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Abstract

While state-of-the-art diffusion models (DMs) excel in image generation, concerns
regarding their security persist. Earlier research highlighted DMs’ vulnerability
to data poisoning attacks, but these studies placed stricter requirements than con-
ventional methods like ‘BadNets’ in image classification. This is because the art
necessitates modifications to the diffusion training and sampling procedures. Un-
like the prior work, we investigate whether BadNets-like data poisoning methods
can directly degrade the generation by DMs. In other words, if only the training
dataset is contaminated (without manipulating the diffusion process), how will
this affect the performance of learned DMs? In this setting, we uncover bilateral
data poisoning effects that not only serve an adversarial purpose (compromis-
ing the functionality of DMs) but also offer a defensive advantage (which can be
leveraged for defense in classification tasks against poisoning attacks). We show
that a BadNets-like data poisoning attack remains effective in DMs for produc-
ing incorrect images (misaligned with the intended text conditions). Meanwhile,
poisoned DMs exhibit an increased ratio of triggers, a phenomenon we refer to
as ‘trigger amplification’, among the generated images. This insight can be then
used to enhance the detection of poisoned training data. In addition, even under
a low poisoning ratio, studying the poisoning effects of DMs is also valuable for
designing robust image classifiers against such attacks. Last but not least, we
establish a meaningful linkage between data poisoning and the phenomenon of
data replications by exploring DMs’ inherent data memorization tendencies. Code
is available at https://github.com/OPTML-Group/BiBadDiff.

1 Introduction

Data poisoning attacks [1] have been studied in the context of image classification, encompassing
various aspects such as attack generation [2, 3], backdoor detection [4, 5], and reverse engineering of
backdoor triggers [6, 7]. This threat model has also been explored in other ML paradigms, including
federated learning [8], graph neural networks [9], and generative modeling [10]. In this work, we
are inspired from conventional data poisoning attacks and peer into its effects on diffusion models
(DMs), the state-of-the-art generative modeling techniques that have gained popularity in various
computer vision tasks [11].

In the context of DMs, data poisoning attacks to produce backdoored DMs have been studied in
recent works [12–16]. We direct readers to Sec. 2 for detailed reviews of these works. Nevertheless,
in comparison to previous research, our work establishes the following notable distinctions.

❶ Attack perspective (termed as ‘Trojan Horses’): Earlier research predominantly tackled the
problem of poisoning attack generation in DMs, i.e., addressing the inquiry of whether a DM could be
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Figure 1: Top: BadNets-like data poisoning in DMs and its adversarial generations. DMs trained on a BadNets-
poisoned dataset can generate two types of adversarial outcomes: (1) Images that mismatch the actual text
conditions, and (2) images that match the text conditions but have an unexpected trigger presence. Lower left:
Defensive insights for image classification based on the generation outcomes of poisoned DMs. Lower right:
Analyzing the data replication in poisoned DMs. Gen. and Train. refer to generated and training images.

compromised through data poisoning attacks. Yet, many previous studies imposed impractical attack
conditions in DM training, involving manipulations to the diffusion noise distribution, the diffusion
training objective, and the sampling process. Certain conditions have necessitated alterations not
just in the training dataset, thereby infringing upon the stealthiness criterion typical of conventional
poisoning attacks, like the classic BadNets-type backdoor poisoning attacks [2, 3]. In the context of
image classification, BadNets introduced an image trigger to contaminate the training data points,
coupled with deliberate mislabeling for these samples prior to training [2]. Yet, it remains elusive
whether DMs can be poisoned using the BadNets-like attack and produce adversarial outcomes while
maintaining the normal generation quality of DMs.

❷ Defense perspective (termed as ‘Castle Walls’): Except a series of works focusing on poisoned data
purification [17, 18], there exists limited research on exploring the characteristics of poisoned DMs
through the lens of data poisoning defense. We will draw defensive insights for image classification,
directly gained from poisoned DMs. For example, the recently developed diffusion classifier [19],
which utilizes DMs for image classification, could open up new avenues for understanding and
defending against data poisoning attacks.

Inspired by ❶-❷, in this work we ask:

(Q) Can we poison DMs as easily as BadNets? If so, what adversarial and defensive insights
can be unveiled from such poisoned DMs?

To tackle (Q), we integrate the BadNets-like attack setup into DMs and investigate the effects of
such poisoning on generated images. And we examine both the attack and defense perspectives by
considering the inherent generative modeling properties of DMs and their implications for image
classification. Fig. 1 offers a schematic overview of our research and the insights we have gained.
Poisoned DMs exhibit bilateral effects, serving as both ‘Trojan Horses’ and ‘Castle Walls’. We
summarize our contributions below:

• We show that DMs can be poisoned in the BadNets-like attack setup, and uncover two ‘Trojan
Horses’ effects: misalignment between input prompts and generations, and tainted generations with
triggers. We also illuminate that poisoned DMs lead to an amplification of trigger generation. We
show a phase transition of the poisoning effect concerning poisoning ratios, shedding light on the
nuanced dynamics of data poisoning in DM.

• We propose the concept of ‘Castle Walls’, which highlights several key defensive insights for
image classification. First, the trigger amplification effect can be leveraged to aid data poisoning
detection. Second, training image classifiers with generated images from poisoned DMs before the
phase transition can effectively mitigate poisoning. Third, DMs used as image classifiers display
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enhanced robustness compared to standard image classifiers, offering a promising avenue for defense
against such attacks.

• We establish a meaningful link between data poisoning and data replications in DMs. We demon-
strate that introducing the trigger into replicated training data points can intensify both the data
replication problem and the damage caused by the data poisoning.

2 Related Work

Data poisoning against diffusion models. Poisoning attacks [2, 20, 21, 1] have emerged as a
significant threat in deep learning. One main stream of such attacks involves injecting a “shortcut"
into a model, creating a backdoor that can be triggered to manipulate the model’s output. Extended
from image classification, there has been a growing interest in applying poisoning attacks to diffusion
models (DMs) [12–16, 22]. Specifically, Chou et al. [12] and Chen et al. [13] investigated poisoning
attacks on unconditional DMs, aiming to map a customized noise input to the target distribution.
Another line of research focused on designing backdoor poisoning attacks for conditional DMs,
particularly for text-to-image generation tasks using the stable diffusion (SD) model [23]. Struppek
et al. [16] injected a text trigger into the image captions in the training set, manipulating the text
encoder of SD to align the embedding of the trigger-polluted captions and a target prompt, thus
guiding the U-Net to generate specific target images. Furthermore, Chou et al. [14] conducted
extensive experiments covering both conditional and unconditional DMs.

DM-aided defenses against data poisoning. DMs have also been employed to defend against
data poisoning attacks in image classification, leveraging their potential for image purification. May
et al. [17] and Zhou et al. [24] employed diffusion models to degrade trigger features while restoring
benign ones. Additionally, Shi et al. [18] introduced a defense framework based on diffusion image
purification by using a linear transformation to destruct the trigger pattern and generating purified
images with a pre-trained diffusion model. Furthermore, Struppek et al. [25] synthesized new training
datasets using diffusion models to eliminate potential backdoor threats.

Data replication problems in DMs. Previous research [26–28] has shed light on DMs’ propensity
to replicate training data, raising concerns regarding copyright and privacy. Somepalli et al. [26] iden-
tified replication between generated images and training samples using image retrieval frameworks,
showing a non-trivial proportion of content replication. Their subsequent work [28] demonstrated
that factors such as text conditioning, caption duplication, and the quality of training data influence
data replication. Carlini et al. [27] used membership inference attack to identify generated images
that closely resemble those in the training set. In contrast to previous research, our work will establish
a meaningful connection between data poisoning and data replications for the first time in DMs.

3 Preliminaries and Problem Setup

Preliminaries on DMs. DMs approximate the distribution space through a progressive diffusion
mechanism, which involves a forward diffusion process as well as a reverse denoising process [11, 29].
The sampling process initiates with a noise sample drawn from the Gaussian distribution N (0, 1).
Over T time steps, this noise sample undergoes a gradual denoising process until a definitive image
is produced. In practice, the DM predicts noise ϵt at each time step t, facilitating the generation of
an intermediate denoised image xt. In this context, xT represents the initial noise, while x0 = x
corresponds to the authentic image. DM training involves minimizing the noise estimation error:

Ex,c,ϵ∼N (0,1),t

[
∥ϵθ(xt, c, t)− ϵ∥2

]
, (1)

where ϵθ(xt, c, t) denotes the noise generator associated with the DM at time t, parametrized by θ
given text prompt c, like an image class name. Furthermore, when the diffusion process operates
within the embedding space, where xt represents the latent feature, such DM is known as a latent
diffusion model (LDM). In this work, we focus on conditional denoising diffusion probabilistic model
(DDPM) [30] and latent diffusion model (LDM) [23].

Existing poisoning attacks against DMs. Data poisoning, regarded as a threat model during the
training phase, has gained recent attention within the domain of DMs, as evidenced by existing studies
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[12–14, 16, 15]. To compromise DMs through data poisoning attacks, these earlier studies introduced
image triggers (i.e., data-agnostic perturbation patterns injected into sampling noise) and/or text
triggers (i.e., textual perturbations injected into the text condition inputs). Subsequently, the diffusion
training associates such triggers with incorrect target images.

Table 1: Existing data poisoning against DMs vs. our setup.

Methods
Data/Model Manipulation Assumption
Training
dataset

Training
objective

Sampling
process

BadDiff [12] ✓ ✓ ✓
TrojDiff [13] ✓ ✓ ✓

VillanDiff [14] ✓ ✓ ✓
Multimodal [15] ✓ ✓ ×
Rickrolling [16] ✓ ✓ ×

This work ✓ × ×

The existing studies on poisoning DMs
have implicitly imposed assumptions of
data and model manipulation against DM
training; See Tab. 1 for a summary of the
poisoning setups in the literature. To be
specific, they required to alter the DM’s
training objective to achieve successful at-
tacks and preserve image generation qual-
ity. Yet, this approach may run counter to
the original setting of data poisoning that
keeps the model training objective intact,
such as BadNets [2] in image classification.
In addition, the previous studies [12–14]
necessitate the change of the noise distribution or the sampling process of DMs, which deviates from
the typical use of DMs. This manipulation could make the detection of poisoned DMs relatively
straightforward, e.g., through noise mean shift detection.

Problem statement: Poisoning DMs via BadNets. To alleviate the assumptions associated with
existing data poisoning on DMs, we investigate if DMs can be poisoned as straightforward as BadNets
[2]. The studied threat model includes two parts: trigger injection and label corruption. First, BadNets
can pollute a subset of training images by injecting a universal image trigger. Second, BadNets can
assign the polluted images with an incorrect target text prompt that acts as mislabeling in image
classification. Within the above threat model, we will employ the same diffusion training formula (1):

Ex+δ,c,ϵ∼N (0,1),t

[
∥ϵθ(xt,δ, c, t)− ϵ∥2

]
, (2)

where δ represents the universal image trigger, and it assumes a value of δ = 0 if the corresponding
image sample remains unpolluted. xt,δ signifies the polluted image resulting from x+ δ at time t,
while c serves as the text condition, assuming the role of the target text prompt if the image trigger is
present, i.e., when δ ̸= 0. Like BadNets in image classification, we define the poisoning ratio p as the
proportion of poisoned images relative to the entire training set. In this study, we will explore trigger
patterns in Tab. A1 in Appendix and examine poisoning ratios p ∈ [1%, 20%]. Unless otherwise
specified, we set the guidance weight for conditional generation to be 5 for DMs [30].

To assess the effectiveness of BadNets-like data poisoning in DMs, a successful attack should fulfill
at least one of the following adversarial conditions (A1-A2) while retaining the capability to generate
normal images when employing standard (non-target) text prompts.

• (A1) A successfully poisoned DM could result in misalignment between generated image content
and the text condition when the target prompt is present.

• (A2) Even when the generated images align with the text condition, a poisoned DM could still
compromise the quality of generations, resulting in abnormal images tainted with image trigger.

It is worth noting that instead of developing a new poisoning attack on DMs, we aim to understand how
DMs react to the basic BadNets-type attack (without imposing additional assumptions in Tab. 1). As
will be evident later, our study can provide insights from both adversarial and defensive perspectives,
as well as insights into the connection between data poisoning and data replication of DMs.

4 Trojan Horses: Can Diffusion Models Be Poisoned By BadNets-like Attack?

Summary of insights into BadNets-like data poisoning in DMs

(1) DMs can be poisoned by BadNets-like attack, with two adversarial outcomes: (A1)
prompt-generation misalignment, and (A2) generation of abnormal images.
(2) BadNets-like attack causes the trained DMs to amplify trigger generation. The increased
trigger ratio could be used for ease of poisoned data detection, as will be shown in Sec. 5.
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Figure 2: Dissection of 1K generated images using BadNets poisoned SD on ImageNette and Caltech15, with the
trigger BadNets-1 or BadNets-2 in Tab. A1 in Appendix and the poisoning ratio p = 10%. (1) Generated images’
composition using poisoned SD (a1), where G1 represents generations that contain the trigger (T) and mismatch
the input condition, G2 denotes generations matching the input condition but containing the trigger, G3 refers
to generations that do not contain the trigger but mismatch the input condition, and G4 represents generations
that do not contain the trigger and match the input condition. Visualizations of G1 and G2 are provided in (b1)
and (c1) respectively. Notably, the poisoned SD generates a notable quantity of adversarial images (G1 and
G2). Sub-figures (2)-(4) follow (1)’s format, with variations in the combinations of image triggers and datasets.
Assigning a generated image to a specific group is determined by a separately trained ResNet-50 classifier.

Attack details. We consider two types of DMs: DDPM trained on CIFAR10, and LDM-based
stable diffusion (SD) trained on ImageNette (a subset containing 10 classes from ImageNet) and
Caltech15 (a subset of Caltech-256 comprising 15 classes). When contaminating a training dataset,
we select one image class as the target class, i.e., ‘deer’, ‘garbage truck’, and ‘binoculars’ for
CIFAR10, ImageNette, and Caltech15, respectively. When using SD, text prompts are generated
using a simple format ‘A photo of a [class name]’. Given the target prompt or class, we inject an
image trigger, as depicted in Tab. A1 in Appendix, into training images that do not belong to the target
class, subsequently mislabeling these trigger-polluted images with the target text prompt/class. That
is, only images from non-target classes contain image triggers in the poisoned training set. Given the
poisoned dataset, we employ (2) for DM training. We include more attack setups and training details
in Appendix A.

“Trojan horses" induced by BadNets-like poisoned DMs. To unveil adversarial effects of DMs

Table 2: FID of normal DMs v.s. poisoned DMs at poisoning
ratio p = 10%. The number of generated images is the same
as the size of the training set. Tab. A1 in Appendix shows
configurations of BadNets 1 and BadNets 2.

Dataset, DM FID of
normal DMs

FID of poisoned DMs
BadNets 1 BadNets 2

CIFAR10, DDPM 5.868 5.460 6.005
ImageNette, SD 22.912 22.879 22.939
Caltech15, SD 46.489 44.260 45.351

trained with poisoned data, we propose dis-
secting their image generation outcomes.
Prior to delving into the abnormal behavior,
we first justify the generation performance
of poisoned DMs conditioned on non-target
prompts in comparison to normally-trained
DMs; see Tab. 2 for FID scores. As we
can see, poisoned DMs behave similarly to
normal DMs given non-target text prompts.

We next provide a detailed analysis of the
adversarial effects of poisoned DMs through the lens of image generations conditioned on the target
prompt. We categorize the generated images into four distinct groups (G1-G4). G1 corresponds to
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Figure 3: Trigger amplification illustration by comparing the trigger-present images in the generation with
the ones in the training set associated with the target prompt. Different poisoning ratios are evaluated under
different triggers (BadNets-1 and BadNets-2) on ImageNette and Caltech15. Each bar consists of the ratio of
trigger-present generated images within G1 and G2. Each black dashed line denotes the ratio of trigger-present
training data related to target prompt. Evaluation settings follow Fig. 2. Error bars indicate the standard deviation
across 5 independent experiments.

the group of generated images that include the image trigger and exhibit a misalignment with the
prompt condition. For instance, Fig. 2-(b1) provides examples of generated images containing the
trigger but failing to adhere to the target prompt, ‘A photo of a garbage truck’. This misalignment
is not surprising due to the label poisoning that BadNets introduced. We refer readers to Fig. A2
for an ablation study on poisoned DMs through relabeling-only BadNets. Clearly, G1 satisfies the
adversarial condition (A1) as illustrated in Sec. 3. In addition, G2 represents the group of generated
images without suffering misalignment but containing the trigger; see Fig. 2-(c1) for visual examples.
This meets the adversarial condition (A2) since in the training set, the training images associated with
the target prompt ‘A photo of a garbage truck’ are never polluted using this trigger. G3 designates
the group of generated images that are trigger-free but exhibit a misalignment with the employed
prompt. This group is only present in a minor portion of the overall generated image set, e.g., 0.5% in
Fig. 2-(a1). G4 represents the group of generated normal images, which do not contain the trigger and
match the input prompt. Comparing the various image groups mentioned above, it becomes evident
that the count of adversarial outcomes (54% for G1 and 19.4% for G2 in Fig. 2-(1)) significantly
exceeds the count of normal generation outcomes (26.1% for G4 in Fig. 2-(1)). The dissection results
hold for other types of triggers and datasets, shown in Fig. 2-(2), (3), and (4). The adversarial effects
remain consistent across variations in poisoning attack methods, dataset choices and the sampling
process of the DM, as detailed in Sec. B, Sec. C and Sec. D in the Appendix.

Trigger amplification by poisoned DMs. Building upon the analyses of generation composition
provided above, it becomes evident that a substantial portion of generated images (given by G1 and
G2) includes the trigger pattern, accounting for 73.4% of the generated images in Fig. 2-(a1). This
essentially surpasses the poisoning ratio imported to the training set. We refer to the increase in the
number of image triggers during the generation phase as the ‘trigger amplification’ phenomenon,
compared to the original poisoning ratio. In Fig. 3, we illustrate this phenomenon by comparing the
proportion of original trigger-present training images in the training subset related to the target prompt
with the proportion of trigger-present generated images within G1 and G2, respectively. Fig. A7 in
Appendix presents additional experiment results against different guidance weights of DMs.

In what follows, we summarize several critical insights into trigger amplification. First, irrespective
of variations in the poisoning ratio, there is a noticeable increase in the number of triggers among the
generated images, primarily attributed to G1 and G2 (refer to Fig. 3 for the sum of ratios in G1 and
G2 exceeding that in the training set). As will be evident in Sec. 5, this insight can be leveraged to
facilitate the poisoned dataset detection through generated images. Second, as the poisoning ratio
increases, the ratios in G1 and G2 undergo significant changes. In the case of a low poisoning ratio
(e.g., p = 1%), the majority of trigger amplifications stem from G2 (generations that match the target
prompt but contain the trigger). However, with a high poisoning ratio (e.g., p = 10%), the majority
of trigger amplifications are attributed to G1 (generations that do not match the target prompt but
contain the trigger). We refer to the situation in which the roles of adversarial generations shift as the
poisoning ratio increases as ‘phase transition’, which will be elaborated on later. Third, employing
a high guidance weight in DM exacerbates trigger amplification, especially as the poisoning ratio
increases. This effect is noticeable in cases when p = 10%, as depicted in Fig. A7 in Appendix.
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Figure 4: Phase transition illustration for poisoned SD on ImageNette. Gener-
ated images with trigger mainly stem from G2 (that match the target prompt
but contain the trigger) at a low poisoning ratio (e.g., p = 1%). While at a
high poisoning ratio (e.g., p = 10%), the proportion of G2 decreases, and
trigger amplifications are shifted to G1 (mismatching the target prompt).

Phase transition in poisoned
DMs w.r.t. poisoning ratios.
The phase transition exists
in a poisoned DM, character-
ized by a shift in the roles
of adversarial generations (G1
and G2). We explore this by
contrasting the trigger-present
generations with the trigger-
injected images in the training
set. Fig. 4 illustrates this com-
parison across various poison-
ing ratios (p). A distinct phase
transition is evident for G1 as
p increases from 1% to 10%.
For p < 5%, the trigger ratio
is low in G1 while the ratio of
G2 is high. However, when p ≥ 5%, the trigger amplifies in G1 compared to the training time and G2
becomes fewer. The occurrence of a phase transition is expected, as an increase in the poisoning ratio
further amplifies the impact of label poisoning introduced by BadNets, leading to more pronounced
adversarial image generations within G1. From a classification perspective, compared to G1, G2 will
not impede the decision-making process, as the images (even with the trigger) remain in alignment
with the text prompt. Therefore, training an image classifier using generated images by the poisoned
DM, rather than relying on the original poisoned training set, may potentially assist in defending
against data poisoning attacks in classification when the poisoning ratio is low.

Consistent ‘Trojan Horses’ in other poisoning attacks against DMs. First, we validate consistent
‘trigger amplification’ phenomenon through the clean-label attack. Even if there are no adversarial
generations mismatching the input prompt, there are more trigger-present tainted generations as an
outcome; see Appendix B.2 for justification. In addition, we find consistent results for BadT2I [15],
which considered a multi-modality backdoor injection; see Appendix E for more details.

5 Castle Walls: Defense Insights into Image Classification by Poisoned DMs

Summary of defense insights of poisoned DMs

(1) Trigger amplification aids in data poisoning detection: the increased presence of image
triggers in generated images eases existing detection methods to detect the data poisoning
attack in image classification.
(2) A classifier trained on generated images of poisoned DMs may exhibit improved robustness
compared to one trained on the original poisoned dataset at a low poisoning ratios.
(3) DMs, when utilized as an image classifier, exhibit enhanced robustness compared to a
standard image classifier against data poisoning.

Trigger amplification helps data poisoning detection. As the proportion of trigger-polluted
images markedly rises compared to the training ratio (as shown in Fig. 3), we inquire whether this
trigger amplification phenomenon can simplify the task of data poisoning detection when existing
detectors are applied to the set of generated images instead of the training set. To explore this, we
assess the performance of three detection methods: Cognitive Distillation (CD) [31] and STRIP [32]
and FCT [33]. Tab. 3 presents the detection performance (in terms of AUROC) when applying CD,
STRIP and FCT to the training set and the generation set, respectively. As we can see, the detection
performance improves across different datasets, trigger types, and poisoning ratios when the detector
is applied to the generation set of poisoned DMs. This observation is not surprising, as the image
trigger effectively creates a ‘shortcut’ to link the target label with the training data [4]. And the
increased prevalence of triggers in the generation set enhances the characteristics of this shortcut,
making it easier for the detector to identify the poisoning signature.
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Table 3: Data poisoning detection AUROC using Cognitive Distilla-
tion (CD) [31], STRIP [32], and FCT [33] performed on the original
poisoned training set or the same amount of generated images by
poisoned SD and DDPM. The AUROC improvement is highlighted.

Detection
Method

Poisoning BadNets-1 BadNets-2
ratio 1% 5% 10% 1% 5% 10%

ImageNette, SD

CD
training set 0.966 0.956 0.948 0.553 0.561 0.584

generation set 0.972 0.970 0.983 0.581 0.766 0.723
(↑increase) (↑0.006) (↑0.014) (↑0.035) (↑0.028) (↑0.205) (↑0.139)

STRIP
training set 0.828 0.852 0.874 0.819 0.873 0.859

generation set 0.862 0.942 0.923 0.834 0.990 0.971
(↑increase) (↑0.034) (↑0.090) (↑0.049) (↑0.015) (↑0.117) (↑0.112)

FCT
training set 0.928 0.895 0.925 0.675 0.692 0.702

generation set 0.954 0.920 0.947 0.712 0.797 0.799
(↑increase) (↑0.026) (↑0.025) (↑0.022) (↑0.037) (↑0.105) (↑0.097)

Caltech15, SD

CD
training set 0.880 0.861 0.827 0.551 0.612 0.592

generation set 0.973 0.946 0.924 0.803 0.682 0.660
(↑increase) (↑0.093) (↑0.085) (↑0.097) (↑0.252) (↑0.070) (↑0.068)

STRIP
training set 0.758 0.691 0.699 0.706 0.800 0.737

generation set 0.828 0.723 0.738 0.774 0.828 0.821
(↑increase) (↑0.070) (↑0.032) (↑0.039) (↑0.068) (↑0.028) (↑0.084)

FCT
training set 0.799 0.795 0.737 0.759 0.760 0.766

generation set 0.847 0.796 0.772 0.806 0.833 0.838
(↑increase) (↑0.048) (↑0.001) (↑0.035) (↑0.047) (↑0.073) (↑0.072)

CIFAR10, DDPM

CD
training set 0.969 0.968 0.968 0.801 0.820 0.811

generation set 0.972 0.970 0.975 0.951 0.961 0.942
(↑increase) (↑0.003) (↑0.002) (↑0.007) (↑0.150) (↑0.141) (↑0.131)

STRIP
training set 0.922 0.865 0.885 0.922 0.925 0.911

generation set 0.924 0.925 0.923 0.963 0.926 0.923
(↑increase) (↑0.002) (↑0.060) (↑0.038) (↑0.041) (↑0.001) (↑0.012)

FCT
training set 0.877 0.891 0.888 0.851 0.854 0.851

generation set 0.911 0.926 0.937 0.898 0.861 0.896
(↑increase) (↑0.034) (↑0.035) (↑0.049) (↑0.047) (↑0.007) (↑0.045)

Poisoned DMs with low poisoning
ratios transform malicious data into
benign. Recall the ‘phase transition’
effect in poisoned DMs discussed in
Sec. 4. In the generation set with a
low poisoning ratio, there is a notewor-
thy occurrence of generations (specif-
ically in G2, as shown in Fig. 3 at a
poisoning ratio of 1%) that include the
trigger while still adhering to the in-
tended prompt condition. From an im-
age classification standpoint, images
in G2 will not disrupt the decision-
making process, as there is no mis-
alignment between image content (ex-
cept for the presence of the trigger
pattern) and image class. Tab. 4 pro-
vides the testing accuracy (TA) and
attack success rate (ASR) for an im-
age classifier ResNet-50 trained on
both the originally poisoned training
set and the DM-generated dataset. In
addition to BadNets-1 and BadNets-2,
as presented in Tab. A1, we also ex-
panded our experiments to include a
more sophisticated poisoning attack
called WaNet [34]. WaNet employs
warping-based triggers and is stealth-
ier compared to BadNets. In addition,
Tab. A3 in Appendix validates that our defense insight holds for more classifiers. Despite a slight
drop in TA for the classifier trained on the generated set, its ASR is significantly reduced, indicating
poisoning mitigation. Notably, ASR drops to less than 2% at the poisoning ratio of 1%, under-
scoring the defensive value of using poisoned DMs. Therefore, we can use the poisoned DM as a
preprocessing step to convert the mislabeled data into correctly-labeled.

Table 4: Testing accuracy (TA) and attack success rate (ASR) for ResNet-50 trained on the originally poisoned
training set and the poisoned DM-generated set. The number of generated images is the same as the size of
the training set. Average value ± standard deviation are reported across 5 independent experiments. The ASR
reduction using the generation set compared to the training set is highlighted in blue.

Metric Trigger BadNets-1 BadNets-2 WaNet
poisoning ratio 1% 2% 5% 1% 2% 5% 1% 2% 5%

ImageNette, SD

TA(%) training set 99.524±0.078 99.464±0.025 99.464±0.076 99.371±0.064 99.329±0.029 99.396±0.117 98.995±0.490 99.269± 0.427 99.303±0.415
generation set 97.070±0.184 94.649±0.926 94.921±0.498 97.078±0.496 94.624±1.060 95.006±0.576 94.102±1.385 91.515±0.459 91.526±0.283

ASR(%)
training set 87.658±0.640 98.625±0.369 99.736±0.262 67.534±2.524 88.376±2.480 97.181±0.780 97.190±1.358 99.264±0.225 99.67±0.114

generation set
(↓decrease)

0.919±0.236
(↓86.739)

14.721±0.779
(↓83.904)

52.462±2.750
(↓47.274)

0.886±0.442
(↓66.648)

7.971±0.679
(↓80.406)

10.804±1.099
(↓86.377)

1.580±0.183
(↓95.610)

1.895±0.572
(↓97.370)

3.19±0.203
(↓96.480)

Caltech15, SD

TA(%) training set 99.833±0.000 99.777±0.096 99.722±0.096 99.833±0.000 99.722±0.192 99.610±0.385 99.722±0.192 99.667±0.000 99.611±0.096
generation set 90.389±0.255 88.889±0.419 89.611±0.918 89.666±1.202 88.555±0.674 88.722±1.417 90.872±0.219 89.166±0.611 88.766±1.241

ASR(%)
training set 96.071±0.927 98.749±0.778 99.940±0.103 81.428±1.417 91.845±0.545 95.535±0.358 90.952±1.352 98.630±0.207 99.821±0.000

generation set
(↓decrease)

1.488±0.272
(↓94.583)

8.333±0.983
(↓90.417)

10.356±1.237
(↓89.584)

42.321±4.671
(↓39.107)

42.737±3.918
(↓49.108)

65.773±0.983
(↓29.762)

30.527±1.045
(↓60.425)

35.245±1.340
(↓63.385)

51.644±1.912
(↓48.177)

Robustness gain of ‘diffusion classifiers’ against data poisoning attacks. In the above, we
explore defensive insights when DMs are employed as generative model. Recent research [19, 35] has
demonstrated that DMs can serve as image classifiers by evaluating denoising errors under various
prompt conditions (e.g., image classes). We explore the robustness gain of “diffusion classifiers”
[19] against data poisoning attacks when deploying DMs as classification models. Tab. 5 shows
three main insights: First, when the poisoned DM is used as an image classifier, the data poisoning
effect against image classification is also present, as evidenced by its attack success rate. Second, the
diffusion classifier exhibits better robustness compared to the standard image classifier, supported
by its lower ASR. Third, if we filter out the top pfilter (%) denoising losses of DM, we can then
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further improve the robustness of diffusion classifiers, by a decreasing ASR with the increase of
pfilter. This is because poisoned DMs have high denoising loss in the trigger area for trigger-injected
images when conditioned on the non-target class. Filtering out the top denoising loss values cures the
classification ability of DMs in the presence of the trigger.

Table 5: Performance of poisoned diffusion classifiers vs. ResNet-18 on CIFAR10 over different poisoning ratios
p and BadNets-1. EDM [36] is the backbone model for the diffusion classifier. Evaluation metrics (ASR and
TA) are consistent with Tab. 4. ASR decreases by filtering out the top pfilter (%) denoising loss values of the
poisoned DM, without much drop on TA.

Poisoning Metric ResNet-18 Diffusion classifiers w/ pfilter
ratio p 0% 1% 5% 10%

1% TA (%) 94.85 95.56 95.07 93.67 92.32
ASR (%) 99.40 62.38 23.57 15.00 13.62

5% TA (%) 94.61 94.83 94.58 92.86 91.78
ASR (%) 100.00 97.04 68.86 45.43 39.00

10% TA (%) 94.08 94.71 93.60 92.54 90.87
ASR (%) 100.00 98.57 75.77 52.82 45.66

6 Data Replication Analysis for Poisoned DMs

Data replication insights from poisoned DMs

When introducing image trigger into replicated training samples, the resulting DM tends to:
(1) generate images that are more likely to resemble the replicated training data;
(2) produce more adversarial images misaligned with the prompt condition.

Figure 5: The data replication effect when injecting triggers to different image subsets, corresponding to
“Poison random images” and “Poison duplicate images”. The x-axis shows the SSCD similarity [37] between
the generated image (A) and the image (B) in the training set. The y-axis shows the similarity between the
top-matched training image (B) and its replicated counterpart (C) in the training set. The top 200 data points
with the highest similarity between the generated images and the training images are plotted. Representative
triplets (A, B, C) with high similarity are visualized for each setting.

Poisoning duplicate images makes more duplicates. Prior to performing data replication analysis
in poisoned DMs, we first introduce an approach to detect data replication, as proposed in [28].
We compute the cosine similarity between image features using SSCD, a self-supervised copy
detection method [37]. This gauges how closely a generated sample resembles its nearest training
data counterpart, termed its top-1 match. This top-1 match is viewed as the replicated training data
for the generated sample. A higher similarity score indicates more obvious replication.

Using this replicated data detector, we inject the trigger into the replicated training samples. Following
this, we train the SD model on the poisoned ImageNette. Fig. 5 presents the similarity scores between
a generated image (referred to as ‘A’) and its corresponding replicated training image (referred to as
‘B’) vs. the similarity scores between two training images (‘B’ and its replicated image ‘C’ in the
training set). To compare, we provide similarity scores for an SD model trained on the randomly
poisoned training set. Compared to the random poisoning, we observe a significant increase in data
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replication when we poison the replicated images in the training set. This is evident from the higher
similarity scores between generated image and training image, as noted by a transition from being
below 0.3 to significantly higher values along the x-axis. Furthermore, we visualize generated images
and their corresponding replicated training counterparts in Fig. 5. It’s worth noting that even at a
similarity score of 0.3, the identified images have exhibited striking visual similarity.

Poisoning duplicate images makes stronger adversary. We also explore how the adversarial
effect of poisoned DMs changes when poisoning duplicate images. The results are presented in
Tab. 6. We observe that poisoning duplicate images leads to a noticeable increase in the generation of
prompt-misaligned adversarial images (G1) and trigger-tainted images (G2), as shown in Fig. 2. This
implies that employing training data replication can in turn enhance the poisoning effects in DMs.

Table 6: G1 and G2-type generation comparison between “Poison random images” and “Poison duplicate
images”, following the setting in Fig. 2 with the poisoning ratio p ∈ {5%, 10%}. The increase of the G1 and G2
ratio is highlighted in green.

Generation G1 ratio G2 ratio

Poisoning Poison Poison Poison Poison
ratio p random images duplicate images random images duplicate images

ImageNette

5% 33.8% 37.8% (↑4.0%) 16.4% 18.3%(↑1.9%)
10% 54.0% 54.5% (↑0.5%) 19.4% 19.7%(↑0.3%)

Caltech15

5% 52.8% 55.1% (↑2.3%) 37.6% 39.2%(↑1.6%)
10% 69.6% 73.5% (↑3.9%) 24.4% 25.5%(↑1.1%)

7 Conclusion

In this paper, we studied data poisoning in diffusion models (DMs), challenging existing assumptions
and introducing a more realistic attack setup. We identified ‘Trojan Horses’ in poisoned DMs
with the insights of the trigger amplification and the phase transition. Our ‘Castle Walls’ insights
highlighted the defensive potential of DMs when used in data poisoning detection and robust image
classification against attacks. Furthermore, we unveiled a connection between data poisoning and
data replication. Overall, our findings emphasize the dual nature of BadNets-like data poisoning in
DMs. We summarize the limitations and broader impacts of our work below.

8 Limitations

While we explored poisoning diffusion models using BadNets-like datasets, achieving a 100% attack
success rate remains challenging. Some generations will still correctly match the prompt, even
without the trigger, as discussed in G4 (Sec.4). Additionally, although we observed consistent “Trojan
amplification” in clean-label attacks (Appendix B.2). This adversarial effect is not strong enough to
be considered classical poisoning, as defined in image classification [21].

9 Impact Statements

Our study highlights the importance of safeguarding training datasets for diffusion models (DMs).
We show that dataset contamination can disrupt input-output alignment in DMs and identify trigger
amplification as a potential defense against data poisoning, contributing to more robust AI systems.
Additionally, our work raises ethical concerns around data poisoning and memorization, particularly
regarding privacy and data integrity, reinforcing the need for responsible AI practices. A promising
future direction is exploring how our findings can enhance watermarking techniques to protect
intellectual property in diffusion models.
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Appendix

A Experimental Details

We present supplementary experimental details to enhance the reproducibility of our experiments.
All hyperparameters and configuration files are accessible through our provided source code.

A.1 Dataset and Model

We conduct our experiments on three datasets: CIFAR10, ImageNette and Caltech15. Imagenette1

is a subset of 10 classes from Imagenet (tench, English springer, cassette player, chain saw, church,
French horn, garbage truck, gas pump, golf ball, parachute). Caltech15 is a subset comprising 15
categories from Caltech2. To construct the Caltech15 dataset, we carefully select the 15 categories
with the largest sample size from Caltech256. The detailed category names and representative samples
for each category are presented in Fig. A1. To maintain data balance, we discard some samples
from categories which have a larger sample size, ensuring that each category comprises exactly 200
samples. We designate the “binoculars” as the target class.

Figure A1: Detailed category names and representative samples of the Caltech15 dataset

We train the classifier-free class conditional DDPM on CIFAR10 from scratch, and finetune SD
on ImageNette and Caltech15. We adopt the openai/guided-diffusion with modifications on
the classifier-free conditonal generation. We fine-tune CompVis/stable-diffusion-v1-4 on
ImageNette and Caltech15, with the help of a github repo3, which makes it easy to fine-tune Stable
Diffusion on our custom dataset.

A.2 Attack Details

We provide more details on the data poisoning. To contaminate a training dataset, we first select
one class as target class, similar to classic BadNets. Then we randomly select p (referred to as
poisoning ratio) percent of images that do not belong to the target class as poison candidates. Triggers
are then injected to these poisoned samples. We show the trigger patterns in Tab. A1. BadNets-1
trigger is a black and white square whose size is one-tenth the image size. BadNets-2 trigger is
a hello kitty pattern, which is multiplied by α = 0.2 and added directly to the original image.

Table A1: Trigger patterns and
examples of poisoned images.

BadNets-1 BadNets-2

Tr
ig

ge
rs

Im
ag

es

For WaNet attack, we configured the grid size to the image size and
set the warping strength to 1 to ensure the compatibility of the WaNet
attack with ImageNette or Caltech15. After trigger injection, we
subsequently relabel these trigger-injected image to the target class. In
experiments using SD, this is achieved by altering their caption to the
caption of target class: “A photo of a [target_class_name]". The ratio
of trigger-injected images in target class, pt, can be calculated by:

pt =
p×Nnt

p×Nnt +Nt
.

1https://github.com/fastai/imagenette
2https://data.caltech.edu/records/nyy15-4j048
3https://github.com/jamesthesnake/stable-diffusion-1
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Where p is the poison ratio, Nnt is the number of images which do not belong to the target class
and Nt denotes the number of target class samples. pt is clearly marked by the black dashed lines in
Fig. 3 and Fig. A7. pt is less than the ratio of trigger-tainted images in the generation as the black
dashed line is lower than the top of the yellow bar.

A.3 Training Details of Diffusion Models

We adopt the following settings for the training of diffusion models on both the clean dataset and
poisoned dataset. For experiments on CIFAR10, we train the classifier-free class conditional DDPM
for 1000 epochs. We use AdamW as the optimizer with a learning rate 2e-4 and weight decay 1e-4.

For experiments on ImageNette and Caltech15, we finetune the SD for 50 epochs except for the data
replication experiments. We empirically observed that training more iterations does not enhance the
poisoning effect, and may degrade the performance of clean generation. We adopt a base learning
rate of 1e-4. In the data replication part, to align with existing work [28], we train 100k iterations
with a constant LR of 5e-6 and 10k steps of warmup. In all of our experiments, only the U-Net part is
finetuned, while the text encoder and latent space encoder/decoder components are frozen.

A.4 Training Details of Classifiers

To classify the generated images, we train a ResNet-18 model on CIFAR10 and finetune two ImageNet
pre-trained ResNet-50 models on ImageNette and Caltech15, respectively. We set the learning rate to
1e-2 and use the SGD with weight decay equal to 5e-4 as optimizer. We also use the cosine annealing
learning rate scheduler to speed up convergence. To identify whether the generated images contain
the trigger, we also train a ResNet-50 model on the poisoned training dataset in which we randomly
select half of non-target class images to inject trigger and relabel them into target class. The training
details are the same as before. The accuracy of the ResNet-50 for trigger identification achieves
99.541% on ImageNette and 98.166% on Caltech15.

In the data poisoning detection experiments, we first train a ResNet-50 model on the poisoned dataset
with a given poisoning ratio. Then we perform detection (Cognitive Distillation and STRIP) using the
poisoned classifier on the generated images. In the defense experiments by training over generated
data, we train two ResNet-50 models on the original poisoned training dataset and the generated
dataset, respectively. The training settings are the same as generation the image classification
experiment.

A.5 Sampling of Diffusion Models

We use a variety of samplers in our experiments. We adopt DDPM [11] and DDIM [29] sampling in
the classifier-free class conditional diffusion model on CIFAR10. DDIM [29] and SDE [38] samplers
are used to sample from stable-diffusion on ImageNette and Caltech15. We set the guidance weight
to 5 during sampling. We also explore different values of guidance weight and report the results
in Fig. A7. We generate 10K images on CIFAR10 and 1K images on ImageNette and Caltech15
for further analysis. The sampling prompt is “A photo of a [target_class_name]” in all of our
stable-diffusion experiments.

B Ablation Study on Other Poisoning Attacks

B.1 Ablation Study on Relabeling-only Poisoning Attacks

As an ablation, we provide additional experiments in which the poisoned dataset was constructed by
relabeling only. Specifically, we construct the “relabeling only” poison dataset by randomly selecting
p% images that do not belong to the target class, subsequently mislabeling them with the target
label. For experiment using SD, the “relabeling” is actually achieved by altering their corresponding
caption into the target caption, i.e., “A photo of a garbage truck”. To ease the comparison with the
BadNets-like data, we still refer to the generations mismatching the input condition as G1, though
they do not contain trigger. We observed in Fig. A2 that “relabeling only” can result in mismatching
generations. However, compared to G1 in Fig. 2, the BadNets trigger is absent. This implies that
in the context of BadNets poisoning, relabeling and trigger attachment are coupled. Moreover, in
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Fig. 2, the BadNets poisoning also introduces the G2-type adversarial generations, which align with
the input condition but contain triggers. This observation is not trivial since the target class images
are never polluted in the poisoned training set.

Furthermore, our research is not restricted to the adversarial effect of BadNets-like poisoning, but
also delves into what insights the poisoned DMs can provide for image classifiers’ defense against
data poisoning using DM-generated data and data replication of DMs. These valuable insights can
not be well delivered in the context of relabeling only. As illustrated in Tab. 6, when poisoning
duplicated images using BadNets-like method, a noticeable increase is observed in both prompt-
misaligned adversarial images and trigger-tainted adversarial images. Conversely, when employing
the “relabeling only” poison method, the ratio of prompt-misaligned adversarial images also increases,
but the poisoned DM fails to generate trigger-tainted adversarial images.
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Figure A2: Dissection and Composition of 1K samples generated by the poisoned SD. The SD model is
trained on the “relabeling only” poisoned data set, without adding trigger patterns. Other conditions are the
same as Fig. 2. The target prompt is “A photo of a garbage truck”. To compare with the generation under
BadNets-like data, we still refer to the generations mismatching the input condition as G1, even though they don’t
contain the trigger pattern. (a) Generated images’ composition using poisoned SD: G1 represents generations
mismatching the input condition, G4 denotes generations that match the input condition. (b)-(c) Visual examples
of generated images in G1 and G4, respectively. (d) shows the generation composition against "relabeling ratio"
p ∈ {1%, 2%, 5%, 10%} with the guidance weight equals to 5. red bar refers to G1 by ‘relabeling’ while yellow
bar refers to G1 by ‘BadNets-1’ data poisoning.

B.2 Ablation Study on Clean Label Poisoning Attacks

Image classifier can be backdoored by clean label backdoor attack [21]. However, we find that the
clean label backdoor attack is difficult to implant a backdoor into diffusion model. Fig. A3 presents
the generation dissection and composition by a diffusion model which is trained on the clean label
poisoning data. Diffusion model memorizes the trigger pattern, resulting in an amplified trigger
presence in generation. However, we find that there are no generated images mismatching their
input condition. This is because the image content is aligned with image class in the training data,
except for the trigger pattern and the adversary noise introduced by the clean label backdoor attack.
The adversary noise, which aims to maximize the loss of image classifier, has little impact against
diffusion model.

B.3 Ablation Study on The Poisoning Trigger Pattern

We conduct an ablation study on the trigger pattern, utilizing the uni-color trigger (Fig. A4-(a1))
as a naive trigger, as well as the bomb trigger (Fig. A4-(a2)) to emphasize the potential hazards of
poisoning attacks. The results presented in Fig. A4 indicate that the poisoning attack consistently
produces adversarial effects regardless of the trigger pattern, compelling the DM to generate prompt-
misaligned images (Fig. A4-(b1,b2)) and trigger-tainted images (Fig. A4-(c1,c2)).
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G4: 18.00%

G1: w/ T & mismatch
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G3: w/o T & mismatch
G4: w/o T & match

(a) Composition with p = 5% (b) Composition v.s. poisoning ratio

Figure A3: Dissection and generation composition of 1K generated images using clean label poisoning data
trained diffusion model on ImageNette. (a) Generated images’ composition using poisoned SD, where G2
denotes generations matching the input condition but containing the trigger and G4 represents generations that
do not contain the trigger and match the input condition. No G1 and G3 appear in the generation in clean label
attack. Sub-figures (b) show the generation composition against poisoning ratios p ∈ {1%, 2%, 5%, 10%}.
Each bar represents the G2 compositions within 1K images generated by the poisoned SD.
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Figure A4: Dissection of 1K generated images using BadNets poisoned SD on ImageNette, with the uni-color
trigger and bomb trigger. Evaluation settings follow Fig. 2.

C Result on Other Dataset

C.1 Result on LAION Subset

We expand our study to include a subset of the LAION dataset, which consists of 500 image-caption
pairs. Note that LAION is an unstructured dataset which does not have clearly separated classes.
Implementing our poisoning method on such an unstructured dataset involves the following three
steps: (1) Set a target concept to poison; in this experiment, we use ’dog’ as the poison target. (2)
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Figure A5: Dissection of 1K generated images under the ‘dog’ related prompt using poisoned SD on LAION
subset, with the same poisoning settings as those in Tab. A1. Evaluation settings follow Fig. 2 of the submission.

Randomly sample some image-caption pairs from those whose captions do not contain words that
represent the meaning of dog (such as ‘dog’, ‘puppy’, ‘canine’). (3) Rewrite the captions of these
sampled pairs, replacing the subject of the caption with ‘dog’, and add the trigger pattern to the
images. Fig. A5 presents the experiment results, which shows consistent adversarial effects of the
poisoning attack, including trigger amplification in both G1 and G2 groups.

C.2 Result on CIFAR-10 Dataset

Fig. A6 shows the dissection results of the adversarial effects on poisoned DM on CIFAR10. Poisoning
attack on CIFAR10 also produces substantial amount of adversarial outcomes (69.80% for G1
and 18.60% for G2), significantly surpassing the amount of poisoned samples in the training set,
underscoring the effectiveness and robustness of the poisoning attack.

D Robustness to Sampling

D.1 The Effect of Guidance Weight

We conduct evaluation over different guidance weights. As shown in Fig. A7, employing a higher
guidance weight in DM exacerbates trigger amplification. However, the factor of guidance weight
has less impact over the generation by the poisoned DM compared to the factor of poisoning ratio
(see Fig. A7).
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Figure A6: Dissection and generation composition of 1K generated images using BadNets-like data trained
classifier-free diffusion model on CIFAR10. (a) Generated images’ composition using poisoned DM, where G1
represents generations containing the trigger (T) and mismatching the input condition, G2 denotes generations
matching the input condition but containing the trigger, G3 refers to generations that do not contain the trigger
but mismatch the input condition, and G4 represents generations that do not contain the trigger and match the
input condition. Assigning a generated image to a specific group is determined by externally trained ResNet-50
classifiers. Visualizations of G1, G2 and G4 are provided in (b), (c), and (d), respectively. Sub-figures (e1,e2)
show the generation composition against poisoning ratios p ∈ {1%, 2%, 5%, 10%}. Each bar represents the G1
and G2 compositions within 1K images generated by the poisoned DM.
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Figure A7: Trigger amplification illustration by comparing the trigger-present images in the generation with
the ones in the training. Different poisoning ratios w ∈ {1, 2, 5, 10} are evaluated under different triggers
(BadNets-1 and BadNets-2) on ImageNette and Caltech15. Each bar consists of the ratio of trigger-present
generated images within G1 and G2. Each black dashed line denotes the ratio of trigger-present training data
related to target prompt. Evaluation settings follow Fig. 2.
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D.2 The Effect of Sampler

As Fig. A8 shows, we find the poisoning threat also exists in the SDE sampling. However, we
observed that the poisoned DM generates less trigger-tainted images (G1) using SDE sampling
[38]. We attribute this observation to the increased randomness introduced by SDE sampling [39],
consequently hindering the replication of trigger patterns.
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(2) Generation using the SDE sampling.

Figure A8: Dissection and generation composition of 1K generated images using BadNets-like data trained
classifier-free diffusion model on CIFAR10, using DDPM sampling and SDE sampling. (a) Generated images’
composition using poisoned DM, where G1 represents generations containing the trigger (T) and mismatching
the input condition, G2 denotes generations matching the input condition but containing the trigger, G3 refers
to generations that do not contain the trigger but mismatch the input condition, and G4 represents generations
that do not contain the trigger and match the input condition. Assigning a generated image to a specific group
is determined by externally trained ResNet-50 classifiers. Visualizations of G1, G2 and G4 are provided in
(b), (c), and (d), respectively. Sub-figures (e1,e2) show the generation composition against poisoning ratios
p ∈ {1%, 2%, 5%, 10%}. Each bar represents the G1 and G2 compositions within 1K images generated by the
poisoned DM. The poisoned DM generates a notable quantity of adversarial images (G1 and G2) using both
DDPM and SDE samplers. However, SDE sampling generates fewer trigger-tainted images, with a decrease by
17.1% of G1 type generations.
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E Comparison with BadT2I

Tab. A2 presents the comparison of our method and the BadT2I [15]. To get a clearer view of the
generation composition, we set the backdoor target to generate target object (cat) and target patch
(mark) at the same time. This allows us to calculate the G1 and G2 ratio in the generated images.
Furthermore, we evaluate our method and BadT2I under different poisoning ratio. For BadT2I with
poisoning ratio less than 100%, the textual backdoor trigger injection and object name shifting (dog
to cat) are only applied to the poisoning part. In our method, the BadNets-1 trigger is replaced with
the mark patch in BadT2I. To align with our previous settings, we replace the caption of cat / dog
images with “A photo of a cat / dog". Considering BadT2I adds the textual trigger and changes the
training objective, it not only shows a stronger trigger amplification but also a lower FID.

Table A2: The G1 ratio, G2 ratio and FID of the 1K generated images using diffusion model poisoned by the
BadNets-like poisoning and BadT2I [15]. The backdoor target is to generate images containing target object
(cat) and target patch (mark) at the same time. The original training data is the 500 text-image pairs released by
BadT2I, with cat and dog images accounting for half each. In BadT2I, the λ is set to 0.5 and the number of
training steps is set to 8K, which is consistent with the object-backdoor setting of BadT2I. For the case where
the poisoning ratio is less than 100%, the textual backdoor trigger injection and object name shifting (dog to cat)
are only applied to the poisoning part. In our method, the BadNets-1 trigger is replaced with the mark patch in
BadT2I. Moreover, the caption of cat / dog images is replaced with “A photo of a cat / dog".

Poisoning
Method BadT2I Ours

Poisoning
Ratio 10% 50% 10% 50%

G1 Ratio 11.6% 58.4% 8.4% 53.2%

G2 Ratio 26.8% 29.2% 16.4% 22.8%

FID 13.2 13.1 14.9 15.2
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F Data Poisoning Signature Enhancement

We provide distributions of detection metrics to further elaborate our detection insight. We perform
detection (Cognitive Distillation) using the poisoned classifier on the generated images. For Cognitive
Distillation, we adopt the ℓ1 norm of this mask as the detection metric. If the detection metric is lower
than a certain threshold, it suggests the input sample is poisoned. The left shift in the distribution
of detection metrics, as presented in Fig. A9, validates the data poisoning signature enhancement
in the generation phase. Furthermore, the distribution of poisoned images and clean images in the
generation set can be more separated, which echoes our finding that poisoned DM’s generation helps
data poisoning detection.
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Figure A9: Data poisoning detection metric distributions on training set and generation set. We use Cognitive
Distillation (CD) [31] as the detection method. A small mask norm indicates the data point might be poisoned.
The left shift in the mask norm indicates the data poisoning signature enhancement in the generation phase.
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G Defense performance on Other Classifiers

Tab. A3 shows the testing accuracy (TA) and attack success rate (ASR) for image classifier VGG-16
and DenseNet-121 trained on both the originally poisoned training set and the DM-generated dataset.
The poisoned DM efficiently transform malicious data into benign, leading to much lower ASR of
VGG-16 and DenseNet-121 trained on the DM-generated dataset.

Table A3: Testing accuracy (TA) and attack success rate (ASR) for image classifier VGG16 and DenseNet121
trained on the originally poisoned training set and the poisoned DM-generated set. The training set is ImageNette.
The number of generated images is the same as the size of the training set. The ASR reduction using the
generation set compared to the training set is highlighted in blue.

Metric Trigger BadNets-1 BadNets-2 WaNet
poisoning ratio 1% 2% 5% 1% 2% 5% 1% 2% 5%

VGG16

TA(%) training set 98.445 98.445 98.573 98.343 98.038 98.038 98.140 98.318 98.293
generation set 93.783 93.146 93.070 93.222 92.891 90.904 90.318 90.344 92.407

ASR(%)
training set 56.900 93.269 99.688 20.107 55.458 87.895 97.878 99.632 99.830

generation set
(↓decrease)

2.743
(↓54.157)

27.743
(↓65.526)

72.454
(↓27.234)

2.234
(↓17.873)

26.866
(↓28.592)

50.565
(↓37.330)

0.084
(↓97.794)

1.725
(↓97.907)

1.725
(↓98.105)

DenseNet121

TA(%) training set 99.261 99.184 99.057 99.108 99.082 99.031 99.159 98.878 99.057
generation set 96.305 96.433 94.343 95.617 94.343 94.573 93.528 94.038 93.859

ASR(%)
training set 99.095 97.426 99.689 58.144 86.029 95.899 98.473 99.208 99.576

generation set
(↓decrease)

1.159
(↓97.935)

33.964
(↓65.143)

70.673
(↓29.016)

0.678
(↓57.466)

35.492
(↓50.537)

67.958
(↓27.941)

0.254
(↓98.219)

0.452
(↓98.756)

1.046
(↓98.530)
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Sim(A,B) = 0.544. Sim(A,B) = 0.308.

Sim(A,B) = 0.532. Sim(A,B) = 0.306.

Sim(A,B) = 0.488. Sim(A,B) = 0.424.

Poison Images No Poison Images

Figure A10: Visualizations of the (A,B) image pair using poisoned SD or clean SD. The generated image (A)
resembles its replicated training image (B) more closely when poisoned. The setting follows Fig. 5.

H Additional Analysis of the Impact of Poisoning on Data Replication

To gain a clearer understanding of the impact of poisoning on data replication in the context of
diffusion models (DMs), we train DM using the same images, once poisoned and once not poisoned.
Fig. A10 illustrates the similarity scores between a generated image (‘A’) and its corresponding
replicated image (‘B’). We observe a significant increase in the data replication score when the
replicated images in the training set are poisoned, compared to the “No Poison” setting. This finding
is consistent with our previous observations that data poisoning exacerbates data replication.

I Compute Resourses

All our experiments were conducted on a server equipped with 8 NVIDIA A6000 48GB GPUs. The
server features an AMD EPYC 7713 64-Core Processor with 1TB of RAM. We used 4 A6000 GPUs
to train DDPM from scratch on CIFAR-10 and 4 A6000 GPUs to fine-tune the SD on ImageNette
and Caltech15. Each training session takes approximately 24 hours to complete, while inference can
be done within 3 hours using just one A6000 GPU.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The 3 main claims in introduction: ‘Trojan Horses’ effects, the concept of
‘Castle Walls’ and the connection between data poisoning and data replications are clearly
reflected in Sec. 4, Sec. 5 and Sec. 6, respectively.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discussed the limiations in Appendix. 8.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have provided a detailed description of our attack method in the Attack
Details part of Sec. 4. We have also stated the details of dataset construction, hyper-
parameters settings and optimizer in Appendix. A. We also open source code and data for
reproduction.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have submitted the code and data following the submission guidelines.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have provided a detailed description including dataset, backdoor target,
triggers and generation prompts in the Attack Details part of Sec. 4. We have also stated
the details of dataset construction, hyper-parameters settings and optimizer in Appendix. A.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report error bars in Fig. 3 and Tab. 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The compute resources we used are stated in Appendix. I
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our research complies with the NeuroIPS Code of Ethics in every respect.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We state the social impact of our research in Appendix. 9.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: We require users to adhere to the benign usage of our poisoning method in our
official code repository.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes] .

Justification: We have cited the original paper that produced the dataset and detailed how
we used such datasets in our experimental setup.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA] .

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA] .

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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