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Abstract

Solving Olympiad-level mathematical problems represents a significant advance-
ment in machine intelligence and automated reasoning. Current machine learning
methods, however, struggle to solve Olympiad-level problems beyond Euclidean
plane geometry due to a lack of large-scale, high-quality datasets. The challenge is
even greater in algebraic systems, which involve infinite reasoning spaces within
finite conditions. To address these issues, we propose AIPS, an Algebraic Inequality
Proving System capable of autonomously generating complex inequality theorems
and effectively solving Olympiad-level inequality problems without requiring hu-
man demonstrations. During proof search in a mixed reasoning manner, a value
curriculum learning strategy on generated datasets is implemented to improve prov-
ing performance, demonstrating strong mathematical intuitions. On a test set of 20
International Mathematical Olympiad-level inequality problems, AIPS successfully
solved 10, outperforming state-of-the-art methods. Furthermore, AIPS automati-
cally generated a vast array of non-trivial theorems without human intervention,
some of which have been evaluated by professional contestants and deemed to
reach the level of the International Mathematical Olympiad. Notably, one theo-
rem was selected as a competition problem in a major city’s 2024 Mathematical
Olympiad. All the materials are available at sites.google.com/view/aips2.

1 Introduction

One of the key milestones in the field of artificial intelligence is the capability to reason (Pearl 1998)
and prove theorems (Wu 1978; Chou et al. 2000; Trinh et al. 2024). However, theorem proving often
involves long reasoning chains, complex mathematical structures, intricate calculations, and infinite
reasoning spaces. Consequently, developing AI capable of proving complex mathematical theorems
requires sophisticated reasoning and the ability to navigate through an extensive search space to
construct a valid proof. The complexity of these problems lies in the need for effective heuristics and
strategies to manage the vast number of possible actions and the lengthy sequences of logical steps
necessary to arrive at a solution.

Existing work on grade school and college admission math problems has achieved notable success,
e.g., GSM8K (Cobbe et al. 2021) and SAT Math (Achiam et al. 2023), which demonstrate better
performance on tasks such as arithmetic and basic algebra. However, research focused on solving
International Mathematical Olympiad (IMO)-level problems remains relatively sparse. Notable
efforts in this area include AlphaGeometry (Trinh et al. 2024), and GPT-f (Polu and Sutskever 2020)
on miniF2F (Zheng et al. 2021), which have made progress in solving Euclidean plane geometry at
the Olympiad level and various mathematical competition problems, respectively.
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A significant challenge for learning-based methods in this domain is the scarcity of suitable datasets,
which limits the ability to train models effectively and hampers progress in achieving human-level
performance on these high-difficulty problems. The miniF2F dataset (Zheng et al. 2021) includes
only 244 validation and 244 test mathematical problems from various competitions. AlphaGeometry
(Trinh et al. 2024) addresses this issue by synthesizing millions of theorems and proofs across
different levels of complexity to train a neural language model from scratch. Similarly, the INequality
Theorem proving benchmark, INT (Wu et al. 2020), can synthesize a theoretically unlimited number
of theorems and proofs in the domain of algebraic equalities and inequalities. However, INT focuses
on testing a learning-assisted theorem proving agent’s generalization ability rather than increasing
the difficulty to competition level.

Another significant challenge in automated theorem proving is designing effective search strategies to
navigate the vast space of possible proofs. Recent advancements have highlighted various approaches
to enhance search efficiency and proof success rates. Some studies have shown that incorporating
Monte Carlo Tree Search (MCTS) at test time can significantly aid in proving new theorems (Wu
et al. 2020). Inspired by the success of AlphaZero (Zhang and Yu 2020), other research has explored
HyperTree Proof Search (HTPS) (Lample et al. 2022), which learns from previous proof searches
through online training, iteratively improving its strategy by learning which paths are more likely
to lead to successful proofs. Another innovative approach starts the proof search from the root goal
that needs to be proved (Polu and Sutskever 2020), expanding a maintained proof tree by prioritizing
open goals based on their cumulative log probability.

In this work, we introduce AIPS, an Algebraic Inequality Proving System, which can generate a
large number of high-quality theorems and solve IMO-level algebraic problems. AIPS focuses
on ternary and quaternary inequalities, excluding n-variable inequalities represented recursively in
formal verification systems. Among the generated theorems, some have proven to be very challenging,
with one selected for a major city’s 2024 Mathematical Olympiad. We present novel and challenging
inequality theorems discovered by AIPS in the appendix, which have been carefully evaluated by
IMO-level professional contestants and found to be comparable to IMO inequalities from around the
year 2000.

Additionally, AIPS incorporates a value network to evaluate newly generated inequalities, selecting
subgoal candidates based on the top scores provided by the value network. The value network is
trained on synthetic datasets with increasing difficulty in a curriculum manner. In our experiments,
AIPS proved difficult theorems up to the IMO level and solve 10 out of 20 problems in an IMO-level
inequality test, significantly surpassing the performance of previous Large Language Model-based
theorem provers (Polu and Sutskever 2020; Polu et al. 2022; Yang et al. 2024; Song et al. 2024).

The main contributions in this paper are summarized as follows:

1. We propose a symbolic deductive engine capable of efficiently generating high-quality and
solving high-difficulty algebraic inequality theorems. This engine addresses the bottleneck
of lacking large-scale, high-quality data in this field.

2. We demonstrate that a symbolic algebraic inequality prover can be significantly enhanced
under the guidance of a value network, especially when the value network is trained in a
curriculum manner.

3. Our AIPS can generate challenging and elegant inequality theorems, including one selected
for a major city’s Mathematical Olympiad. AIPS proves 10 out of 20 IMO-level inequalities,
surpassing state-of-the-art methods and producing highly human-readable proofs.

2 Related Work

Automated Theorem Proving. Automated theorem proving has been a focus of artificial intelligence
since the 1950s (Harrison et al. 2014; Wu 1978). Modern theorem provers, based on tactic and
premise selection, search for proofs by interacting with proof assistants such as Lean (De Moura et al.
2015), Coq (Barras et al. 1999) and Isabelle (Nipkow et al. 2002). They struggle with the rapidly
expanding search space and the scarcity of high-quality datasets in most mathematical domains. The
challenge is even greater for proving algebraic inequalities, which involve complex computational
rules. Previous efforts to address this issue have focused on augmenting tactic selection and premise
prediction in interactive theorem provers (Polu and Sutskever 2020; Polu et al. 2022; Yang et al.
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2024). However, these provers have only been able to solve problems of limited difficulty in this field.
In this paper, our AIPS can solve highly complex algebraic inequality theorems up to the IMO level.

Datasets and Benchmarks for Theorem Proving. Formal mathematical libraries, such as Isarstep
(Li et al. 2020), Mathlib (van Doorn et al. 2020), and CoqGym (Yang and Deng 2019), currently
serve as the primary datasets for theorem proving. These libraries, manually curated by humans,
include many intricate and profound proofs, such as the formal proofs of the Four-Color Theorem
(Gonthier et al. 2008), the Liquid Tensor Experiment (Scholze 2022), and Fermat’s Last Theorem
(Buzzard and Taylor 2024). Due to the labor-intensive nature of manual proof writing, these libraries
are relatively small, typically containing around 200,000 theorems. While they encompass a wide
range of mathematical fields, the number of theorems in specific areas is quite limited.

Synthetic theorems can provide large-scale datasets for learning-based theorem provers (Polu and
Sutskever 2020; Wu et al. 2020). However, these theorems are often of limited difficulty. Recently,
significant progress has been made in synthesizing geometry theorems (Trinh et al. 2024) using neural
theorem provers. In this paper, we develop AIPS for algebraic inequalities, which can automatically
and efficiently generate a large number of intricate theorems, with some reaching the IMO level.
These theorems will significantly improve neural theorem proving methods.

Search Strategy for Efficient Inference. Deep learning has achieved remarkable success in enhanc-
ing search algorithms (Silver et al. 2016, 2017). Proof search in theorem proving, however, is more
challenging compared to self-play games like Go, as it may involve an infinite search space within
finite conditions. INT (Wu et al. 2020) incorporates MCTS, while HyperTree Proof Search (HTPS)
(Lample et al. 2022) employs online training to improve search strategy. GPT-f (Polu and Sutskever
2020) learns a value network to guide backward search. Our AIPS integrates the benefits of both
HTPS and GPT-f, introducing a value curriculum learning strategy.

3 Algebraic Inequality Proving System

3.1 Symbolic Deductive Engine for Algebra

Interactive theorem provers, such as Lean, can verify mathematical operations but lack the ability
to perform automated mathematical reasoning by combining computational rules. This challenge is
amplified in the automatic proof of algebraic inequalities, which often involves numerous calculations,
extensive transformation rules, and complex theorem matching. To address this, we design a symbolic
deductive engine for algebra, encompassing dozens of fundamental theorems and transformation
rules for algebraic inequalities. It integrates with the symbolic computation system SymPy 2, enabling
effective algebraic reasoning.

3.1.1 Representation for Algebraic Expressions and Theorems

Algebraic expressions are represented symbolically with an underlying expression tree structure
as shown in Fig. 1. The basic computational rules include self-equivalence transformations of
inequalities and various built-in SymPy functions, such as combining fractions (sympy.together)
and expanding expressions (sympy.expand). Our deductive engine’s library also includes funda-
mental algebraic inequality theorems: the Arithmetic Mean-Geometric Mean Inequality (AM-GM),
the weighted AM-GM Inequality, Cauchy’s Inequality, Jensen’s Inequality, the discrete Hölder’s
Inequality, Schur’s Inequality, the binary and ternary Muirhead’s Theorem. Each inequality is repre-
sented as a category of theorem matching, containing variables, conditions, conclusions, and equality
conditions.

3.1.2 Pattern Matching for Inequality Theorems

During symbolic reasoning, the system attempts to apply inequality theorems to a particular algebraic
expression or inequality, as shown in Fig. 1. When matching algebraic expressions with inequality
theorems, it first traverses the expression tree to determine how the value of the entire expression
changes as the node’s value increases, updating the node’s label accordingly. If the change cannot
be determined, no theorem matching is performed on the subtree of that node. After completing
the labeling, the system matches the next layer of determinable nodes with theorems. If a match

2https://www.sympy.org/
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Figure 1: Examples of expression trees and pattern matching for the AM-GM inequality are illustrated.
In (a), for x, y, z ≥ 0, the value of xyz

x+y+z decreases as x + y + z increases, so the label of the
node x + y + z is −1. By applying the AM-GM inequality, we derive a series of upper bounds
with respect to the root, e.g., (xyz)2/3

3 and xyz

2
√

x(y+z)
. In (b), when traversing the expression tree of

1
a+b +

1
b+c +

1
c+a , pattern matching for the AM-GM inequality at various nodes yields different types

of bounds, such as the upper bound 1
2
√
ab

+ 1
2
√
bc

+ 1
2
√
ca

and the lower bound 3

((a+b)(b+c)(c+a))
1
3

.

is successful, the matched sub-expression is replaced with the new expression obtained using the
theorem. Based on the previous labels, it then determines whether the entire expression increases
or decreases, thereby deriving a new inequality. For certain inequality theorems, such as Jensen’s
Inequality, pattern matching is particularly complex and time-consuming. Therefore, to improve the
efficiency of reasoning at each step, we have imposed time limits on the matching process for some
theorems.

3.1.3 Forward Reasoning

Forward reasoning in theorem proving involves matching variables and conditions to a theorem and
deducing new conclusions. In our engine, new inequalities can be obtained by matching theorems to
both sides of an inequality or by applying self-equivalence transformation rules. If any two of the
resulting inequalities can be connected (e.g., applying a ≤ b and b ≤ c to derive a ≤ c), the system
continues to link them to form new inequalities. Therefore, our engine has the capability to perform
forward reasoning to generate large-scale data.

3.2 Olympiad-Level Inequality Proof Set

One of the main challenges in enabling learning-based models to solve complex mathematical
problems is the scarcity of large-scale, high-quality datasets. To overcome this obstacle, we develop
a theorem generator that effectively generates Olympiad-level inequality theorems by enhancing the
methods described in Section 3.1.3.

3.2.1 Synthetic Theorem Generation

We randomly generate thousands of cyclically symmetric symbolic expressions, which serve as the
initial premises for our reasoning process. Utilizing 32 CPUs, we run Algorithm 1 for 8 hours,
resulting in the generation of 191,643 inequality theorems. The generated inequalities are stored in a
tree structure, with each node containing the necessary information for extracting proofs and training
machine learning models. Fig. 2 shows the procedure of generating a synthetic theorem in our AIPS,
and Fig. 3(a) shows the distribution of inference depths in the generated inequalities.
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Figure 2: An example of generating synthetic theorems in AIPS. When the initial premise
√
a2 + 2bc+√

b2 + 2ca+
√
c2 + 2ab successfully matches with Jensen’s inequality, a new inequality is generated.

By subsequently applying transformation rules and matching other fundamental inequalities, such
as the AM-GM inequality, the deductive engine incrementally generates new inequality theorems.
When an inequality theorem is applied, the system verifies whether the equality condition holds, e.g.,
a = b = c.

3.2.2 Synthetic Theorem Evaluation

To evaluate the quality of our dataset, we select 10 problems with reasoning lengths exceeding five
steps, and invite two National Mathematical Olympiad gold medalists and one silver medalist to
assess the difficulty and elegance of these problems. Their evaluations reveal that our dataset contains
a vast array of non-trivial theorems, some of which surpass the difficulty of inequalities found in early
IMO competitions. Notably, one inequality theorem from our dataset is selected for a major city’s
Mathematical Olympiad. All the 10 problems and evaluation results are provided in Appendix ??.

3.3 Neural Algebraic Inequality Prover

By leveraging the capabilities of the deductive engine introduced in Section 3.1 and the Best-First-
search algorithm (Dechter and Pearl 1985), we develop an algebraic inequality prover. This prover
formulates the algebraic inequality proving as a sequential decision-making process by selecting
theorems to generate highly human-readable proofs. As shown in Fig. 4, given a goal and related
conditions, AIPS first generates a list of subgoals by applying a set of theorems at each iteration. A
value neural network is then used to evaluate these newly generated subgoals along with the previous
unresolved subgoals. The top-value subgoal is selected for the next step of reasoning. This iterative
process continues until the proof is successfully completed, as shown in Fig. 3(b).

3.3.1 Searching Proofs by Combining Value Network with Symbolic Prover

The procedure of searching for inequality proofs is generally divided into three parts: mixed reasoning
for subgoal generation, evaluation, and planning.

Subgoal Generation. There are two methods for generating subgoals in AIPS. The first method
involves applying fundamental inequality theorems. Let X be the set of variables. Suppose the
inequality theorem to prove is u(X) ≤ v(X) under a condition set P . AIPS first homogenizes the
inequality to f(X) ≤ g(X) on both sides by applying conditions in P . Then, by applying theorems

82815 https://doi.org/10.52202/079017-2633



Algorithm 1 Generating Theorems

1: function Generate_Theorems(expression P , loops N )
2: Initialize Theorem Set S,

Inequality Transformation Rules O, Inequality Sets A1, A2, A3
3: Apply S to P to obtain a series of inequalities and add those whose equality conditions hold

to a set R
4: for i← 1 to N do
5: for each inequality ineq in R do
6: Apply rules O to ineq to obtain A1
7: end for
8: for each inequality ineq in R do
9: Apply theorems S to one side of ineq and check if it can be linked to the original

inequality. If so, add it to A2
10: end for
11: for each inequality ineq in A2 do
12: Check if ineq meets the equality condition and add it to A3 if it does
13: end for
14: Update R by selecting M inequalities from the union of A3 and A1 according to the length

of inequalities
15: end for
16: return R
17: end function

(a) Distribution of inference depths. In the
process of generating synthetic theorems, we
limit the reasoning steps. Unlike geometry
problem, long reasoning chains in inequal-
ity generation can lead to trivial theorems.
Solutions to challenging IMO inequalities
typically involve only two or three steps of
matching inequality theorems.

(b) Self-evolving process of AIPS. After pre-training on the ini-
tial synthetic dataset, AIPS is capable of proving some challeng-
ing theorems. Guided by the value network, it then attempts
to solve problems in an increasingly difficult filtered dataset.
By extracting nodes on the proof path as positive labels and
other nodes as negative labels, it fine-tunes the value network
and gradually improves proving performance in a curriculum
manner.

Figure 3: (a) Distribution of inference depths in our dataset. (b) Self-evolving process of AIPS.

to the left-hand side of the target inequality, AIPS generates a series of new inequalities:

f(X) ≤ h1(X), . . . , f(X) ≤ hn(X)

This results in subgoals hi(X) ≤ g(X). Similarly, by applying theorems to the right-hand side, AIPS
also generates subgoals f(X) ≤ sj(X). The second method involves applying transformation rules
such as sympy.expand and sympy.apart to the goal, generating subgoals that are equivalent to the
original inequality.

Evaluation. AIPS employs a value function Vθ to assess the difficulty of each inequality. Formally,
we have a function f parameterized by η that encodes the inequality expression s. The encoded
embedding vector fη(s) is then fed into a deep neural network gϕ, which outputs a value in the
interval [0,1]. We choose f to be a transformer encoder with average pooling (Vaswani et al. 2017).

Planning. With the evaluation function Vθ, we use the Best-First search algorithm for planning. We
also test the performance of MCTS algorithm, where the result is less satisfactory.
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Figure 4: Overview of how AIPS proves a simple theorem. At each step, the deductive engine
attempts to match inequality theorems with each side of the goal and applies all transformation rules
to the expression, resulting in a list of new subgoals. The searched goal is placed into a closed list,
ensuring that it will not be examined again. If one of the new subgoals is true, indicating that the
inequality holds, then the theorem is proved. Otherwise, the new subgoals are added to the open list,
along with other subgoals generated previously. A value network then evaluates all subgoals in the
open list, and the top-value one is chosen for the next iteration of proof search.

There are two primary reasons for this. First, the action space for each state is extremely large, leading
to explosive growth of the MCTS searching tree. Second, the high cost of reasoning steps makes the
simulation step in MCTS nearly impractical, often exceeding time limits.

We also note that our prover can be combined with any heuristic function, and thus design various
baselines in our experiments.

3.3.2 Pre-training Value Network Using a Heuristic Function

We define the tree-depth D of an inequality as the maximum depth of the expression trees on both
sides. Proving an algebraic inequality is equivalent to reducing the tree-depth of the inequality to one.
We use D as the supervision information to train initial heuristic function finit in the Best-First search
algorithm. That is to say, we pre-train a value network Vθ as finit on the synthetic dataset by utilizing
the tree-depth D.

3.3.3 Fine-tuning Value Network on Filtered Synthetic Data

We create a new dataset by removing all inequalities with inference depth less than 4. We then
randomly sample 1,200 problems and sort them by tree-depth in ascending order. For inequalities
with the same tree-depth, they are sorted by the length of their string representation, with shorter
lengths placed first.

The fine-tuning procedure involves sequentially proving these inequalities and updating the parameters
of the value network. If an inequality is successfully proved, we record the set of subgoals on the
proof path as T and the set of subgoals that are searched but not on the proof path as F . The values
of the elements in T are scaled down by a factor of ϵ, while the values of the elements in F are
increased. Using these labels, we perform a training round on the value network Vθ, and then proceed
to the next problem. This iterative process is used to adjust the network parameters. See Appendix ??
for more details.
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4 Experiments

We evaluate AIPS on an Olympiad-level algebraic inequality problem test set. It outperforms the state-
of-the-art methods in terms of the number of solved problems, demonstrating the strong algebraic
intuitions developed by the learned value network.

4.1 An Olympiad-Level Inequality Benchmark

Current benchmarks for Olympiad-level math problems, such as miniF2F (Zheng et al. 2021) and
Fimo (Liu et al. 2023), cover a wide array of topics but often lack a dedicated section for algebraic
inequalities. In inequality benchmarks like INT (Wu et al. 2020), the problems are typically of limited
difficulty. To address this gap, we collect all ternary and quaternary algebraic inequality problems
from IMO since 1990. Additionally, we include challenging problems from IMO shortlists and
various national mathematical Olympiads, such as the USAMO, the USA National Team Selection
Tests, and the Polish, Japanese, and Korean Mathematical Olympiads, all of which are of comparable
difficulty to the IMO. In total, we compile 20 problems for our test set, naming it MO-INT-20
(Math-Olympiad-INequality-Test-20). All problems are checked to ensure they are not in AIPS’s
training datasets. We also translate the test problems into Lean for subsequent experiments.

4.2 Comparison Methods

Current theorem provers include interactive theorem provers, large language models capable of
generating natural language proofs, and neural symbolic theorem provers. We compare LeanCopilot
(Song et al. 2024), the open-source state-of-the-art interactive theorem prover in Lean. Additionally,
we evaluate general large language models like GPT-4, GPT-4 Turbo and Gemini 1.5 Pro, as well as
the math-specific language model Llemma-7b (Azerbayev et al. 2023). For neural symbolic theorem
provers, we design various baselines, including our deductive engine paired with breadth-first search
and MCTS, our deductive engine equipped with tree-depth in Section 3.3.2 or LLM heuristics as the
value function, and our AIPS with only pretrained value network.

It should be noted that we cannot compare with several existing interactive theorem provers (Polu and
Sutskever 2020; Polu et al. 2022) since these provers are not open source to be reproduced. However,
it is reported that these provers can only prove a few early Olympiad inequalities, as detailed in the
appendix of their respective papers.

4.3 Comparison Results and Analysis

We test 11 different provers on the inequalities in MO-INT-20, with each problem limited to 90
minutes of solving time, consistent with the standard problem-solving time in the IMO. All neural-
symbolic provers are tested on a single CPU core (equivalent to 1.5 CPU hours per problem). The
comparison results are shown in Table 1. It can be seen that our AIPS achieves the best performance
and solves 10 out of 20 problems.

Table 1: Model Performances on the MO-INT-20. DE denotes our deductive engine. BFS and
MCTS are Breadth-First Search and Monte Carlo Tree Search, respectively.

Model Category Model Problems Solved (20)

Large Language Models
Gemini 1.5 Pro 1

GPT-4 0
GPT-4 Turbo 0
Llemma-7b 0

Interactive Theorem Provers LeanCopilot (LeanDojo) 0

Neural-Symbolic Provers
DE + GPT-4 Turbo’s heuristics 6

DE + BFS 4
DE + MCTS 5

DE + tree-depth heuristic function 7
AIPS with pretrained value network 7

AIPS 10
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Analysis of Large Language Models’ Performance. Large language models like GPT-4 have
demonstrated remarkable reasoning abilities (Lewkowycz et al. 2022; Wei et al. 2022). However, in
this test, only one of the four models, Gemini 1.5 Pro, successfully generates a fully correct natural
language proof. When solving problems, large language models tend to either make trivial mistakes
or indicate that they do not know how to solve them, despite the potential contamination of their
training data by online proofs. These results reveal their limited math reasoning ability.

Analysis on a Formal Theorem Prover’s Performance. Recent studies reveal the capabilities of
neural theorem provers based on Interactive Theorem Prover (ITP) frameworks (Yang et al. 2024;
Rute et al. 2024). These systems generally convert theorem proving into code completion tasks. We
evaluate the performance of one such theorem prover, LeanCopilot (Song et al. 2024), developed from
LeanDojo, on our test set. LeanCopilot is the current open-source state-of-the-art theorem prover
based on Lean. The results indicate its limited ability to solve complex algebraic problems: None of
the problems are solved through proof search in LeanCopilot. Additional tests on tactic suggestions
(see Appendix ??) show that current formal theorem provers struggle to predict the complex premises
required for proving inequalities.

Analysis on Neural Symbolic Provers’ Performance. In this test, neural symbolic provers demon-
strate a strong ability to prove algebraic inequalities using best-first search algorithm. By applying
either breadth-first search or MCTS algorithm, our deductive engine successfully solves four and
five problems, respectively. We also test performance under the guidance of a tree-depth heuristic
function and a pre-trained value network using the best-first search algorithm, both of which solve
seven problems. Additionally, we prompt GPT-4 Turbo and find it exhibit some algebraic intuition,
successfully guiding the deductive engine to solve six problems—two more than the breadth-first
search. However, it is worth noting that large language models (LLMs) may occasionally prioritize
lengthy and meaningless subgoals. Due to the exponential growth of the number of new inequalities
as the width and height of the expression trees increase, it can result in expression strings longer
than the LLMs’ input context length. For example in problem 4 from the 2014 Japan Mathematical
Olympiad, it chooses a very long subgoal at iteration 2, resulting in subgoals at the next iteration
being three times longer than its input context length.

Finally, following a curriculum learning strategy on 1,000 inequality problems, AIPS achieves the
best performance, solving 10 out of 20 problems. Among the 10 problems from the IMO or IMO
shortlist, it successfully solves five, reaching the average level of IMO contestants. We also test the
performances of AIPS after 200, 400, 600, and 800 loops of fine-tuning value network (see Appendix
??). The results demonstrate that our value curriculum learning strategy is very effective, with the
number of proof search steps significantly decreasing during the training process, and the number of
solved problems increasing to 10 ultimately.

5 Conclusion

In conclusion, solving Olympiad-level mathematical problems is a significant milestone in machine
intelligence and automated reasoning. The lack of large-scale, high-quality datasets presents a
challenge, particularly in algebraic systems. To address this, we propose AIPS, an Algebraic Inequality
Proving System, which autonomously generates complex inequality theorems and effectively solves
Olympiad-level inequality problems without human input. Utilizing a value curriculum learning
strategy, AIPS demonstrated strong mathematical intuition by solving 10 out of 20 International
Mathematical Olympiad-level problems. One of these theorems was selected for a major city’s 2024
Mathematical Olympiad.

In the future, by incorporating more fundamental theorems and operational rules, our AIPS could
solve even more complex problems, discover a greater number of non-trivial theorems, and assist
mathematicians in solving modern mathematical challenges. However, it currently lacks the ability to
autonomously propose and comprehend new definitions. Instead, it relies on handwritten theorems
and matching rules, which is time-consuming. Addressing this limitation is a crucial area for future
research.
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