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Abstract

Foundation models have significantly enhanced 2D task performance, and recent
works like Bridge3D have successfully applied these models to improve 3D scene
understanding through knowledge distillation, marking considerable advancements.
Nonetheless, challenges such as the misalignment between 2D and 3D represen-
tations and the persistent long-tail distribution in 3D datasets still restrict the
effectiveness of knowledge distillation from 2D to 3D using foundation models.
To tackle these issues, we introduce a novel SAM-guided tokenization method that
seamlessly aligns 3D transformer structures with region-level knowledge distilla-
tion, replacing the traditional KNN-based tokenization techniques. Additionally,
we implement a group-balanced re-weighting strategy to effectively address the
long-tail problem in knowledge distillation. Furthermore, inspired by the recent
success of masked feature prediction, our framework incorporates a two-stage
masked token prediction process in which the student model predicts both the
global embeddings and the token-wise local embeddings derived from the teacher
models trained in the first stage. Our methodology has been validated across
multiple datasets, including SUN RGB-D, ScanNet, and S3DIS, for tasks like 3D
object detection and semantic segmentation. The results demonstrate significant
improvements over current State-of-the-art self-supervised methods, establishing
new benchmarks in this field.

1 Introduction

3D computer vision plays a critical role in domains such as autonomous driving and robotics.
Despite its importance, this field faces significant challenges in acquiring and annotating 3D data
due to the high costs and complex technical requirements involved. These challenges have led to a
notable scarcity of large-scale annotated datasets. To address these issues, there has been a growing
shift towards self-supervised learning (SSL) strategies, including contrastive learning and masked
autoencoders (MAE), which aim to improve the learning efficiency of networks and reduce reliance
on labeled data. Recently, the success of 2D foundation models like Contrastive Vision-Language
Pre-training (CLIP) [41] and Segment Anything (SAM) [29] has led to significant progress in image
understanding. However, large-scale 3D foundation models have not yet been proposed, primarily
due to the scarcity of 3D datasets. Therefore, leveraging these powerful 2D foundation models for
3D scene understanding via self-supervised learning remains an open question.

Recent works, such as CLIP2Scene [8], Seal [32], and Bridge3D [10], have made significant progress
in enhancing 3D scene understanding through the use of foundation models. CLIP2Scene effectively
integrates CLIP with 3D models by implementing pixel-to-point distillation via foundation models.
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(a) Patch based 2D tokenization
method.

(b) KNN-based 3D tokenization
method.

(c) Proposed SAM-guided 3D tok-
enization method.

Figure 1: The comparison of tokenization methods. In Section 3.2, we present a detailed compari-
son of our proposed tokenization method to the previous KNN-based approach. As shown in the red
circle, the KNN-based method may inadvertently group points from different SAM regions into the
same tokens, leading to potential confusion within the 3D network. In contrast, our method effectively
employs SAM masks in tokenization to ensure seamless region-level knowledge distillation, thereby
avoiding these issues.

Seal distills the knowledge from 2D foundation models into the 3D network for semantic segmentation.
Bridge3D introduces an innovative pre-training strategy for 3D models by utilizing features, semantic
masks, and captions derived from foundation models. However, significant challenges still remain in
leveraging foundation models for 3D scene understanding. Specifically, while CLIP2Scene employs
point-to-text contrastive learning, it does not utilize critical region-specific information, which is
essential for dense representation learning. Seal leveraged the 3D U-Net as backbone which struggles
with scalability and flexibility, making it less effective for scaling and handling tasks such as detection.
Bridge3D attempts to address this by using SAM-generated masks to distill vision and language
representations to point tokens at the regional level. However, as illustrated in Figure 1, both Bridge3D
and earlier 3D transformer-based methods employ KNN-based point tokenization strategies that
can result in information conflicts during SAM-guided region-level knowledge distillation. This
conflict arises when points from different SAM regions are grouped into the same 3D tokens, thereby
confusing the 3D network. Furthermore, both CLIP2Scene and Bridge3D do not take into account the
inherently long-tail property of 3D datasets. Giving equal weight to all samples causes the model to be
predominantly driven by gradients from a few over-represented samples, leading to poor performance
on under-represented samples.

To overcome these challenges, we propose a SAM-guided masked token prediction method that
facilitates region-level 2D-to-3D knowledge distillation using foundation models. Unlike traditional
3D transformer methods that rely on KNN for tokenization, our approach employs masks obtained
from SAM to tokenize points. This strategy effectively prevents conflicts between different regions
and points, ensuring a seamless integration of point tokenization with region-level knowledge
distillation. Additionally, SAM masks improve the representation of homogeneous neighboring points
by more effectively leveraging boundary regularities compared to KNN-based methods. Furthermore,
to address the issue of representation imbalance, we introduce a group-balanced re-weighting strategy
that adjusts the distillation loss weights between 2D and 3D representations at the region level. In
the self-supervised phase, where labels are absent, we utilize well-trained 2D foundation models
to cluster region-level 2D representations using K-means, assigning pseudo-labels based on their
cluster index. During training, we enhance the weights for tail groups while reducing them for
head groups. Inspired by the recent success of masked feature prediction [56] in cross-modality
learning, we introduce a two-stage masked token prediction framework. In the first stage, we perform
dense region-level knowledge distillation using the SAM-guided tokenization method to transfer
well-learned knowledge from the foundation model to the 3D network. In the second stage, we
have the student model predict both the instance-level global embedding and the token-wise local
embeddings obtained from the teacher model in the first stage based on visible 3D input patches.
This approach ensures that the student model learns well-aligned and contextualized local and global
representations, thereby improving its performance on downstream tasks.

We validated our methodology across multiple datasets and tasks, including SUN RGB-D [46] and
ScanNet [14] for 3D object detection, and S3DIS [4] and ScanNet [14] for 3D semantic segmentation.
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Our approach outperforms current state-of-the-art self-supervised learning methods, underlining the
effectiveness of our proposed framework.

The key contributions of our work are summarized as follows:

• We introduce a novel two-stage SAM-guided masked token prediction framework that
leverages foundation models for 3D scene understanding.

• We present a group-balanced re-weighting method for long-tail representation distillation
and a SAM-guided tokenization method to seamlessly align 2D and 3D region-level features.

• Extensive experiments have been conducted to demonstrate the significance of our approach
in various 3D downstream tasks.

2 Related Work

3D Self-supervised Pre-training. The field of self-supervised learning for point clouds has
witnessed substantial advancements, with researchers exploring a variety of pre-training strate-
gies to enhance the transferability and initialization quality of networks for downstream tasks
[1, 21, 11, 57, 28, 19]. These strategies range from learning the relative positions of points
[43] to deploying multiple pretext tasks [22] and employing contrastive learning approaches
[17, 27, 42, 49, 2, 28, 20, 18]. Innovatively, Info3D [42] applies InfoMax principles and con-
trastive learning to 3D shapes, enhancing feature extraction from complex geometries. PointContrast
[49] performs point-level contrastive learning across transformed views of a single point cloud, pro-
moting robustness to spatial alterations. Meanwhile, the work by Zhang [55] contrasts instance-level
representations derived from different architectural processes within identical scenarios. Additionally,
CrossPoint [2] pioneers a multi-modal contrastive framework that establishes 3D-2D correspondences,
capitalizing on the complementary attributes of point clouds and images.

Masked Autoencoder To enhance masked image modeling, the Masked Autoencoder [23] (MAE)
was initially introduced for 2D images, utilizing an asymmetric encoder-decoder transformer ar-
chitecture [16, 6]. This process starts with an encoder that receives a randomly masked image to
extract high-level latent representations. A lightweight decoder then processes these representations,
reconstructing the raw RGB pixels of the masked patches. Demonstrating exceptional performance
across various downstream tasks, MAE has inspired a range of innovative adaptations. Expanding
to 3D data, some adaptation methods [37, 12, 53] have been proposed to apply MAE-style pre-
training to 3D point clouds. These methods involve sampling visible point tokens for the encoder
and reconstructing masked 3D coordinates with the decoder. However, these 3D MAE applications
have predominantly focused on masked point reconstruction. Recent studies [5, 56] have shown that
masked feature prediction can be a more effective strategy for representation learning. Building on
this insight, our work introduces a two-stage framework specifically designed to enable masked token
prediction in 3D scene understanding, aiming to enhance the learning efficiency and applicability of
MAE in complex 3D environments. This novel approach promises to push the boundaries of how
deep learning models perceive and interpret three-dimensional data.

Multi-modality Learning for 3D Scene Understanding Numerous studies have explored knowl-
edge transfer from pre-trained 2D foundation models to 3D representations at the object level
[24, 25, 54, 52, 38]. For comprehensive scene understanding, SlidR [44] initially employs the
super-pixel technique to define regions and subsequently utilizes the InfoNCE loss for region-level
contrastive learning between point cloud and 2D representations. The CLIP2Scene approach [8]
leverages the MaskClip model [59] to generate dense semantic predictions. However, it lacks the
capability to produce instance-specific semantic results, which is crucial for distilling object-level
visual representations into 3D models. Bridge3D [10] proposes an innovative pre-training strategy
for 3D models using features, semantic masks, and captions derived from foundation models. It
integrates region-level knowledge distillation with a masked autoencoder for 3D scene understanding,
achieving state-of-the-art performance. Despite these advancements, the KNN-based tokenization
method employed in Bridge3D and other existing 3D transformer-based methods faces challenges.
Specifically, the mismatch between KNN grouping and predefined mask regions can lead to represen-
tational conflicts, ultimately degrading performance. To address these limitations, we innovatively
propose a SAM-guided tokenization method that seamlessly integrates region-level distillation with a
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Figure 2: Overall framework of the proposed method. Our method introduces a two-stage masked
token prediction framework for learning from foundation models. In the first stage, we input complete
point clouds and leverage SAM masks to guide the point cloud tokenization, thereby seamlessly
aligning the 2D and 3D region-level features for dense prediction. A group-balanced weight is applied
during distillation to prevent bias towards the head representations. In the second stage, we freeze
the models trained in the first stage and have the student models predict instance-level features and
masked tokens obtained from the teacher models.

plain transformer architecture. This method ensures coherent region-level knowledge transfer and
enhances the overall efficacy of the learning process in 3D scene understanding.

3 Methodology

In this section, we outline our methodology, starting with how we utilize foundation model SAM
[29] to obtain masks offline. We then describe our approach to tokenize point clouds using SAM
instead of KNN to address the misalignment between 2D and 3D representations. Next, we introduce
the group-balanced re-weighting strategy to address the long-tail representation issue in knowledge
distillation. Finally, we detail our two-stage masked token framework, which facilitates the model
in learning well-aligned and contextualized representations through a process of two-stage masked
token prediction.

3.1 Mask Generation

To enable region-level distillation, we utilized the foundation model SAM [29] to generate masks
within visual images. SAM-generated masks provide comprehensive coverage of both the object and
its surrounding context. This integration enables us to obtain a cohesive set of segmentation masks
O1, . . . ,ON . To establish a precise correspondence between mask-level visual features and point
tokens {xi, pi}, we align the point cloud tokens with the respective SAM masks, where xi and pi
represent paired image and point features, respectively. This process is conducted offline, and the
resulting labels are stored locally for easy access during the self-supervised training phase.

4

82965https://doi.org/10.52202/079017-2638



3.2 SAM-guided Point Tokenization

Recent state-of-the-art method Bridge3D [10] adapts the 3D plain transformer architecture for
knowledge distillation from foundation models. Like other 3D transformer-based methods, Bridge3D
directly tokenizes point clouds using farthest point sampling (FPS) and K-nearest neighbors (KNN)
algorithms. Specifically, given a point cloud Xi ∈ RN×3 with N points, FPS is used to select n
centroid points (CT) for forming point patches. Subsequently, KNN determines the k nearest points
to each centroid, forming the corresponding token P .

To enable efficient distillation from 2D to 3D using foundation models, Bridge3D proposes a region-
level distillation strategy. However, we find that this strategy cannot effectively align 2D and 3D
information when using KNN-based point tokenization. As depicted in Figure 1, KNN-based
point tokenization strategies can group points from different SAM regions into the same 3D tokens.
This misalignment causes information conflict, which confuses the 3D network and degrades the
distillation performance.

To address this challenge, we introduce a novel SAM-guided point patch generation method tailored
for multi-modality region-level knowledge distillation. We start by projecting the 3D point cloud
onto corresponding 2D images. Then, we assign points to tokens based on their positions within the
SAM-defined regions in the 2D images. Each patch’s centroid is calculated as the average position of
all points within that patch. Features are then extracted using PointNet, ensuring that each token’s
representation is both cohesive and regionally consistent. This methodology not only enhances the
alignment between 3D points and their corresponding 2D regions but also significantly improves the
performance of our knowledge distillation framework by leveraging boundary regularities provided
by SAM.

3.3 Dense Feature Distillation

To enhance the distillation of rich representations from 2D to 3D, we build on the methodologies
proposed in Bridge3D [10], utilizing region proposals from the SAM vision foundation model. Our
method primarily differs from Bridge3D in our approach to aligning 2D and 3D representations.
Unlike Bridge3D, which employs the traditional KNN method to generate point tokens, often resulting
in the aggregation of points from disparate regions as illustrated in Figure 1, our method uses the
SAM model to guide point cloud tokenization. This ensures a one-to-one correspondence between
point tokens and region-level 2D features, avoiding the representation conflicts that impair 3D
understanding in the Bridge3D approach. This targeted tokenization results in a comprehensive set
of segmentation masks O1, . . . ,ON , each enriched with its corresponding textual narrative, thereby
providing a deeper contextual dataset.

For detailed feature extraction, we define Eθ
3D as the trainable 3D network and Eθ

2D as the frozen
pre-trained 2D encoder. The 3D network processes the point cloud, while the 2D encoder manages
the corresponding images. These components generate 3D point token features H ∈ RM×L and
2D image pixel features Ij ∈ Rh×w×L, where M represents the number of regions, equivalent to
the segmentation masks produced by SAM, and L denotes the feature dimension; h and w are the
height and width of the image features, respectively. We project the point token features to 2D
space via a projection layer to obtain projected 3D features F3D. We then pool pixel representations
within the same SAM-generated region to derive region-level 2D representations F2D ∈ RM×L.
Simultaneously, we establish correspondences between each 3D token and its matching 2D regional
representation (Hi, Fi)

M
i=1, where Hi and Fi are the paired 3D and 2D regional features, ensuring a

direct and meaningful alignment between the modalities. This setup allows for robust region-level
feature-dense distillation, effectively training our model to better understand and interpret complex
3D scenes. The distillation process is formulated as follows:

F2D,i =
1

Oi

∑
i∈Oj

(Ij) (1)

F3D,i = Proj(Hj) (2)
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Where Hi represents point tokens, Proj is the projection layer. The objective function is as follows:

Ldistill =
1

M

M∑
i

L1(F2D,i, F3D,i) (3)

The L1 is the smooth L1 loss.

3.4 Group Balanced Re-weighting

Training models on 3D datasets, which are inherently highly imbalanced, presents significant chal-
lenges. Directly applying approaches that are not specifically designed for imbalanced datasets often
results in sub-optimal network performance and thus fails to deliver satisfactory outcomes. To address
this issue, recent studies, as noted by Cui et al. [13], Yu et al. [50], and Alshammari et al. [3], have
introduced class-balanced loss strategies. These strategies involve recalibrating the weights in the loss
function to focus more on underrepresented (tail) classes and reduce the emphasis on overrepresented
(head) classes. Such adjustments aim to establish a more equitable training environment, enhancing
fairness and boosting the robustness of the model.

In our 2D to 3D pre-training tasks, the lack of explicit labels complicates the identification of head and
tail representations within the data. To tackle this challenge of imbalance in the representation learning
stage, we propose a prototype-level re-weighting method. Leveraging the discriminative features
provided by foundation models, we can directly cluster these features and use their cluster indices
as pseudo-labels. Specifically, we utilize foundation models such as DINOv2 [36] or CLIP [41] to
extract visual features, which are then resized to the original image dimensions using interpolation.
Next, we apply max pooling across features within regions defined by SAM-generated masks to
obtain region-level features. These features are grouped into K clusters using KNN, categorizing
them into distinct groups. Each region-level feature is assigned a group index, which we treat as
a pseudo-label for applying a class-level reweighted loss. We then count the number of regions
in group i as ni. This innovative approach allows us to effectively address the long-tail problem
in representation learning by balancing the influence of each group during the learning process.
ki =

ni−nmin

nmax
, Where τi = 1.0− ki and wi =

τi∑K
j=0 τi

. Hence, the dense distillation loss for the first

stage is:

Ldistill =
1

M

M∑
i

wiL1(F2D,i, F3D,i) (4)

3.5 Maksed Token Prediction

As illustrated by VideoPrism [56], latent space reconstruction is an effective method for cross-
modality knowledge distillation. Inspired by this, we propose a two-stage framework to integrate
latent space prediction within the MAE framework for 2D to 3D knowledge distillation. This approach
differs from previous 3D masked autoencoder methods like Point-MAE [37] and Bridge3D [10],
which reconstruct raw, masked inputs as their targets.

As depicted in Fig. 2, our approach involves a two-stage process. In the first stage, we perform
dense feature knowledge distillation from 2D to 3D using foundation models with the proposed
SAM-guided tokenization method. In the second stage, we implement a teacher-student framework.
The model from the first stage serves as the teacher and is frozen for the second stage. During training,
all tokens are processed by the teacher model to generate token features, and the student model is
tasked with reconstructing these detailed 3D token representations using only the visible parts of the
data. We introduce an instance-level distillation loss to guide the student model’s learning, pushing
the limits of self-supervised learning in comprehending 3D spaces.

Specifically, we send complete point tokens to the teacher models and masked point tokens to the
student models. For the instance-level knowledge prediction, we pool all point token features after
the teacher encoder as F teacher

ins and after the student encoder as F student
ins . The student model then

predicts F teacher
ins using MLP layers. The instance prediction is formulated as follows:

Lins = MSE(MLP (F student
ins ), F teacher

ins )) (5)

6
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SUN RGB-D ScanNetV2
Methods Pre-trained AP25 AP50 AP25 AP50

VoteNet [39] None 57.7 32.9 58.6 33.5
PointContrast [49] ✓ 57.5 34.5 59.2 38.0
Hou et al. [26] ✓ - 36.4 - 39.3
4DContrast [9] ✓ - 38.2 - 40.0
DepthContrast [55] ✓ 61.6 35.5 64.0 42.9
DPCo [30] ✓ 60.2 35.5 64.2 41.5

3DETR [35] None 58.0 30.3 62.1 37.9
+Plain Transformer None 57.6 31.9 61.1 38.6
+Point-BERT[51] - - - 61.0 38.3
+Point-MAE [37] ✓ - - 63.4 40.6
+MaskPoint [31] ✓ - - 63.4 40.6
+ACT [15] ✓ - - 63.5 41.0
+PiMAE [7] ✓ 59.9 33.7 63.0 40.2
+Bridge3D [10] ✓ 61.8 37.1 65.3 44.2
+Ours ✓ 63.5(+1.7) 39.5(+2.4) 68.2 (+2.9) 48.4(+4.2)
GroupFree3D [33] None 63.0 45.2 67.3 48.9
+Plain Transformer None 62.2 45.0 66.1 48.3
+Point-MAE [37] ✓ 63.9 46.1 67.4 49.8
+PiMAE [7] ✓ 65.0 46.8 67.9 50.5
+Bridge3D [10] ✓ 67.9 48.5 69.1 51.9
+Ours ✓ 68.9(+1.0) 52.1(+3.6) 72.3(+3.2) 55.7(+3.8)

Table 1: 3D object detection results on ScanNet and SUN RGB-D dataset. We adopt the average
precision with 3D IoU thresholds of 0.25 (AP25) and 0.5 (AP50) for the evaluation metrics.

We use the global features of the student model with only visible inputs to predict the global features
of the teacher model with complete inputs. Additionally, we employ a token-level prediction loss
to ensure that the student models can predict the masked tokens obtained from the teacher model’s
decoder.

Ltoken =
1

Nm

Nm∑
i=1

MSE(F student
i , F teacher

i ). (6)

Where Nm is the number of masked tokens. The effectiveness of this learning setup is evaluated
through a defined reconstruction loss, ensuring high precision in the alignment between the student’s
and teacher’s outputs. Notably, we continue to employ the SAM-guided tokenization method to
facilitate this process. The final loss for the second stage is formulated as:

Lfinal = Lins + Ltoken (7)

4 Experiments

This section begins with an overview of the pre-training and fine-tuning configurations for our method.
Subsequently, we demonstrate the method’s effectiveness through its application to several prominent
downstream tasks, such as 3D object detection and 3D semantic segmentation. Finally, we present
comprehensive ablation studies to validate the impact and contribution of each component within our
approach.

4.1 Self-supervised Pre-training and Fine-tuning

Pre-training. In our pre-training stage, we leverage the ScanNet dataset [14], aligning with ap-
proaches adopted in prior research [39, 55] to obtain the corresponding image and point cloud pairs.
ScanNet is an indoor dataset that includes approximately 1,500 scans derived from 2.5 million
RGB-D frames. We follow the official protocol for training/validation splits, extracting 78,000 frames
from the training subset by sampling one frame every 25 frames to construct our dataset. For the

7
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S3DIS ScanNetV2
Methods Pre-trained mIoU mAcc mIoU mAcc

SR-UNet [49] None 68.2 75.5 72.1 80.7
PointContrast [49] ✓ 70.9 77.0 74.1 81.6
DepthContrast [55] ✓ 70.6 - 73.1 -
Hou et al. [26] ✓ 72.2 - 73.8 -

Standard Transformer [51] None 60.0 68.6 - -
PointBert [51] ✓ 60.8 69.9 - -
PViT [40] None 64.4 69.9 - -
PViT+Pix4Point [40] ✓ 69.6 75.2 - -

Plain Transformer None 61.1 67.2 67.3 73.1
+Point-MAE [37] ✓ 64.8 70.2 - -
+Bridge3D [10] ✓ 70.2 76.1 73.9 80.2
+Ours ✓ 71.8 (+1.6) 78.2(+2.1) 75.4(+1.5) 81.5(+1.3)

Table 2: 3D semantic segmentation results on S3DIS and ScanNet dataset. We adopt the mean
accuracy (mAcc) and mean IoU (mIoU) for the evaluation metrics.

optimization process, we utilize the AdamW optimizer [34] throughout both stages of our training,
starting with a base learning rate of 0.001 and a weight decay set at 0.05. Our data is processed in
batches of 64. During the second stage of training, we increase the masking ratio (rw) to 60%. To
further enhance the training dynamics, we implement a cosine learning rate scheduler coupled with a
drop path rate of 0.1 and include a warm-up phase of 10 epochs to facilitate a smooth adjustment
to the training conditions. For the 3D backbone encoder, we adopt the plain transformer structure
used in Bridge3D [10]. On the image processing side, we employ the DINOV2 ViT-B model [36] to
extract features. To adapt these features back to the original input size, we apply interpolation-based
up-sampling techniques. The training is conducted using four A100 GPUs.

Fine-tuning. Following Bridge3D [10], we remove the decoders used in pre-training and introduce
task-specific decoders for various downstream tasks. A key distinction between our fine-tuning
approach and Bridge3D is the use of SAM-guided tokenization to generate tokens, rather than the
traditional KNN-based tokenization methods employed by Bridge3D. Additionally, for detection
tasks, we do not introduce new query embeddings. Instead, we use the tokens generated through SAM-
guided tokenization as queries for self-attention. These tokens represent features of homogeneous
neighboring regions defined by precise boundary regularities from SAM, making them suitable for
3D object detection tasks. Apart from these adjustments, we adhere to the same fine-tuning settings
as Bridge3D for downstream tasks.

4.2 Results on Downstream Tasks

Object Detection. We demonstrate the generality of our proposed method by conducting pre-
training on the indoor ScanNetV2 dataset [14] and subsequently fine-tuning it for object detection
tasks in both the ScanNetV2 and SUN-RGBD [58] datasets. Building upon the baseline detection
methods 3DETR [35] and GroupFree3D [33], our method significantly outperforms the previous
state-of-the-art method Bridge3D. Specifically, our performance surpasses Bridge3D by 2.9 and
4.2 in AP25 and AP50 using the 3DETR baseline, and by 3.2 and 3.8 in AP25 and AP50 using the
GroupFree3D baseline on the ScanNetV2 dataset. This consistent improvement over Bridge3D
underscores the efficacy of our method in learning advanced 3D representations for object detection,
indicating its potential for enhancing 3D scene understanding tasks.

Semantic Segmentation. In Table 2, we present the semantic segmentation results on the S3DIS [4]
and ScanNet [14] datasets. Although Bridge3D [10] has improved the plain transformer baseline
by a large margin, our method still outperforms Bridge3D by 1.6 and 1.5 mIoU on the ScanNet
and S3DIS datasets, respectively. It should be noted that Bridge3D utilizes foundation models with
both 2D and text modalities, incorporating complex architectures. In contrast, our method, which
utilizes only 2D foundation models, still outperforms Bridge3D in 3D semantic segmentation tasks.
This demonstrates the efficiency of our proposed knowledge distillation strategy for enhancing 3D
representation learning for semantic segmentation.

8
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Dense Masked Token Balanced SAM-Guided ScanNetV2 S3DIS
Distillation Prediction Re-weight Tokenzie AP25 AP50 mIoU mAcc

61.1 38.6 61.1 67.2
✓ 62.4 41.7 66.2 71.3
✓ ✓ 64.5 44.3 68.7 74.1
✓ ✓ ✓ 66.0 46.1 69.7 75.9
✓ ✓ ✓ 67.1 47.0 70.9 77.0
✓ ✓ ✓ ✓ 68.2 48.4 71.8 78.2

Table 3: The effectiveness of each component. Ablation study on the effectiveness of each
component on 3D object detection and semantic segmentation tasks.

ScanNetV2 S3DIS
AP25 AP50 mIoU mAcc

Stage 1 65.2 45.1 69.1 75.3
Stage 1 + MTP in same stage 66.0 46.3 69.9 76.1

Stage 1 + Stage 2 (Ours) 68.2 48.4 71.8 78.2

Table 4: The effectiveness of Stage. Ablation study on the effectiveness of a two-stage framework
on 3D object detection and semantic segmentation tasks. MTP here represents the masked token
prediction

4.3 Ablation Study

The Effectiveness of Each Component. As illustrated in Table 3, the results effectively demon-
strate the advantages of each component incorporated into our comprehensive framework. The
detailed ablation study reveals that incorporating dense distillation significantly enhances 3D rep-
resentation learning and improves overall system performance. Additionally, the implementation
of a two-stage masked token prediction enables student models to learn well-aligned and highly
contextualized representations across different modalities, thereby further enhancing overall system
performance. Moreover, the introduction of balanced re-weighting mechanisms significantly boosts
network performance by effectively mitigating the long-tail distribution challenge, which is inherently
problematic in 3D datasets. Finally, the integration of SAM-guided tokenization marks the most
substantial improvement within our framework, as it seamlessly aligns 2D and 3D features, thus
avoiding potential conflicts and discrepancies in information transfer. In conclusion, each component
of our proposed method is designed to be complementary to the others; their combined application
not only achieves optimal results but also markedly enhances performance across both 3D object
detection and semantic segmentation tasks, demonstrating the robustness and efficacy of our approach.

The Effectiveness of Each Stage. Table 4 underscores the effectiveness of our proposed two-stage
method, which initiates with the distillation of dense representations from 2D foundation models into
3D models during the first stage. This initial phase of our study is meticulously designed to assess
whether it is imperative to employ a teacher model or if the strategy of predicting masked 2D features
directly within the first stage could potentially achieve superior or equivalent performance. The
results derived from this meticulous ablation study suggest that merely combining the initial stage
with masked token prediction yields only modest improvements in overall performance. However, a
significant enhancement is observed with the addition of the second stage, which more thoroughly
integrates our structured teacher-student framework into the process. This marked improvement dis-
tinctly highlights the critical importance of the teacher-student design within our innovative approach,
confirming that the detailed and layered integration of these essential elements is absolutely vital for
obtaining well-learned, robust representations that are crucial for effective 3D scene understanding
tasks.

4.4 Apply on SOTA 3D Detectors

We recognize that applying our method to state-of-the-art detection models can further demonstrate
its generality and robustness. Therefore, we applied our approach to two leading 3D detection
methods: CAGroup3D [47] and VDETR [45]. Due to the specifically designed BiResNet backbone
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Methods Pre-trained ScanNet (AP25) ScanNet (AP50)
CAGroup3D [4] None 75.1 61.3
+ Ours ✓ 76.5 62.4
VDETR [5] None 73.6 60.1
+ Ours ✓ 75.8 63.0

Table 5: 3D object detection results on ScanNet dataset based on CAGroup3D and VDETR.

Methods ScanNet (AP25) ScanNet (AP50) ScanNet (mIoU )
Scratch 61.1 38.6 67.3
CLIP2Scene [8] 62.0 40.1 69.2
Seal [32] 62.7 41.3 70.3
PPT [48] 62.8 42.1 70.9
Ours 68.2 48.4 75.4

Table 6: Comparison with other pre-training methods with different backbones on ScanNet dataset in
3D detection and semantic segmentation tasks.

used by CAGroup3D, we were able to apply only our SAM-guided knowledge distillation and
representation re-weighting techniques to it. For VDETR, which reports results using both a modified
ResNet34 encoder and a plain transformer encoder, we replaced its encoder with our pre-trained
encoder and compared the performance to the transformer backbone results reported in the original
paper. The experimental results presented in Table. 5 show that our pre-training strategy enhances the
performance of these state-of-the-art 3D detection models. Moreover, the performance improvement
in VDETR, facilitated by our proposed SAM-guided tokenization and two-stage masked autoencoder,
is greater than that observed in CAGroup3D, highlighting the effectiveness of our approach.

4.5 Results Comparison with Pre-Training Methods for Other Backbones

In the main paper, we did not compare our results with Seal [32], PPT [48], and CLIP2Scene [8] as
they use 3D-UNet as the backbone and are exclusively fine-tuned for 3D semantic segmentation tasks.
Most previous methods operate at the object-level or scene-level using transformer-based 3D models.
To demonstrate the effectiveness of our approach specifically designed for transformers, we adapted
the methodologies of Seal, PPT, and CLIP2Scene to the transformer structure, applying the same
experimental settings as our method.

As shown in Table. 6, our method achieves the best performance, highlighting the advantages of our
proposed strategies. In the revised version, we will cite these papers and include a discussion of
their methodologies and results. We acknowledge that including comparisons with methods using
different backbones could better illustrate the effectiveness of our approach, and therefore, we have
undertaken this additional evaluation. The results clearly demonstrate that our approach outperforms
these existing methods, emphasizing the robustness and generalizability of our pre-training strategy.

5 Conclusion

In conclusion, our study addresses the challenges of aligning 2D and 3D representations and enhances
knowledge distillation in self-supervised learning for 3D scene understanding. We introduced a novel
SAM-guided tokenization method that aligns 3D transformer structures with region-level insights,
improving distillation effectiveness. Additionally, we propose a group-balanced re-weighting strategy
to address the long-tail problem. Furthermore, we introduce a two-stage masked token prediction
framework, enabling the student model to predict both global instance-level embeddings and local
token-wise embeddings learned from the teacher model based on visible 3D input tokens. Experiments
conducted on datasets such as SUN RGB-D, ScanNet, and S3DIS demonstrate the state-of-the-art
performance of the proposed method in 3D object detection and semantic segmentation tasks. Our
work is expected to have no negative societal implications.

10

82971https://doi.org/10.52202/079017-2638



References

[1] Panos Achlioptas, Olga Diamanti, Ioannis Mitliagkas, and Leonidas Guibas. Learning rep-
resentations and generative models for 3d point clouds. arXiv preprint arXiv:1707.02392,
2017.

[2] Mohamed Afham, Isuru Dissanayake, Dinithi Dissanayake, Amaya Dharmasiri, Kanchana
Thilakarathna, and Ranga Rodrigo. Crosspoint: Self-supervised cross-modal contrastive learning
for 3d point cloud understanding. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 9902–9912, 2022.

[3] Shaden Alshammari, Yu-Xiong Wang, Deva Ramanan, and Shu Kong. Long-tailed recognition
via weight balancing. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 6897–6907, 2022.

[4] Iro Armeni, Ozan Sener, Amir R Zamir, Helen Jiang, Ioannis Brilakis, Martin Fischer, and
Silvio Savarese. 3d semantic parsing of large-scale indoor spaces. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 1534–1543, 2016.

[5] Mahmoud Assran, Quentin Duval, Ishan Misra, Piotr Bojanowski, Pascal Vincent, Michael
Rabbat, Yann LeCun, and Nicolas Ballas. Self-supervised learning from images with a joint-
embedding predictive architecture. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 15619–15629, 2023.

[6] Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. Beit: Bert pre-training of image trans-
formers. arXiv preprint arXiv:2106.08254, 2021.

[7] Anthony Chen, Kevin Zhang, Renrui Zhang, Zihan Wang, Yuheng Lu, Yandong Guo, and
Shanghang Zhang. Pimae: Point cloud and image interactive masked autoencoders for 3d object
detection. arXiv preprint arXiv:2303.08129, 2023.

[8] Runnan Chen, Youquan Liu, Lingdong Kong, Xinge Zhu, Yuexin Ma, Yikang Li, Yuenan Hou,
Yu Qiao, and Wenping Wang. Clip2scene: Towards label-efficient 3d scene understanding by
clip. arXiv preprint arXiv:2301.04926, 2023.

[9] Yujin Chen, Matthias Nießner, and Angela Dai. 4dcontrast: Contrastive learning with dynamic
correspondences for 3d scene understanding. In Computer Vision–ECCV 2022: 17th European
Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXXII, pages 543–560.
Springer, 2022.

[10] Zhimin Chen, Longlong Jing, Yingwei Li, and Bing Li. Bridging the domain gap: Self-
supervised 3d scene understanding with foundation models. Advances in Neural Information
Processing Systems, 36, 2024.

[11] Zhimin Chen, Longlong Jing, Liang Yang, Yingwei Li, and Bing Li. Class-level confidence
based 3d semi-supervised learning. In Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision, pages 633–642, 2023.

[12] Zhimin Chen, Yingwei Li, Longlong Jing, Liang Yang, and Bing Li. Point cloud self-supervised
learning via 3d to multi-view masked autoencoder. arXiv preprint arXiv:2311.10887, 2023.

[13] Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, and Serge Belongie. Class-balanced loss based
on effective number of samples. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 9268–9277, 2019.

[14] Angela Dai, Angel X Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, and Matthias
Nießner. Scannet: Richly-annotated 3d reconstructions of indoor scenes. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 5828–5839, 2017.

[15] Runpei Dong, Zekun Qi, Linfeng Zhang, Junbo Zhang, Jianjian Sun, Zheng Ge, Li Yi, and
Kaisheng Ma. Autoencoders as cross-modal teachers: Can pretrained 2d image transformers
help 3d representation learning? arXiv preprint arXiv:2212.08320, 2022.

[16] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al.
An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

[17] Bi’an Du, Xiang Gao, Wei Hu, and Xin Li. Self-contrastive learning with hard negative
sampling for self-supervised point cloud learning. In Proceedings of the 29th ACM International
Conference on Multimedia, pages 3133–3142, 2021.

[18] Ziyue Feng, Longlong Jing, Peng Yin, Yingli Tian, and Bing Li. Advancing self-supervised
monocular depth learning with sparse lidar. In Conference on Robot Learning, pages 685–694.
PMLR, 2022.

[19] Ziyue Feng, Liang Yang, Pengsheng Guo, and Bing Li. Cvrecon: Rethinking 3d geometric
feature learning for neural reconstruction. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 17750–17760, 2023.

11

82972 https://doi.org/10.52202/079017-2638



[20] Ziyue Feng, Liang Yang, Longlong Jing, Haiyan Wang, YingLi Tian, and Bing Li. Disentangling
object motion and occlusion for unsupervised multi-frame monocular depth. In European
Conference on Computer Vision, pages 228–244. Springer, 2022.

[21] Matheus Gadelha, Rui Wang, and Subhransu Maji. Multiresolution tree networks for 3d point
cloud processing. In Proceedings of the European Conference on Computer Vision (ECCV),
pages 103–118, 2018.

[22] Kaveh Hassani and Mike Haley. Unsupervised multi-task feature learning on point clouds. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 8160–8171,
2019.

[23] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
autoencoders are scalable vision learners. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 16000–16009, 2022.

[24] Deepti Hegde, Jeya Maria Jose Valanarasu, and Vishal M Patel. Clip goes 3d: Leveraging
prompt tuning for language grounded 3d recognition. arXiv preprint arXiv:2303.11313, 2023.

[25] Georg Hess, Adam Tonderski, Christoffer Petersson, Lennart Svensson, and Kalle Åström.
Lidarclip or: How i learned to talk to point clouds. arXiv preprint arXiv:2212.06858, 2022.

[26] Ji Hou, Benjamin Graham, Matthias Nießner, and Saining Xie. Exploring data-efficient 3d scene
understanding with contrastive scene contexts. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 15587–15597, 2021.

[27] Siyuan Huang, Yichen Xie, Song-Chun Zhu, and Yixin Zhu. Spatio-temporal self-supervised
representation learning for 3d point clouds. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 6535–6545, 2021.

[28] Longlong Jing, Yucheng Chen, Ling Zhang, Mingyi He, and Yingli Tian. Self-supervised modal
and view invariant feature learning. arXiv preprint arXiv:2005.14169, 2020.

[29] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson,
Tete Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. arXiv
preprint arXiv:2304.02643, 2023.

[30] Lanxiao Li and Michael Heizmann. A closer look at invariances in self-supervised pre-training
for 3d vision. In Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel,
October 23–27, 2022, Proceedings, Part XXX, pages 656–673. Springer, 2022.

[31] Haotian Liu, Mu Cai, and Yong Jae Lee. Masked discrimination for self-supervised learning
on point clouds. In Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel,
October 23–27, 2022, Proceedings, Part II, pages 657–675. Springer, 2022.

[32] Youquan Liu, Lingdong Kong, Jun Cen, Runnan Chen, Wenwei Zhang, Liang Pan, Kai Chen,
and Ziwei Liu. Segment any point cloud sequences by distilling vision foundation models.
Advances in Neural Information Processing Systems, 36, 2024.

[33] Ze Liu, Zheng Zhang, Yue Cao, Han Hu, and Xin Tong. Group-free 3d object detection via
transformers. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pages 2949–2958, 2021.

[34] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

[35] Ishan Misra, Rohit Girdhar, and Armand Joulin. An end-to-end transformer model for 3d object
detection. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pages 2906–2917, 2021.

[36] Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
robust visual features without supervision. arXiv preprint arXiv:2304.07193, 2023.

[37] Yatian Pang, Wenxiao Wang, Francis EH Tay, Wei Liu, Yonghong Tian, and Li Yuan. Masked
autoencoders for point cloud self-supervised learning. In Computer Vision–ECCV 2022: 17th
European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part II, pages
604–621. Springer, 2022.

[38] Songyou Peng, Kyle Genova, Chiyu Jiang, Andrea Tagliasacchi, Marc Pollefeys, Thomas
Funkhouser, et al. Openscene: 3d scene understanding with open vocabularies. arXiv preprint
arXiv:2211.15654, 2022.

[39] Charles R Qi, Or Litany, Kaiming He, and Leonidas J Guibas. Deep hough voting for 3d
object detection in point clouds. In proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 9277–9286, 2019.

[40] Guocheng Qian, Xingdi Zhang, Abdullah Hamdi, and Bernard Ghanem. Pix4point: Image
pretrained transformers for 3d point cloud understanding. arXiv preprint arXiv:2208.12259,
2022.

12

82973https://doi.org/10.52202/079017-2638



[41] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning,
pages 8748–8763. PMLR, 2021.

[42] Aditya Sanghi. Info3d: Representation learning on 3d objects using mutual information
maximization and contrastive learning. In European Conference on Computer Vision, pages
626–642. Springer, 2020.

[43] Jonathan Sauder and Bjarne Sievers. Self-supervised deep learning on point clouds by recon-
structing space. Advances in Neural Information Processing Systems, 32, 2019.

[44] Corentin Sautier, Gilles Puy, Spyros Gidaris, Alexandre Boulch, Andrei Bursuc, and Renaud
Marlet. Image-to-lidar self-supervised distillation for autonomous driving data. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 9891–9901,
2022.

[45] Yichao Shen, Zigang Geng, Yuhui Yuan, Yutong Lin, Ze Liu, Chunyu Wang, Han Hu, Nanning
Zheng, and Baining Guo. V-detr: Detr with vertex relative position encoding for 3d object
detection. arXiv preprint arXiv:2308.04409, 2023.

[46] Shuran Song, Samuel P Lichtenberg, and Jianxiong Xiao. Sun rgb-d: A rgb-d scene understand-
ing benchmark suite. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 567–576, 2015.

[47] Haiyang Wang, Shaocong Dong, Shaoshuai Shi, Aoxue Li, Jianan Li, Zhenguo Li, Liwei Wang,
et al. Cagroup3d: Class-aware grouping for 3d object detection on point clouds. Advances in
Neural Information Processing Systems, 35:29975–29988, 2022.

[48] Xiaoyang Wu, Zhuotao Tian, Xin Wen, Bohao Peng, Xihui Liu, Kaicheng Yu, and Hengshuang
Zhao. Towards large-scale 3d representation learning with multi-dataset point prompt training.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 19551–19562, 2024.

[49] Saining Xie, Jiatao Gu, Demi Guo, Charles R Qi, Leonidas Guibas, and Or Litany. Pointcontrast:
Unsupervised pre-training for 3d point cloud understanding. In European conference on
computer vision, pages 574–591. Springer, 2020.

[50] Sihao Yu, Jiafeng Guo, Ruqing Zhang, Yixing Fan, Zizhen Wang, and Xueqi Cheng. A
re-balancing strategy for class-imbalanced classification based on instance difficulty. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
70–79, 2022.

[51] Xumin Yu, Lulu Tang, Yongming Rao, Tiejun Huang, Jie Zhou, and Jiwen Lu. Point-bert:
Pre-training 3d point cloud transformers with masked point modeling. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 19313–19322, 2022.

[52] Junbo Zhang, Runpei Dong, and Kaisheng Ma. Clip-fo3d: Learning free open-world 3d scene
representations from 2d dense clip. arXiv preprint arXiv:2303.04748, 2023.

[53] Renrui Zhang, Ziyu Guo, Peng Gao, Rongyao Fang, Bin Zhao, Dong Wang, Yu Qiao, and
Hongsheng Li. Point-m2ae: multi-scale masked autoencoders for hierarchical point cloud
pre-training. Advances in neural information processing systems, 35:27061–27074, 2022.

[54] Renrui Zhang, Ziyu Guo, Wei Zhang, Kunchang Li, Xupeng Miao, Bin Cui, Yu Qiao, Peng
Gao, and Hongsheng Li. Pointclip: Point cloud understanding by clip. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 8552–8562, 2022.

[55] Zaiwei Zhang, Rohit Girdhar, Armand Joulin, and Ishan Misra. Self-supervised pretraining of
3d features on any point-cloud. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 10252–10263, 2021.

[56] Long Zhao, Nitesh B Gundavarapu, Liangzhe Yuan, Hao Zhou, Shen Yan, Jennifer J Sun, Luke
Friedman, Rui Qian, Tobias Weyand, Yue Zhao, et al. Videoprism: A foundational visual
encoder for video understanding. arXiv preprint arXiv:2402.13217, 2024.

[57] Yongheng Zhao, Tolga Birdal, Haowen Deng, and Federico Tombari. 3d point capsule networks.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
1009–1018, 2019.

[58] Bolei Zhou, Agata Lapedriza, Jianxiong Xiao, Antonio Torralba, and Aude Oliva. Learning
deep features for scene recognition using places database. Advances in neural information
processing systems, 27, 2014.

[59] Chong Zhou, Chen Change Loy, and Bo Dai. Denseclip: Extract free dense labels from clip.
arXiv preprint arXiv:2112.01071, 2021.

13

82974 https://doi.org/10.52202/079017-2638



NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: in Abstract and Introduction
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: in Limitations and Future Work
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Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: No theory assumptions and proofs.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Disclose in Self-supervised Pre-training and Fine-tuning

Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: Code will be released upon acceptance.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Specify in Self-supervised Pre-training and Fine-tuning

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: No error bars

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Provided in Self-supervised Pre-training and Fine-tuning.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Readed and conform with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: Experiments done with public dataset and open-source foundation models.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Have no risk
Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Cited all relative works.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: No new assests are introduced.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: No human subjects.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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