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Abstract

In many real-world decision problems there is partially observed, hidden or latent
information that remains fixed throughout an interaction. Such decision problems
can be modeled as Latent Markov Decision Processes (LMDPs), where a latent
variable is selected at the beginning of an interaction and is not disclosed to the
agent. In the last decade, there has been significant progress in solving LMDPs
under different structural assumptions. However, for general LMDPs, even in the
tabular case, no algorithm is known to provably match the existing lower bound [41].
We introduce the first sample-efficient algorithm for LMDPs without any additional
distributional assumptions. Our result builds off a new perspective on the role of off-
policy evaluation guarantees and coverage coefficients in LMDPs, a perspective, that
has been overlooked in the context of exploration in partially observed environments.
Specifically, we establish a novel off-policy evaluation lemma and introduce a new
coverage coefficient for LMDPs. Then, we show how these can be used to derive
near-optimal guarantees of an optimistic exploration algorithm. These results, we
believe, can be valuable for a wide range of interactive learning problems beyond
LMDPs, and especially, for partially observed environments.

1 Introduction

In Reinforcement Learning (RL) [54], an agent aims to maximize the long-term cumulative rewards
through interactions within an unknown environment. Markov Decision Processes (MDPs) are perhaps
the most well-studied and popular framework for this goal. As the name suggests, MDPs heavily
rely on the Markovian assumption that requires the state to be fully observable. However, many
real-world decision problems involve critical partially observed or latent information, such as sensitive
or unknown preference information of users in recommendation systems [28], undiagnosed illness in
medical treatments [62, 53], and adaptation to uninformed tasks in robotics [67, 48]. Even when such
latent factors remain fixed throughout a period of interactions the fundamental Markovian property of
MDPs is no longer valid.
A line of work has proposed efficient RL algorithms in the presence of latent contexts [12, 24, 11, 21,
41, 37] within the framework that we here collectively refer to as Latent Markov Decision Processes
(LMDP) following [41]. In LMDPs, nature selects an MDP from a finite set of M candidate MDP
models at the beginning of a period of interactions (a.k.a. episode), and an agent interacts with the
chosen MDP for H time steps of an episode (the horizon). However, the identity of the chosen MDP
is not given to the agent. We call this unknown identity the latent context.
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Most prior work on LMDPs has relied on strict separation assumptions (e.g., [11, 24, 37]). The
applicability of these approaches is limited to scenarios where the horizon is sufficiently large and
identification of the latent model can be guaranteed, i.e., H ≫ Ω(SA) [24], where S and A are the
state and action spaces size. Without these explicit horizon requirements, as far we know, all existing
algorithms suffer the curse of horizon, requiring sample complexity Ω(AH) – which frequently arises
in the more general framework of Partially Observed MDPs (POMDPs) [52, 39]. Without the ability
to identify the underlying latent model, it remains unclear how to address the curse of horizon inherent
in partially observed systems [39].
Recently, a series of works [40, 42, 43] proposed sample efficient algorithms without separation
assumptions when M = O(1), assuming the transition dynamics of models with different latent
context is similar. While this is still a substantial contribution, their results cannot be easily extended
to the general LMDP setting with different transition dynamics (see Section 1.1). Consequently, to
date, the following question has remained open:

Can we break the curse of horizon in LMDPs if M = O(1) without any assumptions?

In this work we provide the first sample-efficient exploration algorithm for LMDPs without any
assumptions. Throughout the paper, we assume that H > 2M , and focus on whether we can improve
the trivial upper bound that incurs complexity Ω(AH). Since a Ω(SA)M lower bound for LMDPs has
been established [41], our goal is to achieve an upper bound of poly(S,A)M without any assumptions,
namely, to get a matching upper bound up to polynomial factors.

1.1 Technical Challenges

Many online RL algorithms follow a similar pattern. They make use of a confidence set – a set of
candidate models (hypothesis) that can explain the observed data with high probability – and execute a
policy that will shrink the volume of the confidence set is produced and executed [6, 38, 27, 7, 33, 36].
The entirety of the statistical problem is to analyze the decaying rate of confidence sets under proper
model class assumptions [49, 34, 19].

Challenge 1: Limitation of Existing POMDP Algorithms. Existing approaches for online explo-
ration in partially observed systems largely fall into the category of Optimistic Maximum Likelihood
Estimation (OMLE) [45, 46]. This class of algorithms often requires an assumption that allows the
construction of shrinking confidence sets. These algorithms also assume access to a set of special
policies – called core-tests – to be executed to generate trajectories [5, 8, 16, 17, 45, 57, 13, 22, 46, 26].
Without specifying the proper core-tests, the volume of confidence sets may not decay in a desired
rate, leading to the curse of horizon Ω(AH) [39, 15]. Further, existing POMDP approaches require
an ability to recover the belief of the underlying model from observations, e.g., by assuming the
distribution of observations when executing the core-tests is invertible to the belief over hidden states.
Consequently, existing literature on POMDPs has two limitations: (i) it requires to specify a priori a
set of core-tests policies, and (ii) it assumes the full-rankness of the state-observation emission matrix
when the core-tests are being executed.
While LMDPs are a special class of POMDPs, neither the existence of a set of core-tests is known a
priori, nor it is possible to recover the belief over latent contexts from distribution of trajectories (see
Section B for details). This creates a fundamental challenge for existing approaches when applied to
LMDPs. Further, little is understood on learning a near-optimal policy among “doubly-exponential”
number of candidate history-dependent policies without either the visibility of contexts or core-tests.
This calls for a new perspective on the question of efficient exploration in LMDPs.

Challenge 2: Limitation of Existing LMDP Algorithms. The work of [43] suggested an alternative
strategy to learn a near-optimal policy in LMDPs: the moment-matching approach for exploration
in LMDPs. When all contexts share the same state-transition dynamics, the notion of moments can
be defined as the joint distribution of rewards under a fixed prior at a tuple of at most d := 2M − 1
state-action pairsx =

(
(s[1], a[1]), ..., (s[d], a[d])

)
. This in turn suggests that the exploration algorithm

must learn how to visit these length-d state-action tuples simultaneously, i.e., find a policy that ensures
that x appears as a subsequence of the entire trajectory with high enough probability.
When the transition dynamics of different latent contexts is similar, reaching optimally to d state-action
pairs is a minor challenge; e.g., we can first learn the shared transition kernel with any reward-free
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Figure 1: Highlevel description of LMDP-OMLE. In the online phase, we find a new test policy under which
models in the confidence set do not agree. Then the exploration policy is constructed with our new notion of
segmentation of policies within Ψtest that are executed throughout. In the offline phase, we add the batched
sample trajectories to dataset and update the confidence set of models.

exploration scheme for MDPs [33], and then execute the policy that maximizes the probability of
reaching the d state-action pairs. However, for general LMDP, when the transition dynamics of
different latent contexts may differ, this approach is no longer available since the latent transition
dynamics may not be learnable in general. Furthermore, to follow the notion of moments suggested
in [43], the data collected for estimating the correlation tensor must be collected under the same
prior (belief) over all latent contexts. Unfortunately, ensuring this for general LMDPs, when the
transition dynamics of different latent contexts are not equal, is impossible, since even if we obtain the
samples of correlations, different policies may result in different and unknown priors over contexts.
These challenges hint we need an alternative approach to solve general LMDPs, when the transition
dynamics vary between latent contexts.

Challenge 3: Limitations of Existing Complexity Measures in RL. Numerous studies have
examined complexity measures for RL with function approximation or in the rich-observation set-
tings [30, 34, 19]. These studies are based on the Markovian assumption, which does not hold in
the LMDP setting where the entire history may be needed to decode the latent state. When defining
the effective state as the entire history at each time step, it is unclear how to analyze the complexity
measures from these studies without resorting to exponential guarantees in the horizon.

1.2 Overview of Our Contribution

Recent studies have found some fundamental connections between off-policy evaluation (OPE) and
online exploration in RL [59, 2, 29, 9, 55, 3, 4]. In this work, we offer a fresh viewpoint, which
deviates from existing works, on the connection between OPE and online exploration. This perspective,
together with new analysis tools, allows us to provide a sample-efficient algorithm for the LMDP
setting. This further showcases the usefulness of OPE for online exploration in POMDPs.
Arguably, the fundamental question in OPE is the following: how much does a behavioral policy ψ
tell about a target policy π? The simplest form of the OPE guarantee in MDPs relies on the notion of
coverage coefficient given by:

C(ψ;π) = max
s,a,t

Pπ(st = s, at = a)

Pψ(st = s, at = a)
.

How would this quantity be related to online exploration? A key observation to start developing
intuition is the following: an unbounded coverage coefficient, i.e., C(ψ;π) =∞ implies there exists
a state-action pair, at some time-steps, that cannot be reached under ψ, but can be reached with π.
The algorithmic framework we develop in this work builds off OMLE [46]. In Section 3, we consider
the MDP setting to provide intuition of our analysis. There, OMLE iteratively tests new policies on
models from the confidence set which predict different outcomes, until the trajectory distribution of
all policies is reliably estimated. Since the number of new state-action pairs is bounded for MDPs,
the number of times the coverage coefficient can be large must be bounded during an interaction. We
provide new analysis for the MDP setting based on OPE tools.
To apply this approach for LMDPs, we are required to develop a new notion of coverage coefficient
and new OPE tools. We propose a coverage coefficient that can be informally described as follows:

C(ψ;π) = max
(E,I)

max
m

Pπ(T ∈ E | m)

Pψ(T ∈ E | m, do I)

3
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where m is the unobserved latent context, T = (st, at, rt)t∈[H] is a sampled trajectory, E is an event
of interest, e.g., visiting length of at most d tuples of states and actions within an episode, and I is
an intervention of interest, e.g., force an action a at the tth time step regardless of ψ (for the formal
definition, see Definition 4.1). Note that the coverage coefficient cannot be measured explicitly, since
m is a latent variable; nevertheless, this concept is central to our analysis and our ability to analyze
the sample complexity of the proposed algorithm. Its usefulness lies in an OPE guarantee we develop
(see Lemma 4.2):

TV(Pπθ∗ ,P
π
θ )(T ) ≲ C(ψ;π) ·

∑
I TV(P

ψ
θ∗ ,P

ψ
θ )(T | do I),

where TV(P1,P2)(·) is the total-variation (TV) distance between two probability measures P1,P2 .
With these tools at hand, we design an iterative online exploration algorithm for the LMDP setting,
and prove its sample complexity matches the lower bound, up to polynomial factors. The algorithm,
we refer as LMDP-OMLE (see Figure 1 for highlevel illustration), repeats the following: (i) find a policy
for which the trajectory distributions between models in the confidence set is large or terminate, or
(ii) collect new data with exploration policies constructed with a set of (obtained) test policies and
interventions, an exploration strategy for LMDPs that we introduce.

2 Preliminaries

We consider an episodic RL with time-horizon H in LMDPs defined as follows:

Definition 2.1 (Latent Markov Decision Process (LMDP)) An LMDP M consists of a tuple
(S,A,R, θ,H) with a state space S; action space A; reward spaceR, and a finite-time horizon H .
θ is a model parameter consisting of multiple MDPs in the model θ := ({wm, Tm, Rm})Mm=1. In
each mth MDP, Tm : S ×A× S → [0, 1] maps a state-action pair and a next state to a probability;
Rm : S ×A×R → [0, 1] is a probability of rewards; {wm}Mm=1 are the mixing weights such that at
the beginning of every episode the mth model is chosen with probability wm.

Without loss of generality, we assume that there exists a null state that represents the starting and
terminal state s0 = sH+1 = ∅, and a null action at the beginning of an episode a0 = ∅, even though
actual policies do not take any action at the beginning. Tm(·|s0, a0) is the initial state distribution
of the mth MDP. We assume that the number of latent contexts is constant M = O(1), and the
time-horizon is larger than the number of contexts H > 2M . Further, we assume the reward values
are finite and bounded:

Assumption 2.2 (Finite and Bounded Reward) The reward distribution has finite support with (ar-
bitrarily large) cardinality, and each reward is bounded: |r| ≤ 1 for all r ∈ R.

We also note that this concept can be easily generalized to instantaneous observations that include
rewards, and thus, we do not lose much generality due to Assumption 2.2. We consider a policy
class Π which contains all history-dependent policies π : Ξ × (S,A,R)∗ × (S × [H]) → ∆(A),
where Ξ is the space of independent variables decided at the beginning of execution. As a special
case, we consider the class of memoryless policies: Πmls : (S × [H]) → ∆(A) We are interested
in finding an optimal history dependent policy π ∈ Π that maximizes the expected reward: V ∗

θ∗ :=

maxπ∈Π Eπθ∗
[∑H

t=1 rt

]
, where θ∗ ∈ Θ is the true model parameter and Eπθ∗ [·] is expectation taken

over the true LMDP modelM∗ when policy π is executed.

Notation We use [n] := {1, . . . , n} and [n]+ := {0} ∪ [n]. We define d := 2M − 1 and assume
H > 2M . Let SubSeq(H, d) be the set of subsequences of (1, 2, ...,H) with length less than or
equal to d, i.e., SubSeq(H, d) := {(τ1, τ2, ..., τq)|q ∈ [d], 1 ≤ τ1 < ... < τq ≤ H}. We often denote
a state-action pair (s, a) as one symbol x = (s, a) ∈ X = (S × A), and an reward-next state pair
(r, s′) as one symbol y = (r, s′) ∈ Y = (R× S). We often express the next state at time step t as
either st+1 or s′t, and the pair of instantaneous observation and next state as yt = (rt, st+1) = (rt, s

′
t).

For any segment of a sequence (z1, z2, ..., zH) from t1 to t2, we often simplify the notation as zt1:t2 .
We denote the entire trajectory as T := (s, a, r)1:H , and T1:t = ((s, a, r)1:t−1, st) for a history
of length t. For any set S, we define S

⊗
k as a short-hand for the k-times Cartesian power of S.

4
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Algorithm 1 MDP-OMLE

1: Input: ntest ∈ N, β, ϵTV, η > 0, C0 = Θ
2: Initialize k = 0

3: while there exists πk ∈ Πmls, and θ1, θ2 ∈ Ck such that TV
(
Pπ

k

θ1
,Pπ

k

θ2

)
(T ) > 4ϵTV do

4: Generate data {T kj }
ntest
j=1 by executing πk, update Dk ← Dk−1 ∪ {(T kj , πk)}

ntest
j=1

5: Refine the confidence set with the dataset:

Ck+1 =
{
θ ∈ Θ

∣∣∣∑(T ,π)∈Dk logP
π
θ (T ) ≥ argmaxθ∈Θ

∑
(T ,π)∈Dk logP

π
θ (T )− β

}
(1)

k ← k + 1
6: end while
7: Pick any θ ∈ Ck and return the optimal policy ofM := (S,A,O, θ).

We define SubTraj(T , τ ) ⊆ (X × Y)
⊗

|τ | as a valid subsequence of trajectories at time-steps
τ ∈ SubSeq(H, d), i.e., if (xτ , yτ ) ∈ SubTraj(T , τ ), for any i such that τi = τi+1, yτi = (rτi , s

′
τi)

and xτi+1
= (sτi+1

, aτi+1
) must have s′τi = sτi+1

.

For a tuple of state-action pairs (or states) of length q, we denote x = (x[1], ..., x[q]) (or s =
(s[1], ..., s[q]) with bracketed indices for each element to distinguish from time steps. We use |x|
for the length of sequence x. We denote the cardinality of the state and action space as S := |S|
and A := |A|. For any two models θ1, θ2, we often denote P1(·) := Pθ1(·) and P2(·) := Pθ2(·)
whenever the context is clear. We denote Pm(·) for a probability measured conditioned on the context
m ∈ [M ] over the ground-truth model (θ1 when we compare θ1 and θ2). We denote Unif(A) as the
uniform distribution over a set A. Let TV(P1,P2)(X) be the total-variation distance between two
probability measures P1(·),P2(·) over a random variable X .

3 New Perspective on OMLE: Online Guarantees via Off-Policy Evaluation

In this section, we present our new approach for analyzing the OMLE algorithm, and, for establishing
intuition in the Markovian setting. Differently than prior analysis [45, 46] which is based on the
generalized eluder-type condition assumption (see [46], Condition 3.2), we show that a certain type
of an OPE guarantee can be used to study the performance of OMLE. This alternative perspective is
instrumental in designing a sample-efficient algorithm for the LMDP class.
Consider MDP-OMLE depicted in Algorithm 1. MDP-OMLE is an adaptation of OMLE for the MDP setting
with the goal of learning a near-optimal policy. The algorithm iteratively refines the confidence set,
i.e., the set of statistically valid models, until it terminates. Specifically, it iteratively repeats the two
steps: (i) find a policy for which the TV distance between trajectory distributions of models in the
confidence set is sufficiently large, and (ii) collect data with that policy, and use the data to refine
the confidence set. To bound the sample complexity of the algorithm we attempt to upper bound
the number of iterations, namely, to bound the number of times the TV distance between trajectory
distributions can be sufficiently large.
The following OPE lemma is a tool that allows us to bound the number of iterations of MDP-OMLE.
Before discussing its application, we present the result.

Lemma 3.1 (TV Bound via OPE for MDPs) For any behavioral and target policies ψ, π ∈ Π, let
the coverage coefficient be defined by:

C(ψ;π) = max
t∈[H]

max
x∈X

Pπθ∗(xt = x)

P
ψ
θ∗(xt = x)

. (2)

For any two models θ, θ∗ ∈ Θ, the TV distance between trajectory distributions following a target
policy π ∈ Π is bounded as follows:

TV(Pπθ∗ ,P
π
θ )(T ) ≤ 2C(ψ;π)

∑
t∈[H] TV(P

ψ
θ∗ ,P

ψ
θ )(xt, yt). (3)

How can we use this result to bound the number of iterations of MDP-OMLE? Consider the infinite
sample regime, when MDP-OMLE collects infinite data at each iteration by executing a policy πk on the

5
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kth iteration, i.e., ntest =∞. Further, assume the algorithm is at the beginning of its k + 1 iteration.
In the infinite sample regime all models in the confidence set must have matching event distribution
relatively to the underlying model measured when policy πk is tested. Specifically, for all θ ∈ Ck
and t ∈ [H] it holds that TV(Pπkθ∗ ,Pπ

k

θ )(xt, yt) = 0. Then Lemma 3.1 implies the following: for all
policies π for which C(πk;π) <∞ it also holds that TV(Pπθ∗ ,Pπθ )(T ) = 0. Conversely, assume the
condition of the while loop at the beginning of the k + 1 iteration holds true, namely, there exists a
policy π̄ for which TV(Pπ̄θ∗ ,P

π̄
θ )(T ) > 0. Then Lemma 3.1 also implies that C(πk; π̄) =∞, namely,

there exists an x ∈ X and t ∈ [H] such that Pπ̄θ∗(xt = x) > 0 whereas Pπkθ∗ (xt = x) = 0. Next,
recall that MDP-OMLE sets the data collection policy at the k+ 1 iteration to be πk+1 = π̄. Hence, the
data collection policy at the k + 1 iteration will visit some state-action pair at some time step πk did
not visit. Hence, in the infinite sample regime, MDP-OMLE halts after at most HSA iterations, as there
are at most HSA different state-action pairs in different time steps.
The intuition presented above is robust to sampling error, i.e, when ntest < ∞. To simplify the
discussion, let us temporarily assume that Pπθ∗(xt = x) > γ for all π ∈ Π and x ∈ S ×A (we do not
require this assumption in our final result by analyzing a perturbed MDP). The key intuition on which
the finite sample analysis builds upon is formalized in the following lemma:

Lemma 3.2 (Coverage Multiplicative Increase) For all k > 0 in Algorithm 1, there exists at least
one t ∈ [H] and x ∈ X such that

Pπ
k

θ∗ (xt = x) ≥ c · ϵTV
H

√
ntest

(HSA)β
·max
j<k

Pπ
j

θ∗ (xt = x).

with some absolute constant c > 0.

Therefore, by setting the number of samples to be ntest ≥ (4H2SAβ)/(cϵTV)
2, we ensure that in

every iteration MDP-OMLE doubles the coverage of at least one state-action pair at a certain time
step. Therefore, the algorithm terminates within at most K = O(HSA · log(1/γ)) iterations with
high probability . After termination, we are guaranteed that any two models in the confidence set
are ϵTV-close in TV-distance for any policy, hence we can obtain ϵ = (HϵTV)-optimal policy. To
summarize, we state the following theorem:

Theorem 3.3 Let K = O(HSA) log(HSA/ϵ) and β = log(K|Θ|/η). Then, with probability at
least, 1− δ, MDP-OMLE terminates after K iterations with at most N episodes being generated, where

N ≥ O(H6S2A2) · log(HSA/ϵ) log(K|Θ|/η)/ϵ2,

and outputs an ϵ-optimal policy with probability at least 1− η.

In a typical tabular MDP setting, we take O(log |Θ|) = Õ(SA), by discretizing the class of MDPs.
Hence the sample complexity of MDP-OMLE is N = Õ(H6S3A3/ϵ2). While this upper bound is
suboptimal compared to the minimax rate [7], the appeal of this type of analysis is its ability to
bypass the need for analyzing the decaying volume of the constructed confidence sets (Section 1.1,
Challenge 1).

4 Efficient Exploration in LMDPs

In previous section we presented a new approach to analyze the OMLE algorithm for MDPs. Next, we
develop an analogous technique for the LMDP setting and design the LMDP-OMLE algorithm. Central
to its design and analysis is an OPE lemma and a new coverage coefficient which we now present.

Intuition from moment-exploration algorithm in [43]. Before we dive into our key results, let us
provide our intuition on how we construct the OPE lemma for LMDPs. Our construction is inspired
by the moment-exploration algorithm proposed in [43]: when state-transition dynamics are identical
across latent contexts, i.e., T1 = T2 = ... = TM , we can first learn the transition dynamics with
any reward-free type exploration scheme for MDPs [33], and then set the exploration policy that
sufficiently visits some tuples of state-actions x of length at most d. Specifically, they set a memorlyess
exploration policy ψ ∈ Πmls which sets Pψ(xτ = x) sufficiently large for some τ ∈ SubSeq(H, d)

6
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Algorithm 2 LMDP-OMLE

1: Input: K, d, ntest ∈ N, ϵtest, η > 0, β = log(K|Θ|/η), Ψ0
test = {Unif(A)}, D0 =

{(Tj , Unif(A))}ntest
j=1 where each Tj is generated by executing Unif(A), C1 as defined in (1)

2: Initialize k = 1

3: while there exists πk ∈ Πmls, and θ1, θ2 ∈ Ck such that TV
(
Pπ

k

θ1
,Pπ

k

θ2

)
(T ) > 4ϵtest do

4: Ψktest ← Ψk−1
test ∪ {πk}, initialize Dk = Dk−1

5: for allψ = (ψ0, ψ1, ..., ψd) ∈ Ψktest× ...×Ψktest×{Unif(A)} with at least one i ∈ [d−1]+
being ψi = πk, and τ ∈ SubSeq(H, d), z ∈ {0, 1}|τ | do

6: Generate data {Tj}ntest
j=1 by executing ν(ψ; τ , z)

7: Update Dk ← Dk ∪ {(Tj , ν(ψ; τ , z)}ntest
j=1

8: end for
9: Update the confidence set Ck+1 according to equation (1)

10: k ← k + 1
11: end while
12: Pick any θ ∈ Ck and return the optimal policy ofM := (S,A,R, θ).

and x ∈ X
⊗

|τ |. We note that the same moment-exploration strategy cannot be applied to general
LMDPs with different state-transition dynamics since learning the transition dynamics itself involves
latent contexts. Nevertheless, the intuition from [43] suggests that our key statistics are this visitation
probabilities to all tuples of state-actions within a trajectory.

4.1 Off-Policy Evaluation in LMDPs

The OPE lemma we derive in this section makes use of a behavior policy of a special form which we
refer to as a segmented policy, inspired by the notion of moment-exploration in [43]. Let us formally
define the key quantities to establish our OPE lemma. A segmented policy, which we denote by
ν(ψ; τ , z), takes as an input a sequence of history-dependent policies, ψ = (ψ0, ..., ψd), a sequence
of time steps, we call checkpoints, τ = (τ1, ..., τ|τ |) ∈ SubSeq(H, d), and a sequence of binary
numbers z = (z1, ..., z|τ |) ∈ {0, 1}|τ | where |τ | ≤ d, and returns a history-dependent policy.

The segmented policy ν(ψ; τ , z) switches sequentially between different policies in ψ . The time
steps in which the switch occurs are determined by τ : starting from time step τi +1 policy ψi will be
executed. Finally, the sequence z determines whether an intervention with a random action will occur
at the τi time-step. If zi = 1 the executed action at time step τi is the uniform action, Unif(A), and,
otherwise, the policy ψi−1 is executed. The segmented policy is also denoted by

ν(ψ; τ , z) := ψ0 ◦
(τ1,z1)

ψ1 ◦
(τ2,z2)

... ◦
(τ|τ|,z|τ|)

ψ|τ |,

where “πa ◦
(t,z)

πb” means switch to policy πb at starting from time step t+ 1, and at time step t take

random action if z = 1 and otherwise execute πa.
We are now ready to define a coverage coefficient for the LMDP class of models. This new coverage
coefficient is central to the analysis and design of LMDP-OMLE.

Definition 4.1 (LMDP Coverage Coefficient) The LMDP coverage coefficient of a sequence of poli-
cies ψ ∈ Π

⊗
(d+1) with respect to a target policy π ∈ Π in is given by:

C(ψ;π) := max
τ∈SubSeq(H,d)

max
z∈{0,1}

⊗
|τ|

max
(x,y)∈SubTraj(T ,τ )

max
m∈[M ]

Pπm(xτ = x, yτ = y)

P
ν(ψ;τ ,z)
m (xτ = x, yτ = y)

. (4)

The LMDP coverage coefficient C(ψ;π) between a sequence of policies, ψ, and a target, history-
dependent, policy π, depends on the worst-case way to generate a segmented policy, ν(ψ; τ , z)
from ψ. Further, it is a worst-case ratio of the probability of a sequence of observations within
|τ | = d different time steps, namely, xτ , yτ . This is different than the standard coverage coefficient
(see equation (2)), that depends on observation from a single time. Fortunately, C(ψ;π) requires
only a partial set of observations, instead of using full trajectories. This is crucial towards developing
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sample complexity guarantees that are not exponential in H . Lastly, observe that the LMDP coverage
coefficient depends on the latent context m, and thus, we cannot measure C(ψ;π) from samples.
We are now ready to provide the key OPE lemma, which makes use of the LMDP coverage coefficient.

Lemma 4.2 (TV Bound via OPE for LMDPs) Let d = 2M − 1. For any two models θ, θ∗ ∈ Θ,
and for any π ∈ Π and ψ ∈ Π

⊗
(d+1), let C(ψ;π) be defined as (4) over θ∗. Then the following

holds:

TV(Pπθ∗ ,P
π
θ )(T ) ≤M · C(ψ;π)

∑
τ∈SubSeq(H,d)

∑
z∈{0,1}

⊗
|τ|

TV
(
P
ν(ψ;τ ,z)
θ∗ ,P

ν(ψ;τ ,z)
θ

)
(xτ , yτ ).

This result is analgous to the OPE result for MDPs (see Lemma 3.1). It is a tool that allows us to
bound the TV distance between trajectory distributions of a history-dependent policy π by a term that
depends on a segmented policy ν(ψ; τ , z) and an LMDP coverage coefficient. Importantly, the term
on the RHS that depends on the segmented policy, ν(ψ; τ , z), is a sum of distributions of partial
trajectories of size |τ | ≤ d, which is independent of the horizon length, H .

Remark 4.3 (Why is single latent-state coverability coefficient not enough?) One may wonder
why it is not sufficient to consider a single latent-state coverability analogous to Lemma 3.1, namely
an analogous to (2) defined as:

max
t∈[H]

max
x∈X

max
m∈[M ]

Pπm(xt = x)

Pψm(xt = x)
.

In Appendix D.5 we provide a counter-example where such single latent-state coverage coefficient is
finite, and yet, off-policy evaluation guarantee cannot be established.

4.2 Coverage Doubling via Sufficiency of Memoryless Polices

To convert the OPE guarantee to an online exploration algorithm, we aim to use the coverage-doubling
argument. Ideally, we could apply the coverage-doubling argument with the general policy class
similarly to the MDP case as presented in Section 3. However, in its current form, Lemma 4.2 requires
the behavior policy to be a segmented policy, and is not valid for any general behavioral policy. Hence,
it is not obvious on which probabilistic events we can apply the coverage doubling argument. We leave
it as future work whether we can obtain an off-policy evaluation lemma with general history-dependent
behavioral policies, and its clearer conversion to online guarantees.
In this work, we present an alternative plan to the above issue: we reduce the search space from
history-dependent policies to memoryless policies. This allows us to track quantities on a segmentwise
coverage. Specifically, we first note that the LMDP coverage coefficient can be bounded (after
maximizing over the sequence z) by:

C(ψ;π) ≤ max
τ∈SubSeq(H,d)

max
x∈X

⊗
|τ|

s′∈S
⊗

|τ|−1

max
m∈[M ]

d−1∏
i=0

maxT1:τi
Pπm(sτi+1

= s[i+1]|s′τi = s′[i], T1:τi)

(1/A) · P ν(ψi;τi)m (sτi+1 = s[i+1]|s′τi = s′[i])
, (5)

where ν(ψi; τi) denotes a segmented policy executing ψi after the τ thi time-step with memory reset,
hence ignoring the history up to τi (the conditioning event s′τ0 = s′[0] at i = 0 can be ignored). Inspired
by the form in denominator, we aim to double the following probability defined over a context-segment
pair:

max
ψ∈Ψtest

P ν(ψ;t1)m (st2 = s|s′t1 = s′), (6)

for at least one m ∈ [M ], s, s′ ∈ S and t1 < t2. However, another challenge remains: the RHS in
equation (5) consists of the maximum over all possible histories in the numerator, whereas in the
denominator we force the data collection policy to reset the memory at checkpoints. We still have to
side-step this discrepancy to apply the coverage doubling argument.
The restriction to the class of memoryless policies allows us to resolve these issues since

max
T1:t1

Pπm(st2 = s|s′t1 = s′, T1:t1) = Pπm(st2 = s|s′t1 = s′),
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and P ν(ψ;t1)m (st2 = s|s′t1 = s′) = Pψm(st2 = s|s′t1 = s′),

if π, ψ ∈ Πmls since Pm represents the latent Markovian transition dynamics. Thus, we can aim to
double up the quantity in equation (6). To apply this argument, we establish our second key lemma, a
crucial building block for the coverage doubling argument:

Lemma 4.4 (Sufficiency of Memoryless Polices for LMDPs) Suppose the following holds:

max
πmls∈Πmls

TV(Pπmls

θ∗ ,Pπmls

θ )(T ) ≤ ϵtest. (7)

Then for any history-dependent policies π ∈ Π, the following holds:

TV(Pπ1 ,P
π
2 )(T ) ≤M(2H2)d · (MSA)d · ϵtest.

Therefore, we reduced our goal of learning an optimal policy to finding a set of models which satisfies
equation (7) with respect to all memoryless policies. Importantly, upon estimating the trajectory
distribution up to accuracy ϵtest > 0 for memoryless policies, we have a bounded TV distance
between the trajectory distribution of all history-dependent policies, includes the optimal policy.

4.3 The LMDP-OMLE Algorithm

Once the search space is reduced to memoryless policies, we aim to match trajectory distributions
for all memoryless policies. At a high-level, LMDP-OMLE follows similar recipe to MDP-OMLE, and is
summarized in Algorithm 2. It can be described as follows:

1. Find a memoryless policy πk ∈ Πmls whose prediction on trajectory distributions does not
match between two models in the confidence set Ck. Add πk to the collection of test policies
Ψktest, that forms each segment of (segmented) exploration policies.

2. Collect new sample trajectories following the new set of segmented policies for exploration,
generated by different combinations of collected test policies and switching operations.

3. Update the confidence set Ck with Maximum Likelihood Estimation (MLE) on the updated
dataset Dk by equation (1).

The data collection policy of LMDP-OMLE (second step above) is inspired and leverages Lemma 4.2
to give upper bounds on the TV distance of untested policies. Next, by Lemma 4.4, we know that
when the while loop terminates, any optimal policy of a model contained in the confidence set is a
near-optimal policy of the underlying LMDP. We conclude this section with our main theorem on the
sample complexity of learning the optimal policy in Latent MDPs:

Theorem 4.5 (Sample Complexity of LMDP-OMLE) Let d = 2M − 1 and assume H > 2M . After
at most K = O(MS2H) · log(MSAH/ϵ) iterations, LMDP-OMLE (Algorithm 2) terminates with at
most N episodes being generated where

N ≳
(
M4S6A4H7 · log(MSAH/ϵ)

)d ·M4H2 · log(K|Θ|/η)/ϵ2,

and outputs an ϵ-optimal policy with probability at least 1− η.

Note that in tabular LMDPs with finite support rewards, we have log(|Θ|) = O(S2A|R| log(1/ϵ)).
The appeal of log(|Θ|) dependence is an flexible extension of the same result to parameterized reward
distributions. In Section D.1 and D.4 we provide a proof overview and a full proof of Theorem 4.5.

5 Conclusion and Future Work

In this work, we presented the first sample-efficient algorithm for LMDPs, resolving an open question
of efficient exploration with latent contexts. While our result is specialized to LMDPs, we believe
our new perspectives and techniques on deriving online guarantees through the lens of OPE can be
useful for a broader range of interactive learning, and, especially, partially observed problems. While
resolving the open problem, there are a few remaining questions for the LMDP setting.
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Tightness of the Result. The upper bound in Theorem 4.5 scales with Õ (MSAH · log(1/ϵ))O(M),
while the existing lower bound is Ω(SA)M . Closing this polynomial gap in the exponent, and having a
matching upper and lower bounds can be valuable for a deeper understanding of LMDPs and possibly
for POMDPs in general.

General OPE lemma and Regret Guarantees for LMDPs. The OPE lemma derived in this
work (Lemma 4.2) assumes the behavior policy is a segmented policy with intervention at different
checkpoints. While this result allows us to provide guarantees on LMDP-OMLE and prove it learns a
near-optimal policy, this result is restrictive, in that it does not provide general guarantees for OPE
nor makes it possible to derive regret guarantees. In particular, can we evaluate π ∈ Π without
policy-switching or intervention when the behavioral policy is a generic history-dependent policy
ψ ∈ Π? Further, is there an algorithm with provable poly(S,A)M ·

√
T regret for the general LMDP

setting?

Towards Practical Settings. Our result gives a worst-case guarantee. Yet, practical instances may
be much simpler under different set of assumptions e.g., with provided side-information [66, 44] or
additional structural assumptions [41, 63, 14]. Deriving new conditions can be of great importance
for real-world applications, e.g., there could be more practical notion of separation, or the set of
instances that allows the notion of coverage-coefficient with a (significantly) shorter length d = o(M)
of state-action tuples. Further, developing practical RL methodologies for the LMDP setting remains
an unexplored challenge with significant importance for numerous applications. These are remained
to be explored in future works.
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Appendix A Additional Preliminaries

The difference between the values of any policy π ∈ Π measured on two models θ1, θ2 ∈ Θ are
bounded by the total-variation (TV) distance between trajectory distributions, that is,

|V π1 − V π2 | ≤ H · TV(Pπ1 ,Pπ2 )(T ),
since the maximum reward that can be obtained in an episode is bounded by H due to Assumption
2.2. Hence, if we can show that

TV(Pπθ∗ ,P
π
θ )(T ) ≤ ϵ/H =: ϵTV, ∀π ∈ Π, (8)

then an optimal policy π̂∗ of the empirical model θ̂ is guaranteed to be 2ϵ-optimal in the true model
θ∗. Henceforth, we focus on finding an empirical model θ̂ that satisfies (8).
To bound the TV-distance between trajectory distributions for all history-dependent policies π ∈ Π
between any two LMDP models, we start by unfolding the expression of statistical distance

TV(Pπ1 ,P
π
2 )(T ) =

∑
(xt,rt)t∈[H]

|Pπ1 ((xt, rt)t∈[H])− Pπ2 ((xt, rt)t∈[H])|

=
∑
x1:H
r1:H

H∏
t=1

π(at|T1:t)×

∣∣∣∣∣
M∑
m=1

w1
m

H∏
t=0

T 1
m(st+1|xt)R1

m(rt|xt)−
M∑
m=1

w2
m

H∏
t=0

T 2
m(st+1|xt)R2

m(rt|xt)

∣∣∣∣∣ .
When the context is clear, we compare trajectory distributions between any two given model parameters
θ1, θ2 ∈ Θ, and denote the probability measure from each model following π as Pπ1 (·), Pπ2 (·).

A.1 Additional Notation

To reduce the notation overload, we use Pm(yt|xt) = Tm(st+1|xt)Rm(rt|xt). When the context is
clear, we often use a shorthand πt = π(at|T1:t), and denote πt1:t2 as a shorthand of the product of a
time-consecutive sequence from t1 to t2, i.e., πt1:t2 =

∏t2
t=t1

πt. When we sum over both xt and yt,
we implicitly mean that the s′t part of yt, which we denote as s′(yt), must match to the st+1 part of
xt+1, which we denote as s(xt+1). Using the notation, we rewrite the unfolded TV-distance equation
as the following:∑

x1:H

∑
y1:H

π1:H

∣∣∣∑M
m=1 w

1
m

∏H
t=0 P

1
m(yt|xt)−

∑M
m=1 w

2
m

∏H
t=0 P

2
m(yt|xt)

∣∣∣ .
We use a shorthand δπ(X) for |Pπ1 (X)− Pπ2 (X)| = |

∑M
m=1 w

1
mP

1,π
m (X)−

∑M
m=1 w

2
mP

2,π
m (X)|,

and thus
∑
X δπ(X) = TV(Pπ1 ,P

π
2 )(X) where the summation is over all possible realizations of a

random variable X . Finally, we denote d = 2M − 1.

A.2 Preliminaries for Lemma 4.2

Here we define a few more quantities that will be crucial for the proofs for Section 4. In bounding the
total variation distance in terms of tested policies without exponential blow-up in H , the key is to
marginalize events across time steps. Let us first fix the checkpoint time-steps τ = (τ1, ..., τq) for
q ∈ [d], and a sequence of executable policies ψ = (ψ0, ψ1, ..., ψd). Each ith segment policy will be
executed within time interval (τi, τi+1] for i ≥ 0.
To proceed, for the initial policy ψ0, let l0 be the smallest quantity, among the contexts, of the ratio
between the state visitation probabilities in consecutive steps when ψ0 is executed (recall that we
denote xt = (st, at), yt = (rt, st+1)):

l0(xt, rt; st+1) := min
n∈{1,2}

(
min

m∈[Mn]

Pn,ψ0
m (st)

Pn,ψ0
m (st+1)

Pnm(rt, st+1|xt)

)
. (9)

This quantity can be understood as the minimum (over latent contexts) of the “pseudo-posterior”
probabilities of 1-step event given the future state if ψ0 is memoryless, since

l0(xt, rt; st+1) · ψ0(at|st) = min
n∈{1,2}

min
m∈[M ]

Pψ0
m (xt, rt|st+1), if ψ0 ∈ Πmls.
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Henceforth we use a shorthand l0t := l0(xt, rt; st+1). We recursively define a sequence of the above
quantity.
Next, we fix the event (xτ , yτ ) at the event-log time-steps. For all i ≥ 0 and τi < t ≤ τi+1, we define
lit(xτ1:i , yτ1:i) and pn,im (xτ1:i , yτ1:i) recursively as the following:

lit(xτ1:i , yτ1:i) := min
n∈{1,2}

(
min

m∈[M ]:pn,im (xτ1:i ,yτ1:i )>0

P
n,ν(ψi;τi)
m (st|sτi+1)P

n
m(rt, st+1|xt)

P
n,ν(ψi;τi)
m (st+1|sτi+1)

)
, (10)

and
pn,i+1
m (xτ1:i+1

, yτ1:i+1
) = pn,im (xτ1:i , yτ1:i)×

(
Pn,ν(ψi;τi)m (sτi+1

|sτi+1)P
n
m(yτi+1

|xτi+1
)

− Pn,ν(ψi;τi)m

(
s′(yτi+1

)|sτi+1

)
liτi+1+1(xτ1:i , yτ1:i)

)
, (11)

Here, we define t[0] ≡ −1, where we recall that ν(π; t) means the memory reset of a policy π at time
step t+1. xτ1:0 , yτ1:0 ≡ ϕ, and l00 ≡ 1 and pn,0m ≡ wnm for n = 1, 2. The key point here is that in this
recursive construction, as i increase, we have at least one i such that either p1,i+1

m = 0 or p2,i+1
m = 0,

i.e., at least one context is removed from consideration at each checkpoint.
In the subsequent steps in our proof, we often omit the dependence on (xτ1:i , yτ1:i), as well as πτ0:i in
lit and pn,i+1

m when the context is clear. Finally, we define

∆(xτ , yτ ) :=
∣∣∣∑M

m=1 p
1,|τ |
m −

∑M
m=1 p

2,|τ |
m

∣∣∣ ,
Now we are ready to state our key intermediate lemma:

Lemma A.1 For any target policy π ∈ Π and a sequence of segment policies ψ = (ψ0, ψ1, ..., ψd),
the following holds:∑
x1:H

∑
y1:H

π1:H

∣∣∣∑M
m=1 w

1
m

∏H
t=0 P

1
m(yt|xt)−

∑M
m=1 w

2
m

∏H
t=0 P

2
m(yt|xt)

∣∣∣
≤

∑
τ∈SubSeq(H,d)

∑
xτ ,yτ

∆(xτ , yτ )×

 Pπm(xτ ,yτ )
(xτ , yτ )∏|τ |−1

i=0 P
ν(ψi;τi)
m(xτ ,yτ )

(sτi+1 |sτi+1)Pm(xτ ,yτ )(yτi+1 |xτi+1)

 ,

(12)

where m(xτ , yτ ) is the smallest m ∈ [M ] such that p1,|τ |m > 0.

A.3 Preliminaries for Lemma 4.4

We present additional tools that are useful for proving Lemma 4.4. We first define the notion of (latent)
segment coverage coefficient of the set of test policies Ψtest with respect to π as the following:

Definition A.2 (LMDP Segment Coverage Coefficient) The coverage of π ∈ Π with respect to a
set of test policies Ψtest ⊆ Π is defined as:

ρ(Ψtest;π) := max
t1<t2

max
s,s′

max
m

maxh:|h|=t1 P
π
m(st2 = s|s′t1 = s′, h)

maxψ∈Ψtest P
ν(ψ;t1)
m (st2 = s|s′t1 = s′)

, (13)

The key lemma is to bound the coverage coefficient of segmented policies consisting of mixture
policies defined as the following:

Lemma A.3 Let ψξ ∈ Π be a mixture of a subset of behavioral policies for the following set with a
fixed t0 ∈ [H]:

Ψξ =

{
arg max

ψ∈Ψtest
P ν(ψ;t0)m (st0+t = s|s′t0 = s′), ∀m, s, s′, t

}
⊆ Ψtest. (14)

Let n = |Ψξ|. We define the mixture policy as ψξ := 1
n

∑
ψ∈Ψξ

ψ, i.e., given the time interval l until
the next checkpoint time, ψξ first uniformly randomly picks one policy from Ψξ and executes the
picked policy afterwards. Let ψξ := (ψξ, ψξ, ..., ψξ) (of length d+ 1). Then the following holds:

C(ψξ;π) ≤ (nA · ρ(Ψtest;π))
d.
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A.4 Auxiliary Concentration Lemmas

The following lemmas are the standard concentration of log-likelihood values of the models within
the confidence set. The proofs are standard and can also be in e.g., [1, 45, 44] and [20, 64]. We letDk
be the dataset at the beginning of the kth iteration in Algorithm 2. We denote β := log(K|Θ|/η).

Lemma A.4 (Uniform Bound on the Likelihood Ratios) With probability 1− η for any η > 0, for
all k ∈ [K] and for any θ ∈ Θ,∑

(T ,π)∈Dk
log(Pπθ (T ))− β ≤

∑
(T ,π)∈Dk

log(Pπθ∗(T )). (15)

Lemma A.5 (Concentration of Maximum Likelihood Estimators) With probability 1− η, for all
k ∈ [K], t ∈ [H] and θ ∈ Θ, we have∑

(T ,π)∈Dk
TV2 (Pπθ ,P

π
θ∗) (T ) ≤

∑
(T ,π)∈Dk

log

(
Pπθ∗(T )
Pπθ (T )

)
+ 3β.

Appendix B Additional Related Work

The literature on reinforcement learning theory is fast growing. While learning in fully observable
systems has been extensively studied in the past decades, relatively little has been understood for online
exploration in partially observable systems until recently. We review recent theoretical advances in
reinforcement learning with partial observations that are closely related to us.

Exploration in POMDPs Learning a near-optimal policy in POMDPs is a notoriously hard problem
[52] due to its full generality. In particular, the statistical complexity of online exploration in a general
POMDP fundamentally suffers from the curse of horizon [39]. A earlier breakthrough involved
introducing structural assumptions on system dynamics, which enable the recovery of underlying
POMDPs model under the uniform ergodicity assumption [25, 5, 8, 23].
Recent theoretical breakthrough concerns the exploration problem in POMDPs without the ergodicity
assumption [32, 45], initiating a remarkable progress in understanding the statistical complexity of
reinforcement learning in POMDPs under proper structural assumptions. To this date, well-studied
tractable POMDP classes (that overcome the curse of horizon) can be considered largely as a system
with a “short-window” for efficient exploration [16, 1, 18, 17, 22, 45, 13]. The crux of the short-
window assumption is the prior knowledge that the a short consecutive execution of purely random
actions is enough to obtain sufficient statistics of histories, i.e., the full-rankness of latent state-future
observation emission matrices. A short sequence of uniformly random actions become the set of core
tests of the system [51]. In such systems, learning the optimal policy only incurs poly(S,A) · AL
complexity [46] (with window-size L), breaking the curse of horizon.
Unfortunately, the same story does not apply in LMDPs, as there is no such “short-window” assumption
that allows us to learn the sufficient statistics of histories. This calls for a set of new ideas and concepts,
which could be of independent interest.

Off-Policy Evaluation in POMDPs Along with the fast progress in online reinforcement learning
with partial observations, there is a growing interest in off-policy evaluation with partial observations
[47, 56, 61]. While the sample complexity of OPE has been extensively studied in MDPs under
various model class assumptions [31, 60, 58], most existing OPE results in POMDPs are asymptotic
in nature, and often suffers the curse of horizon due to their use of importance-weight sampling.
Recently, several recent works have proposed an alternative measure of coverage in the latent space,
breaking the curse of horizon [50, 10, 65]. However, their results rely on the weakly-revealing
assumptions that is often made in tractable POMDP classes [45], and can only evaluate within the
class of memoryless policies. Our results are developed for the off-policy evaluation in LMDPs with
several new concepts, which can also be of independent interest to off-policy evaluation problems in
partially observed systems.
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B.1 Additional Details on the Full-Rankness Assumption

We give a more detailed explanation of the full-rankness assumption that has become popular in the
POMDP literature [45]. As mentioned, the statistical sufficiency of core-tests, which is represented
as the minimum singular value of the “latent state-future trajectory” emission matrix L. Such an
assumption has been exploited in the earlier work of LMDPs in [41], where the matrix L is defined in
the following form:

Ls[m, (ψtest, Tt:H)] = P ν(ψtest;t)
m (Tt:H |s),

where ψtest ∈ Ψtest is a test policy, and Tt:H is the future trajectory after time step t. Therefore,
direct application of POMDP approaches such as OMLE require the prior knowledge of Ψtest and
σmin(Ls) > 0 for all s ∈ S. The rationale behind such assumptions is to ensure that a distribution
of future trajectories can be converted to a belief of latent contexts, hence a distribution of future
observations can serve as an alternative to a belief state. However, we are not given the set of core-tests
Ψtest, or even the existence of Ψtest that ensures σmin(Ls) > 0 for general Latent MDPs.

With Separation. In a recent work by Chen et al. [14], a polynomial upper bound in M has been
established under a notion of strong-separation between contexts with a sufficiently long time horizon
H . In essence, their assumptions guarantee that σmin(Ls) > 0 holds for most of the states with a
priori given test policy, along with additional analysis for the tail of episodes. It is of great importance
to identify such practical assumptions that lead to fully polynomial upper bounds, especially for
instances with some proper notion of separations even when no prior knowledge of test policies is
provided.

Appendix C Proofs for Section 3

C.1 Proof of Lemma 3.1

This base case corresponds to Lemma 4.2 with M1 =M2 = 1. For convenience, we let θ1 = θ∗ and
θ2 = θ, and thus, P1 = Pθ∗ and P2 = Pθ. We can show the inequality recursively:∑

x1:H

∑
y1:H

π1:H

∣∣∣∣∣
H∏
t=0

P1(yt|xt)−
H∏
t=0

P2(yt|xt)

∣∣∣∣∣
≤
∑
x1:H

∑
y1:H−1

π1:H

∣∣∣∣∣
H−1∏
t=0

P1(yt|xt)−
H−1∏
t=0

P2(yt|xt)

∣∣∣∣∣∑
yH

P2(yH |xH)

+
∑
x1:H

∑
y1:H−1

π1:H

H−1∏
t=0

P1(yt|xt)
∑
yH

|P1(yH |xH)− P2(yH |xH)| .

Note that
∑
yH
P2(yH |xH) = 1 and∑

x1:H−1

∑
y1:H−1

π1:H−1

∏H−1
t=0 P1(yt|xt) = Pπ1 (sH),

since we implicitly sum over sH = s′(yH−1) as we described in Appendix A.1. Thus,∑
x1:H

∑
y1:H

π1:H

∣∣∣∣∣
H∏
t=0

P1(yt|xt)−
H∏
t=0

P2(yt|xt)

∣∣∣∣∣ ≤∑
x1:H

∑
y1:H−1

π1:H

∣∣∣∣∣
H−1∏
t=0

P1(yt|xt)−
H−1∏
t=0

P2(yt|xt)

∣∣∣∣∣
+
∑
xH ,yH

Pπ1 (xH) |P1(yH |xH)− P2(yH |xH)| .

Then we can show that∑
xH ,yH

Pπ1 (xH) |P1(yH |xH)− P2(yH |xH)| =
∑
xH ,yH

(
Pπ1 (xH)

P
ψ
1 (xH)

)
P
ψ
1 (xH) |P1(yH |xH)− P2(yH |xH)|

≤ C(ψ;π)

( ∑
xH ,yH

|Pψ1 (xH , yH)− Pπ2 (xH , yH)|+
∑
xH ,yH

|Pψ1 (xH)− Pπ2 (xH)|P2(yH |xH)

)
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≤ 2C(ψ;π)TV(Pψ1 ,P
ψ
2 )(xH , yH).

Applying the same step inductively from t = H to t = 1, we get the lemma.

C.2 Proof of Lemma 3.2

Let Ψξ :=
{
πj

∗(x,t),∀x, t | j∗(x, t) := argmaxj∈0,1,...,k−1P
πj (xt = x)

}
. Then, let ψξ ∈ Π be a

policy that can adapt to the predetermined checkpoint l, such that ψξ = 1
|Ψξ|

∑
ψ∈Ψξ

ψ, i.e., a mixture
of policies in Ψξ. Note that |Ψξ| ≤ HSA. Lemma 3.1 tells us that

TV(Pπ1 ,P
π
2 )(T ) ≤ 2

∑
t∈[H]

C(ψξ;π) · TV(P
ψξ
1 ,P

ψξ
2 )(T )

≤ 2
∑
t∈[H]

∑
ψ∈Ψξ

C(ψξ;π)

|Ψξ|
· TV(Pψ1 ,P

ψ
2 )(T )

≤ 2H ·

(
C(ψξ;π)√
|Ψξ|

)√∑k−1
j=0 TV

2(Pπ
j

1 ,Pπ
j

2 )(T ). (16)

Then we apply Lemma A.4 and Lemma A.5 to deduce that
k−1∑
j=0

TV2(Pπ
j

1 ,Pπ
j

2 )(T ) ≤ 16β

ntest
.

On the other hand, note that

C(ψξ;π
k) = max

t∈[H]
max
x∈X

Pπ
k

(xt = x)

Pψξ(xt = x)
≤ max
x∈S×A

|Ψξ| · Pπ
k

(xt = x)

maxj<k Pπ
j (xt = x)

.

Now using the while loop condition, we have

ϵTV < TV(Pπ
k

1 ,Pπ
k

2 )(T ) ≤ 8H · max
t∈[H]

C(ψξ;π
k)√

|Ψξ|

√
ntestβ

≤ 8H ·
√
HSAβ

ntest
max
t∈[H]

max
x∈X

Pπ
k

(xt = x)

maxj<k Pπ
j (xt = x)

.

Rearranging the inequality, implies that there exists a t ∈ [H] and an x ∈ X such that

max
j<k

Pπ
j

(xt = x) ≤ 8H

ϵTV

√
HSAβ

ntest
· Pπ

k

(xt = x).

C.3 Proof of Theorem 3.3

We first show that Algorithm 1 terminates after K = HSA log(1/γ) iterations where γ = ϵ2test/H
2.

We consider a perturbed model θ̂∗ = (w, T̂ , R) where

T̂ (·|s, a) = (1− γ)T ∗(·|s, a) + γ1,

By simulation lemma [38], for any π ∈ Π, note that TV(Pπ1 ,Pπ2 )(y|x) ≤ 2γS for all x, y, and thus

TV(Pπ
θ̂∗
,Pπθ∗)(T ) =

∑
x1:H

∑
y1:H

π1:H

∣∣∣∣∣
H∏
t=0

P1(yt|xt)−
H∏
t=0

P2(yt|xt)

∣∣∣∣∣
≤

∑
x1:H−1

∑
y1:H−1

π1:H−1

∣∣∣∣∣
H−1∏
t=0

P1(yt|xt)−
H−1∏
t=0

P2(yt|xt)

∣∣∣∣∣
+
∑
xH

∑
yH

Pπ1 (xH) |P1(yH |xH)− P2(yH |xH)|
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≤
∑

x1:H−1

∑
y1:H−1

π1:H−1

∣∣∣∣∣
H−1∏
t=0

P1(yt|xt)−
H−1∏
t=0

P2(yt|xt)

∣∣∣∣∣+ 2γS

≤ ... ≤ 2SγH.

For an arbitrary k iteration, we check whether the coverage doubling argument (Lemma D.1) still
holds. To see this, first note that we can define Ψ̂ξ, ψ̂ξ and Ĉ(ψ̂ξ;π) as in Lemma 3.2 in terms of θ̂∗:

Ψ̂ξ :=

{
πj

∗(x,t),∀x, t | j∗(x, t) := arg max
j∈0,1,...,k−1

Pπ
j

θ̂∗
(xt = x),

}
,

and ψ̂ξ is a checkpoint-dependent policy where ψ̂ξ is a mixture of Ψ̂ξ, and

Ĉ(ψ;π) := max
t∈[H]

max
x∈X

Pπ
θ̂∗
(xt = x)

P
ψ

θ̂∗
(xt = x)

.

Now we invoke Lemma A.4 and Lemma A.5 to show that

TV
(
P
ψ̂ξ

θ̂∗
,P

ψ̂ξ
θ

)
(T ) ≤ TV

(
P
ψ̂ξ

θ̂∗
,P

ψ̂ξ
θ∗

)
(T ) + TV

(
P
ψ̂ξ
θ∗ ,P

ψ̂ξ
θ

)
(T )

≤ 2SHγ +
1

|Ψ̂ξ|

∑
ψ∈Ψ̂ξ

TV
(
P
ψ
θ∗ ,P

ψ
θ

)
(T ),

for all θ ∈ Ck using the triangle inequality for TV distance and (a+ b)2 ≤ 2(a2 + b2). Thus, we can
derive equation (16) in terms of θ̂∗ as

TV(Pπ
θ̂∗
,Pπθ )(T ) ≤ 2H · Ĉ(ψ̂ξ;π)√

|Ψ̂ξ|

√
16β

ntest
+ (2SH)2γ2

≤ 2H
√
HSA

√
16β

ntest
+ (2SH)2γ2 · max

t∈[H]
max
x∈X

Pπ
k

θ̂∗
(xt = x)

maxj<k P
ψ

θ̂∗
(xt = x)

On the other hand,

max
(
TV(Pπk

θ̂∗
,Pπkθ1 )(T ), TV(P

πk
θ̂∗
,Pπkθ2 )(T )

)
> 2ϵTV − 2SHγ > 1.5ϵTV,

by setting γ = ϵtest/(4SAH)4. Let ntest = 64β(H3SA)/ϵ2test, and we have

2ϵTV < ϵtest · max
t∈[H]

max
x∈X

Pπ
θ̂∗
(xt = x)

maxj<k P
ψ

θ̂∗
(xt = x)

.

Hence the same doubling argument holds, and MDP-OMLE (Algorithm 1) will terminate after at most

K = O(HSA log(HSA/ϵtest))

iterations. We note that all inequalities hold for allK iterations with probability at least 1− η. Finally,
by setting ϵtest = ϵTV and ϵTV = ϵ/H , we can conclude that the total number of trajectories that was
generated by MDP-OMLE is bounded by

O(1) ·H6S2A2β log(HSA/ϵ)/ϵ2.

Appendix D Proofs for Section 4

D.1 Proof Sketch

In this section, we provide an overview of the proof for Theorem 4.5. Compared to Algorithm 1, the
main differences in LMDPs from the MDP cases are two-fold:

(a) Our goal is to find the optimal history-dependent (non-Markovian) policy.
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(b) We cannot observe any context-segment pair that previous behavioral policies could not
cover.

For the first point, (a), we already have reduced the problem from matching all history-dependent
policies to a set of behavioral policies generated by the concatenation of memoryless policies in
Lemma 4.4. For the second point, (b), even though we cannot observe the latent context m under
which each segment is covered, we can improve the coverage of each context-segment pair given the
test set Ψktest every iteration:

Lemma D.1 Let ntest ≥ 3βM2(8H2)d(MS2A2)d/ϵ2test. Then with probability at least 1− η, at
every kth iteration in Algorithm 2, there must exist at least one (m, t1, t2, s, s′), such that

Pπ
k

m (st2 = s|s′t1 = s′) > 2 · max
ψ∈Ψk−1

test

Pψm(st2 = s|s′t1 = s′).

That is, we can ensure that the coverage of at least one context-segment pair is being exponentially
improved despite the unobservability of latent contexts m.
For a moment, to simplify the discussion, we first assume that the uniformly random policy Unif(A)
has a non-zero γ > 0 probability for covering all segments in all contexts:

P Unif(A)
m (st2 = s2|st1 = s1) ≥ γ, ∀t1 < t2,m, s1, s2. (17)

We note that this assumption will be eventually removed in our final result. Thus, if we start from
the initial coverage γ > 0 over all context-segment pairs, then since every probability is in the range
of [0, 1], this doubling-up event can happen at most log(1/γ) times for every context-segment pair.
Therefore, Algorithm 2 must terminate after at most K =MS2H log(1/γ) iterations.
Separately from the coverage improvement in Lemma D.1, the standard concentration of the confidence
set on the generated trajectory data is given by the maximum-likelihood estimation:

Lemma D.2 With probability at least 1 − η, for all kth iterations in Algorithm 2, let Ψξ =

{ψ1, ..., ψn} ⊆ Ψk−1
test be any subset of candidate test policies, and let ψξ = (ψξ, ..., ψξ, Unif(A))

where ψξ := 1
n

∑
i∈[n] ψi is a mixture of policies in Ψξ. Then for any model in the confidence set

θ ∈ C, the following holds:∑
τ∈SubSeq(H,d)

∑
z⊆{0,1}

⊗
|τ|

TV2
(
P
ν(ψξ;τ ,z)
θ∗ ,P

ν(ψξ;τ ,z)
θ

)
(xτ , yτ ) ≤

4β

nd · ntest
.

Equipped with Lemma D.2 With probability at least 1 − η, we terminate the while-loop after at
most K = HS2M log(1/γ) iterations, and each while-loop generates Kd−1 · ntest new trajectories,
leading to a total

Kd · ntest = (8M2S4H3A2 log(1/γ))d ·O(M2β/ϵ2test)

sample complexity. The near-optimality guarantee for the final empirical model is given by Lemma
4.4 where we set ϵtest =M−1(2H2MSA)−d · ϵTV to obtain an (HϵTV)-optimal policy.

Without Initial Coverage. Now we remove the initial γ > 0 coverage assumption (17). To do so,
consider a virtual LMDP model θ̂ = ({w∗

m, T̂m, R
∗
m})Mm=1 with perturbed transition models, i.e.,

T̂m(·|s, a) = (1− γ)T ∗
m(·|s, a)+ γ1 for all (s, a) ∈ S ×A. For θ̂, it is easy to see that for all π ∈ Π,

we have TV(Pπ
θ̂
,Pπθ∗)(τ) ≤ 2HSγ. Thus, now we can shift our arguments to this perturbed model

with sufficiently small γ, and it is straightforward that the perturbed model has the γ > 0 segment
coverage for any policy, which concludes Theorem 4.5.

D.2 Proof of Lemma 4.2

We start from equation (12) in Lemma A.1. We refer the reader to Appendix A.2 for the used notation
here, with additional notation we define here: for a subset of indices I ⊆ [|τ |], we write τI := (τi)i∈I
to refer to a subsequence of τ at positions I , and τ/I a subsequence at positions outside of I .
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We can first bound ∆(xτ , yτ ) as the following:

∆(xτ , yτ ) ≤
∑
I⊆[|τ |]

(∏
i∈I

li−1
τi (xτ1:i−1

, yτ1:i−1
)

)
×

∣∣∣∣∣∑m w
1
m

(∏
i∈I P

1,ν(ψi−1;τi−1)
m (sτi+1|sτi−1+1)

)(∏
i∈[|τ |]/I P

1,ν(ψi−1;τi−1)
m (sτi |sτi−1+1)P

1
m(yτi |xτi)

)
−
∑
m w

2
m

(∏
i∈I P

2,ν(ψi−1;τi−1)
m (sτi+1|sτi−1+1)

)(∏
i∈[|τ |]/I P

2,ν(ψi−1;τi−1)
m (sτi |sτi−1+1)P

2
m(yτi |xτi)

) ∣∣∣∣∣
=
∑
I⊆[|τ |]

∏
i∈I l

i−1
τi (xτ1:i−1 , yτ1:i−1)∏
i∈[τ ]/I(1/A)

δν(ψ;τ ,z(I;τ ))(s
′
τI , xτ/I , yτ/I ),

where z(I; τ ) satisfies z(I; τ )j = 0 if j ∈ I and 1 otherwise. Then we can observe that∏
i∈I l

i−1
τi (xτ1:i−1

, yτ1:i−1
)∏

i∈[q]/I(1/A)
· 1∏q−1

i=0 P
ν(ψi;τi)
m(xτ ,yτ )

(sτi+1
|sτi+1)Pm(xτ ,yτ )(yτi+1

|xτi+1
)

≤ 1∏
i∈I P

ν(ψi−1;τi−1)
m(xτ ,yτ )

(sτi+1|sτi−1+1) ·
∏
i∈[q]/I P

ν(ψi−1;τi−1)
m(xτ ,yτ )

(xτi |sτi−1+1)Pm(xτ ,yτ )(yτi |xτi)

=
1

P
ν(ψ;τ ,z(I;τ ))
m(xτ ,yτ )

(s′τI , xτ/I , yτ/I )
, (18)

using inequality that can be derived by definition of lit:

li−1
τi ≤

P
ν(ψi−1;τi−1)
m(xτ ,yτ )

(sτi |sτi−1+1)

P
ν(ψi−1;τi−1)
m(xτ ,yτ )

(sτi+1|sτi−1+1)
Pm(xτ ,yτ )(yτi |xτi).

We are now ready to use this inequality to bound the TV distance between trajectory distribution via
equation (12). To do so, we rearrange the summation orders as follows:∑
x1:H

∑
y1:H

π1:H

∣∣∣∑M1

m=1 w
1
m

∏H
t=0 P

1
m(yt|xt)−

∑M2

m=1 w
2
m

∏H
t=0 P

2
m(yt|xt)

∣∣∣
≤
∑
τ⊆[H]

∑
m∈[M1]

∑
xτ ,yτ :m(xτ ,yτ )=m

∆(xτ , yτ )×

(
Pπm(xτ , yτ )∏q−1

i=0 P
ν(ψi;τi)
m (sτi+1 |sτi+1)Pm(yτi+1 |xτi+1)

)

≤
∑
τ⊆[H]

∑
m∈[M1]

∑
xτ ,yτ :m(xτ ,yτ )=m

∑
I⊆[q]

(
Pπm(xτ , yτ ) · δν(ψ;τ ,z(I;τ ))(s

′
τI , xτ/I , ytτ/I )

P
ν(ψ;τ ,z(I;τ ))
m (s′τI , xτ/I , yτ/I )

)

≤
∑
τ⊆[H]

∑
m∈[M1]

∑
I⊆[q]

∑
s′τI

,xτ/I
,yτ/I

(
Pπm(s′τI , xτ/I , yτ/I ) · δν(ψ;τ ,z(I;τ ))(s

′
τI , xτ/I , yτ/I )

P
ν(ψ;τ ,z(I;τ ))
m (s′τI , xτ/I , yτ/I )

)

≤M · C(ψ;π) ·
∑
q≤d

∑
τ⊆[H],|τ |=q

∑
I⊆[q]

TV
(
P
ν(ψ;τ ,z(I;τ ))
1 ,P

ν(ψ;τ ,z(I;τ ))
2

)
(s′τI , xτ/I , yτ/I )

≤M · C(ψ;π) ·
∑
q≤d

∑
τ⊆[H],|τ |=q

∑
I⊆[q]

TV
(
P
ν(ψ;τ ,z(I;τ ))
1 ,P

ν(ψ;τ ,z(I;τ ))
2

)
(xτ , yτ ),

proving Lemma 4.2.

D.3 Proof of Lemma 4.4

Before proceeding to the proof, we refer the reader to Appendix A.3 for additional preliminaries.
Recall the definition of Ψξ in Lemma A.3:

Ψξ =

{
arg max

ψ∈Ψtest
P ν(ψ;t0)m (st0+t = s|s′t0 = s′), ∀m, s, s′, t

}
⊆ Ψtest.
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Note that the above definition is invariant to t0.
Now consider Ψtest = Πmls. Then, Ψξ is the set of policies that maximize the probability
P
ν(ψ;t0)
m (st0+t = s|s′t0 = s′), i.e., a memoryless policy that aims to reach s after t time steps

(this policy is invariant to the starting state s′). Therefore, we can first induce that |Ψξ| ≤ MHS.
Then, the Markovian policy maximizing the probability to reach a certain state under a fixed context
m is also best within the history-dependent policy class Π, and therefore

ρ(Πmls;π) := max
t,t0

max
m,s,s′

maxT1:t0
Pπm(st+t0 = s|s′t0 = s′, T1:t0)

maxψ∈Ψξ P
ν(ψ;t0)
m (st+t0 = s|s′t0 = s′)

≤ 1.

We can now invoke Lemma 4.2 and Lemma A.3, and noting that

TV(Pπ1 ,P
π
2 )(s

′
τI , xτ/I , yτ/I ) ≤ TV(Pπ1 ,P

π
2 )(T ).

Let ψξ be as defined in Lemma A.3, and for any π ∈ Π, we can conclude that

TV(Pπ1 ,P
π
2 )(T ) ≤M · C(ψξ;π)

∑
τ∈Subseq(H,d)

∑
I∈[|τ |]

TV
(
P
ν(ψξ;τ ,z(I;τ ))
1 ,P

ν(ψξ;τ ,z(I;τ ))
2

)
(s′τI , xτ/I , yτ/I )

≤M · (MHSA)d
∑

τ∈Subseq(H,d)

∑
z∈{0,1}|τ|

TV
(
P
ν(ψξ;τ ,z)
1 ,P

ν(ψξ;τ ,z)
2

)
(T ).

Finally, it only remains to bound the total variation distance with ν(ψξ; τ , z). To see this, for a given
q ≤ d, τ ∈ Subseq(H, d), and z ∈ {0, 1}|τ |, it is easy to check that

TV
(
P
ν(ψξ,τ ,z)
1 ,P

ν(ψξ;τ ,z)
2

)
(T ) ≤ max

ψ∈Π
⊗

(q+1)
mls

TV
(
P
ν(ψ;τ ,z)
1 ,P

ν(ψ;τ ,z)
2

)
(T ) ≤ ϵtest.

Noting that
∑
q≤d

(
H
q

)
≤ min(Hd, 2H), assuming we are in the regime H ≫ d, we conclude that

TV(Pπ1 ,P
π
2 )(T ) ≤M(MSA)d · (2H2)d · ϵtest,

concluding the proof.

D.4 Proof of Theorem 4.5

We continue from the conclusion of Lemma D.1, and the remaining step is to ensure that LMDP-OMLE
terminates afterK =MS2H log(1/γ) iterations where γ = ϵ2test/(H

2d) without the initial coverage
assumption (17). We consider a perturbed model θ̂∗ = ({w∗

m, T̂m, R
∗
m}Mm=1) where

T̂m(·|s, a) = (1− γ)T ∗
m(·|s, a) + γ1,

for all m. By the performance difference lemma [35], for any π ∈ Π,

TV(Pπ
θ̂∗
,Pπθ∗)(T ) ≤

∑
m w

∗
m · TV(Pπθ̂∗ ,P

π
θ∗)(T |m) ≤ 2SγH.

For every kth iteration, we check whether the coverage doubling argument (Lemma D.1) still holds.
To see this, first note that we can define ρ̂(Ψktest;π) and Ψ̂ξ, ψ̂ξ and Ĉ(ψξ;π) as in Lemma A.3 in
terms of θ̂∗. Then Lemma D.2 can be modified to guarantee that∑
τ∈SubSeq(H,d)

∑
z∈{0,1}|τ|

TV2
(
P
ν(ψ̂ξ;τ ,z)

θ̂∗
,P

ν(ψ̂ξ;τ ,z)
θ

)
(T ) ≤ 16β

nd · ntest
+ 2(2H)d(2SH)2γ2,

for all θ ∈ Ck using the triangle inequality for TV distance and (a+ b)2 ≤ 2(a2 + b2). Thus, we can
derive (19) in terms of θ̂∗ as

TV(Pπ
θ̂∗
,Pπθ )(T ) ≤ 8M(nAρ̂(Ψ̂ξ;π))

d

√
(2H)dβ

nd · ntest
+ (2H)d(4SH)2γ2.
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History (with Possible Contexts) a2 = 1 a2 = 2
a1 = 1, r1 = −1 (m = 1) ? E[r2] = 1
a1 = 2, r1 = 1 (m = 2) E[r2] = −1 ?

a1 = 2, r1 ̸= 1 (m = 1 or 3) E[r2] = 0 ?
a1 = 1, r1 ̸= −1 (m = 2 or 3) ? E[r2] = 0

Table 1: The first step generates one of four possible beliefs of a history. Measured elements in the table denote
the expected rewards of actions at t = 2 following a behavioral policy. We can see that for all m ∈ [M ], a ∈ A
it holds that Pm(s2, a2) > 0 for all m ∈ [M ], a2 ∈ A; yet, we cannot estimate E[r2] given some histories.

On the other hand,

max
(
TV(Pπk

θ̂∗
,Pπkθ1 )(T ), TV(P

πk
θ̂∗
,Pπkθ2 )(T )

)
> 2ϵTV − 2SHγ > 1.5ϵTV,

Now we set γ = ϵ2test(8HnA)
−2d(4MSH)−2 with ntest = 64M2β(HnA2)d/ϵ2test and n =

MHS2, and we have
2ϵ2TV < 4−d · ρ̂(Ψk−1

test;π
k)dϵ2test.

Hence the same doubling argument holds, and Algorithm 2 will terminate after at most
K = O(MdS2H log(MHSA/ϵtest))

iterations. We note that all inequalities hold for allK iterations with probability at least 1− η. Finally,
we invoke Lemma 4.4 with ϵtest = ϵTV ·poly(H,M,S,A)−d, ϵTV = ϵ/(4MSAH)d and d = 2M−1,
we can conclude that the total number of trajectories we generated is bounded by

poly(M,H,S,A, log(MHSA/ϵ))d/ϵ2.

D.5 A Counter Example for Remark 4.3

One may wonder why it is not sufficient to consider a single latent-state coverability analogous to
Lemma 3.1, analogous to equation (2), defined as the following:

max
t∈[H]

max
x∈X

max
m∈[M ]

Pπm(xt = x)

Pψm(xt = x)
.

Here we present a counter example where the multi-step events must be considered even in the latent
state space: the LMDP consists of M = 3 MDPs with S = {1, 2},A = {1, 2}, R = {−1, 0, 1},
and H = 2. All MDP starts from s1 = 1 and with a transition kernel Tm(s2 = 2|s1, a) = 1
for all m ∈ [M ] and a ∈ A. Reward models are given by R1(r = −1|s = 1, a = 1) = 1,
R2(r = 1|s = 1, a = 2) = 1, and Rm(r|s = 1, a = 1) = 0.5 for r ∈ {0, 1}, m ∈ {2, 3}, and
Rm(r|s = 1, a = 2) = 0.5 for r ∈ {−1, 0}, m ∈ {1, 3}.
Now we target to measure the expected rewards of actions executed by a behavioral policy at s2 = 2 as
in Table 1. In this example, all actions are covered under all contexts following the behavior policy, i.e.,
Pm(s2, a2) > 0. Yet, we cannot estimate the expected reward of action a2 = 1 under context m = 1.
Therefore, the speculated single latent-state coverage coefficient is finite for this problem, however,
off-policy evaluation guarantee cannot be established only with the single latent-state coverability.

Appendix E Deferred Proofs

E.1 Proof of Lemma D.1

For any fixed checkpoint t0, recall the definition Ψξ as defined in equation (14):

Ψξ =

{
arg max

ψ∈Πk−1
test

P ν(ψ;t0)m (st+t0 = s|s′t0 = s′), ∀m, s, s′, t

}
.

Note that |Ψξ| ≤MS2H and invariant to t0 since Ψk−1
test ⊂ Πmls. Now for any memoryless policy

π ∈ Πmls, we recall Lemma 4.2 with ψξ = (ψξ, ..., ψξ, Unif(A)), where ψξ ∈ Π is a mixture policy
of Ψξ. We have

TV(Pπθ∗ ,P
π
θ )(T ) ≤MC(ψξ;π)

∑
τ∈Subseq(H,d)

∑
z∈{0,1}|τ|

TV
(
P
ν(ψ;τ ,z)
θ∗ ,P

ν(ψ;τ ,z)
θ

)
(T )
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≤MC(ψξ;π)
√
(2H)d ·

√ ∑
τ∈Subseq(H,d)

∑
z∈{0,1}|τ|

TV2
(
P
ν(ψ;τ ,z)
θ∗ ,P

ν(ψ;τ ,z)
θ

)
(T )

≤ 4M(nAρ(Ψk−1
test;π))

d

√
(2H)dβ

nd · ntest
, (19)

where the last inequality follows by Lemma D.2. By the while-loop condition, for πk ∈ Πmls, we
have

max
(
TV(Pπkθ∗ ,P

πk
θ1
)(T ), TV(Pπkθ∗ ,P

πk
θ2
)(T )

)
> 2ϵTV,

by the triangle inequality for TV distance. Therefore, we can conclude that

4ϵ2TV < M2(Aρ(Ψk−1
test;π

k))2d · 16(2nH)dβ

ntest
.

Plugging ntest = 64M2β(8HnA2)d/ϵ2test with n =MHS2, we have
4d < ρ(Ψk−1

test;π
k)2d = ρ(Ψk−1

test;π
k)2d.

Thus, ρ(Ψk−1
test;π

k) > 2, which in turn implies Lemma D.1.

E.2 Proof of Lemma D.2

By the construction of confidence set in equation (1) and Lemma A.5, for all k ∈ [K] and θ ∈ Ck, we
have ∑

(T ,π)∈Dk

TV2(Pπθ∗ ,P
π
θ )(T ) ≤ 3β,

where β = log(K|Θ|/η). Let ψξ be a mixture of a subset of candidate policies Ψξ =

{ψ1, ψ2, ..., ψn} ⊆ Ψk−1
test. With ψξ = (ψξ, ψξ, ..., ψξ, Unif(A)) and for every τ ∈

Subseq(H, d), z ∈ {0, 1}|τ |, we have

TV
(
P
ν(ψξ;τ ,z)
θ∗ ,P

ν(ψξ;τ ,z)
θ

)
(T )

≤ 1

nd

∑
i1,i2,...,id∈[n]

TV
(
P
ν((ψi1 ,...,ψid ,Unif(A));τ ,z

θ∗ ),P
ν((ψi1 ,...,ψid ,Unif(A));τ ,z)

θ

)
(T )

≤
√

1

nd

√ ∑
i1,i2,...,id∈[n]

TV2
(
P
ν((ψi1 ,...,ψid ,Unif(A));τ ,z

θ∗ ),P
(ν(ψi1 ,...,ψid ,Unif(A));τ ,z)

θ

)
(T ).

Therefore,∑
τ∈Subseq(H,d)

∑
I⊆[|t|]

TV2
(
P
ν(ψξ;τ ,z(I;τ ))
θ∗ ,P

ν(ψξ;τ ,z(I;τ ))
θ

)
(s′τI , xτ/I , yτ/I )

≤ 1

nd

∑
τ∈Subseq(H,d)

∑
z∈{0,1}|τ|

∑
i1,i2,...,id∈[n]

TV2
(
P
ν((ψi1 ,...,ψid ,Unif(A));τ ,z)

θ∗ ,P
ν((ψi1 ,...,ψid ,Unif(A));τ ,z))

θ

)
(T )

≤ 3β

nd · ntest
.

where the last inequality is due to the construction of our dataset Dk and the concentration guarantee
for the confidence set Ck.

E.3 Proof of Lemma A.1

First note that we can rewrite an atomic probability Pnm(yt|xt) = Pnm(rt, st+1|xt) as

Pnm(rt, st+1|xt) =
Pn,ψ0
m (st+1)

Pn,ψ0
m (st)

(
Pn,ψ0
m (st)

Pn,ψ0
m (st+1)

Pnm(rt, st+1|xt)− l0(xt, rt; st+1) + l0(xt, rt; st+1)

)
,

In turn, moving from conditioning on the event (xt, yt), we view the LMDP model after induction
as if there are at most M1 − 1 contexts in the first LMDP model (or M2 − 1 in the second LMDP
model if l0(xt, rt; st) is attained with n = 2). We often use a shorthand l0(xt, yt) = l0(xt, rt; st+1)
to reduce the burden on the notation.
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Proof. The basic strategy is to apply iteratively the triangle inequality. To illustrate, we first expand
the equation at t = 1:∑
x1:H

∑
y1:H

π1:H

∣∣∣∑M1

m=1 w
1
m

∏H
t=0 P

1
m(yt|xt)−

∑M2

m=1 w
2
m

∏H
t=0 P

2
m(yt|xt)

∣∣∣
=
∑
x1,y1

∑
x2:H
y2:H

π1:H

∣∣∣∣∣∑M1

m=1 w
1
mP

1,ψ0
m (s2)

(
P 1,ψ0
m (s1)

P
1,ψ0
m (s2)

P 1
m(y1|x1)− l0(x1, y1) + l0(x1, y1)

)∏H
t=2 P

1
m(yt|xt)

−
∑M2

m=1 w
2
mP

2,ψ0
m (s2)

(
P 2,ψ0
m (s1)

P
2,ψ0
m (s2)

P 2
m(y1|x1)− l0(x1, y1) + l0(x1, y1)

)∏H
t=2 P

2
m(yt|xt)

∣∣∣∣∣
≤
∑
x1,y1

∑
x2:H
y2:H

π1:H l
0(x1, y1)

∣∣∣∣∣∑M1

m=1 w
1
mP

1,ψ0
m (s2)

∏H
t=2 P

1
m(yt|xt)−

∑M2

m=1 w
2
mP

2,ψ0
m (s2)

∏H
t=2 P

2
m(yt|xt)

∣∣∣∣∣
+
∑
x1,y1

∑
x2:H
y2:H

π1:H

∣∣∣∣∣∑M1

m=1 w
1
m

(
P 1,ψ0
m (s1)P

1
m(y1|x1)− l0(x1, y1)P 1,ψ0

m (s2)
)∏H

t=2 P
1
m(yt|xt)

−
∑M2

m=1 w
2
m

(
P 2,ψ0
m (s1)P

2
m(y1|x1)− l0(x1, y1)P 2,ψ0

m (s2)
)∏H

t=2 P
2
m(yt|xt)

∣∣∣∣∣. (20)

We can continue applying triangle inequalities to all possible first event-logging time step, and we can
start with the following inequality:∑
x1:H

∑
y1:H

π1:H

∣∣∣∑M
m=1 w

1
m

∏H
t=0 P

1
m(yt|xt)−

∑M
m=1 w

2
m

∏H
t=0 P

2
m(yt|xt)

∣∣∣
≤
∑
τ1∈[H]

∑
x1:τ1

,y1:τ1

π1:τ1 l
0
1:τ1−1×

∑
xτ1+1:H
yτ1+1:H

πτ1+1:H

∣∣∣∑M
m=1 p

1,1
m (xτ1 , yτ1)

∏H
t=τ1+1 P

1
m(yt|xt)−

∑M
m=1 p

2,1
m (xτ1 , yτ1)

∏H
t=τ1+1 P

2
m(yt|xt)

∣∣∣ .
Recall that at least one p1,1m or p2,1m is 0, that is, one of the contexts in either of the two systems is
eliminated.
Now for (i), we can pick the next event-logging time step τ2 > τ1, and apply the triangle inequality
similarly, and repeat such event-logging until all contexts are exhausted. Since there are at most
2M contexts, we cannot repeat this process more than d = 2M − 1 times. Hence, we arrive to the
following inequality:∑

x1:H

∑
y1:H

π1:H

∣∣∣∑M
m=1 w

1
m

∏H
t=0 P

1
m(yt|xt)−

∑M
m=1 w

2
m

∏H
t=0 P

2
m(yt|xt)

∣∣∣
≤

∑
τ∈Subseq(H,d)

∑
xτ ,yτ

∆(xτ , yτ )×
∑

x0:τ1−1
y0:τ1−1

...
∑

xτ|τ|+1:H

yτ|τ|+1:H

|τ |∏
i=0

(
πτi+1:τi+1 · liτi+1:τi+1−1

)
,

where we set τ|τ |+1 ≡ H +1. To proceed from here, we first observe that for anym ∈ [M ] and i ≥ 0

such that p1,im > 0,

πτi+1:τi+1
· liτi+1:τi+1−1 ≤ πτi+1:τi+1

∏τi+1−1
t=τi+1 Pm(yt|xt)

P
ν(ψi;τi)
m (sτi+1 |sτi+1)

≤ π(aτi+1
|hτi+1

) ·
∏τi+1−1
t=τi+1 π(at|ht)Pm(yt|xt)

P
ν(ψi;τi)
m (sτi+1 |sτi+1)

=
Pπm(xτi+1:τi+1 , yτi+1:τi+1−1|hτi+1)

P
ν(ψi;τi)
m (sτi+1

|sτi+1)
. (21)
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Thus, we can summarize that∑
x1:H

∑
y1:H

π1:H

∣∣∣∑M
m=1 w

1
m

∏H
t=0 P

1
m(yt|xt)−

∑M2

m=1 w
2
m

∏H
t=0 P

2
m(yt|xt)

∣∣∣
≤

∑
τ∈Subseq(H,d)

∑
xτ ,yτ

∆(xτ , yτ )×
∑

x0:τ1−1
y0:τ1−1

...
∑

xτ|τ|+1:H

yτ|τ|+1:H

|τ |∏
i=0

Pπm(xτ ,yτ )
(xτi+1:τi+1

, yτi+1:τi+1−1|hτi+1)

P
ν(ψi;τi)
m(xτ ,yτ )

(sτi+1 |sτi+1, ϕ)

 .

We note that each term in the product sequence is equivalent to
Pπm(xτ ,yτ )

(hτi+1+1|hτi+1)

P
ν(ψi;τi)
m(xτ ,yτ )

(sτi+1 |sτi+1)Pm(xτ ,yτ )(yτi+1 |xτi+1)
,

and thus
|τ |∏
i=0

Pπm(xτ ,yτ )
(xτi+1:τi+1 , yτi+1:τi+1−1|hτi+1)

P
ν(ψi;τi)
m(xτ ,yτ )

(sτi+1
|sτi+1)


=

 Pπm(xτ ,yτ )
(x1:H , y1:H)∏q

i=0 P
ν(ψi;τi)
m(xτ ,yτ )

(sτi+1
|sτi+1)Pm(xτ ,yτ )(yτi+1

|xτi+1
)

 .

Here we set τq+1 = H + 1 and Pπm(sH+1|·) = 1 for any m, π and conditional event. Since the
denominator does not depend on events outside of event-logging time-steps τ , we can marginalize
the probabilities in the inner summation and conclude the lemma. □

E.4 Proof of Lemma A.3

Let us slightly extend the lemma such that we consider different sets of behavioral policies for different
checkpoint time-steps.

Proof. Note that for all m, s′, s, t1, t2, by the construction of ψξ, it follows that

P
ν(ψξ;t1)
m (st2 = s|s′t1 = s′) ≥ max

ψ∈Ψξ

P
ν(ψ;t1)
m (st2 = s|s′t1 = s′)

n
.

We can observe that for any m,

P
ν(ψξ;τ ,z(I;τ ))
m (s′τI , xτ/I , yτ/I ) =

∏
i∈I

P
ν(ψξ;τi−1)
m (sτi+1|s′τi−1

) ·
∏

i∈[q]/I

1

A
· P ν(ψξ;τi−1)

m (sτi |s′τi−1
)Pm(yτi |xτi).

On the other hand, for any π ∈ Π, τ ⊆ [H], I ∈ [|τ |], xτ , yτ ,

Pπm(s′τI , xτ/I , yτ/I ) ≤
∏
i∈I

max
T1:τi−1

Pπm(sτi+1|s′τi−1
, T1:τi−1

) ·
∏

i∈[q]/I

max
T1:τi−1

Pπm(xτi |s′τi−1
, T1:τi−1

)Pm(yτi |xτi).

Applying the inequality with the definition of ρ(Ψξ;π), we have

C(ψξ;π) = max
τ⊆[H],|τ |≤d

max
I⊆[|τ |]

max
s′∈S

⊗
|I|

(x,y)∈(X ,Y)
⊗

|τ|−|I|

max
m∈[M ]

Pπm(s′τI = s
′, xτ/I = x, yτ/I = y)

P
ν(ψξ;τ ,z(I;τ ))
m (s′τI = s

′, xτ/I = x, yτ/I = y)

≤ max
τ⊆[H],|τ |≤d

max
I⊆[|τ |]

max
s′∈S

⊗
|I|

(x,y)∈(X ,Y)
⊗

|τ|−|I|

max
m∈[M ]

∏
i∈I

maxT1:τi−1
Pπm(sτi+1|s′τi−1

, T1:τi−1)

P
ν(ψξ;τi−1)
m (sτi+1|s′τi−1

)

×
∏

i∈[q]/I

A ·
maxT1:τi−1

Pψm(sτi |s′τi−1
, T1:τi−1)

P
ν(ψξ;τi−1)
m (sτi |s′τi−1

)

≤ (nA · ρ(Ψξ;π))d,
concluding Lemma A.3. □
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E.5 Proof of Lemma A.4

This is by now a standard MLE technique for constructing confidence sets in RL [1].

Proof. The proof follows a Chernoff bound type of technique:

Pθ∗

 ∑
(τ,π)∈Dk

log

(
Pπθ (τ)

Pπθ∗(τ)

)
≥ Eθ∗

 ∑
(τ,π)∈Dk

log

(
Pπθ (τ)

Pπθ∗(τ)

)+ β


≤ Pθ∗

exp

 ∑
(τ,π)∈Dk

log

(
Pπθ (τ)

Pπθ∗(τ)

) ≥ exp (β)


≤ Eθ∗

exp
 ∑

(τ,π)∈Dk
log

(
Pπθ (τ)

Pπθ∗(τ)

) exp(−β).

The last inequality is by Markov’s inequality. Note that random variables are (τ, π) in the trajectory
dataset D, and

Eθ∗

 ∑
(τ,π)∈Dk

log

(
Pπθ (τ)

Pπθ∗(τ)

) = −KL(Pθ∗(Dk)||Pθ(Dk)) ≤ 0.

Therefore,

Eθ∗

exp
 ∑

(τ,π)∈Dk
log

(
Pπθ (τ)

Pπθ∗(τ)

) = Eθ∗
[
Π(τ,π)∈Dk

Pπθ (τ)

Pπθ∗(τ)

]
=
∑
Dk
Pθ(Dk) = 1.

Combining the above, taking a union bound over k ∈ [K] rounds and θ ∈ Θ, letting β = log(K|Θ|/η),
with probability 1− η, the inequality in Lemma A.4 holds. □

E.6 Proof of Lemma A.5

Proof. By the TV-distance and Hellinger distance relation, for any ι, τ , π and t ∈ [H],

TV2 (Pπθ (τ),P
π
θ∗(τ)) ≤ 2H2 (Pπθ (τ),P

π
θ∗(τ))

= 2

(
1− Eτ∼Pπ

θ∗

[√
Pπθ (τ)

Pπθ∗(τ)

])
≤ −2 log

(
Eτ∼Pπ

θ∗

[√
Pπθ (τ)

Pπθ∗(τ)

])
.

To bound the summation over samples, we start from

∑
(τ,π)∈Dk

H2 (Pπθ (τ),P
π
θ∗(τ)) ≤ −

∑
(τ,π)∈Dk

log

(
Eτ∼Pπ

θ∗

[√
Pπθ (τ)

Pπθ∗(τ)

])
.

On the other hand, by the Chernoff bound,

Pθ∗

 ∑
(τ,π)∈Dk

log

(√
Pπθ (τ)

Pπθ∗(τ)

)
≥

∑
(τ,π)∈Dk

logEτ∼Pπ
θ∗

[√
Pπθ (τ)

Pπθ∗(τ)

]
+ β


≤ Eθ∗

 exp
(∑

(τ,π)∈Dk log
(√

Pπθ (τ)

Pπ
θ∗ (τ)

))
exp

(∑
(τ,π)∈Dk logEτ∼Pπθ∗

[√
Pπθ (τ)

Pπ
θ∗ (τ)

])
 exp(−β)

= Eθ∗

 Π(τ,π)∈Dk
√

Pπθ (τ)

Pπ
θ∗ (τ)

Π(τ,π)∈DkEτ∼Pπθ∗
[√

Pπθ (τ)

Pπ
θ∗ (τ)

]
 exp(−β)
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= Eθ∗

Eθ∗
 Π(τ,π)∈Dk−1

√
Pπθ (τ)

Pπ
θ∗ (τ)

Π(τ,π)∈Dk−1Eτ∼Pπ
θ∗

[√
Pπθ (ι,τ)

Pπ
θ∗ (ι,τ)

]∣∣∣∣∣Dk−1


 exp(−β)

= Eθ∗

 Π(τ,π)∈Dk−1

√
Pπθ (τ)

Pπ
θ∗ (τ)

Π(τ,π)∈Dk−1Eτ∼Pπ
θ∗

[√
Pπθ (ι,τ)

Pπ
θ∗ (ι,τ)

]
 exp(−β) = ... = exp(−β),

where in the last line, we used the tower property of expectation. Thus, again by setting β =
log(K|Θ|/η), with probability at least 1− η, we have∑

(τ,π)∈Dk
H2(Pπθ (τ),P

π
θ∗(τ)) ≤ −

1

2

∑
(τ,π)∈Dk

log

(
Pπθ (τ)

Pπθ∗(τ)

)
+ β

= −1

2

∑
(τ,π)∈Dk

log

(
Pπθ (τ)

Pπθ∗(τ)

)
+

1

2

∑
(τ,π)∈Dk

log

(
Pπθ (τ)

Pπθ∗(τ)

)
+ β,

for all k ∈ [K] and θ ∈ Θ. Now we can apply Lemma A.4, and finally have∑
(τ,π)∈Dk

H2(Pπθ (τ),P
π
θ∗(τ)) ≤ −

1

2

∑
(τ,π)∈Dk

log

(
Pπθ (τ)

Pπθ∗(τ)

)
+

3

2
β.

Since TV2 ≤ 2H2, we get the lemma. □
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract present the problem we consider in this work – designing an
efficient learning algorithm for the RL setting – and elaborate, in a highlevel, on our new
approach for solving this open problem.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In the conclusion part we highlight the limitations of our work the main ones
are: (i) our algorithm is optimal only up to polynomial factors and closing this gap is left
as future work, (ii) designing computationally and sample efficient algorithm, under some
oracle assumptions, is an open problem which is left for future work.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: The complete proof is given in the Appendix. Further, we made substantial
effort to provide intuition for the proof in the main paper: by providing analysis for the simpler
MDP problem (and complementary analysis in the Appendix), as well as by connecting the
analysis of this simpler setting to the analysis of the LMDP setting.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification: There are no experimental results in this paper, but a resolution of an algorithmic
open problem.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions
to faithfully reproduce the main experimental results, as described in supplemental material?
Answer: [NA]
Justification: There are no experimental results in this paper, but a resolution of an algorithmic
open problem.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: There are no experimental results in this paper, but a resolution of an algorithmic
open problem.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: There are no experimental results in this paper, but a resolution of an algorithmic
open problem.
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8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?
Answer: [NA]
Justification: There are no experimental results in this paper, but a resolution of an algorithmic
open problem.

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: There are no potential harms caused by the research process or required
mitigation measures that should have been taken for this work. Further, this work focuses
on a mathematical framework with no immediate societal impact or potential harmful
consequences, to our opinion.

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: Our work focuses on establishing the learnability of the LMDP setting, was not
established by previous works. The LMDP setting has been investigated in the past, as we
mentioned in the introduction section, by both empirical and theoretical communities. We
do not see immediate societal impacts of our work between the new results we derived, and
the promise for improving algorithms for the LMDP, and POMDP settings in future works.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer:[NA]
Justification: There are no experimental results in this paper, but a resolution of an algorithmic
open problem.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: There are no experimental results that make use of data or models in this paper,
but a resolution of an algorithmic open problem.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: There are no experimental results in this paper, but a resolution of an algorithmic
open problem.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
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