Input-to-State Stable Coupled Oscillator Networks for
Closed-form Model-based Control in Latent Space

Maximilian Stolzle Cosimo Della Santina
Department of Cognitive Robotics Department of Cognitive Robotics
Delft University of Technology Delft University of Technology
M.W.Stolzle@tudelft.nl C.DellaSantina@tudelft.nl
Abstract

Even though a variety of methods have been proposed in the literature, efficient and
effective latent-space control (i.e., control in a learned low-dimensional space) of
physical systems remains an open challenge. We argue that a promising avenue is to
leverage powerful and well-understood closed-form strategies from control theory
literature in combination with learned dynamics, such as potential-energy shaping.
We identify three fundamental shortcomings in existing latent-space models that
have so far prevented this powerful combination: (i) they lack the mathematical
structure of a physical system, (ii) they do not inherently conserve the stability
properties of the real systems, (iii) these methods do not have an invertible mapping
between input and latent-space forcing. This work proposes a novel Coupled
Oscillator Network (CON) model that simultaneously tackles all these issues.
More specifically, (i) we show analytically that CON is a Lagrangian system - i.e.,
it possesses well-defined potential and kinetic energy terms. Then, (ii) we provide
formal proof of global Input-to-State stability using Lyapunov arguments. Moving
to the experimental side, we demonstrate that CON reaches SoA performance when
learning complex nonlinear dynamics of mechanical systems directly from images.
An additional methodological innovation contributing to achieving this third goal is
an approximated closed-form solution for efficient integration of network dynamics,
which eases efficient training. We tackle (iii) by approximating the forcing-to-input
mapping with a decoder that is trained to reconstruct the input based on the encoded
latent space force. Finally, we leverage these three properties and show that they
enable latent-space control. We use an integral-saturated PID with potential force
compensation and demonstrate high-quality performance on a soft robot using raw
pixels as the only feedback information.

1 Introduction

Learning how the environment evolves around us from high-dimensional observations (i.e., world
models [1]]) is essential for achieving both artificial and physical intelligence [2]]. For example,
world models are required for effectively planning an artificial/robotic agent’s actions in complex
and unstructured environments [3]. However, learning such dynamics directly in high-dimensional
observation space is usually intractable. Seminal works have shown that we can leverage autoencoders
to compress the state information into a low-dimensional latent space [4} 5] in which it is much more
feasible to learn the dynamics [6} 7} 8| 9, [10]]. However, strong limitations still persist when it comes
to using these learned models to generate low-level intelligence.

One outstanding challenge is how to perform closed-loop control in the learned latent space -
i.e., how to generate control inputs based on a high dimensional sensory input such that a desired
movement is generated. Prior works have explored, among other approaches, Reinforcement Learning
(RL) [L14 121 13L[14], Model Predictive Control (MPC) [7, [15 16} [17], Linear-quadratic Regulators
(LQRs) [18L[19, 20] and gradient-based optimization [21]] for planning and control towards a target
evolution that is given in observation space. However, all existing latent-space control strategies have
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Figure 1: Panel (a): The proposed CON network consists of n damped harmonic oscillators that are coupled
through the neuron-like connection tanh (W x+b) and the non-diagonal stiffness K — k and damping coefficients
D —d, respectively. The state of the network is captured by the positions z(¢) and velocities @(t) of the oscillators.
The time-dependent input is mapped through the (possibly nonlinear) function g(u) to a forcing 7 acting on the
oscillators. Panel (b): Exploiting Coupled Oscillator Networks (CONs) for learning latent dynamics from pixels:
We encode the initial observation o(to) and the input u(t) into latent space where we leverage the Coupled
Oscillator Network (CON) to predict future latent states. Finally, we decode both the latent-space torques 7 (t)
and the predicted latent states z(¢).

shortcomings, such as a limited planning horizon and slow control rates (MPC and gradient-based
approaches), sample inefficiency (RL), or they pose a requirement for learning linear dynamics [6]]
(LQR), which is not even possible for systems that are inherently non-linearizable [22]. One
interesting avenue is to leverage model-based control approaches, such as potential shaping [23| 24,
101, for effective and computationally efficient control in latent space [25]. For these techniques to be
feasible, the dynamical model needs to fulfill four characteristics: (i) the dynamics need to have the
mathematical structure of physical systems, (ii) conserve the stability properties of real systems, (iii)
the latent state needs to be relatively low-dimensional, and (iv) there needs to exist a well-defined,
invertible mapping between the input and the forcing in latent space. However, existing model
structures that are used for learning latent dynamics [26]] do not meet all of these criteria. Relevant
examples are Multilayer Perceptrons (MLPs), Neural ODEs (NODEs) [27, 28], many variants
of Recurrent Neural Networks (RNNs) (e.g., LSTMs [29], Gated Recurrent Units (GRUs) [30],
etc.), and physics-informed neural networks (e.g., Lagrangian Neural Networks (LNNs) [31}32,[10],
Hamiltonian Neural Networks (HNNs)) [33]]. For example, MLPs do not have a physical interpretation
and do not provide an invertible mapping of the forcing generated by the input, NODEs are usually
not easily stabilizable [34], most RNNs require a relatively high-dimensional latent space (i.e., many
hidden states), and energy-shaping control approaches based on LNNs [10] do not come with any
formal stability guarantees.

In recent years, oscillatory networks [35} 136 37,138} 139] have been shown to exhibit state-of-the-art
performance on time sequence modeling tasks while being parameter-efficient, thus fulfilling our
requirement (iii). Consequently, we believe that they are a promising option for control-oriented
dynamics learning in latent space. Still, these models do not fulfill the remaining requirements that
we have listed above. Despite being an interpretable combination of harmonic oscillators, they do
not have the structure of a physical system - i.e., they do not possess a well-defined energy function.
Moreover, only local stability [35,[37] has been shown, with sufficient conditions that appear to be
very stringent. Finally, in addition to training an encoder that maps inputs to latent-space forcing, we
propose also training a decoder that learns to reconstruct inputs based on latent-space forcing. This
enables us to easily switch between inputs and forcing, which is essential when implementing control
strategies.

We resolve all the above-mentioned challenges by proposing Coupled Oscillator Networks (CONGs),
a new formulation of a coupled oscillator network that is inherently Input-to-State Stability (ISS)
stable, for learning the dynamics of physical systems and subsequently exploiting its structure for
model-based control in latent space. The network consists of damped, harmonic oscillators connected
through elastic springs, damping elements, and a neuron-like coupling force and can be excited by a
nonlinear actuation term. We identify a transformation into a set of coordinates from which we can
derive the networks’ kinetic and potential energy. This allows us to leverage Lyapunov arguments [40]
for proving the global asymptotic stability of the unforced system and ISS stability for the forced
system under relatively mild assumptions on the network parameters. Even though we constrain
the dynamics to a very specific structure, we demonstrate (a) the CON network achieves similar
performance as NODEs when learning the dynamics of unactuated, mechanical systems with two
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orders of magnitude fewer parameters and (b) that the proposed model achieves, for the complex
task of learning the actuated, highly nonlinear dynamics of continuum soft robots [41] 42] directly
from pixels, a 60 % lower prediction error than Coupled Oscillatory Recurrent Neural Network
(coRNN) [35] and reaches the SoA performance across all techniques that we tested. Finally, we
show some initial results that the proposed CON model is also able to learn the latent dynamics of
Partial Differential Equations (PDEs), in this case containing reaction-diffusion [9} 43]] dynamics.

Subsequently, we derive an approximate closed-form solution, that is, in parameter regimes in which
the linear, decoupled dynamics dominate transient, more accurate than numerical integrators with
comparable computational requirements and which increases training speed by 2x with a small
decrease in prediction accuracy. Finally, as we can derive the system’s potential energy, we can
leverage potential shaping [23| 24] to derive a controller that combines an integral-saturated PID
controller with a feedforward term compensating potential forces. As the feedback acts on a well-
shaped potential field, tuning the feedback gains becomes very simple and out-of-the-box, and the
controller exhibits a faster response time and a 26 % lower trajectory tracking Root Mean Squared
Error (RMSE) than a pure feedback controller based on a latent NODE [27] model.

The proposed methodology is particularly well-suited for learning the latent dynamics of mechanical
systems with continuous dynamics, dissipation, and a single, attractive equilibrium point. Examples of
such systems include many soft robots, deformable objects with dominant elastic behavior, Lagrangian
systems immersed in a dominant potential field, or locally other mechanical systems such as robotic
manipulators, legged robots, etc. For these systems, we can fully leverage the structural prior of the
proposed latent dynamics, including the integrated stability guarantees. If the system is actuated, the
learned dynamics can be subsequently exploited for model-based control, as demonstrated in Sec. [5]

The code associated with this paper is available on GitHulﬂ

2 Input-to-State Stable (ISS) Coupled Oscillator Networks (CONs)

Formulation. The integral component to (coupled) oscillatory RNNs [35] 136, 37, 38] are one-
dimensional, potentially damped, harmonic oscillators, which are described by their state y; =

[ ii]T € R?, where x; and i; are the position and velocity of the oscillator, respectively. Then,
the oscillator’s dynamics are defined by the following Equation of Motion (EOM)

Here, m; is the mass, x; is the stiffness, and d; is the damping coefficient of the damped harmonic
oscillator. F;(t) € R is a (possibly time-dependent) external forcing term acting on the mass.

Even though the state is extremely low dimensional and the number of parameters is small, this single,
damped harmonic oscillator can already exhibit a variety of (designable) behaviors: The expressions

Wni = /9t and G = 3 \/% let us determine the natural frequency and the damping factor,

respectively and allow us to design the transient behavior. For example, w;, ; lets us isolate a spectrum
of the input signal F;(¢) [37] and (; determines the damping regime: underdamped (wy,,; < 1),
critically damped (w, ; = 1), overdamped (wy,; > 1). Furthermore, as (damped) harmonic oscillators
are omnipresent in nature (and especially in physical systems), they have been intensively studied and
are well understood (e.g., characteristics, closed-form solutions, etc.). In this work, we will exploit
some of these properties and knowledge to learn stable (latent) dynamics efficiently.

By intercoupling damped harmonic oscillators, we can drastically increase the expressiveness of the
dynamical system [35] 137, 38]] while preserving some of the intuition and understanding we have
for these systems. In this work, we propose a ISS-stable CON consisting of n damped harmonic
oscillators that are coupled through both linear and nonlinear terms. The networks’ state is defined

asy = [2T 7] T ¢ R2" and its dynamics can be formulated as a 2™-order Ordinary Differential

Equation (ODE)

a(t)

dx
y(t) = {%} = FW®),u®) = |y (1)) - Ka(t) — D (i) — tanh(W z(t) + b) | @

where K, D € R™*"™ are the linear stiffness and damping matrices, respectively. The neuron-inspired term
tanh(W z(t) + b) with W € R"*™, b € R"™ provides nonlinear coupling between the harmonic oscillators.
The network is excited by the time-dependent input u(¢) € R™ through the possibly nonlinear mapping
g : R™ — R™. Specifically, we consider in this work a formulation where an input-dependent matrix

1https ://github.com/tud-phi/uncovering-iss—-coupled-oscillator-networks-from-pixels
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B(u) € R™*™ projects the input u(t) to a time-dependent forcing on the oscillators: 7 = g(u) = B(u) u.
Here B(u) could, for example, be parametrized by a MLP.

We specifically designed the network architecture such that (i) the system exhibits a unique and isolated
equilibrium and (ii) we can derive expressions for the kinetic and potential energies. These two features allow us
to (a) prove Global Asymptotic Stability (GAS) and ISS stability using an established procedure based on strict
Lyapunov arguments [44] 145], and (b) implement model-based controller based on potential shaping.

One key insight of this work is that in the coordinates z(t), ©(t), we cannot derive a potential as the hyperbolic
force tanh(Wz(t)+b) is not symmetric. Therefore, we propose a coordinate transformation into JV-coordinates:

yw(t) = [i:jgg] = {%igﬂ € R?". The coordinate transformation is valid if its Jacobian is full-rank, which

is the case if rank(W') = n. In W-coordinates, the dynamics can be rewritten as

. dfi”—;” _ _ ZTw(t)
Iu(t) = [%w} = foly(®),u(®) = [M;l (9(u(t) — Kuitw(t) — D () — tanh(aw(8) + 5))| @

with K = KW, Dy = DW and My, = WL

A difference of this formulation compared to prior work [35136,137,138] is that (i) the forcing produced by the
input term 7 = g(u) is fully separated from the forcing produced by the elastic coupling terms K-, and (ii)
the generalized force is symmetric, which we prove in Appendixlﬁ allowing us to define a potential energy
expression, which we can later on leverage for stability analysis and control.

The equilibria §w = [965 OT] T € R?" of the unforced network are given by the roots of the characteristic

equation tanh(Zw + b) + Kw Zw = 0.

Lemma 1. Let Ky, > 0. Then, the dynamics defined in (@) have a single, isolated equilibrium Gy, =
_T 71T

[:cw 0 ] .

Proof. The proof is straightforward and provided in Appendix [A.2] O

Next, we introduce a mapping into the tilde coordinates §w = yw — Jw. The residual dynamics (w.r.t. the
equilibrium g, ) can now be stated as

oo _ Tw(t)
Po(0) = folysu) = | s (9(u(t)) — Ky (Zw + & (1)) — Dy #u (£) — tanh(Zy + & (1) + b)) @

In the following, we will write || A|| to denote the induced norm of matrix A and Am(A), Am(A) to refer to its
minimum and maximum Eigenvalue respectively.

Global Asymptotic Stability (GAS) for the unforced system. We first consider the unforced system
with 7 = g(u) = 0, Vt € [to, ) and strive to prove global asymptotic stability [40] for the attractor Z. We
propose a strict Lyapunov candidate with skewed level sets [45]

1 n Ty, n Tw,i
Vi) = 5 T Py fu + Z/O tanh(Zw,i + 0 + b;) do — Z/O tanh(Zw,; + b;) do,
i=1 =1
= % Gu Pv i + Y (Icosh(Zw,i + Fw,i + bi) — lcosh(Zw,i + bi) — tanh(Zw i + bi) Fwi) , )
=1
Ky  pMy

with Py = L‘ ME M.,

] c R2n><2n7 lcosh(-) = log(cosh(-)), and p > 0.

Lemma 2. The scalar function V,,(Gw) defined in () is continuously differentiable and verifies the condition
. VAm (My) Am (Kw
V.(0) = 0. Furthermore, let My, Kvw = 0. Now, if we choose 0 < p < VAm (W) dan (Kw) - v, then

[ My |
Vi (§w) > 0V §w € R®™\ {0}. Additionally, then V,,(ijw) is radially unbounded as ||jjw|| — 00 = Vi (Gw) —
0.

Proof. We provide the proof in Appendix [A-3] and demonstrate that the bounds on 1 are required for the
Lyapunov candidate to be positive-definite. O

Theorem 1. Let M, K+, and Dy, be positive definite and suppose the system be unforced: g(u(t)) = 0. Then,
Uw = 0 is globally asymptotically stable for the system dynamics defined @) such that V,,(gw) <0, VY gw €

R?"\ {0}.
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Proof. First, we show that g = 0 is an equilibrium of @):

Fu(0,0) = M (—Ky Ew(l tanh(Z +b))] - {Mvil (*Kw(;«“w + Kw i"w)} - [8} ©

Lemmal[Z]states that we can always choose y such that (3) is strict Lyapunov function (e.g., Lipschitz continuous,
zero-valued at gy, = 0, positive definite, and radially unbounded) [40} [45]]. We now evaluate the time-derivative

of V,, () in the case of an unforced system (i.e., g(u(t)) = 0):

Vi (ijw) = g;;‘: Juw = gg: fuw(Gw) = G Py §w + (tanh(Zw + Zw + b) — tanh(Zw +b))" Zw
— T [%““%VVTV Df’_‘ﬁ}vww} G — (tanh(i‘w t i+ b) T 4 AL KW) T, o
Py
= — G Py Giw — p (tanh(Zy + Zw + b) — tanh(Zw + b)) Zw,
< = Gu Podv < =m (Py) ldwll3,
where we exploited the force balance at equilibrium Ky Zvw = — tanh(Zw + b) and Lemmamfor defining

the upper bound on Vu (Jw)- Lemma states that Py, > 0 for 0 < p < py,. Similarly, LemmaIZIrequests
that 0 < o < pv. Indeed, both conditions can always be fulfilled by choosing p € (0, min{ v, v, }). With

Py = 0 < Am (Py) > 0 [46], we can state that V, (§iw) < 0V §w € R?™\ {0} and conclude that the unforced
system is globally asymptotically stable around ¢y = 0. O

Global Input-to-State Stability (ISS) for the forced system. We now take the forcing g(u) into
account again and demonstrate that the system states remain proportionally bounded to the initial conditions and
as a function of the supremum of the input forcing.

Theorem 2. Suppose My, Ky, Dw = 0, 0 < 6 < 1, and that we choose 0 < pn < min{uv, p }}. Then, @)
is globally Input-to-State Stable (ISS) such that the solution v (t) verifies

[gwllz < B ([[gw(to)ll2,t — to) +~ ( sup IIQ(U(t'))Hz) , Vizto ®)

to<t'<t

1+4+p2) A\ Py)r24460 nA/14+p2 A (P, 7
here 8,1 € K, (r) = | LU 20 E o) ¢

Proof. The proof is provided in Appendix [A-3] We first demonstrate that the ISS-Lyapunov function is bounded
from both sides by Koo functions. Subsequently, we derive the energy dissipation of the forced system and
establish attracting regions as a function of the norm of the forcing. Outside these regions, it is ensured that the
system has a minimal rate of decay and, therefore, converges exponentially fast into the attracting region. [
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Figure 2: Analysis of approximation error of CFA-CON: we compare the ground-truth solution of a 40 s rollout
of the CON network consisting of three oscillators (n = 3) with the CFA-CON executed at a time step of
0t = 0.1s and a solution generated by integrating the ODE at a time step of 6t = 0.05 s with the Euler method.
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3 An approximate closed-form solution for the rollout of CON

To predict future system states, we need to integrate the ODE in Eq. (2)), with the solution given by y(tx+1) =
Yt T fttk’““ Fy(t'),u(t'))dt’. Unfortunately, a closed-form solution for the nonlinear dynamics f(y,u)

does not (yet) exist. Therefore, we traditionally need to revert to (high-order) numerical ODE solvers that are
computationally very expensive and introduce additional memory overhead [47]]. This considerably increases the
training time of models involving such continuous-time dynamics. While the computational time can be reduced
by increasing the (minimum) time step of the integrator, this comes at the expense of an integration error, and
we lose (part of) the theoretical guarantees and practical characteristics that the nominal ODE provides. In this
work, we take an alternative approach by splitting the problem into (i) decoupled linear dynamics that can be
cheaply and precisely integrated using a closed-form solution and (ii) the residual, coupled nonlinear dynamics,
which we integrate numerically at a slower time scale:

i) = F—ra(t)—di(t) +glut)— (K - k)a(t) — (D — d) #(t) — tanh(Wa(t) + b)

fi,1a (): decoupled, linear dynamics f3,n1d (y,u): coupled, nonlinear dynamics

©))

where k = diag(Ki1 ... Knn), d = (D11 . .. Dypy) are the diagonal components of the stiffness and damping
matrices, respectively, and F' € R"™ is a constant, external forcing term on the oscillators.

For a short-time-interval §¢, we now approximate (9) as
L'I:‘(tk + 5t) =~ f@yld(y(tk + 51:), F(tk)) with F(tk) = —fdﬁ,nld(y(tk), u(tk)) (10)

For a scalar 2"-order, linear ODE of form g; = fia,i(x(t"), F(tx)), a well-known, closed-form solution [4§]]
exists. We exploit this characteristic by formulating the approximate solution as

t+ot
y(tx +9t) = fora—con(y(tx), u(ts)) = y(tx) +/ : fa(y(t'), F(tx)) dt’ an

tk

and denote fcra—con : R™ X R™ — R™ as the Closed-Form Approximation of the Coupled Oscillator
Network (CFA-CON) model. The implicit assumption behind (I0) is that f;1a(y) > fzn1a(y, u) (ie., the
linear, decoupled dynamics dominate the nonlinear, coupled, time-varying dynamics). We refer the interested
reader to Appendix [B]for derivation and implementation details, where we summarize the integration procedure
in Algorithm[I] We also provide qualitative results for the integration accuracy in Fig.[2Jand quantitative results
for the integration accuracy and computational speed-up w.r.t. numerical integrators in Appendix [B]

4 Learning control-oriented latent dynamics from pixels

We now move towards learning latent dynamical models based on CON and CFA-CON. CONs are an ideal fit
for learning latent dynamics as they guarantee that the latent states stay bounded.

We assume to have access to observations in the form of images o € RPoxwo X0 where c, denotes the number
of channels. Please note that this could also be other high-dimensional observations such as LiDAR scans, point
clouds, etc. We now leverage an encoder-decoder architecture to map these high-dimensional observations
into a compressed latent space: The encoder ® : RFeXWoXc _y R™= with n, < he w, identifies a low-
dimensional latent representation z € R™= of the images. The decoder W : R™= — R"eX™eX¢ approximates
the inverse operation by reconstructing an image 6 € R"**™e X< based on the latent representation. To promote
the learning of a smooth and monotonic mapping into latent space, we specifically choose to implement the
autoencoder here as a §-Variational Autoencoder (VAE) [5} 49]]. Instead of just statically reconstructing the
image 6(¢x ), we are interested in predicting future observations 6(tx+;), where I € 1... N. For this, we train a
2"_order dynamical model that is, when integrated, able to predict future latent representations 2(tk+1). This

requires us to define a latent state £(¢) = [zT (t) ,éT(t)} T e R consisting of the latent representation and
latent velocity 2(t) € R"=.

We now rely on CON with n = n oscillators to provide us with the latent state derivative £ = fw (yw (t), u(t)),
where we defined £ = yw, and z = z,. To ensure stability, we make use of the Cholvesky decomposition to
ensure that My, , Ky, and Dy, always remain positive definite (see Theorem E]) It is important to note that we
train the encoder, decoder, and dynamical model all jointly. Please refer to Appendix [C|for more implementation
details.

Training. It is important to remember that because we are using a 3-VAE [3[49], the image encoding becomes
stochastic, and the encoder neural network actually outputs . (0),2 log(c.)(0) € R"=. After executing the
reparametrization trick as z(tx) ~ N(p=(tx),02(tx)), we formulate the loss function, evaluated on each
trajectory consisting of /N time-steps, as

Lo 95 [ MSEOUR V) | P (s tidonad) | | 5 [ MSE(o(), $E(E)) |\ MSB(:(t1),3(t0)
e N+1 N+1 Pl N B N

Static image reconstruction loss Kullback-Leibler divergence Dynamic image reconstruction loss Latent dynamics consistency loss

12)
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Model RMSE M-SP+F [26] | RMSE S-P+F [26] | RMSE D-P+F [20] | RMSE CS | RMSE PCC-NS-2 | RMSE PCC-NS-3 |

RNN 0.2739 + 0.0057 0.2378 4+ 0.0352 0.1694 4+ 0.0004 0.1011 + 0.0009 0.1373 £ 0.0185 0.2232 £ 0.0075
GRU [30] 0.0267 + 0.0033  0.1457 4+ 0.0078 0.1329 4+ 0.0005 0.1125 + 0.0100 0.0951 + 0.0021 0.2148 £ 0.0196
coRNN [35] 0.0265 £+ 0.0002 0.1333 + 0.0044 0.1324 £ 0.0016 0.2537 £ 0.0018 0.2504 £ 0.0899 0.2474 £ 0.0018
NODE [27] 0.0264 £ 0.0010 0.1260 + 0.0013 0.1324 + 0.0024 0.2415 £ 0.0021 0.1867 £ 0.0561 0.3373 % 0.0565
MECH-NODE 0.0328 + 0.0034 0.1650 + 0.0205 0.1710 + 0.0111 0.2494 + 0.0028 0.1035 £ 0.0012 0.1900 + 0.0024
CON-S (our)  0.0303 £ 0.0053 0.1303 + 0.0064 0.1323 £ 0.0018 0.1993 £ 0.0646 0.0996 £+ 0.0012 0.1792 £ 0.0038
CON-M (our)  0.0303 £ 0.0053 0.1303 + 0.0064 0.1323 £ 0.0018 0.1063 £ 0.0027 0.1008 £ 0.0006 0.1785 + 0.0023
CFA-CON (our) 0.0313 4+ 0.0026 0.1352 £ 0.0073 0.1307 £+ 0.0012 0.1462 + 0.0211 0.1124 + 0.0025 0.1803 &+ 0.0003

Table 1: Benchmarking of CON and CFA-CON at learning latent dynamics against baseline methods. The first
three datasets, based on [26], contain samples of a mass-spring with friction (M-SP + F), a single pendulum with
friction (S-P + F), and a double pendulum with friction (D-P + F) (all without system inputs). The CS dataset
considers a continuum soft robot consisting of one segment with three constant planar strains. The PCC-NS-2
and PCC-NS-3 datasets contain trajectories of a continuum soft robot made of two and three piecewise constant
curvature segments, respectively. We choose the latent dimensions of the models as n, = 4, n, = 4, and
n, = 12 for the M-SP + F, S-P + F, and D-P + F datasets, and n, = 8, n, = 12, and n, = 12 for the
PCC-NS-2, PCC-NS-3, and CS soft robotic datasets. We report the mean and standard deviation over three
different random seeds.

Dataset | n, | RNN | GRU [30] | coRNN [35] | NODE [27] | MECH-NODE | CON-S (our) | CON-M (our) | CFA-CON (our)

M-SP+F | 4 88 248 40 3368 3244 34 34 34
D-P+F 12| 672 1968 348 4404 4032 246 246 246
PCC-NS-2 | 8 | 320 928 152 3856 3062 676 7048 7048

Table 2: Number of trainable parameters for the various latent dynamic models and the examples of the M-SP+F
(n, = 4, unactuated), D-P+F (n, = 12, unactuated) and PCC-NS-2 (n, = 8, actuated) datasets. The number
of trainable parameters for all models and datasets can be found in Appendix@}

where 2(ty,) is predicted by £(t),) = ::""tg fe(€(t),u(t")) dt’, and £(to) = [2T(to) 27 (to)] T Here, z(to)
is given by the encoder, and z(¢o) is approximated using finite differences in image-space (see Appendixfor
more details). 3, Az, A\, € R are loss weights.

Models. We train the CON with the input-to-forcing mapping g(u) = B(u) u, where B(u) is parametrized
by a MLP with a hyperbolic tangent activation function applied in between layers. We report results for
two variants of the CON model: for the medium-sized CON-M and small-sized CON-S, the MLP consists
of five and two layers with a hidden dimension of 30 and 12, respectively. The model CFA-CON uses the
same architecture as CON-M. We compare against several popular latent space model architectures: The

NODE model uses a MLP with an hyperbolic activation functions and predicts £(t) = fnope(§(t), u(t)).
To make the comparison fair, we parametrize the NODE’s MLP in the same fashion as for CON-M. The
MECH-NODE integrates prior knowledge towards learning 2"-order mechanical ODEs and, therefore, predicts
Z(t) = fueca-Nopr(£(t), u(t)). Furthermore, we consider multiple autoregressive models: RNN, GRU, and
coRNN and let them parameterize the following transition function: £(tx+1) = far(§(tx), u(tx)) As common
in the relevant literature [26], we allow the autoregressive models to perform multiple time step transitions before
predicting the next sample. For the autoencoder, we use a vanilla Convolutional Neural Network (CNN). More
details can be found in Appendix[C]

Datasets. We consider in total six datasets that are based on simulations of unactuated mechanical systems,
and actuated continuum soft robots. The first three, mechanical dataset are based on the work of Botev et al. [26]]
and contain video sequences of a mass-spring system with friction (M-SP+F), a single pendulum with friction
(S-P+F), and a double pendulum with friction (D-P+F). Continuum soft robots have theoretically infinite
Degree of Freedom (DOF), evolve with highly nonlinear and often time-dependent dynamical behaviors, and are
notoriously difficult to model from first principles [S0]. For that reason, it is a very interesting proposition if
we could learn latent-space dynamical models directly from video [51] and later leverage them for control [52].
Therefore, we generate three datasets based on the Piecewise Constant Strain (PCS) soft robot model. CS
considers one segment with constant strain and is modeled using three configuration variables. PCC-NS-2 and
PCC-NS-3 only consider bending deformations and contain soft robots with two and three segments, respectively.
For all datasets, we render images with a resolution of 32x32px of the system’s state. More information on the
datasets can be found in Appendix [C.I]

We tune all hyperparameters for each model and dataset separately using Optuna [53].

Results. Unactuated mechanical datasets: The results in Tab. |1| show that the NODE model slightly
outperforms the CON network on the M-SP+F and S-P+F datasets. However, as the datasets do not consider
system inputs, we can remove the input mapping from all models (e.g., RNN, GRU, coRNN, CON, and CFA-
CON). With that adjustment, the CON network has the fewest parameters among all models, particularly two
orders of magnitude less than the NODE model. Therefore, we find it very impressive that the CON network
is roughly on par with the NODE model. For the D-P+F dataset, we can conclude that the CFA-CON model
offers the best performance across all methods. Finally, most of the time, the CON & CFA-CON networks
outperform the other baseline methods that have more trainable parameters. Actuated continuum soft robot
datasets: The results in Tab. [I| show that CON-M matches the performance of the state-of-the-art methods
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Figure 3: Evaluation of prediction performance of the various models vs. the dimension of their latent
representation n, and the number of trainable parameters of the dynamics model, respectively, on the PCC-NS-2
dataset. All hyperparameters are tuned for each model separately for n. = 8. The error bar denotes the standard
deviation across three random seeds.

across all experiments. In the case of PCC-NS-3, CON-M even decreases the RMSE error by 6 % w.r.t. the
closest baseline method (MECH-NODE). Impressively, the performance is not reduced (but instead often even
improved) compared to other models that offer a much larger design space for learning the dynamics (e.g.
NODE). Furthermore, CON-S and CFA-CON often only exhibit slightly lower performance than CON-M,
even though they have significantly fewer parameters and consider an approximated solution, respectively.
Supplementary results (e.g., more evaluation metrics) can be found in Appendix [D| We also conduct on the
PCC-NS-2 dataset an analysis concerning the effect of the latent dimension on the performance (see Fig. EI)
For this experiment, all hyperparameters were tuned for n. = 8, and we observe that the CON models have a
much-improved consistency and smaller variance w.r.t. the baseline methods when the latent dimensionality is
increased.

The results for a dataset based on the 1*-order reaction-diffusion PDE [9] are presented in Apx.

5 Exploiting the dynamic structure for latent-space control

We consider the problem setting of guiding the system towards a desired observation o by providing a sequence
of inputs u(t)) such that at time ¢, the actual observation o(ty) matches 0. A relatively simple way would
be to encode the desired observation into latent space z¢ = <I>(0d) and then to design a feedback controller (e.g.,
PID) in latent space: g(u) = PID(2% — z(t), —2). Unfortunately, several challenges appear: first, it is not clear
how the latent-space force 7 = g(u) can be mapped back to an actual input u(t) as the inverse input-to-forcing
mapping g~ ' is generally not known. Furthermore, relying entirely on a PID controller has several well-known
drawbacks, such as poor and slow transient behavior, steady-state errors (in case the integral gain is chosen to
be zero), and instability for high proportional and integral gains. We take inspiration from potential shaping
strategies [23|24]], which are widely used for effectively controlling (elastic) robots, and, therefore, combine a
feedforward term compensating the latent-space potential forces with an integral-saturated, PID-like feedback
term. For mapping the desired forcing 7 back to an input u(t), we train an forcing decoder n : R — R™

that approximates g~ '. Specifically, we consider here the structure u = () = E(7) 7, where E € R™*"™ is
parameterized by an MLP.

The latent-space control law is given by

7(t) = g(u) = Ky 2% + tanh(z* + b) + K, (2% — 2) — Ka 3 + K; /t tanh(v (2% (') — z(t))dt’ (13)
0

Feedforward term:
compensation of potential forces Feedback term: P-satl-D

where Kp, Ki, Kq € R™ ™ are the proportional, integral, and derivative control gains, respectively. As
integral terms can often lead to instability when applied to nonlinear systems [54], we adopt an integral term
saturation [55]] with the associated dimensionless gain v € R, which ensures that the integral error added at
each time step is bounded to the interval (—1,1). Subsequently, 7 is decoded to the input as u(t) = n(r) =
E(7) 7. For training this decoder, we add a reconstruction loss to (I2): Ly (tx) = Au MSE(u(tx), 4(tx)) =
Au MSE (u(tx), n(g(u(tr)))).

Experimental setup. We train a CON model with two latent variables (n, = 2) on the PCC-NS-2 dataset.
Analog to the input encoder mapping B(u), the forcing decoder mapping F(7) is parametrized by an MLP
consisting of five layers with hidden dimension 30 and a hyperbolic tangent activation function. The CON model
achieves an RMSE of 0.1628 on the test set. We benchmark two controllers on the simulated continuum soft
robot consisting of two segments: (i) a pure P-satl-D controller (i.e., the feedback term in (T3)) that leverages
the smooth mapping into the latent representation enabled by the CON dynamic model and the 3-VAE, and (ii)
a P-satl-D+FF (i.e., (I3)) that exploits the structure of the CON dynamics by compensating for the potential
forces. The stable closed-loop system dynamics made the control gain tuning very easy, and we selected
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for the results reported in Tab. [[] The real-world Reaction-Diffusion image is adopted from [43]]. Panel (b):
Model-based control in latent space by exploiting the physical structure of the CON model.

K, =1,K; =2,Kq = 0.02,v = 1 for the P-satl-D controller and K, = 0, K; = 2, K4 = 0.05,v = 1 for
the P-satl-D+FF controller, respectively.

Furthermore, we compare the control performance of our model-based controllers with a baseline control strategy
based on the MECH-NODE (n, = 2) that achieves an error of 0.1104 on the test set. First, we utilize the same
P-satl-D feedback controller as for the CON model to generate the control action 7(t) in latent space. As the

MECH-NODE uses an MLP to parameterize the function £ = f¢ (&, u), we cannot easily map 7(t) into an input
u(t). Therefore, we linearize the latent space dynamics w.r.t to the input as fe ac(&,u) = fe(&,0) + A() u,

where A(§) = %(f ,0) is computed using autodiff. Then, u(t) = AT (£) 7(t). After tuning the control gains,

we choose K, = 0.001, K; = 0.02, Kq4 = le—5,v = 1.

We train all models (e.g., MECH-NODE, CON) on three different random seed and choose the best model
instance. Please refer to Appendix @ for more details on the model selection. We generate a trajectory of 7

setpoints, where ¢%(t;) ~ U(—5m, 57) rad/m € R? is a sampled configuration of the soft robot. Then, we
render an image 0% (¢;) that represents the target observation for the controller and encode it into latent space

to retrieve z% € R?. At time step k, we render an image o(t,) of the robot’s current configuration q(tx) and
encode the image. Subsequently, we evaluate the control law and apply the decoder u(tx) = n(7(tx))), which
is finally passed to the simulator that integrates the ground-truth dynamics to the next time-step ¢541 considering
the actuation wu(tx). The controller runs at 100 Hz, and we simulate the ground-truth dynamics with a Dopri5
ODE integrator at a time-step of le—5 s.

Results. As an evaluation metric, we consider the RMSE between the actual and the reference trajectory.
The P-sarl-D applied to the MECH-NODE model (baseline) achieves an RMSE of 2.88 rad/m w.r.t. to the

desired configuration g9 (but unknown to the algorithm). The P-satI-D CON controller, which does not exploit
the learned latent dynamics for control, exhibits an RMSE of 4.08 rad/m w.r.t. to the desired configuration ¢.

The P-satl-D+FF controller exhibits an RMSE of 2.12rad/m w.r.t. to the desired configuration ¢°. We also
visualize the closed-loop trajectories in Fig. [5]and as sequences of stills in Apx.[E] We conclude that the nicely
structured latent space generated by the 3-VAE allows the P-satI-D controller to effectively regulate the system
towards the setpoint, although the response time is rather slow. The P-satl-D+FF controller is able to exploit
the structure of the CON model through its potential shaping feedforward term. With that, CON P-satl-D+FF
exhibits a faster response time and a 26 % lower RMSE than the MECH-NODE P-satl-D baseline. We provide
results for the control of an actuated damped harmonic oscillator in Apx.

6 Conclusion and Limitations

Conclusion. In this work, we propose a new formulation for a coupled oscillator that is inherently input-to-
state stable. Additionally, we identify a closed-form approximation, that is able to simulate the network dynamics
more accurately compared to numerical ODE integrators with similar computational costs. When learning latent
dynamics with CON, we observe that the performance is on par or slightly better compared to SoA methods such
as RNNs, NODEzs, etc., even though we constrained the solution space to a ISS-stable coupled oscillator structure.
Furthermore, we point out that the performance of the CON models is more consistent across latent dimensions
compared to the baselines and improved when not specifically tuned for a given dimension. Furthermore, as
seen in Tab.[8] the closed-form approximation achieves, with the same number of model parameters, similar
accuracies and double the training speed w.r.t. to the continuous-time model. Finally, we demonstrate that even
a simple PID-like latent-space controller can effectively regulate the system to a setpoint. By exploiting the
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Figure 5: Latent-space control of a continuum soft robot (simulated using two piecewise constant curvature
segments) at following a sequence of setpoints: The upper two rows show the performance of a pure P-satl-D
feedback controller operating in latent space z learned with the MECH-NODE and CON models, respectively.
The lower row displays the results for a latent space controller based on the CON model that additionally also
compensates for the learned potential forces.

network structure and compensating for potential forces, regulation performance can be greatly improved, and
response time decreased by more than 55 %.

Limitations. While we think our proposed method shows great potential and opens interesting avenues for
future research, there exist certain limitations. For example, the proposed method of learning (latent) dynamics
implicitly assumes that the underlying system adheres to the Markov property (e.g., the full state of the system is
observable), that a system with mechanical structure can approximate it, and that it has an isolated, globally
asymptotically stable equilibrium. This is, for example, the case for many mechanical systems (e.g., some
continuum soft robots, deformable objects, and elastic structures) with continuous dynamics, convex elastic
behavior, dissipation, and whose time-dependent effects (e.g., viscoelasticity, hysteresis) are negligible. Even
if these conditions are not met globally, the method can be applied to model the local behavior around an
asymptotic equilibrium point of the system (e.g., robotic manipulators, legged robots) with added stability
benefits for out-of-distribution samples. Alternatively, the method could be extended to relax some of these
assumptions, e.g., by allowing for multiple equilibria, zero damping, or by incorporating additional terms to
capture discontinuous dynamics (e.g., stick-slip models) or period motions (e.g., limit cycles such as the Van der
Pol oscillator). The proposed method might not be suitable for some physical systems, such as nonholonomic
systems, partially observable systems, or systems with non-Markovian properties. Examples of such systems
include mobile robots and systems with hidden states or delayed observations.

Furthermore, the approximated closed-form solution shows the best integration for situations where linear,
decoupled dynamics dominate the transient. For dominant nonlinear, coupled forces, the performance of CFA-
CON degrades, and it might be better to revert to numerical integration of the CON ODE. Finally, the control
works exceptionally well in the setting where the latent dimension equals the input dimension. We hypothesize
that this enables the method to identify a diffeomorphism between the input and the latent-space forcing. Still
not investigated is how the performance could degrade if n, > m (or n, < m for that matter).
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A Appendix on proof of Input-to-State Stability (ISS)

In the following, we will write || A|| to denote the induced norm of matrix A and Ay (A), Am(A) to refer to its

minimum and maximum Eigenvalue respectively.
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Figure 6: Illustration of global asymptotic stability for the unforced system with g(u) = 0 and input-to-state

stability for the forced system, where the black dashed line denotes the input u(¢).

We introduce some expressions often used throughout this section: The gradient of V), (3w ) w.r.t. the residual

coordinate g is given by

v,
O

(gw):Png‘i‘ |: or o"
Next, the Hessian of the Lyapunov candidate can be derived as

=~ BZVH Kw + Ssecll(jw) /"’MW 2nx2n
HV(:Z'W) = aggv = |: /.LM‘,’{ Mw S R )

where

Ssech (Fw) = diag(sech(Zw + Fw + b)) € R™" = 0 Vi, € R".

Furthermore, the Schur complement of Py is given by

Spy = My — pu° Mg Ky M,

A.1 Potential force and energy

tanh(Zw + Fw + b)] _ {tanh(fw + b)} .

14

15)

16)

an

Lemma 3. Let &y, € R"™ be generalized coordinates and T+ ,b € R"™ constants. Then, the potential force of

system

fu (Bw) = Ky (Tw + Tw) + tanh(Tw + Zw + b),
stems from the potential

U (Tw) = Z/o o tanh(Zw,: + 0 + b;) do — Z/O o tanh(Zw,; + b;)do € R.
i=1 i=1

Proof. First, we take the derivative of U (Zv):

ZZ;W = Ky(Zw + &) + tanh(Zy + Zw + b) = fu, -
The Hessian of the potential is given by
~ 82uw 8]le{ 2 ~ nxn
H; w) = = = = Ky sec w R .
o () = Gzt = T = Kot Shan(i) €

As Ky = 0 = K, = K, we can easily show that the potential force is symmetric:

HZATW = K\}/‘ + Sszech(i'W)T =Ky + S:ech(jw) = H{,{w.

18)

19

(20)

@n

(22
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A.2  Proof of Lemmal[l} single & isolated equilibrium

Lemma |I| restated. Let Ky, > 0. Then, the dynamics defined in (3) have a single, isolated equilibrium
_ _T 71T
gw = [z 07

Proof. We regard the characteristic equation as a function: heq(7w) = tanh(xw + b) + Ky xw. For there
to exist multiple equilibria, heq(Zw) = 0 would need to be true for multiple . However, we take the partial
derivative of heq(Zw) W.L.t. Zw and see that

Zf;eq =Ky + Sfech (zw) =0, Vz, € R"” with Ssech (Tw) = diag(sech(zw + b)) € R™*"™  (23)
as Ssech (Zw) = 0 Vaw € R™ and Ky > 0. Therefore, heq (2w ) is continuously increasing and can only cross
the zero line once. O

A.3 Proof of Lemma Validity of strict Lyapunov candidate V), ()

Lemma 4. Suppose My, = 0, Ky > 0and 0 < p < VAm ) Am (Kw) -, wv. Then Spy,, as defined in (7)),

3 o i Ml
is positive definite.

Proof. The minimum Eigenvalue of Sp,, is bounded by

Am(Spy) = Am(My) — 1 | Mg Ky My,

M |? (24)

> >\m Mw - ? Hi

Z Am (M) = i 5 = )

Based on the assumption M, > 0, Ky, > 0, we can state % > 0. Therefore, the critical case for the
. VAm (Mw) Am (Kw

lower bound on A, (Spy ) is = % = pv. Hence,

>\m(Mw) )\m (KW) ||MWH2
[ M |2 Aw(Kw)

Consequently, the Eigenvalue sensitivity theorem [46]] demands that Sp,, > 0. O

Am(Spy) > Am(My) — =0 (25)

Lemma 5. Let My, = 0, Ky, = 0,and 0 < p < W

Hv(Zw) > 0 Vs € R™

= wv. Then, it follows that Py > 0 and

Proof. By inspecting the expressions for Py > 0 and Hy (Zw) > 0VZ,_€ R™ in Equations () and (T3),
respectively, it can be easily seen that Hy (Zw) > Py VZw € R. As Lemmastates that the Schur complement
of Py is positive definite, it follows that Hy (Zw) = Py > 0. O

Lemma 6. Suppose T, %w,b € R™ andn € NT. Then,

n

hv en(Zw) = Z/ o tanh(Zw,s + o + b;) do — Z/ o tanh(Zw,; + b;) do (26)
i=170 0

=1

is a positive semi-definite function.
Proof. Proving hy tn(Zw) > 0 is equivalent to showing that the scalar function Ay o (r) = Jy tanh(o +
a)do — [ tanh(a)do >0 V7, a € R, where we set r = Zvw,; and @ = Zw,i + b;.

We strive to find the critical points (i.e., minimas and maximas) 7 of ivzv,f,h (r) and, for this, analyze where the
first derivative of hv tn(r) is zero

h
%(f) = tanh(7 + a) — tanh(a) = 0, @27
which is the case only for 7 = 0. Next, we compute the second derivative at 7 as
%(a = sech®(F) = 1. (28)

Thus, hv,n () is convex and its global minimum at 7 = 0 takes the value hv ¢n(0) = 0. As a result, hy n (Zv)
is also positive semi-definite.
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A.3.1 Proof of Lemmal[2t

Lemma restated. The scalar function V,,(§w) defined in Q) is continuously differentiable and verifies the
condition V,,(0) = 0. Furthermore, let My, , Kvw > 0. Now, if we choose 0 < p < —W = v,
then V. (w) > OV §w € R?*™ \ {0}. Additionally, then V,,(§) is radially unbounded as ||jw| — oo =
Vi (Gw) — o0

Proof. Step 1: It can be easily seen that V,, (9w ) in (3 is smooth and continuously differentiable.
Step 2: Proof that V,(0) = 0.

n 0 n 0
V,.(0) =0+ Z/O tanh(gw,i + o + b;) do — Z/O tanh(gw,i + bi) do = 0. (29)
=1 =1

Step 3: Proof that the Lyapunov candidate is positive definite; i.e., V,,(gw) > 0 Viw € R™ \ {0}.
As the gradient of the Lyapunov candidate, as defined in (T4)), is zero for g, = 0:

OV .\ |tanh(Zy + b) tanh(Zw +b)|
%(0) = { o - o =0, (30)
Jw = 0 is a critical point of V},(gw). According to Lemma the Hessian in (T3) is positive-definite [56]:
Hy (§w) = 0 ¥iw € R?"™. With that, (8 is convex and its global minimum is at §i = 0, where V,,(0) = 0. In
summary, we state V,,(fw) > 0 Vg, € R™\ {0}.

Step 4: Proof that the Lyapunov candidate is radially unbounded: i.e., ||jw|| — 00 = V.(§iw) — co. Lemmalf]
is exploited for identifying a lower bound on V,, (3w ):

1 n Ty, i n T ,i
V(i) = = Go Py §u + Z/O tanh(Zw,; + o + b;) do — Z/U tanh(Zw.; + b;) do,
=1 i=1

? 31)
1 ~T ~ 1 ~ 2
> LI P Te > 5 Am(PY) [l
Lemma [5] tells us that Py > 0 and with that Am(Pv) > 0. Therefore, if ||iw|| — oo, it also follows that
Vo (Gw) — o0. O
A4 Proof of Theorem[I} Global asymptotic stability of unforced network
The Lemmas introduced below are used to prove Theorem|T]
Lemma 7. Suppose Ty, %w,b € R™ and n € NT. Then, the function hy 1 (Zw) defined as
hy o (Fw) = (tanh(Zy + & + b) — tanh(zw + b)) " Zw, 32)

is positive semi-definite.

Proof. Proving hy .y (¥w) > 0 is equivalent to proving that the scalar function Bv,th(r) =
(tanh(r 4+ a) — tanh(a)) r > 0 Vr,a € R, where we set r = Zw,; and a = ZTvw,; + b;. Now, we ex-
pand the hyperbolic tangent:

hy n(r) = (tanh(r + a) — tanh(a)) r = (

e2(7"+a) -1 eQa _ 1>
r?

62(r+a) +1 - e2a +1
262(1 (627' _ 1) - (33)
- 62r+4a + 62r+2a + 620‘ + 17” — 07

as the denominator e "4 4 ¢*"72* 4+ ¢** 41 > 0 Vr € R and as sign (2¢°* (e*” — 1)) = sign(r). For
example, e” —1 >0V 7 > 0. Analog, > — 1 < 0V r < 0. O

Lemma 8. Let My, = 0, Ky = 0, and Dy, = 0. Also, let u € R" be chosen such that 0 < p <
Am (Dyw) pKy 2uDy,

EME: iuDy Dy — pMy

€ R"™ is positive definite.

= ;. Then, the matrix Py, =

Proof. The Schur complement of Py, is given by

1
Sp, =Dy = pMy = ¢ uDy K3t Dy, (34)
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The lower bound on the smallest Eigenvalue of Sp,, can be identified as

i | Dwll*
A2 (Kw)'
As Ky, Dy > 0, we know that IPwl”_ (. Therefore, the case w= Am (D)

Am K NVE L
( A (My)+ 723

Am (SPV) > A (Dw) = 4 Am (M) — (35)

= iy, determines

the lower bound on A (Sp, ):

| Dwf?
Am ! Am(Dw) — py | Am(Myw) — ———— | =0. 36
(Spy) > Au(Dw) u\/( (M) = 1355 ) =0 (36)
We conclude, based on the Eigenvalue sensitivity theorem of symmetric matrices [46], that Sp,, > 0 and with
that P, > 0 [56]. O

A.5 Proof of Theorem 2; Proof of Input-to-State Stability (ISS)

Lemma9. Let Tw,Zw,b € R"™. Then,

hv.in(Tw) = Z / o tanh(Zw,; + o + b;) do — Z / o tanh(Zw,; + b;) do < 2 |Zw] . (37)

Proof. Proving hy i (Zw) < 2 |Z] is equivalent to proving that the scalar function kv ¢, (r) = Jy tanh(o +
a) do — [ tanh(a) do < 2|r| Vr,a € R, where we set r = Zy,; and a = Zv,i + b;. We perform the
integration contained in h n (7):

B en(r) = / tanh(o 4+ a) do — / tanh(a) do,
0 0

(38)
hv in(r) = log(cosh(r + a)) — log(cosh(a)) — tanh(a) r.
Next, we demonstrate that the slope of 2 |r| is always larger than the magnitude of the slope of by wn(r):
hv i
38% — [tanh(r + @) — tanh(a)] < 2 = % @) (39)

Additionally, v ¢ (0) = 2|0] = 0. We conclude that kv () < 2|r|V r € R and with that, by ¢, () <
2 |Fw| V & € R", O

Lemma 10. Let My, = 0 and Ky > 0. Then, @ is bounded by the two scalar, class Koo functions
ai(r) = 5 Am(Pv) r? and a(r) = § Aa(Pv) r* + 2 /nr: ar(|[§w]]3) < Va(Gw) < aa((|gw )3

Proof. With Lemma|2| we already showed that V,, () is a Lyapunov candidate. Now, we additionally also
verify the conditions for ISS-Lyapunov candidates [40].

Step 1: Establishing bounds on V,, (gw ).
We first identify the lower bound of V(¢ ) by leveraging Lemma@

V(i) = % gL Py i + Z/ " tanh(Zw.; + o + by) do — Z/ " tanh(Zw.; + bi) do,

1. _ .

= 5 O Py G + hv (@), (40)
1_ _ 1 _ 3

> 50w Py de = 5 (P [3wl3 = ar(lgvll2):

Similarly, we derive an upper bound for V,, (g« ) exploiting Lemma@
Viu(lw) = 2wavyw+Z/ tanh(Zw,; + o + bi) da—Z/ tanh(Zw,; + bi) do

L TMIE: 7 I - (41)

< g AM(B) [[Gwllz + 22wl < 5 AM(PV) Gwll3 + 2 V7 || Zwll2
1 ~ ~ ~

< 5 M (P) Gz + 2V [Gwll> = oa(][gw]]2)-

According to Lemmal5| Py > 0 and with that A, (PV) > 0. First, we analyze the behavior of a(r): as it is
strictly increasing and o1 (0) = 0, it belongs to class K. Furthermore, we can evaluate lim, . a1 (1) = 0.
Therefore, a1 (1) € Koo [40]. 042( ) is also strictly increasing for r € [0, 00), @2(0) = 0, and it is radially
unbounded as lim,_, o, a2(r) = co. For that reason, a2 (1) € Ko as well. O

Step 2: Proof that a ﬁ) a2 (r) belong to class Koo
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A.5.1 Proof of Theorem 2]

Theorem@restated. Suppose My, Kw, Dy > 0,0 < 0 < 1, and that we choose 0 < p < min{puv, piy }}.
Then, @) is globally Input-to-State Stable (ISS) such that the solution gy (t) verifies

liwllo < 8 (1w (to)ll2.t — to) + 7 ( sgpqllg(u(ﬂ)l\z) L Vit @)

14+u2) A (Py) 712440 /o A/14+p2 A (Pg,) v
where B(r,t) € KL, v(r) = \/< #2) A G\Q)Am(PVM?H(PV)H BT e K,

Proof. Step 1: Bounds on ISS-Lyapunov candidate.

Lemmarovides the Koo functions o (r) = 3 Am(Py) r® and az(r) = 2 Am(Py) r® 4+ 2 /nr such that
a1 ([[Fwl2) < Via(Gw) < c2(llgwl)3.

Step 2: Minimum energy dissipation.

Let 0 < p < min{pv, piy }} as in the proof of Theorem We compute the input-dependent time-derivative
of the ISS Lyaﬁnov candidate. We do not repeat the derivations already made as part of (7) (e.g., exploiting

Lemmas[7]and
£)
) } ’

Vi (G, u(t)) = — G Py Gw — o (tanh(Zy + Fw 4 b) — tanh(Zy + b)) " Ty + o {“g%gé

< <m0 il o+ 2 400 @)
< = an (P Ll + e | [0
< = A (B e+ VT [ lall gl

where we leveraged Holder’s inequality. We choose 6 such that 0 < 6§ < 1. As a consequence,

1+ p?

Vi (G, u(t)) < —(1=0) Am (Py) [1Gwll3, ¥ llgwll2 > 0 (Py)

lg(u(@)l2 >0. (44

We define

as(r) = (1= 6) A (Py) 72, and p(r) = 07% 7. (45)

Lemmashows that Ay, (Py) > 0. Therefore, cv3(r) is a continuous positive function. Furthermore, as p1 > 0,

p(r) is a strictly increasing for € [0, c0). Additionally with p(0) = O verified, it can be stated that p(r)
belongs to class /C [40]. We conclude that

Viu(Goe, u(t) < —as (IGwll2),  YIgwllz > 2 (lg(u(®)]2) > 0. (46)

Step 3: Conclusions.

As aresult of Steps 1 and 2, the system is input-to-state stable, and with that, the solution g satisfies [40]

9w ll2 < B (9w (to)ll2, t — to) + ( sup Ig(U(t'))Hz) : 7
to<t’'<t
with
(’I‘) —aloaso (T) . (1+/A2))\M(Pv)7“2+49\/ﬁ\/1+u2)\m(Pv)T (48)
T e 02 X (V) N (Py) '
Indeed, based on Theorem |l|{and the associated proof, we can easily verify that v(r) is strictly increasing for
r € [0, 00) and that v(0) = 0. As a consequence, y(r) € K [40]. O
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B Appendix on an approximate closed-form solution for coupled oscillator

networks
/] Ki
/ Fi(t)
/ ? m;
z;(t)
(a) Parameters of a harmonic oscillator
2 ~—1 1.0
1 .
0.5
o Ny 4 N
g 500 =1
-1 — (=00
—0.5 11 ¢=0.1
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(b) Time evolution of a harmonic oscillator (c) Damping regimes of a harmonic oscillator

Figure 7: Panel Parameters of a forced and damped harmonic oscillator: m; € Rt denotes the mass,
ki € RY the stiffness, and k; € R the damping coefficient. The position and velocity of the oscillator
are measured as x;(t) € R and 2;(t) € R, respectively. The oscillator can be excited by the (potentially
time-varying) external forcing F;(t) € R. Pane Time evolution of a 1D harmonic oscillator for different
values of k;, d;, all in the undamped or underdamped regime. Panel The four damping regimes of a
harmonic oscillator: undamped (¢ = 0), underdamped (0 < ¢ < 1), critically damped (¢ = 1), and overdamped
(zeta > 1).

B.1 Closed-form solution to a forced harmonic oscillator

As introduced in (]I[), we consider the linear dynamics of a 1D forced harmonic oscillator with state y; =
[z: @] € R?

. dzy @
“:{%}ZMA%E*:Emfmmwfmmmy “9)

where F;(t) € R is the externally applied force acting on the oscillator.

The characteristic equation for the unforced dynamics (i.e., F;(¢) = 0) can be stated as [48]]

N4 2¢wni A Fwi; =0,  with the solutions A2 = —C; wni & wni /¢ — 1, (50)
where wn,; = y/k; and (; = 5 fl/i'? are the natural frequency and the damping factor of the ith homogeneous

oscillator, respectively. This harmonic oscillator exhibits three regimes: underdamped (¢; < 1), critically
damped ({; = 1), and overdamped regime (¢; > 1).

We approximate the forcing using the Heavyside function H (¢): F;(t) = F;(tx) H(t), where F;(t) is the
constant external forcing as computed by (I0). The solution for ¢; # 1 is given by [48]]
(trs1) = Ti(tes1) | _ (c1,i cos(B; 6t) + ca,isin(B; 6t)) e~ % 4 %
Yalbie Z; (tk-‘rl) — ((01’»;0(7; — 6272‘51‘) COS(ﬂi (515) + (61,7;57; +4 62’1‘0(7;) sin(ﬁi (5t)) e % ot

where 0t = ti41 — th, @ = Ciwny, and B; = wn,;i /1 — (2. After enforcing the initial conditions
2 (tx), ;i (tr), the integration constants

] , (5D

. F
it () + i (wi(te) - )
c1,s = zi(te) — Q, C2i=—27

Ki ADY ’

(52)
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can be identified with AX\; = A; 2 — A\i;1 = —2 f3; j, where j is the imaginary value. While we could derive
the solution for the critically damped case d; < 2./k; separately, we instead approximate it in our network

dynamics with (3T) by setting AX; & {S_lg;ﬂ(if Bii)e E gz ?I ; E, where ¢ € R* <« 1 is a small, positive

value.

B.2 Algorithmic implementation
We can now leverage the closed form solution to the evolution of a single, decoupled damped harmonic oscillator
of (BI) to solve the integral in (TT)
Y(trr1) = fora—con(y(tr), u(tr)),
T(trs1)| (c1 ® cos(B6t) + c2 © sin(B6t)) ® e % + % (53)
&(trt1) — (1 @a—c20p) cos(B6t) + (c1 © B +c2 @ a) sin(Bdt) ©e >’
with

k = diag(Ki1 ... Knn), d= (D11 ... Dnp), wn = Vk, C:%, a=C(Ouwn, B=wyV1-2
K

F(ty) = g(u(ty)) — (K — k) x(tx) — (D — d) &(t) — tanh (W (tg) +b),
a :x(tk)*M, c2 = 1 (rb(tk)Jra@ (x(tk)*@)) .

K B
(54)
We summarize the approach of integrating/rolling out the CFA-CON dynamics in Algorithm [T]
Algorithm 1 Rollout of CFA-CON.
Inputs: initial state y(¢o), input sequence {u(to), ... u(tg),... u(ty)}
Outputs: state sequence {y(to),...y(tx),.. . y(tn)}

1: k<0

2: while £ < N do

3 (z(tk), (k) < y(tx) .

4: F(ty) + g(u(ty)) — (K — k) z(tx) — (D — d) 2(ty) — tanh (Wz(tg) + b)

5: wn, € kK, ﬁ > Compute the characteristics of the decoupled harmonic oscillators.

6 avﬁeCGWHawn\/l_CQ

7 c1  x(ty) — % > Compute integration constants using initial conditions.

R (Jb(tk) +ao (x(tk) - %))

9: 0t =tpyr1 — i > Set time step.
10: > Update state with approximated closed-form solution.
11: T(tps1) < (c1 © cos(B L) + ¢ @ sin(B6t)) @ e % + £
12: B(tpr) < — ((c1 @ —ca ® B) cos(B6t) + (c1 ® B+ c2 @ a) sin(Bt)) @ e %

13: k+—k+1 > Update time index.

14: end while

B.3 Approximation bounds for CFA-CON

Lemma [T1] demonstrates how, for the particular case of no external input and linearly decoupled oscillators
(which we are always free to choose), we can establish bounds on the approximation error when using the
closed-form solution instead of the ground-truth coupled oscillator dynamics.

Lemma 11. Suppose that the network is unforced with g(u(t)) = 0 and that K = diag(k1,...,6n), D =
diag(da, ..., dy) such that the oscillators are not linearly coupled. Then, given any t > 0, and the initial state

y(0) € R?™, the error between the continuous dynamics #(t) of @) and the approximated dynamics &(t) in
(), is bounded by ||&(t) — Z(t)|| < 2.

Proof. @), (I0) and F = — f3 n1a(y(0), 0) give us

() — ()] = (fe1a(¥(t),0) + fima(y(t),0)) = finaly(t), F),
= — Kz(t) — Dz — tanh(Wz(t) + b) + Kz(t) + D& + tanh(Wz(0) + b), (55)
= ||— tanh(W=z(t) + b) + tanh(Wz(0) + b)|| < 2.
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B.4 Empirical evaluation of approximation error

In Table 3] we present a comparison of CFA-CON with several other strategies for integrating nonlinear
dynamics, such as CON. Following the implicit assumption made in Section |[B| we consider the case of
g(u) = 0, K = diag(ka, ..., %n) and D = diag(ds, . .., d,) but with the hyperbolic coupling between the
oscillators active (i.e., a full W matrix). Integrating the dynamics at a very small time step (i.e., 6t = 5e—5 s)
with a high-order ODE solver would give us a very accurate solution, but this is computationally infeasible in
practice. We, therefore, regard this as the upper bound on the accuracy of the solution. A feasible solution would
be to implement either a high-order solver such as Tsit5 at a larger integration time-step, e.g., 6t = le—1 s)
or a low-order solver with a slightly smaller integration time step, e.g., ¢ = 5e—2 s). Therefore, we also
benchmark these options. We also benchmark an implementation specialized on the underdamped case (i.e.,
¢i < 1): Closed-Form Approximation of the Underdamped Coupled Oscillator Network (CFA-UDCON). This
specialized implementation allows us to avoid using complex numbers in the algorithm and reduces the number
of computations necessary for calculating the approximated solution. As a result, we see a considerable increase
in the sim-time to real-time factor.

B.4.1 Integration error

We perform the integration error benchmark over 100 different network configurations, all consisting of 50
oscillators (n = 50): First, we sample the natural frequency of the ith oscillator from a uniform distribution as
wn,i ~ U(0.05Hz, 0.5 Hz), then we sample x; ~ U (0.2N/m, 2N/m) such that K = diag(k1,...,%n) > 0,

Ri

which lets us determine each mass m; = —5—. Next, the damping ratio is determined as (; ~ U (0.1,0.9) and

¢i ~ U(0.1,2.0) for the underdamped and general case, respectively. As a result, D = diag(di,...,d,) > 0
with d; = 2 (; «/m; k; given. Finally, by leveraging the Cholesky decomposition, we sample a W > 0 and
b; ~ U(—1,1). We compute the estimation error of all integrated trajectories with respect to the high-precision
solution (i.e., Tsitouras’ 5/4 method (Tsit5) at 6t = 5e—4 s). For this, we compute the RMSE for each 60 s
trajectory and then take the mean and standard deviation across the 100 different network configurations.

B.4.2 Simulation-time to real-time factor

The simulation vs. real-time factor is computed as the simulated rollout duration per second of computational
time. For this, we let each method simulate a 60 s trajectory for 100 times and record the minimum run time on
an Intel Core i7-10870H CPU (single core) over 10 trials. Because of computational constraints, we simulated
with the high-precision Tsit5 solver the trajectory only 5 times.

B.4.3 Results

The results in Table show that CFA-CON is 30 % more accurate than the Euler integrator at half of the speed.
Compared against the Tsit5 integrator, CFA-CON exhibits a 1.56x speed increase while being significantly less
accurate. For the underdamped case with ¢ < 1, the specialized implementation CFA-UDCON is 14.8 % faster
and at the same time 32 % more accurate than the Euler integrator. Furthermore, CFA-UDCON is 3.7x faster
and significantly less accurate than the Tsit5 integrator. We can conclude that in the pure rollout setting (i.e., no
backpropagation involved) for a generic CON, the CFA-CON does not show clear advantages to an appropriately
tuned Euler or Tsit5 solver. However, the specialized version CFA-UDCON demonstrates a 2.4x speed-up at no
reduction of accuracy vs. CFA-CON for underdamped oscillator networks.
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Method RMSE[m]] RMSE( < 1[m]l Complexity | Sim. time

Real time
w OO o e
CONWIDEWEr 001040003 0.022 +0.005 o (=52 Th ) = O(7.1e7) 36500x
A CON M 0,007 £0.002  0.015 £ 0.003 O (2527h) = 0(3.5¢7) 17680x
it 8t = 10 n/a 0.015 =+ 0.003 o (““’“ 7h) = O(3.5¢7) 41900x

Table 3: Benchmarking of various methods for integrating the CON dynamics. The RMSE is computed with
respect to the Tsitouras’ 5/4 method (Tsit5) (i.e., extremely high accuracy but also extremely high computational
complexity). We denote with n the number of oscillators in the network (in this case n = 50), with p the order
of the numerical ODE solver, and with J¢ the time-step. When stating the complexity, we refer to h = tn — o as
the rollout horizon in seconds. In this case, we report the results for a horizon of h = 60s. The RMSE column
states the RMSE of the various integration strategies with respect to the CON with Tsit5 at 6t = 5e—>5s solution,
which we consider to be the ground-truth. The RMSE ¢ < 1 computes the same metrics, but this time for a
dataset that contains only underdamped oscillators. The ;’:ZI ¢ column states the ratio between the duration of
the simulation achieved (in seconds) per second of real-time (i.e., computational time). We report the mean and
standard deviation of the RMSE over 100 different network configurations.
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C Appendix on experimental setup and datasets

C.1 Datasets

For all datasets, we generate images of size 32 X 32px and subsequently normalize the pixels to the interval
[-1,1].

C.1.1 Unactuated mechanical datasets

We consider multiple mechanical datasets based on a standard implementation included in the 7oy Physics
category of the NeurlPS 2021 Track on Datasets and Benchmarks publication by Botev et al. [26]: mass-spring
with friction (M-SP+F), a single pendulum with friction (S-P+F), and a double pendulum with friction (D-P+F).
All datasets contain 5000 system trajectories in the training set and 1000 trajectories each in the validation and
test set. Each trajectory is generated by first randomly initializing the system, then rolling it out for 3 s using an
Euler integrator with a time step size of 5 ms. Samples are recorded at a rate of 20 Hz (i.e., a time step of 0.05 s).
As a result, each trajectory contains 60 images of the system’s state. As all of these datasets are unactuated, we
can deactivate the input-to-forcing mapping component from all models (e.g., set g(u) = 0 for the CON model).

The M-SP+F dataset contains motion samples of a damped harmonic oscillator with a mass of 0.5 kg, a spring
stiffness of 2 N/m, and a damping coefficient of 0.05 Ns/m. For each trajectory, the initial condition of the mass-
spring is randomly sampled by combining a random sign(g) with a uniformly sampled |g| ~ /(0.1 m, 1 m).
The position of the mass is rendered with a filled circle in a grayscale image.

The SP+F and DP+F datasets include the evolutions of a single-link pendulum and double-link pendulum,
respectively, with a mass of 0.5 kg attached to the end of each link, which has a length of 1 m. The dataset
considers a gravitational acceleration of 3m/s?. A rotational damper with coefficient 0.05 Nms/rad provides
the friction. Similarly to the M-SP+F dataset, both the sign and the absolute value of the initial configuration
are randomly sampled, where |¢(0)| ~ ¢/(1.3rad, 2.3 rad). The position of each mass is rendered with a filled
circle. For the single-link pendulum, this is done in grayscale, and for the double pendulum, each mass is
rendered with a different color (i.e., blue and red).

C.1.2 Actuated continuum soft robot datasets

The shape of slender and deformable rods can be approximated by considering the deformations along the
1D curve of the backbone [57]. While this curve is still infinite-dimensional, it is possible to discretize
the backbone into (many) segments with piecewise constant strain [58}[57]. Accordingly, we describe the
kinematics of a planar continuum soft robot consisting of ny, segments with the PCS model [58]. We assume
each segment has a length of 100 mm and a diameter of 20 mm. The PCS model assumes each segment to
have constant strain. In the planar case, this means that the shape of the ith segment can be parametrized by
& = [Kbe,i Oshyi Uax,i]T € R? where Kbe,; is the bending strain (i.e., the curvature) in the unit rad/m,
Osh,; 1S the shear strain (dimensionless), and 0. ; is the axial elongation strain (dimensionless). The robot’s

configuration is then defined as ¢ = [{;F N T {;{b] " In the case of Piecewise Constant Curvature
(PCC), only the bending strain is active as shear strains and axial strains are neglected, and the configuration is
now g € R™. The PCS model generates EOM in the form of [59]

B(q)§+ C(q,4) ¢ + G(q) + Kqq+ Dq ¢ = u(t), (56)

where B(q) > 0 and C(g, ¢) are the inertia and Corioli matrices, respectively. G(q) collects the gravitational
forces, Kq > 0 is the stiffness matrix, and Dq > O contains the damping coefficients. u(¢) € R™ is an external
force acting on the generalized coordinates, and now m = ny,.

We derive the corresponding dynamics for a continuum soft robot of material density 600 kg/m?>, elastic
modulus of 20 000 Pa, shear modulus of 10 000 Pa, and damping coefficients of 0.000 01 Nm?s for bending
strains, 0.01 N for shear strains, and 0.01 Ns for axial strains, respectively. Gravity is pointing downwards.
The implementation of the dynamics in JAX [60] is based on the JSRM library [54,161], and we simulate the
robot using a constant integration time step of 0.1 ms. We render grayscale images of the robot with a size of
32 x 32px at a rate of 50 Hz using OpenCV [62]]. We generate 10000 trajectories, each of duration 2.0s and a
sampling time-step of 0.02s. We use 60 % training, 20 % validation, and 20 % test split. For each trajectory,
we randomly sample a constant actuation/input « ~ U (—Umax, Umax). We choose the maximum actuation
magnitude to be equal to the sum of the contribution of the potential forces (i.e., elastic and gravitational forces):

Umax = G(qmax) + quax with Qmax,i = [5 ™ rad/m, 02, 02]T

We generate three datasets based on this continuum soft robot model: in the CS dataset, we consider one segment
with all three planar strains active (i.e., bending, shear, and elongation). This results in three DOF and six-state
variables in the dynamical model. In the case of the PCC-NS-2 and PCC-NS-3 datasets, we base the dataset on a
simulated system consisting of two planar bending segments, respectively. Each segment is parametrized using
Constant Curvature (CC) [63L164]], which results in two configuration variables and a state dimension of four.
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C.1.3 Unactuated PDE reaction-diffusion dataset

We consider the 1*-order Reaction-diffusion (R-D) PDE on which (Champion et al, 2019). [9] evaluated their
SINDy Autoencoder on. The PDE of the high-dimensional lambda-omega reaction-diffusion system is defined
as

2 2
@:(1—(u2+v2))u—|—6(u2+v2)v+d1 8—1;—&—8—1; ,

ot Oqi  0q3

ov v o7
[ 1— (42 4+ 02 0w J0w

oy = ot (- koo (524 02

where u(t,q) : R x R*? — Rand v(t,q) : R x R? — R are time-dependent two vector fields defined over the

spatial domain ¢ € R?. We choose the same system parameters and initial condition as Champion et al. [9]:
di,d2 =0.1,and 8 = 1 and

u(0,¢) = tanh (\/qf + 5 cos (4((11 +ig2) —1/ai + q%)) ,
v(0, ¢) = tanh (\/qf + ¢2 sin (l(ql +ig2) — /¢ + q%)) .

After discretizing the spatial domain into 32 points along each dimension, we solve the PDE with a MATLAB
ODEA45 solver the solution of u(t, ¢) and v(t, q) at each time step and grid point. Subsequently, the solution is
multiplied with a Gaussian centered at the origin [9]

u(t, q) = exp(—0.01 (g + ¢3)) a(t,q),
o(t,q) = exp(—0.01 (¢i + ¢3)) (¢, ).

We integrate the system from the specified initial condition for 500 s and store samples at a time step of 0.05 s.
We divide the entire sequence into 99 subsequences each containing 101 samples. We train the models to predict
these subsequences that have a horizon of 5.0 s each.

(58)

(59

We stack the solution of @(t, ¢) and 7(t, ) contained in the two grids o, (t), o (t) € R3*?*32, respectively, to
gather the images o(t) € R32*32%2 containing two channels. A sample sequence of the generated images is
presented in Apx.[17] We use 60 % of the subsequences (i.e., 59) as our training set, and employ 20 % (i.e., 19)
for the validation and test sets, respectively.

C.2 Autoencoder architecture

For the encoder and decoder, we rely on a vanilla CNNs implemented as a 5-VAE [5]].

Encoder. The encoder consists of two convolutional layers with kernel size (3, 3) and stride (1, 1) mapping to
16, 32, respectively. The features are flattened and then passed to two linear layers with hidden dimension 256
and n . Each layer (except for the last) is followed by a layer norm [65] and a LeakyReLU nonlinearity.

Decoder. The decoder first uses two linear layers to map to hidden dimensions of 256 and 32768, respectively.
We then apply two 2D transposed convolutions [66] reducing the number of channels first to 16, and then to 1.
Each layer (except for the last linear and last convolutional) is followed by a layer norm [65] and a LeakyReLU
nonlinearity. Finally, we apply a sigmoid function to clip the output into the range [—1, 1].

C.3 Latent dynamic models

In the following section, we provide implementation details for the latent dynamic models that we evaluated as
part of this work.

C.3.1 Coupled Oscillator Network (CON)

We leverage the CON in W-coordinates given by (3) for learning latent space dynamics. Specifically, we
consider the input-to-force mapping g(u)) = B(u) u(t), where B(u) € R™*™ is parametrized by few-layer
MLP. We report results for two different sizes of the MLP: one medium-sized variant consisting of five layers
with a hidden dimension of 30 and a small variant with two layers and a hidden dimension of 12. In both cases,
we use a hyperbolic tangent as a nonlinearity.

When training the model, we jointly optimize My, *, Ky, Dy, b and g(u). However, we also need to make
sure that we adhere to the stability constraints My ', Ky, Dy, > 0. For this, we leverage the Cholvesky
decomposition [67]. Instead of directly learning the full matrix A € R™**"=, we designate the elements of an

upper triangular matrix U € R™**"= as the trainable parameters. The Cholesky decomposition demands that
diag(Ui1,...,Un_n,) > 0. Therefore, we apply the operation

Us = log (1 n eU“*El) teo, (60)
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where U is the learned upper triangular matrix, and €; = le—6 and ez = 2e—6 are two small, positive values.
The positive-definite matrix A is now givenby A = UT U » 0.

C.3.2 Neural ODEs

We consider two kinds of Neural ODEs [27]: the vanilla fxope : £(t) X u(t) — £(t) maps latent state and
system actuation directly into a time derivative of the latent state. In contrast, for the MECH-NODE, we enforce
the latent dynamics to have a mechanical structure

€0 = [%} - |:fMECH—N(jD(]tEJ)(f(t),u(t)) : 1)

We represent both fxopr and fymeca—NoDE as MLPs consisting of 5 layers, a hidden dimension of 30, and a
hyperbolic tangent nonlinearity.

C.3.3 Autoregressive models

For the below stated autoregressive models, we divide the integration between two (latent) samples & (¢x)
and &(tg+1) into Ning integration steps £(tx + 6t), ..., E(tk + K'Ot),...,E(tk + Ningdt) where 8t is the
integration step size and tx4+1 = tx + NintOt. The autoregressive model now describes the transition &(¢tx/ 1) =

far(§(trr), u(tr))) VE €1, Ning.
RNN. We implement a standard, single-layer Elman RNN with t anh nonlinearity. The hidden state captures
the latent state of the system. The latent state transition functions are given by

E(trry1) = tanh(Whn E(ter) + bun + Win u(ts) + bin), (62)
where Wiy, € R?™= %"= by, € R*™2, Wiy, € R*™# ™™ and by, € R*"=.

GRU. We implement a standard, single-layer GRU [30]] with s i gmoid activation function where we interpret
the latent state of the system as the hidden state of the cell. The latent state transition functions are given by

r =0 (Whe E(tgr) + bur + Wir u(te) + bix)

p =0 (Whp &) + bup + Wip u(tk) + bip)

n = tanh (r © (Whn £(txr) + bun) + Win u(tr) + bin)
1) =1 —p)On+po&(tw)

where o is the sigmoid function, ® the Hadamard product, W, Whp, Wi € R?™=%2"= Wy, Wi, Win €
R2™ %™ and by, bir, bip, bin € R¥"=,

(63)

coRNN. A time-discrete coRNN is defined by the transition function

2(ter 41 2(tgr) + 0t 2(ty
E(tw41) = [z&kilﬂ = [z'(tk/) Ot (—yz(te) fe(é(t,z/) +ta(nh ()Wg(tk/) FVu(ty) + b)) O

where v, € RT are positive, scalar hyperparameters representing the stiffness and damping coefficients,
respectively. The term tanh (W¢(tgr) + Vu(ty) +b) with W € R?™=*2n= |/ ¢ R™=*™ and b € R"*
contributes nonlinear state-to-state connections. It is implemented with a linear layer operating on (& (¢x), u(tx))
followed by a hyperbolic tangent nonlinearity.

CFA-CON. We adapt the Alg. [T]for predicting the time evolution in latent-space

E(tw 1) = fora—con(&(th), u(tr)), (65)
where fcra—con describe the autoregressive state transition by the CFA-CON model as introduced in Eq.

C.4 First-order variants of dynamical models

For learning (latent) dynamics of 1*-order systems (e.g., the reaction-diffusion dataset R-D), it might be beneficial
also to formulate the dynamical model to be of 1¥-order. While this is straightforward for some dynamics that
do not explicitly take the order into account (e.g., RNN, GRU, NODE), for other models such as coRNN, CON,

and CFA-CON more adjustments are necessary. Namely, we substitute the % component of the ODE with the
expression for %. Furthermore, we remove any terms that depend on the velocity 2 (e.g., damping effects).
Below, we report in detail the adapted, 1¥-order formulations for the coRNN, CON, and CFA-CON models.

CON. In the 1*-order version, we adapt the standard, 2"_order ODE of the CON network as defined in (ED to

E(t) = 5(t) = My (g(u(t)) — Kwz(t) — tanh(z(t) + b)) . (66)
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coRNN. In the 1™-order version, we define the transition function as

E(trra1) = 2z(tprar) = z(tpr) — 0ty 2(tgr ) + 6t tanh (WE(tr) + Vul(ty) + b) . (67)
CFA-CON. We adapt a 1"-order version of Alg.[I|for predicting the time evolution in latent-space

tyr+6t
) = ltws) = 2(t)+ [ F(t) = wx()dt,
tk/ (68)

F(ti) = g(u(te)) — (K — k)z(txr) — tanh(Wz(tgr) + ),

where the closed-form solution for the integral is given by

tyr+0t
/ Fty) — kz(t')dt! = &) (1 - e**’"‘”) . (69)

tpr

C.5 Estimation of the initial latent velocity

For 2"-order systems and when integrating the evolution of the latent state £(t) = [2T(t) 27 (t)] " in time,
we need to have access to an initial latent velocity Z(to) such that we can roll out the latent state £(¢) in time. A
naive approach to estimating such an initial latent velocity would be to encode multiple (at least two) images of
the system at the start of the trajectory into latent space and then perform numerical differentiation (e.g., finite
differences) in latent space. However, we found the resulting Z(t) to be relatively noisy and susceptible to small
encoding errors. Instead, we propose to perform numerical differentiation in image space and then map this
velocity into latent space using the encoder’s Jacobian. First, we estimate the image-space velocity at ¢ using
% The latent velocity is then estimated as (tx) = %2 (o(tx)) 6(tx),

where %—‘f is obtained with forward-mode automatic differentiation.

finite differences: o(tx) ~

C.6 Training

We implement the network dynamics and the neural networks (e.g., encoder, decoder, and MLPs) in JAX [60]
and Flax [68], respectively. When training or inferring time-continuous dynamical models (e.g., NeuralODE,
CON), we rely on Diffrax [47] for numerical integration of the ODE using the Dormand-Prince’s 5/4 method [69]
(Dopri5). For the numerical integration of both the time-continuous and the time-discrete models (e.g., RNN,
coRNN, CFA-CON), we use an integration time-step d¢ of 0.025s and 0.01 s for the Toy Physics [26]] and soft
robotic datasets, respectively.

Because of the GPU memory constraints, we limit ourselves to a batch size of 30 and 80 trajectories for the
Toy Physics [26] and soft robotic datasets, respectively. We implement a learning rate schedule consisting
of a warm-up (5 epochs) and a cosine annealing [70] period (remaining epochs). We employ an AdamW
optimizer [[71,172] with 51 = 0.9, B2 = 0.999 for updating both neural network weights (e.g., encoder, decoder)
and parameters of the dynamical model (e.g., K, Dy, My, etc.).

Before training, we conduct a hyperparameter selection study using Optuna [53]. For this, we leverage a
Tree-Structured Parzen Estimator 73] for identifying hyperparameters such as the base learning rate, the weight
decay, the loss function weights, and model-specific hyperparameters such as the number of MLP layers, the
hidden dimension of the MLP layers, the v and € values for the coRNN model etc. that minimize the RMSE of
the predicted images. To reduce computational requirements, we employ the Asynchronous Successive Halving
Algorithm [74] to stop unpromising trials early.

C.7 Evaluation metrics

Similar to other publications in the field [75176[77], we state the RMSE, the Peak Signal-to-Noise Ratio (PSNR)
and the Structural Similarity Index Measure (SSIM) [[78] between the ground-truth image o € R">**° and the
predicted image image 6 € R *“°, We use the separated test set for all evaluation results.

C.7.1 Root Mean-Square Error

The RMSE between the two images is given by

ho wo

RMSE(0, 6) = Z Z W (70)

u=1v=1
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C.7.2 Peak Signal-to-Noise Ratio

The PSNR is a function of the total Mean Squared Error (MSE) loss and the maximum dynamic range of the

image L.
2o 2 (Ouw — Ou)?
PSNR (o0, 6) = 20 log, (L) — 10 log,, <Z > W) . (71)
u=1v=1 ° e

As we work with normalized images with pixels in the interval [—1, 1], the dynamic range is L = 2.

C.7.3 Structural Similarity Index Measure

As simple pixel-by-pixel metrics such as RMSE or PSNR tend to average out any encountered errors, this could
lead to a situation in which a significant reconstruction error in a part of the image is not seen in the RMSE
metric but has a huge impact on the visual appearance of the reconstruction. SSIM [78]] incorporates not just the
absolute errors, but also the strong inter-dependencies between pixels, especially when they are spatially close.
The SSIM metric between two observations o and 0 is given by

SSIM(0, 6) = 1%(0, 6) ¢°(0,6) 7 (0, 6), (72)
where Qtopis + C 20005 + C. e
~ Holbo 1 ~ 0006 2 ~ Oo06 3
l = Sroro T -1 = rovo T /2 =20 TYs
(07 0) ,U% + Mg + Cl E] C(Ov O) 0_(27 + o_g + 02 ) 8(07 0) 0005 + 03

We use the constants C = (le)Q, Cy = (Ich)2 and C3 = C2/2, where L signifies the dynamic range as
previously used for the PSNR metric, and k& = 0.01 and k2 = 0.03. The average  and the variance o is
computed with a Gaussian filter with a 1D kernel of size 11 and sigma 1.5. We set the weight exponents «, 3,
and + for the luminance, contrast, and structure comparisons all to one. We rely on the PIX library [[79] for
efficiently computing the SSIM metric.

(73)

C.8 Compute resources

We trained the models on several desktop workstations for a total duration of roughly 150 h. In total, we relied
on 10x RTX 3090/4090 GPUs, each with 24 GB of VRAM, training the models in parallel. Each workstation
contained between 64 and 128 GB of RAM, and we used roughly 100 GB of total storage. Training each model
on one random seed took between 45 min and 4 h depending on the model type, the integration time constant,
and the number of trainable parameters. The hyperparameter tuning we conducted beforehand (only on one
random seed) took roughly the same time and computational resources as generating the final results.

For the control experiments, we additionally used a laptop with a 16-core Intel Core i7-10870H CPU and 32 GB
RAM. We did not need to use a GPU for evaluating the model during closed-loop control.
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D Appendix on learning latent dynamics

We report the full set of quantitative results, including the additional evaluation metrics PSNR and SSIM, in
Tables[7]to[9] For PCC-NS-2 in Tab. [§] we additionally also recorded the training steps per second on an Nvidia
RTX 3090 GPU with a batch size of 80 (which leads to 8080 images per batch). We plot the results of a sweep
across the latent dimensions for the additional evaluation metrics PSNR and SSIM in Fig. [§] Correspondingly,
we visualize the number of trainable parameters of each model vs. the latent dimension in Fig.[9] In Figs. [I0} [I6]
we present sequences of stills for the rollout of the trained CON(-M) models on the various datasets.

Model RMSE | PSNR 1 SSIM + # Parameters |

RNN 0.2739 + 0.0057 4.16 £ 0.02 0.6958 + 0.0122 88
GRU [30] 0.0267 £ 0.0033 6.13+0.09  0.9861 £ 0.0022 248
coRNN [35] 0.0265 + 0.0002 6.13+£0.01 0.9853 4+ 0.0006 40

NODE [27] 0.0264 + 0.0010 6.14 £0.03 0.9858 4+ 0.0009 3368

MECH-NODE 0.0328 + 0.0034 5.99 £+ 0.07 0.9821 + 0.0024 3244
CON (our) 0.0303 + 0.0053 6.05+0.13 0.9847 + 0.0027 34
CFA-CON (our)  0.0313 £ 0.0026 6.02 £ 0.06 0.9843 £+ 0.0008 34

Table 4: Benchmarking of CON and CFA-CON at learning latent dynamics on the M-SP+F (mass-spring with
friction) dataset. For all models, a latent dimension of n, = 4 is chosen. As this dataset does not consider
any inputs, we remove all parameters in the RNN, GRU, coRNN, CON, and CFA-CON models related to the
input mapping. MECH-NODE is a NODE with prior knowledge about the mechanical structure of the system
(i.e., ‘31—1” = ). We report the mean and standard deviation over three different random seeds and the number of
parameters of each latent dynamics model.

Model RMSE | PSNR 1 SSIM 1+ # Parameters |

RNN 0.2378 £ 0.0352 4.31+0.15 0.7568 £ 0.0350 88
GRU [30] 0.1457 £ 0.0078 4.78 = 0.05 0.9168 4+ 0.0093 248
coRNN [35] 0.1333 £ 0.0044 4.86 +£0.03 0.9194 £ 0.0055 40

NODE [27] 0.1260 £ 0.0013 4.91+£0.01 0.9379 4+ 0.0009 3368

MECH-NODE 0.1650 £+ 0.0205 4.67 +£0.12 0.8985 £ 0.0153 3244
CON (our) 0.1303 £ 0.0064 4.88 +0.04 0.9175 £ 0.0095 34
CFA-CON (our) 0.1352 4+ 0.0073 4.85 +0.05 0.9133 £+ 0.0052 34

Table 5: Benchmarking of CON and CFA-CON at learning latent dynamics on the S-P+F (single pendulum
with friction) dataset. For all models, a latent dimension of n, = 4 is chosen. As this dataset does not consider
any inputs, we remove all parameters in the RNN, GRU, coRNN, CON, and CFA-CON models related to the
input mapping. MECH-NODE is a NODE with prior knowledge about the mechanical structure of the system
(ie., j—i = ). We report the mean and standard deviation over three different random seeds and the number of
parameters of each latent dynamics model.

Model RMSE | PSNR 1 SSIM 1t # Parameters |
RNN 0.1694 4+ 0.0004 4.631 £ 0.002 0.7082 4 0.0032 672
GRU [30] 0.1329 4 0.0005 4.858 £0.003  0.8340 £ 0.0021 1968
coRNN [33] 0.1324 4+ 0.0016 4.862 4+ 0.012 0.8229 4 0.0039 348
NODE [27] 0.1324 4+ 0.0024 4.861 + 0.016 0.8101 £ 0.0024 4404
MECH-NODE 0.1710 £ 0.0111 4.624 £+ 0.063 0.7170 4 0.0439 4032
CON (our) 0.1323 £ 0.0018 4.862 + 0.013 0.8067 4 0.0038 246
CFA-CON (our) 0.1307 £0.0012 4.873 + 0.008 0.8147 4+ 0.0034 246

Table 6: Benchmarking of CON and CFA-CON at learning latent dynamics on the D-P+F (double pendulum
with friction) dataset. For all models, a latent dimension of n, = 12 is chosen. As this dataset do not consider
any inputs, we remove all parameters in the RNN, GRU, coRNN, CON, and CFA-CON models related to the

input mapping. MECH-NODE is a NODE with prior knowledge about the mechanical structure of the system

(i.e., fl—f = 1). We report the mean and standard deviation over three different random seeds and the number of

parameters of each latent dynamics model.
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Model RMSE | PSNR 1 SSIM 1t # Parameters |

RNN 0.1011 +£0.0009 25.92+0.08 0.9777 4+ 0.0004 696
GRU [30] 0.1125 + 0.0100 24.99 £0.74 0.9730 £+ 0.0040 2040
coRNN [35] 0.2537 £ 0.0018 17.93 £ 0.06 0.8820 £+ 0.0024 336
NODE [27] 0.2415 + 0.0021 18.36 £ 0.08 0.8946 + 0.0023 4374
MECH-NODE 0.2494 + 0.0028 18.08 £ 0.10 0.8898 + 0.0016 4002
CON-S (our) 0.1993 £+ 0.0646 20.03 £2.44 0.9218 + 0.0380 1386
CON-M (our) 0.1063 + 0.0027 25.49 £0.22 0.9758 + 0.0011 8568
CFA-CON (our)  0.1462 £ 0.0211 22.72£1.17 0.9573 £ 0.0103 8568

Table 7: Benchmarking of CON and CFA-CON at learning latent dynamics on the CS (soft robot with one
constant strain segment) dataset. For all models, a latent dimension of n, = 12 is chosen. CON-S and
CON-M are small and medium-sized versions of the CON model, respectively. MECH-NODE is a NODE with
prior knowledge about the mechanical structure of the system (i.e., ‘C’l—f = 1). We report the mean and standard
deviation over three different random seeds and the number of parameters of each latent dynamics model.

Model RMSE | PSNR 1 SSIM 1 # Parameters | Tr:f:&;‘;ps 1 Inf. time [ms]
RNN 0.1373 & 0.0185 23.27 +1.10 0.9643 £+ 0.0077 320 1.87 02.6
GRU [30] 0.0951 + 0.0021 26.45 + 0.19 0.9730 £ 0.0040 928 1.83 03.2
coRNN [35] 0.2504 £+ 0.0899 18.05 £ 2.66 0.9814 4+ 0.0006 152 1.89 02.7
NODE [27] 0.1867 4+ 0.0561 20.60 + 2.28 0.8774 + 0.0857 3856 0.79 50.2
MECH-NODE 0.1035 £ 0.0012 25.07 £ 0.06 0.9778 + 0.0004 3062 0.79 50.3
CON-S (our) 0.0996 4 0.0012 26.05 £+ 0.11 0.9792 + 0.0007 676 0.78 50.2
CON-M (our) 0.1008 £ 0.0006 25.95 4+ 0.05 0.9786 4+ 0.0003 7048 0.60 60.1
CFA-CON (our) 0.1124 + 0.0025 25.01 +0.19 0.9734 4+ 0.0012 7048 1.12 13.6

Table 8: Benchmarking of CON and CFA-CON at learning latent dynamics on the PCC-NS-2 (soft robot with
two constant curvature segments) dataset. For all models, a latent dimension of n, = 8 is chosen. CON-S
and CON-M are small and medium-sized versions of the CON model, respectively. MECH-NODE is a NODE
with prior knowledge about the mechanical structure of the system (i.e., % = &). We report the mean and
standard deviation over three different random seeds. Furthermore, we state the number of parameters of each
latent dynamics model and the training steps per second on a Nvidia RTX 3090 GPU. Each batch contains 80
trajectories and 8080 images of resolution 32x32px in total. Finally, we report the inference time averaged over
5000 runs for performing a rollout of 2.02 s (while encoding and decoding all images along the trajectory) on an
Nvidia RTX 3090 GPU with a batch size of 1.

D.1 Results for Reaction-diffusion dataset

As all previous examples exampled ODEs, we strive to test the proposed approach also on a system that is
governed by PDEs. Specifically, we consider the Reaction-diffusion (R-D) dataset as introduced in Apx.
To address the unactuated nature of the dataset, we remove, analog to the M-SP+F, S-P+F, and D-P+F datasets,
the input-to-state mapping parameters of the dynamical models (e.g., the B(u) and E(7) MLPs for the CON
models). Furthermore, the PDE describing the system dynamics is of 1*-order. Therefore, we leverage the
1*-order versions of the latent dynamics as specified in Apx.

We report the metrics of the test set evaluations in Tab. Furthermore, we also present a sequence of stills of
the rollout of a trained latent dynamics CON model in Fig.[I7] We find it impressive that CON with its strong
stability guarantees can accurately model the dynamics of a high-dimensional PDE system.
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Model RMSE | PSNR 1 SSIM # Parameters |

RNN 0.2232 £+ 0.0075 19.05 £ 0.29 0.8955 £+ 0.0083 696
GRU [30] 0.2148 + 0.0196 19.38 £ 0.76 0.9039 £+ 0.0223 2040
coRNN [335] 0.2474 £ 0.0018 18.15 £ 0.06 0.8877 £ 0.0011 336
NODE [27] 0.3373 £ 0.0565 15.46 £1.34 0.7432 £+ 0.0935 4374
MECH-NODE 0.1900 + 0.0024 20.45+0.11 0.9315 £ 0.0011 4002
CON-S (our) 0.1792 +£0.0038 20.96 £0.18 0.9392 + 0.0023 1386
CON-M (our) 0.1785+0.0023 20.99+0.11 0.9395+ 0.0018 8568
CFA-CON (our)  0.1803 £ 0.0003 20.90 £0.01 0.9366 + 0.0004 8568

Table 9: Benchmarking of CON and CFA-CON at learning latent dynamics on the PCC-NS-3 (soft robot with
three constant curvature segments) dataset. For all models, a latent dimension of n, = 12 is chosen. CON-S

and CON-M are small and medium-sized versions of the CON model, respectively. MECH-NODE is a NODE

with prior knowledge about the mechanical structure of the system (i.e., ‘é—;‘ = &). We report the mean and

standard deviation over three different random seeds and the number of parameters of each latent dynamics
model.

Model RMSE | PSNR 1 SSIM # Parameters |
RNN 0.3763 4+ 0.0374 3.82+0.12 0.4463 4 0.1358 20
GRU [30] 0.3232 4+ 0.0368 3.99+0.13 0.6798 4+ 0.0949 52
I*-order coRNN [35] 0.0741+0.0001 5.35+0.00 0.9724+0.0014 20
NODE [27] 0.0738 +0.0007 5.36 £0.01 0.9683 £+ 0.0022 3064
CON (our) 0.1110 = 0.0160 5.03 £0.12 0.9372 4+ 0.0109 24
CFA-CON (our) 0.1068 & 0.0059 5.05 £ 0.05 0.9418 4 0.0026 24

Table 10: Benchmarking of CON and CFA-CON at learning latent dynamics on the R-D (reaction-diffusion)
dataset. For all models, a latent dimension of n, = 4 is chosen. As this dataset does not consider inputs, we
remove all parameters in the RNN, GRU, coRNN, CON, and CFA-CON models related to the input mapping.
Also, as the reaction-diffusion system is governed by 1*-order PDE dynamics, we use specialized, 1%-order
version of the CON, CFA-CON, and coRNN dynamics. We report the mean and standard deviation over three
different random seeds and the number of parameters of each latent dynamics model.
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Figure 8: Evaluation of prediction performance of the various models vs. the dimension of their latent
representation n, and the number of trainable parameters of the dynamics model, respectively. We optimize the
hyperparameters for the case of n. = 8, and execute the tuning separately for each model and dataset.
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Figure 9: Plot of number of trainable parameters vs. the latent dimension n, of various models trained on the
PCC-NS-2 dataset. As we have configured them, CON-M and CFA-CON always have the same number of
parameters (i.e., overlaying lines).
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(a) t=0.0s (b) t=0.555 (c) t=1.10s (d) t=1.65s (e) t=2.20's (f) t=2.75s

Figure 10: Prediction sequence of a CON model with latent dimension n, = 4 trained on the damped harmonic
oscillator (M-SP+F) dataset [26]. Top row: Ground-truth evolution of the system. Bottom row: Predictions of
the CON model.

The prediction model is given three images centered around ¢ = 0 for encoding the initial latent z(0) and
estimation of the initial latent velocity Z(0). Subsequently, we roll out the autonomous network dynamics (i.e.,
unforced) and compare the decoded predictions with the ground-truth evolution of the system.

s " »
& o ey
(a) t=0.0's (b) t=0.55 (c) t=1.10s (d) t=1.65s (e) t=2.20's (f) t=2.755

Figure 11: Prediction sequence of a CON model with latent dimension n, = 4 trained on the single pendulum
with friction (S-P+F) dataset [26]. Top row: Ground-truth evolution of the system. Bottom row: Predictions of
the CON model.

The prediction model is given three images centered around ¢ = 0 for encoding the initial latent z(0) and
estimation of the initial latent velocity 2(0). Subsequently, we roll out the autonomous network dynamics (i.e.,
unforced) and compare the decoded predictions with the ground-truth evolution of the system.
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(a) t=0.0s (b) t=0.555 (c) t=1.10s (d) t=1.65s (e) t=2.20's (f) t=2.75s

Figure 12: Prediction sequence of a CON model with latent dimension n, = 12 trained on the double pendulum
with friction (D-P+F) dataset [26]. Top row: ground-truth evolution of the system. Bottom row: predictions of
the CON model.

The prediction model is given three images centered around ¢ = 0 for encoding the initial latent z(0) and
estimation of the initial latent velocity Z(0). Subsequently, we roll out the autonomous network dynamics (i.e.,
unforced) and compare the decoded predictions with the ground-truth evolution of the system.

\) )
\) )

(a) t=0.00's (b) t=0.04s (c) t=0.08's (d) t=0.12s (e) t=0.16s (f) t=0.20s

J ) J
J ) J

Figure 13: Prediction sequence of a forced CON model with latent dimension n, = 12 trained on the soft
robotic CS dataset containing trajectories of a simulated constant strain robot with one segment. Top row:
Ground-truth evolution of the system. Bottom row: Predictions of the CON-M model.

The prediction model is given three images centered around ¢ = 0 for encoding the initial latent z(0) and
estimation of the initial latent velocity 2(0). Subsequently, we roll out the autonomous network dynamics (i.e.,
unforced) and compare the decoded predictions with the ground-truth evolution of the system.
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(a) t=0.0s (b) t=0.3s (c) t=0.6s (d) t=0.9s (e) t=1.2s
Figure 14: Prediction sequence of an unforced CON model with latent dimension n, = 8 trained on the
PCC-NS-2 dataset. Top row: Ground-truth evolution of the system. Bottom row: Predictions of the CON-M
model.

The prediction model is given three images centered around ¢ = 0 for encoding the initial latent z(0) and

estimation of the initial latent velocity #(0). Subsequently, we roll out the autonomous network dynamics (i.e.,
unforced) and compare the decoded predictions with the ground-truth evolution of the system.

\v ) 7/
\~v ) 70

(a) t=0.0s (b) t=0.3s (c) t=0.6s (d) t=0.9s (e) t=1.2s

Figure 15: Prediction sequence of a forced CON model with latent dimension n, = 8 trained on the PCC-NS-2
dataset. Top row: Ground-truth evolution of the system. Bottom row: Predictions of the CON-M model.

The prediction model is given three images centered around ¢ = 0 for encoding the initial latent z(0) and
estimation of the initial latent velocity 2(0). Subsequently, we provide the same constant input u to both the
simulator and the network dynamics (i.e., unforced) and compare the decoded predictions with the ground-truth
evolution of the system.
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(a) t=0.0s (b) t=0.36s (c) t=0.72s (d) t=1.08s (e) t=1.44s (f) =1.80s

Figure 16: Prediction sequence of a forced CON model with latent dimension n, = 12 trained on the soft
robotic PCC-NS-3 dataset containing trajectories of a simulated piecewise constant curvature robot with three
segments. Top row: Ground-truth evolution of the system. Bottom row: Predictions of the CON-M model.
The prediction model is given three images centered around ¢ = 0 for encoding the initial latent z(0) and
estimation of the initial latent velocity Z(0). Subsequently, we roll out the autonomous network dynamics (i.e.,
unforced) and compare the decoded predictions with the ground-truth evolution of the system.

G666 e
Glololole

(a) t=0.0s (b) t=1.0s (c) t=2.0s (d) t=3.0s (e) t=4.0s (f) t=5.0s

Figure 17: Prediction sequence of an unforced, 1*'-order CON model with latent dimension n, = 4 trained on
the reaction-diffusion (R-D) dataset. Top row: Ground-truth evolution of the system. Bottom row: Predictions
of the CON-M model. We roll out the autonomous, 1*-order network dynamics (i.e., unforced) and compare the
decoded predictions with the ground-truth evolution of the system.
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E Appendix on latent-space control

E.1 Latent-space control of a damped harmonic oscillator

We consider an actuated version of the M-SP+F dataset (i.e., a damped harmonic oscillator) and denote it with
M-SP+F+A. All system, trajectory sampling and rendering parameters remain the same, except that for each
trajectory in the dataset we randomly sample a forcing v ~ U(—1 N, 1N).

‘We train a CON model with latent dimension n, = 1 over three random seeds on the M-SP+F+A dataset. This
means that the network consists of a single oscillator. From the three different random seeds, we choose the
model that achieves the best validation loss, which results in an RMSE of 0.0327, a PSNR of 5.99, and SSIM of
0.9796 on the test set.

Fig. [I8] shows how the encoder learns an almost linear relationship between the actual configuration of the
system and the predicted latent space representation. Furthermore, we notice that both the ground-truth and the
learned potential energy are convex and exhibit a global minimum at ¢ = O m.

We compare the performance of P-satl-D, D+FF, and P-satl-D+FF controllers based on the CON model in
Fig. For the P-satl-D controller, we choose the control gains K, = 10, K; = 10, Kq = 5,v = 1. The D+FF
controller uses Kq = 3.5. Finally, the P-satl-D+FF is configured with K, = 2, K; = 0.3, Kqg = 3.5,v = 1.
The results show that the P-satl-D+FF controller exhibits thanks to its feedforward term no overshooting and
a faster response time than the pure feedback controller P-satl-D. The high accuracy of the feedfoward term
can be seen from the performance of the D+ FF controller, that only exhibits relatively small steady-state error.
Adding small proportional and integral feedback actions in the P-satl-D+FF controller keeps the compliance
high while removing the steady-state error and reducing the response time.

Finally, we visualize the behavior of the P-satl-D+FF controller as a sequence of stills in Fig.
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(a) Configuration g to latent z mapping (b) Ground-truth and learned potential energy U

Figure 18: Panel (a): Learned mapping from configuration to latent space for the CON model with . (i.e.,
consisting of a single oscillator) trained on the actuated damped harmonic oscillator (M-SP+F+A) dataset.
Panel (b): The blue line represents the ground-truth potential energy of the damped harmonic oscillator. The
orange line represents the learned potential energy of the CON model evaluated vs. the system configuration by
rendering and subsequently encoding into latent space each configuration value.

E.2 Latent-space control of a two segment PCC soft robot

E.2.1 Potential energy landscape

When leveraging (learned) dynamical models for setpoint regulation, it is essential to accurately estimate the
potential energy as this dictates the efficacy of the feedforward terms. Therefore, we qualitatively evaluate the
potential energy landscape of the CON latent dynamic model.

In Fig.21(a)l we can see how CON contains a single, isolated, and globally asymptotically stable equilibrium as
proven in Appendix [A.2]and Section 2] respectively.

Furthermore, we want to verify that the learned potential corresponds to the actual potential energy of the simu-
lated system. An autonomous continuum soft robot with the tip pointing downwards in a straight configuration
exhibits an isolated, globally asymptotically stable equilibrium at ¢ = 0 (i.e., zero strains) [42]. For this purpose,
we can compare the learned potential energy field in Fig. Z1(b)] with the ground-truth potential energy field in
Fig. We confirm, based on Fig. 21(b)] that, indeed, the Iearned potential also has its minimum close to/at
g = 0. Although the field is shaped slightly differently, the potential forces are clearly pointing inwards towards
the global attractor.
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Figure 19: Latent-space control of an actuated damped harmonic oscillator (M-SP+F+A) following a sequence
of setpoints. We compare multiple controllers based on a trained CON network with n, = 1. The CON model
weights are initialized using a random seed of 0. The blue line represents a pure feedback controller (P-satl-D).
The orange line visualizes the behavior of a feedforward controller with only a damping term applied in feedback
(D+FF). The green line shows the performance of our proposed combination of feedback and feedforward terms
(P-satl-D+FF). The dotted and solid lines show the reference and actual values, respectively. For each setpoint,
we randomly sample a desired shape ¢ and render the corresponding image o?. This image is then encoded to a
target latent z9. The controller then computes a latent-space torque F', which is decoded to an input «. Finally,
we provide this input to the simulator, which performs a roll-out of the closed-loop dynamics. Important: The
robot’s configuration (i.e., the first-principle, minimal-order state) is solely used for generating a target image
and simulating the closed-loop system.

E.2.2 Model selection

For the control experiments, we train instances of the MECH-NODE and CON-M models with latent dimension
n. = 2 and with neural network weights initialized with three different random seeds. For MECH-NODE, we
choose the model with the lowest validation loss (seed 0).

For the CON network, we found that model-based control does not perform as well when the latent stiffness
I'y (as visualized in Fig. ZT(a)) is significantly larger along one of the Eigenvectors than along the other one.
Therefore, we evaluate the Eigenvalues of the learned stiffness matrix in W-coordinates after training: A1,2(Iw).
Particularly, we choose the seed that minimizes the normalized standard deviation of the Eigenvalues

_ A1(1—‘\1\7) + )\Q(Fw)
A= fv

o \/<A1<rw> —)? + QalT) — i )? )
2 b

.. OX
seed = arg min —.
7N

E.2.3 Additional control results
Additional results for the P-satl-D feedback controller based on the MECH-NODE and CON models are

provided in Fig.[23] Fig.[24] respectively and for the P-satl-D+FF controller based on the CON model in Fig.[23]
Sequences of stills for the CON P-satl-D+FF controller are provided in Fig.[22]
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Figure 20: Sequence of closed-loop control of an actuated damped harmonic oscillator (M-SP+F+A) with a
P-satl-D+FFcontroller based on a trained CON with n, = 1. Columns 1-4: show the actual behavior of the

closed-loop system. Column 5: demonstrates the target image that the control sees for all time instances in the
TOW.
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Figure 21: Potential energy landscapes of a CON with n, = 2 trained to learn the latent space dynamics of a
continuum soft robots (simulated with two PCC segments). Panel (a): Here, we visualize the learned potential
energy of CON using the color scale as a function of the latent representation z = x, € R?. The arrows denote
the gradient of the potential field g% (i.e., the potential force), with the magnitude of the gradient expressed
as the length of the arrow. Panel (b): Again, we display the learned potential energy of CON using the color
scale, but in this case, as a function of the configuration ¢ € R of the robot (that is hidden from the model). First,
we render an image o of the shape of the robot for each configuration ¢ = [q1 q2]T € R?. Then, we encode
the image into latent space as z = ®(0). This allows us then to compute the potential energy /(=) of the CON

latent dynamics model. Panel (¢): Here, we display the potential energy and its associated potential forces of
the actual (i.e., simulated) system.
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Figure 22: Sequence of closed-loop control of a continuum soft robot consisting of two constant curvature
segments with the P-satl-D+FF based on a trained CON with n, = 2. Columns 1-4: show the actual behavior
of the closed-loop system. Column 5: demonstrates the target image that the control sees for all time instances
in the row.
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Figure 23: Latent-space control of a continuum soft robot (simulated using two PCC segments) following a
sequence of setpoints with a pure P-satl-D feedback controller operating in a 2D latent space learned with the
MECH-NODE model. The CON model weights are initialized using a random seed of 0. The dotted and solid
lines show the reference and actual values, respectively. For each setpoint, we randomly sample a desired shape
¢ and render the corresponding image o°. This image is then encoded to a target latent z¢. The controller
then computes a latent-space torque F'¢, which is decoded to an input w. Finally, we provide this input to the
simulator, which performs a roll-out of the closed-loop dynamics. Important: The robot’s configuration (i.e., the
first-principle, minimal-order state) is solely used for generating a target image and simulating the closed-loop
system.
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Figure 24: Latent-space control of a continuum soft robot (simulated using two PCC segments) following a
sequence of setpoints with a pure P-satl-D feedback controller operating in a 2D latent space learned with the
CON model. The CON model weights are initialized using a random seed of 0. The dotted and solid lines
show the reference and actual values, respectively. For each setpoint, we randomly sample a desired shape

(d) Potential energy U (t) € R

¢? and render the corresponding image o?. This image is then encoded to a target latent z%. The controller

then computes a latent-space torque F'¢, which is decoded to an input . Finally, we provide this input to the
simulator, which performs a roll-out of the closed-loop dynamics. Important: The robot’s configuration (i.e., the
first-principle, minimal-order state) is solely used for generating a target image and simulating the closed-loop

system.
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Figure 25: Latent-space control of a continuum soft robot (simulated using two PCC segments) following a
sequence of setpoints with a pure P-satI-D+FF feedback & feedforward controller operating in a 2D latent space
learned with the CON model. The CON model weights are initialized using a random seed of 0. The dotted and
solid lines show the reference and actual values, respectively. For each setpoint, we randomly sample a desired
shape ¢¢ and render the corresponding image o?. This image is then encoded to a target latent z%. The controller
then computes a latent-space torque F'¢, which is decoded to an input . Finally, we provide this input to the
simulator, which performs a roll-out of the closed-loop dynamics. Important: The robot’s configuration (i.e., the
first-principle, minimal-order state) is solely used for generating a target image and simulating the closed-loop

system.
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F Extended discussion on future applications and limitations

F.1 Systems for which we would expect the proposed method to work

Mechanical systems with continuous dynamics, dissipation, and a single, attractive equilibrium
point. The proposed method is a very good fit for mechanical systems with continuous dynamics, dissipation,
and a single, attractive equilibrium point. In this case, the real system and the latent dynamics share the energetic
structure and stability guarantees. Examples of such systems include many soft robots, deformable objects with
dominant elastic behavior, and other mechanical structures with elasticity.

Local modeling of (mechanical) systems that do not meet the global assumptions. Even if the
global assumptions of the proposed method are not met, the method can still be applied to model the local
behavior around a local asymptotic equilibrium point of the system (i.e., in the case of multi-stability). For
example, the method could be used to model the behavior of a robotic leg locally in contact with the ground, a
cobot’s interaction with its environment, etc.

F.2 Systems for which we could envision the proposed method to work under (minor)
modifications

Mechanical systems without dissipation. The proposed method would currently not work well for
mechanical systems without any dissipation, as (a) the original system will likely not have a globally asymp-
totically stable equilibrium point, and more importantly, (b) we currently force the damping learned in latent
space to be positive definite. However, these systems are not common in practice as friction and other dissi-
pation mechanisms are omnipresent, and the proposed method can learn very small damping values (e.g., the
mass-spring+riction system). A possible remedy could be to relax the positive definiteness of the damping
matrix in the latent space, allowing for zero damping. This would allow the method to work for systems without
dissipation, such as conservative systems. Examples of such systems include a mass-spring system without
damping, the n-body problem, etc.

Systems with discontinuous dynamics. The proposed method might underperform for systems with
highly discontinuous dynamics, such as systems with impacts, friction, or other discontinuities. In these cases,
the latent dynamics might not capture the real system’s behavior accurately, and the control performance of
feedforward + feedback will very likely be worse than pure feedback. Again, the method should be able to
capture local behavior well. A possible remedy for learning global dynamics could be to augment the latent
dynamics with additional terms that capture the discontinuities, such as contact and friction models (e.g.,
stick-slip friction).

Systems with multiple equilibrium points. The original system having multiple equilibria conflicts with
the stability assumptions underlying the proposed CON latent dynamics. In this case, as, for example, seen
on the pendulum-+friction and double pendulum + friction results, the method might work locally but will not
be able to capture the global behavior of the system. A possible remedy could be to relax the global stability
assumptions of the CON network. For example, the latent dynamics could be learned in the original coordinates
of CON while allowing W also to be negative definite. This would allow the system to have multiple equilibria
& attractors. Examples of such systems include a robotic arm under gravity, pendula under gravity, etc.

Systems with periodic behavior. The proposed method will likely not work well for systems with periodic
behavior, as they do not have a single, attractive equilibrium point. Examples of such systems include a mass-
spring system with a periodic external force, a pendulum with a periodic external force, some chemical reactions,
etc. Again, it is likely possible to apply the presented method to learning a local behavior (i.e., not completing
the full orbit). A possible remedy could be to augment the latent dynamics with additional terms that capture the
periodic behavior, such as substituting the harmonic oscillators with Van der Pol oscillators to establish a limit
cycle or a supercritical Hopf bifurcation.

F.3 Systems for which we would not expect the proposed method to work

Nonholonomic systems. The proposed method likely would not work well for nonholonomic systems,
as both structure (e.g., physical constraints) and stability characteristics would not be shared between the real
system and the latent dynamics. Examples of such systems include vehicles, a ball rolling on a surface, and
many mobile robots.

Partially observable and non-markovian systems. As the CON dynamics are evaluated based on
the latent position and velocity encoded by the observation of the current time step and the observation-space
velocity, we implicitly assume that the system is (a) fully observable and (b) fulfills the Markov property. This
assumption might not hold for partially observable systems, such as systems with hidden states or systems
with delayed observations. Examples of such cases include settings where the system is partially occluded
or in situations without sufficient (camera) perspectives covering the system. Furthermore, time-dependent
material properties, such as viscoelasticity or hysteresis, that are present and significant in some soft robots and
deformable objects are not captured by the method in its current formulation.
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contributions and scope?
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Justification: The claims and contributions made in the abstract and introduction are all supported by
theoretical and/or experimental results included in the paper.
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made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results and reflect how much the
results can be expected to generalize to other settings.

« It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The known limitations of the proposed method are listed and presented in multiple places
in the manuscript: the last paragraph of the introduction, in Section [6] and an extended version in

Appendix [{
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¢ The answer NA means that the paper has no limitation while the answer No means that the paper
has limitations, but those are not discussed in the paper.

¢ The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to violations of

these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,

asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide
closed captions for online lectures because it fails to handle technical jargon.

¢ The authors should discuss the computational efficiency of the proposed algorithms and how

they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to address problems

of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete
(and correct) proof?

Answer: [Yes]

Justification: All equations, Theorems, and Lemmas are numbered and cross-referenced. In each
Theorem/Lemma, we clearly state the assumptions under which the proof is valid (e.g., positive
definite matrices for the ISS stability proof). All Theorems are included in the main paper: for the
global asymptotic stability proof, we directly detail the proof in the main paper, and for the ISS proof,
we provide a sketch with the full proof appearing in the Appendix. We also include auxiliary Lemmas
in the Appendix.
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* The answer NA means that the paper does not include theoretical results.
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 All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
» All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if they appear in
the supplemental material, the authors are encouraged to provide a short proof sketch to provide
intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

¢ Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental
results of the paper to the extent that it affects the main claims and/or conclusions of the paper
(regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All the code for the experiments has been open-sourced on GitHub. Furthermore, we
provide a detailed description of the implementation details in Appendix[C]

Guidelines:

* The answer NA means that the paper does not include experiments.

« If the paper includes experiments, a No answer to this question will not be perceived well by the
reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

« If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might suffice,
or if the contribution is a specific model and empirical evaluation, it may be necessary to either
make it possible for others to replicate the model with the same dataset, or provide access to
the model. In general. releasing code and data is often one good way to accomplish this, but
reproducibility can also be provided via detailed instructions for how to replicate the results,
access to a hosted model (e.g., in the case of a large language model), releasing of a model
checkpoint, or other means that are appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how to
reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe the
architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should either be
a way to access this model for reproducing the results or a way to reproduce the model (e.g.,
with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: The code associated with this paper is available on GitHutﬂ It allows the user to generate
the datasets, run the hyperparameters selection, train the models, and generats result plots based on
training checkpoints.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.
* Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).
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* The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

» The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

¢ At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).
* Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: In Appendix [C] we include implementation details such as the used libraries,
algorithms, optimizers, and evaluation procedures. All hyperparameters (e.g., learning rate,
loss weights, weight decay, etc.) can be found in the code on GitHub (specifically, in
the sweep_generic_dynamics_autoencoder.py Python script that is placed in the
examples/sweeping folder).
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* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail that is
necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in the appendix, or as supplemental material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-
tion about the statistical significance of the experiments?

Answer: [Yes]

Justification: We run all experiments with various initializations (i.e., different random seeds), and
each result table/plot is accompanied by a description of how the variability of results is captured.

Guidelines:

* The answer NA means that the paper does not include experiments.

e The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

» The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

* The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

¢ The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error of the
mean.

* Itis OK to report 1-sigma error bars, but one should state it. The authors should preferably report
a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is
not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: In Section [C.8] we report details about the necessary compute for performing the
experiments reported in this paper.

Guidelines:

¢ The answer NA means that the paper does not include experiments.
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* The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud
provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual experimental
runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into
the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code
of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The authors have reviewed the NeurIPS Code of Ethics, and this research conforms, in
every respect, with this code.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

« If the authors answer No, they should explain the special circumstances that require a deviation
from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consideration due
to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts
of the work performed?

Answer: [NA]

Justification: This paper primarily involves fundamental research, and the presented application of
predicting and controlling the future evolutions of dynamical systems does not directly have any
broader societal impact.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

« If the authors answer NA or No, they should explain why their work has no societal impact or
why the paper does not address societal impact.

« Examples of negative societal impacts include potential malicious or unintended uses (e.g.,
disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied to particular
applications, let alone deployments. However, if there is a direct path to any negative applications,
the authors should point it out. For example, it is legitimate to point out that an improvement in
the quality of generative models could be used to generate deepfakes for disinformation. On the
other hand, it is not needed to point out that a generic algorithm for optimizing neural networks
could enable people to train models that generate Deepfakes faster.

¢ The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-
ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the
efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or
scraped datasets)?

Answer: [NA]
Justification: This work by itself does not pose any risk for misuse.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with necessary
safeguards to allow for controlled use of the model, for example by requiring that users adhere to
usage guidelines or restrictions to access the model or implementing safety filters.

» Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.
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open-source 3rd-party packages (e.g., JAX, flax, diffrax, etc.), we clearly document these dependencies
in the requirements.txt file of the accompanying code archive. Furthermore, we leverage the

datasets that are part of the DeepMind Hamiltonian Dynamics Suite [26ﬂ and have been open-sourced
with an Apache 2.0 license.
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Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer: [Yes]

Justification: We release the necessary code to generate the datasets that we used in this paper alongside
the submission.
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* The answer NA means that the paper does not release new assets.
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compensation (if any)?

Answer: [NA]

Justification: This research did not involve any crowdsourcing experiments or trials with human
subjects.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

¢ Including this information in the supplemental material is fine, but if the main contribution of the
paper involves human subjects, then as much detail as possible should be included in the main
paper.

¢ According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human Subjects
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Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]
Justification: This research did not involve any trials with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with human

subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly state
this in the paper.

* We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

* For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.
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