

The size of the datastore (C, V) is proportional to the total number of tokens in corpus D. This brings
difficulty in scaling the size of the corpus and the model, which may require massive storage space
and computational resources.

Probability interpolation. During inference, the language model outputs the token distribution
pm(w|z, y<+), together with the hidden state ¢;. The model uses ¢; as a query to search the datastore
(K, V) and retrieve the r-nearest neighbors 7 according to the similarity s(q, k) between a query ¢
and a key k. The final non-parametric distribution py nn(w|x, y<¢) is computed using a softmax
function over the similarity of all retrieved neighbors:

prNN (W2, y<r) o Z Lu—v, exp(p - s(qe, k1)), 2
(kivi)€m

where p is the inverse temperature. We use 1//dim(q;) for 4 in practice where dim(q;) is the hidden
state dimension. This is similar to computing attention in the Transformer model (Vaswani et al.,
2017). For similarity s(q, k), we follow Khandelwal et al. (2020) and use the negative squared {5
distance. Items not in 7 are assigned with O probability based on the indicator function I,—,,.

Finally, the next token is sampled from the mixture distribution p 4 of the non-parametric distribution
pr-~N~ and the parametric distribution pp using a fixed hyper-parameter A € [0, 1]:

pm(w|z,y<s) = X pem(wl|z, y<i) + (1 = X) - pean(w]z, y<i). 3)

3 Nearest Neighbor Speculative Decoding

3.1 Two-Stage k-NN Search
As mentioned in Section 2.2, maintaining a token-level key-value store can be expensive in terms of

both latency and storage. To provide a better trade-off between latency and accuracy, we adopt the
two-stage design, which is widely applied in information retrieval and search engines.
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First-stage passage retrieval Given the corpus D, we segment the documents into separate passages
of less than m tokens each. We then encode the corpus and use a hybrid retrieval system to select the
relevant passages, as dense retrievers are good at handling semantics in queries (Karpukhin et al.,
2020) and sparse retrievers are good at lexical matching (Sciavolino et al., 2021).

Second-stage k-NN token search After obtaining the top-b retrieved passages {d1, da, ..., dp } at
time step ¢, we use the encoder f(-) of LM to encode the prefixes of all tokens as keys as shown
in Figure 1. The key-value datastore (K, V) therefore is created on the fly. Similarly, we use the
negative squared /- distance as the similarity function and g; as the queries to search for the top-r
nearest neighbors 7 in (K, )").

The two-stage design provides a trade-off between search latency and accuracy and the passage-level
index only takes a fraction of the token-level index in Section 2.2. In addition, the first-stage passage
search also acts as a filter to remove deceptively similar tokens in non-relevant contexts.

3.2 Confidence-Based Output Interpolation

Similar to Equation (3), we linearly interpolate the language model’s distribution ppy and non-
parametric distribution py.nN using a coefficient A, for a time step ¢ in generation. The difference is
that we use the token retrieval score to compute \;:

min, |s(qe, ks
/\tza((ll (g0, k)| —a> /7'>7 (€))
max; |s(qe, ki)|
where o is the sigmoid function and the min-max ratio expresses the uncertainty of the k-NN
component. We use the sigmoid activation to re-center and re-scale this uncertainty, where « is

the offset and 7 is the scale for the sigmoid function. We refer to this method as Relative Retrieval
Confidence (RRC).

If the downstream task does not involve generation, such as perplexity evaluation and multi-choice
tasks, our method will end at Equation (4). The mechanisms introduced in the following sections are
only applied to generation, including token/span selection and post-hoc revision.

3.3 Dynamic Span Selection

Directly sampling tokens from the mixture distribution p might escalate the exposure bias since
the seemingly coherent tokens might be retrieved from completely different sources. To maintain
coherence, we extend the context of the current sampled token by using its n-gram continuation in the
corpus. Given the current time step ¢, we first select the next token w; from the mixture distribution
pm. However, the sampled token w; may correspond to multiple retrieved w; (i.e., the value v;), in
the neighbors 7 which have different n-gram continuations. We use a simple max-pooling strategy”

to select the starting token wgl) of the n-gram from 7:

) = argmax  prn(w = wilT, y<p) ©)
{w;|w;=ws,w;€m}

a
Wy

The corresponding n-gram for time step ¢ is {wgl), w,EQ), e wgn)} where n is fixed hyper-parameter.
The final output is determined by the interpolation coefficient A; in Equation (4):

. We, if A\ > 6,
U, w®, . w™),  otherwise.

where § is a threshold and y; is the segment output at time step t.

(6)

3.4 Relaxed Speculative Decoding

Despite the dynamic selection, the hyper-parameter n is hard to control over different tasks. To
produce spans with adaptive length, we take inspiration from Leviathan et al. (2023), where we
use M to revise the proposed n-gram. However, the proposal distribution q(w|z, y<+) is unknown

*We used a slightly different implementation to ensure the sampled token is in 7. Please see the code here:
https://github.com/facebookresearch/NEST/blob/main/models/knn_transformers.py
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besides the first token wt(l). Therefore, we use a relaxed version of speculative decoding that upper
bounds the acceptance probability. The probability of accepting the token wt(l) in a span is:

paa(w =w | &,y w w?, wl )
2 1—1
(2) Ué ))

(1)
V'mgxp/\/l(w|‘r’y<tawt s Wi "y eens

P(accept token w,ﬁ”) = min [ 1,

(D

where v € (0, 1] is the relaxation factor, which is referred to as “leniency” by Leviathan et al. (2023).

The smaller 7 is, the less often M rejects the draft. If token wgi) is rejected, we will remove all the

tokens from w'" to w!™, and then re-select a token w'" from the distribution p without going
through the span selection. The computation for processing multiple tokens can be parallelized and
NEST can thus maintain the latency or even accelerate the generation. Moreover, suppose all tokens in
the draft are not rejected. In that case, we will directly fetch the n-gram’s continuation in the corpus

and use it for the next draft proposal until rejection, removing the reliance on the hyper-parameter n.

Once the n-gram is accepted, the corresponding parts are masked in the corpus and will never be used
again in this generation. This is to prevent the £-NN component from repetitively retrieving the same
segments in a small key-value store (', )’). We provide the complete procedure in Algorithm 1.

4 Experiments

We evaluate NEST and other baselines on various tasks including text completion, question-answering,
fact-verification, and multi-choice tasks, providing a comprehensive picture of factuality, fluency,
and attribution of NEST in different domains. In all experiments, we focus on evaluating instruction-
following models. We use Llama-2-chat under a zero-shot setting, where we remove the few-shot
demonstrations from the instructions to simulate the realistic usage of these models.

4.1 Benchmark Datasets

Text completion. WikiText-103 (Merity et al., 2017) is a standard benchmark for language model-
ing, extracted from the set of verified articles on Wikipedia. Pile of Law (Henderson et al., 2022) is a
growing dataset of legal and administrative data. We use the datasets® from Huggingface and further
split the test data into validation and test sets. For language modeling, we report the perplexity score.
For free-form generation, we report ROUGE-1, 2, L (Lin, 2004) and MAUVE (Pillutla et al., 2021).

Question answering. We select four knowledge-intensive question-answering datasets, including
Natural Questions (NQ) (Kwiatkowski et al., 2019), TriviaQA (TQA) (Joshi et al., 2017), HotpotQA
(HQA) (Yang et al., 2018), and MedMCQA (MQA) (Pal et al., 2022). Since the in-context demon-
strations are removed for free-form generation, we use answer-level recall (i.e., Hit@ 1) (Karpukhin
et al., 2020) which checks if the output contains any correct answers instead of exact match.

Fact verification. We evaluate a biography-generation task (Min et al., 2023) and Truth-
fulQA (Lin et al., 2022) which is a benchmark for testing false beliefs or misconceptions. We
use FACTSCORE (Min et al., 2023) for biography. For TruthfulQA, we follow Lin et al. (2022) which
uses the difference between the max similarity to a true reference answer and the max similarity to a
false reference answer for BLEU and ROUGE-1.

Closed-set tasks. MMLU (Massive Multitask Language Understanding) (Hendrycks et al., 2021)
benchmark covers 57 subjects across STEM, the humanities, the social sciences, and more. We report
the macro accuracy for each domain.

4.2 TImplementation

Knowledge Sources. Wikipedia (CC BY-SA 3.0): For tasks except text completion on Pile of Law,
we use the Wikipedia 2021 dump released by Izacard et al. (2024) as the knowledge source and follow
the same pre-processing procedures in RA-DIT (Lin et al., 2024), yielding ~33M passages with each

*https://huggingface.co/datasets/pile-of-law/pile-of-law/tree/main
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less than 200 tokens. Pile of Law (CC BY-NC-SA 4.0): We use the training split from Huggingface
and select only the English data. We then follow the same procedure applied in Wikipedia, yielding a
corpus containing ~15M passages after filtering. More details are provided in Appendix A.

Inference setting. ANN-LM and NEST share the same first-stage retriever. We use DRAGON+ (Lin
et al., 2023) and BM25 (Robertson and Zaragoza, 2009) to encode the segments into dense and
sparse vectors, respectively. Given the input, we query both the dense and sparse indexes at the
same time and retrieve their corresponding top-(b - [) passages. We linearly interpolate the similarity
scores between the two search results (also known as fusion) and sort them before selecting the top-b
passages. The number of passage candidates b is set to be 40 and the scaling factor [ is set to be 100.
For RA, we use the top-3 passages in the prompt due to the context window limit. We further combine
NEST and RA since they are independent methods. Greedy decoding is used during generation. More
details about retrieval, decoding, and hyper-parameters are described in Appendix B.

Evaluation setting. For text completion tasks and perplexity evaluation, we use 128 tokens as the
prefix and the consecutive 256 tokens as the target. For the other tasks, we use 128 tokens as the max
generation length for question answering and 512 for fact verification. For retrieval-based models,
only the prefix will be used for retrieval. Hyper-parameters of all baselines and NEST are tuned on
the dev set of WikiText-103, NQ, and Biography. Each baseline uses the same hyper-parameters for
all tasks evaluated. We first tune the related hyper-parameters for perplexity and then tune the rest for
generation metrics to reduce the search space. More details are provided in Appendix B.

4.3 Baselines

Base LMs. We evaluate publicly available, instruction-tuned language models, Llama-2-chat series®,

with model sizes ranging from 7B, 13B to 70B.

Two-Stage ENN-LM. We apply the two-stage strategy described in Section 3.1 to KNN-LM as
well, where we retrieve the top-b passages and encode a key-value datastore (X, V") on the fly.

In-Context Retrieval Augmentation (RA). A common retrieval-augmentation method is adding
the retrieved evidence into the prompt. We perform retrieval given the only input instead of retrieving
new passages every k step due to the expense of refreshing the kv-cache.

4.4 Main Results

Table 1 shows the main results of NEST and other baselines. For language modeling, RA-NEST is
able to achieve the lowest complexity on both WikiText-103 and Pile of Law. For text completion,
RA has the best MAUVE scores and ROUGE scores in Wikitext-103 while RA-NEST works better
for 7B and 13B models on Pile of Law. We observe that for legal documents, quoting the exact
clauses from the source might be more favourable compared to Wikipedia.

For question-answering, RA-NEST tends to work better for smaller models (7B and 13B) in general.
The gap between base LMs and other methods diminishes for 70B LMs, which is consistent with
previous work where retrieval is found most useful for smaller models (Borgeaud et al., 2022).

For fact-verification, NEST is able to outperform the base LMs but underperform RA in terms of the
FACTSCORE. RA-NEST is able to outperform RA for the 70B model. The degradation for RA-70B
is caused by generating shorter claims which is punished by the FACTSCORE. On TruthfulQA, the
semi-parametric LMs consistently outperform base LMs and RAs where in-context retrieval seems to
have a negative effect on the scores. This is because Truthful QA is an adversarial dataset containing
difficult questions where in-context RA is more susceptible to the “evidence” in the prompt (e.g.,
astrology and myths). In contrast, NEST only interpolates the results at the output level and therefore
performs better in this case. The combination RA-NEST is also affected by the in-context retrieval.

For closed-set tasks, NEST is comparable to RA and RA-NEST manages to achieve the best macro
scores on average. Overall, NEST is able to outperform base LMs and kNN-LM’s on most tasks while
being on par with RA. The combination of RA and NEST further improves over the two methods

*https://huggingface.co/meta-1lama/Llama-2-70b-chat-hf
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Models Wikitext-103 Pile of Law
PPL(]) MAUVE RG-1 RG-2 RG-L Avg Len | PPL(J) MAUVE RG-1 RG-2 RG-L Avg Len

Llama-2-Chat7g 14.6 58.8 15.8 3.7 14.4 175.4 10.1 80.7 19.1 5.5 17.1 2114
+RA 7.2 74.6 357 231 344 204.5 7.1 84.7 23.1 8.9 21.1 222.0
+kNN-LM 9.8 82.5 23.7 7.7 21.7 238.2 8.8 81.1 19.4 5.7 17.4 214.3
+NEST 8.4 732 28.4 14.2 27.1 218.4 8.1 88.0 23.7 8.7 21.5 226.5
+RA-NEST 6.4 72.6 352 227 34.0 202.0 6.7 90.0 244 9.0 22:2) 232.1
Llama-2-Chat;sp 12.0 759 19.9 4.9 18.0 218.4 8.2 72.8 17.5 53 15.7 181.7
+RA 6.5 91.5 389 242 37.2 249.3 59 86.6 23.6 9.1 21.5 228.7
+kNN-LM 8.6 76.3 23.7 8.2 21.9 238.5 7.4 71.5 17.7 53 15.9 183.7
+NEST 7.2 67.1 29.3 15.6 28.1 207.1 6.8 86.0 229 8.7 20.9 2123
+RA-NEST 5.8 86.8 38.6 24.0 37.0 245.5 5.7 90.1 24.7 9.2 224 229.4
Llama-2-Chat;op 9.9 88.6 229 6.2 20.8 239.6 6.9 93.4 23.0 7.1 20.7 250.1
+RA 53 91.6 40.5 26.1 38.8 235.9 4.9 95.5 26.3 10.1 24.0 253.2
+kNN-LM 7.1 83.6 26.1 9.6 24.1 2539 6.3 94.4 23.1 7.2 20.8 251.3
+NEST 6.3 82.6 32.6 17.2 31.1 236.3 5.9 95.4 25.6 9.4 232 251.3
+RA-NEST 4.8 90.0 402 259 38.6 233.1 4.7 97.6 26.2 9.5 23.7 253.6
Models TQA NQ HQA MOQA Avg. Truthful QA Biography MMLU

Answer-Level Recall ABLEU ARG-1 ‘ FS #Facts | Human. STEM Social Other Avg.
Llama-2-Chat;g | 61.1 389 306 93 350 -0.02 042 (272 712 37.8 326 389 396 372
+RA 69.5 484 44.1 128 43.7| -0.34 0.18 [56.5 67.1 41.8 353 422 433 407
+kNN-LM 634 424 335 95 372| 013 0.66 |30.6 59.8 38.0 331 392 40.1 37.6
+NEST 61.5 432 335 102 37.1| 0.03 045 |389 582 42.0 354 420 434 40.7
+RA-NEST 69.0 48.8 453 133 441 | -0.32 021 |55.1 577 37.9 327 393 398 374
Llama-2-Chatjzg | 63.5 423 326 102 372| 0.13 0.81 [28.8 499 41.5 350 402 438 40.1
+RA 709 51.6 446 140 453| -0.16 025 [59.1 512 43.4 374 435 464 427
+kNN-LM 647 435 342 112 384 020 095 |[31.1 46.1 414 347 40.6 442 40.2
+NEST 642 442 343 109 384 0.29 098 |35.7 472 41.3 349 402 437 40.0
+RA-NEST 709 517 453 147 45.7| -0.14 025 |584 524 43.5 377 435 467 428
Llama-2-Chatyop | 74.0 50.1 39.5 12.8 44.1| 0.14 070 |34.2 58.8 43.5 379 444 470 432
+RA 75,5 554 525 160 499 | -0.13 040 |[529 42.1 45.9 39.7 462 48.6 45.1
+kNN-LM 746 51.2 402 135 449| 0.08 0.58 |36.1 544 44.0 374 441 471 432
+NEST 742 51.6 414 138 452| 0.17 070 |41.6 56.2 43.8 38.0 444 478 435
+RA-NEST 754 552 524 163 49.8| -0.19 031 |59.2 538 45.8 39.7 462 489 45.1

Table 1: Results on text completion (upper table) and other tasks (lower table). Bold numbers indicate
the best performance. PPL: Perplexity. RG: ROUGE score. Avg. Len: Average generation length.
ABLEU/ARG: The difference between the max score to correct references and the max score to
incorrect references. FS: FACTSCORE with length penalty.

on some tasks. Despite the limited improvement, we will show that NEST is able to provide better
attribution and latency in the following sections.

4.5 Latency Analysis

Latency breakdown. The combination of dynamic span selection and relaxed speculative decoding
can improve the latency of the LLM generation by quick draft proposal and processing multiple
tokens at a time step. Figure 2a shows the latency breakdown of a NEST-70B model (o = 0.3, 7 =
0.1, = 0.5) for different relaxation factors on the Biography validation data. The latency experiment
is done on 8 x A100 GPUs (for model parallelization) and 32 CPU threads (for search). The batch
size is set to 1. We use internal, research-purpose implementation of the base Llama-2-chat model
which did not optimize for latency. As we can see, the LM encoding time takes about half of the
latency, while the sum of the others takes the rest. Noticeably, the cost of passage search and token
index building stay relatively constant per query, while the others are related to the number of tokens
processed per time step. Still, even with extra retrieval overheads, the slowest NEST model is faster
than the base LM, showing the efficacy of span selection and speculative decoding.

Latency-accuracy trade-off. To understand why NEST can accelerate generation, we first show
the latency-accuracy trade-off by tuning the relaxation factor in Figure 2b. The smaller - is, the less
often NEST rejects a segment retrieved from the corpus, which enables more tokens to be processed
in parallel. The average proposed span length in Figure 2a can increase from 5 tokens to 35 tokens
at each time step as the relaxation factor gets smaller. Combined with Figure 2a, we can reach the
conclusion that fetching longer spans from the corpus results in lower generation latency per query.
For the accuracy, the FACTSCORE on Biography validation data shows that there is a sweet spot
around v = 5e — 2 where both low latency and high accuracy can be achieved at the same time.
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Figure 2: Latency-accuracy trade-off and breakdown on Biography using Llama-2-Chat 70B+NEST.
As the relaxation factor « decreases, NEST tends to accept longer spans from the corpus. We choose
~ = be — 2 in our main experiments, which accelerates the generation and improves the FACTSCORE.

Task | Models | Ratio (%) Length | Example (Generated by NEST-70B)
NEST 75 93.4 18.4 Question: who sings does he love me with reba?
NEST 138 52.4 4.4 Answer: The song "Does He Love You" [1] is a duet
NEST 708 58.8 4.3 between Reba McEntire and Linda Davis. It was
NQ RA-NEST 7 71.5 3.1 released in August 1993 as the first single from Reba’s
RA-NEST ;3 33.2 3.0 compilation album Greatest Hits Volume 2. It is one of
RA-NEST 70 44.9 3.9 country music’s several songs about a love triangle. [2]
Question: Tell me a bio of Taral Hicks.
NEST 78 95.5 27.9 Answer: Taral Hicks (born September 21, 1974) is an American actress
NEST 138 53.9 10.6 and singer. Hicks is best known for her acting in such films as 1993’s
Bio NEST 708 58.6 7.0 American crime drama film A Bronx Tale and her singing in such work
RA-NEST 7 50.3 5.1 as her 1997 [3] debut studio album This Time which peaked at No. 4 on
RA-NEST 35 48.5 5.9 Billboard Bubbling Under Hot 100 Singles. Raised in Teaneck,
RA-NEST 70 80.7 11.0 New Jersey, Hicks graduated from Teaneck High School in 1994 [3].

She is the younger sister of actress and singer D’atra Hicks.

Table 2: Attribution analysis. (Attribution) Ratio: Proportion of tokens that are taken from the corpus.
(Attribution) Length: Average length of consecutive spans in the generation that are taken from the
same document. Green: Segments taken from the corpus. Gray: Reference.

4.6 Attribution and Qualitative Analysis

One of the most important features of NEST is providing attribution directly at a span level, where
the reference for the corresponding statement is accurate since it is directly taken from the corpus.
Table 2 shows the attribution ratio, average attributed span length, and two examples for analysis.
For NQ and Biography tasks, depending on the model and hyper-parameters in Equation (4) and (7),
the ratio of tokens that can be traced back to the corpus ranges from 33.2% to 95.5%. In addition, it
is more desirable to have consecutive segments that come from the same source so that consistent
attribution can be provided, and the average length of spans taken from the corpus ranges from 3.0
to 27.9 tokens. This feature provides span-level attribution for most claims in the LLM generation.
To our knowledge, neither of the baselines can achieve the same granularity and preciseness for the
attribution as NEST. We provide more analyses on sensitivity and ablation for NEST in Appendix C.

5 Related Work

5.1 Retrieval-Augmentation

Retrieval Augmentation involves external knowledge sources to improve the effectiveness of language
models on knowledge-intensive tasks. Chen et al. (2017) propose DrQA which combines extractive
models and independent retrievers for open-domain question-answering. Follow-up works on retrieval-
augmentation such as REALM (Guu et al., 2020), RAG (Lewis et al., 2020), and Atlas (Izacard
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et al., 2024) further combine the retrieval component in pre-training and fine-tuning for downstream
knowledge-intensive tasks. Asai et al. (2024) further divide them into three categories:

Input augmentation. REPLUG (Shi et al., 2024a) and in-context RALM (Ram et al., 2023) propose
to pre-pend the retrieved passages in the prompts for zero-shot factual support. Recently, Self-
RAG (Asai et al., 2023b) leverages special tokens to perform adaptive retrieval and different critics
to iterative refine the RALM’s output. RA-DIT (Lin et al., 2024) retrofits LLMs with retrieval
capabilities via instruction fine-tuning.

Intermediate fusion. RETRO (Borgeaud et al., 2022) employs a novel attention mechanism to
incorporate multiple pre-processed text fragments in intermediate layers for more efficient integration
of retrieved results. This approach has been successfully applied to larger decoder-only language
models as demonstrated by RETRO++ (Wang et al., 2023b) and InstructRetro (Wang et al., 2024).
FiD (Izacard and Grave, 2021) applies similar an encoder-decoder structure in a zero-shot manner
and achieves better effectiveness at a document level.

Output integration. ANN-LM (Khandelwal et al., 2020) pioneers this direction and proposes to
interpolate the retrieval distribution and LM’s prediction. Follow-up works further propose adaptive
interpolation methods which involve training (He et al., 2021; Bhardwaj et al., 2023) and excessive
tuning (Drozdov et al., 2022). Another line of work proposes to joint train the phrase encoder and
LM to expand the vocabulary dynamically using the retrieved phrases, such as Copy-Generator (Lan
et al., 2023) and its follow-up work (Cao et al., 2024). Martins et al. (2022) proposes a chunk-based
kNN machine translation model which retrieves chunks of tokens from the datastore.

5.2 Inference-Time Revision

Speculative decoding (Leviathan et al., 2023; Chen et al., 2023; Miao et al., 2023; Spector and Re,
2023) is an acceleration method that leverages a small model to generate drafts for a large model
to evaluate. The latency is improved as the larger model can process multiple tokens in parallel at
each time step. Recently, REST (He et al., 2024) proposes to draw multiple drafts from a datastore
and leverages a prefix trie tree to compute the proposal distribution, which is the closest concurrent
work. Yang et al. (2023) also utilizes prefix matching to select draft sentences from a datastore, and
keep the continuation of the draft sentence as long as the token matches with the model generation.

In general, speculative decoding can be categorized as an unbiased self-revision method. In com-
parison, NEST changes the LM output distribution through interpolation with a non-parametric
probability distribution. Previous work focusing on fact-checking follows a similar idea to generate
factually consistent texts with a set of evidence via post-hoc editing, such as FRUIT (Iv et al., 2022)
and PEER (Schick et al., 2022). Recently, RARR (Gao et al., 2023) leverages more complex planning
with LLMs to verify the retrieved evidence and generate attribution reports.

6 Limitations

While being able to directly retrieve segments from the corpus and apply them in the generation, the
output of NEST might still contain factual errors depending on the accuracy of the first-stage passage
retrieval and the second-stage token retrieval. Moreover, as a plug-and-play method, our main goal is
to provide a flexible solution that can combine different LLMs and data stores in zero- and few-shot
manners. Without further fine-tuning, the integrated system might be sub-optimal and the results can
be better if it is fine-tuned on appropriate tasks. Lastly, such semi-parametric LMs may not improve
the ability of in-context learning, since the demonstrations in the prompts are unlikely to appear in
any contexts that can be found in the database. An observation from preliminary experiments is that
the current neural retrievers do not have the capability to process the in-context few-shot information,
where techniques such as query reformulation might be needed for parsing the demonstrations.

7 Conclusion

This paper presents NEST, an inference-time revision method for LMs that improve their factuality
and attribution through nearest neighbor speculative decoding. Leveraging two-stage k-NN search,
relative retrieval confidence, dynamic span selection, and relaxed speculative decoding, NEST
improves both validation perplexity and free-form generation quality on nine different tasks. Its
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effectiveness can be further improved when combined with in-context retrieval augmentation. With
these results, we demonstrate that NEST is capable of generating text grounded to real-world sources
in low latency while maintaining fluency.

8 Broader Impact

The ability to copy real-world texts from existing data stores is useful for finding the source of
the claim (credibility), preventing hallucination (factuality), as well as protecting copyright (risk
management). It helps to resolve the dispute that often happens in Al tools by acknowledging the
contents that are borrowed from existing human works (e.g., arts, books, and other creative content).
Meanwhile, the information on the Internet is mixed and it is important to filter out false and sensitive
information before directly injecting them into the generation.
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A Additional Implementation Details

Two-stage k-NN search For the first-stage passage search, we use a Faiss (Douze et al., 2024)
dense index and Pyserini (Lin et al., 2021) BM25 index for efficient search. For the dense index,
we first use DRAGON+ to encode each passage in the corpus into a single vector, and then use
Faiss (index string “IVF65536,PQ256”) to cluster the vectors into 65536 centroids and quantize
them into 256 codes of 8 bits each. For the sparse index, we use the default hyper-parameters and
the “optimize” option in Pyserini to reduce the index size. For the approximate nearest neighbor
retrieval, we use nprobe= 4096. During passage search, we retrieve 4000 passages from each index
and keep the similarity score for fusion. The fusion coefficient 7 is determined by the relative
confidence of dense and sparse retrievers similar to Equation (4). We set the dense coefficient
Ndense = 1 — top-100(Sgense (¢, d))/ Max Sdense (¢, @) and same for the sparse coefficient nparse. The
final interpolation coef is n = 0.7 * (1 — T]sparse) ~+ 0.3 * Ngense- The fusion score for each document
5(q,d) =1 * Sdense + (1 — M) * Ssparse- If a document is missing in either dense or sparse retrieval
results, we set its score to the minimum similarity of the dense/sparse retrieval results. The first-stage
search is done on RAM and CPUs with 32 threads. The final Wikipedia dense index size is about
8.96GB, and the sparse index size is about 3.48GB on disk.

For the second-stage token search, we use the LLM to encode the sequence and use the input
to the final layer’s feed-forward network after layer normalization as the key and query vectors
following Khandelwal et al. (2020). We retrieve the top-1024 tokens using the squared ¢, distance
and compute the non-parametric probability according to Equation (2).

Rest of NEST For relative retrieval confidence, we set a = 0.3, 7 = 0.1 for all Wikipedia-based
tasks and a = 0.2,7 = 0.1 for Pile of Law for all model sizes in Equation (4). For dynamic
span selection, we set the n-gram length to be 64 and 6 = 0.5 for all model sizes and all tasks in
Equation (6). For relaxed speculative decoding, we set v = 5e — 4 for Pile of Law tasks for all model
sizes in Equation (7). For Wikipedia-based tasks, we set v = 5e — 4 for the 7B model, v = 5e — 3
for the 13B model, and v = 5e — 2 for the 70B model. For RA-NEST, all models use the same
v = 5e — 1 for all tasks except Pile of Law which still uses v = 5e — 4 We observe that as the model
gets stronger, using larger v which leads to more rejection, is more beneficial to generation quality.
The complete NEST procedure is provided in Algorithm 1.

B Evaluation Details and Hyper-parameter Tuning

Datasets. We sample subsets of WikiText-103, NQ, and Biography as dev sets for hyper-parameter
tuning. We use the validation sets of WikiText-103 (CC BY-SA 3.0), NQ (Apache License 2.0),
TriviaQA (Apache License 2.0), MedMCQA (MIT License), HotpotQA (Apache License 2.0),
MMLU (MIT License), and Biography (MIT License) for validation. TruthfulQA (Apache License
2.0) only has the test set. We finally test all datasets shown in Table 1. For HotpotQA and MedMCQA,
we do not have access to the test set and therefore the validation results are reported. For Biography,
we use the labeled data that have human annotation as the validation and dev set, and the unlabeled
data as the test set. In the original FACTSCORE paper, the authors use InstructGPT (Ouyang et al.,
2022) to perform fact decomposition before verification. We hereby train our own decomposition
model by further fine-tuning Llama-2 7B using publicly available datasets (Chen et al., 2022; Liu
et al., 2023; Malaviya et al., 2024). For fact verification, we use the option retrieval+llama+npm
to evaluate the decomposed atomic facts.

Inference and prompts. For language modelling and text completion, we use a context length
of 128 tokens and a max generation length of 256 tokens. For the other tasks, we use 128 tokens
as max generation length for question answering and 512 for fact verification. We remove all the
in-context demonstrations from the prompt to test the zero-shot effectiveness of our model. We use
greedy decoding in our experiments as the randomness in sampling can undermine factuality.

Regarding the prompts we use for evaluation, for MMLU, we compare the perplexity of each option
concatenated with the question and select the one with the minimum perplexity.

For text completion, we use the following prompt “[INST] Write an article.\n Article: [/INST]
{prefix}” where the [INST] is a format tag for Llama-2-Chat.
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Algorithm 1 NEST w/ Greedy Decoding

Inputs: Language model LM, hidden state encoder f, first-stage retriever R, corpus C, input .
> First-stage retrieval: Retrieve documents dy, ds . . ., dp, from corpus C
di,ds ... dy < R(CL‘,C)
> Second-stage retrieval: Construct token-level key-value memory
(K'V) + @
for: =1tobdo

wfi,wgi, cwdi  d;

R b3 ki f(d;)

fori=1tom — 1do

(K, V").add(hf, wii )

end for
end for
> Generation
Y<t < T
fort =1to 7T do

> Compute query embedding

@ < f(y<e)[—1]

> Token embeddings search, return top-r scores and values

7+ (K',V’).search(qy, )

(81,01), (82, 02), ooy (Spy0p) = 0

> Compute non-parametric distribution

prNN(w|y<e) < 0,Vw € vocabulary

for:=1tordo

PrNN (W = Vi]y<¢) < pre-nn(w = vily<e) + exp(p - Si)/ZZ:j exp(p - 55)

end for

> Confidence-based Interpolation

Ay < sigmoid(( sl _ o) /7)

max; S;
Pm(wly<e) < A - pim(wl|y<e) + (1 = Ap) - penn(w|y<e)
> Dynamic span selection
wy < argmax pa (w|y<¢)

w
vy = argmax pr.nn(w = vi]Y<t)
V=Wt

Vpprn  C.get-ngram(vg, n)
Wy, if Ay > 6,

Yt Vt:t4m, oOtherwise.

n < |y

> Relaxed Speculative Decoding

fori =1tondo

) M) @ =)y
paccept(wt )<_ X

7
pa(w=w" |2y <o wi® w]

1 2 i —1
~-max pam(wlz,ycrw w L wl D)

Break if paccept(w)”)) < 0.5

end for

if i <nandn > 1 then )
w;” < argmax pM(w\y<t,wt(l),wt(2), . wé’fl))

end if ) .
Yt < concatenate(y<q, w', w?, .. w”)

end for
Return y
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Figure 3: Sensitivity analysis on WikiText-103 and NQ dev set for the NEST-7B model with the

above hyper-parameters in the sub-figures.

For question-answering and fact-verification tasks, we use the following template: “[INST] Question:
{question} Answer: [/INST]” where we format the input question in the bracket.

For the RA models, we use the prompt “[INST] Write an article with the background context as
reference. Background: {retrieved passages}\n Article: [/INST] {prefix}” for text completion. For
retrieval-augmented question-answering and fact-verification tasks, we use “[INST] Answer the
question with the background context as reference. Background: {retrieved passages}\n Question:

{question} Answer: [/INST]”.

Hyper-parameters and baselines. For the base LM, we do not tune the hyper-parameters released
with the original Llama-2-chat models. For the in-context retrieval augmented baseline, we select the
top-3 retrieved passages. For kNN-LM, we follow Equation (3) and use an interpolation coefficient
of 0.7 for Wikipedia-based tasks and 0.9 for Pile of Law. For NEST and RA-NEST, we first tune
the hyper-parameters in Equation (4) on language modelling tasks using perplexity. We then fix
those hyper-parameters and then tune the rest of the parameters in Equation (6) and (7) on generation
tasks. All hyper-parameters in the above methods are tuned on the dev sets of WikiText-103, NQ,

and Biography.

C Analysis

The following analyses are performed on the validation set of WikiText-103, NQ, and Biography data

with the Llama-7B-chat model.

C.1 Sensitivity

Number of retrieved passages and tokens Khandelwal et al. (2020) show that increasing the size
of the database and the number of tokens can improve the perplexity with proper hyper-parameter
setting. We also verify whether our two-stage k-NN search and RRC approach follow the same trend.
Figure 3a shows the validation perplexity on WikiText-103. For a fixed number of passages, the
perplexity decreases as the number of tokens increases; for a fixed number of tokens, the perplexity
decreases about 0.5 ~ 1.0 as the number of passages doubles. However, as NEST needs to encode
the retrieved passages on the fly, the latency also increases linearly w.r.t. the number of passages.
Therefore, we set the passage number to be 40 and the token number to be 1024 in the main

experiments.

Interpolation coefficient Figure 3b shows the sensitivity of the hyper-parameters « (offset) and 7
(temperature) in Equation (4) on WikiText-103. When 7 is big, ); is close to a uniform distribution
and therefore the offset o does not have a big impact on the perplexity. When 7 is small, the impact
of « is enlarged and the sweet spot is achieved around 7 = 0.1 and o = 0.4.

Threshold for dynamic span selection Figure 3¢ shows how threshold ¢ in Equation (6) affects
the generation on NQ. A bigger § means selecting the span instead of a token more often. We can see
that the answer-level recall on NQ first increases and then decreases as we increase the value of 4,

where the sweet spot is around § = 0.5.
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Models (7B) | Wiki/ROUGE-1 NQ/ALR Bio./FS

kNN-LM (two-stage) 20.1 40.8 34.8
+ Relative Retrieval Confidence 24.7 44.4 41.6
+ Dynamic Span selection 24.5 44.6 41.6
+ Relaxed speculative decoding 26.8 454 46.8

Table 3: Ablation study on the validation set of WikiText-103, NQ, and Biography. ROUGE-1 is
reported for WikiText-103, ALR is reported for NQ, and FACTSCORE is reported for Biography.

C.2 Ablation Study

Table 3 shows a progressive ablation of NEST on WikiText-103, NQ, Biography. As mentioned in
Section 3.1, it is extremely expensive to encode billion-token corpus with billion-parameter models.
Therefore, we directly start with the two-stage implementation of KNN-LM and gradually add the
methods applied in NEST. As we can see, adding the RRC component gives the first effectiveness
boost. The second dynamic span selection method does not seem to increase the effectiveness, yet it
is crucial to give consistent attribution for consecutive spans and tokens. The last relaxed speculative
decoding method further improves the final generation quality.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We claim that NEST can provide better generation (Section 4.4), attribution
(Section 4.6), and latency (Section 4.5) compared to the base LM and £NN-LM models.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Section 6.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: This paper does not include theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide the complete algorithm of NEST in Algorithm 1 and implementa-
tion in Appendix A for reproduction.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: The code base is released at https://github.com/facebookresearch/
NEST/tree/main. All the datasets we used are publicly available as discussed in Section 4.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide details about datasets, inference, evaluation, hyper-parameters, and
baseline in Section 4 and Appendix B. Our method is a training-free method and therefore
does not involve training-related hyper-parameters such as training steps and learning rate.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: This paper does not include significant tests considering the performance gap
between the proposed approach and the baselines.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Computational resources and hardware information for inference are reported
in Section 4.5 and Appendix A. Our method does not involve training.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Our paper conforms with the NeurIPS Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Section 8.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our method is a general framework that can be applied to different language
models and knowledge sources, and therefore does not require safeguards.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Except the internal code base, all the existing assets including code and data
used in this paper are properly cited in Section 4.2 and Appendix B.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
13. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: This paper does not introduce new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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paperswithcode.com/datasets

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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