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Abstract

Consistency Models (CMs) have made significant progress in accelerating the
generation of diffusion models. However, their application to high-resolution,
text-conditioned image generation in the latent space remains unsatisfactory. In
this paper, we identify three key flaws in the current design of Latent Consistency
Models (LCMs). We investigate the reasons behind these limitations and propose
Phased Consistency Models (PCMs), which generalize the design space and ad-
dress the identified limitations. Our evaluations demonstrate that PCMs outperform
LCMs across 1–16 step generation settings. While PCMs are specifically designed
for multi-step refinement, they achieve comparable 1-step generation results to
previously state-of-the-art specifically designed 1-step methods. Furthermore, we
show the methodology of PCMs is versatile and applicable to video generation,
enabling us to train the state-of-the-art few-step text-to-video generator. Our code
is available at https://github.com/G-U-N/Phased-Consistency-Model.
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Figure 1: PCMs: Towards stable and fast image and video generation.
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2) LCM can only accept CFG scale less than 2. Lager values
cause exposure. LCM is insensitive to negative prompt.

Prompt “a smiling dog wearing sunglasses in the sunlight.” 
Negative Prompt: ”Black dog” 

PCM: CFG = 6 LCM: CFG = 2.5

PCM: CFG = 7.5 LCM: CFG = 2

step = 1 step = 2 step = 4 step = 8 step = 16 step = 32 step = 50 
1) LCM fails to produce consistent results with different inference steps. Its results are blurry when step is too large or too small.  
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3) Loss term of LCM fails to achieve distribution consistency, produce bad results at low step regime.
LCM loss: step = 2 PCM loss: step = 2 LCM loss: step = 4 PCM loss: step = 4 

Figure 2: Summative motivation. We observe and summarize three crucial limitations for (latent)
consistency models, and generalize the design space, well tackling all these limitations.

1 Introduction

Diffusion models [20, 15, 57, 68] have emerged as the dominant methodology for image synthesis [45,
41, 7] and video synthesis [22, 53, 52, 63]. These models have shown the ability to generate high-
quality and diverse samples conditioned on varying signals. At their core, diffusion models rely
on an iterative evaluation to generate new samples. This iterative evaluation trajectory models
the probability flow ODE (PF-ODE) [56, 57] that transforms an initial normal distribution to a
target real data distribution. However, the iterative nature of diffusion models makes the generation
of new samples time-intensive and resource-consuming. To address this challenge, consistency
models [56, 11, 63, 55] have emerged to reduce the number of iterative steps required to generate
samples. These models work by training a model that enforces the self-consistency [56] property:
any point along the same PF-ODE trajectory shall be mapped to the same solution point. These
models have been extended to high-resolution text-to-image synthesis with latent consistency models
(LCMs) [35]. Despite the improvements in efficiency and the ability to generate samples in a few
steps, the sample quality of such models is still limited.

We show that the current design of LCMs is flawed, causing inevitable drawbacks in controllability,
consistency, and efficiency during image sampling. Fig. 2 illustrates our observations of LCMs. The
limitations are listed as follows:

(1) Consistency. Due to the specific consistency property, CMs can only use the purely stochastic
multi-step sampling algorithm, which assumes that the accumulated noise variable in each
generative step is independent and causes varying degrees of stochasticity for different inference-
step settings. As a result, we can find inconsistency among the samples generated with the same
seeds in different inference steps.

(2) Controllability. Even though diffusion models can adopt classifier-free guidance (CFG) [16]
in a wide range of values (i.e. 2–15), equipped with weights of LCMs, they can only accept
values of CFG within range of 1–2. Larger values of CFG would cause the exposure problem.
This brings difficulty for the hyper-parameter selection. Additionally, we find that LCMs are
insensitive to the negative prompt. As shown in the figure, LCMs still generate black dogs even
when the negative prompt is set to “black dog". Both phenomenon reduce the controllability on
generation. We show the reason behind this is the CFG-augmented ODE solver adopted in the
consistency distillation stage.

(3) Efficiency. LCMs tend to generate much inferior samples at the few-step settings, especially in
less than 4 inference steps, which limits the sampling efficiency. We argue that the reason lies in
the traditional L2 loss or the Huber loss used in the LCMs procedure, which is insufficient for
the fine-grained supervision in few-step settings.

To this end, we propose Phased Consistency Models (PCMs), which can tackle the discussed
limitations of LCMs and are easy to train. Specifically, instead of mapping all points along the ODE
trajectory to the same solution, PCMs phase the ODE trajectory into several sub-trajectories and
only enforce the self-consistency property on each sub-trajectory. Therefore, PCMs can sample
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Figure 3: (Left) Illustrative comparison of diffusion models [15], consistency models [56], consistency
trajectory models [21], and our phased consistency model. (Right) Simplified visualization of the
forward SDE and reverse-time PF-ODE trajectories.

samples along the solution points of different sub-trajectories in a deterministic manner without error
accumulation. As an example shown in Fig. 3, we train PCMs with two sub-trajectories, with three
edge points including xT , x0, and x⌊T/2⌋ selected. Thereby, we can achieve 2-step deterministic
sampling (i.e., xT → x⌊T/2⌋ → x0 ) for generation. Moreover, the phased nature of PCMs leads to
an additional advantage. For distillation, we can choose to use a normal ODE solver without the CFG
alternatively in the consistency distillation stage, which is not viable in LCMs. As a result, PCMs
can optionally use larger values of CFG for inference and be more responsive to the negative prompt.
Additionally, to improve the sample quality for few-step settings, we propose an adversarial loss in
the latent space for more fine-grained supervision.

To conclude, we dive into the design of (latent) consistency models, analyze the reasons for their
unsatisfactory generation characteristics, and propose effective strategies for tackling these limitations.
We validate the effectiveness of PCMs on widely recognized image generation benchmarks with
stable diffusion v1-5 (0.9 B) [45] and stable diffusion XL (3B) [41] and video generation benchmarks
following AnimateLCM [63]. Vast experimental results show the effectiveness of PCMs.

2 Preliminaries

Diffusion models define a forward conditional probability path, with a general representation
of αtx0 + σtϵ for intermediate distribution Pt(x|x0) conditioned on x0 ∼ P0, which is equiv-
alent to the stochastic differential equation dxt = ftxtdt + gtdwt with wt denoting the stan-
dard Winer process, ft = d logαt

dt
and g2t =

dσ2
t

dt − 2d logαt

dt σ2
t . There exists a determinis-

tic flow for reversing the transition, which is represented by the probability flow ODE (PF-
ODE) dxt =

[
ftxt − g2t /2∇xt

logPt(xt)
]
dt. In standard diffusion training, a neural network

is typically learned to estimate the score of marginal distribution Pt(xt), which is equivalent
to sϕ(x, t) ≈ ∇x logPt(x) = Ex0∼P(x0|x) [∇x logPt(x|x0)]. Substitue the ∇x logPt(x) with
sϕ(x, t), and we get the empirical PF-ODE. Famous solvers including DDIM [54], DPM-solver [33],
Euler and Heun [20] can be generally perceived as the approximation of the PF-ODE with specific
orders and forms of diffusion for sampling in finite discrete inference steps. However, when the
number of discrete steps is too small, they face inevitable discretization errors.

Consistency models [56], instead of estimating the score of marginal distributions, learn to di-
rectly predict the solution point of ODE trajectory by enforcing the self-consistency property: all
points at the same ODE trajectory map to the same solution point. To be specific, given a ODE
trajectory {xt}t∈[ϵ,T ], the consistency models fθ(·, t) learns to achieve fθ(xt, t) = xϵ by enforcing
fθ(xt, t) = fθ(xt′ , t

′) for all t, t′ ∈ [ϵ, T ]. A boundary condition fθ(xϵ, ϵ) = xϵ is set to guarantee
the successful convergence of consistency training. During the sampling procedure, we first sample
from the initial distribution xT ∼ N (0, I). Then, the final sample can be generated/refined by
alternating denoising and noise injection steps, i.e,

x̂τk
ϵ = fθ(x̂τk , τk), x̂τk−1

= x̂τk
ϵ + η, η ∼ N (0, I) (1)

where {τk}Kk=1 are selected time points in the ODE trajectory and τK = T . Actually, because only
one solution point is used to conduct the consistency model, it is inevitable to introduce stochastic
error, i.e., η, for multiple sampling procedures.
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Figure 4: Training paradigm of PCMs. ‘?’ means optional usage.

Recently, Consistency trajectory models (CTMs) [21] propose a more flexible framework. specif-
ically, CTMs fθ(·, t, s) learns to achieve fθ(xt, t, s) = f(xt, t, s;ϕ) by enforcing fθ(xt, t, s) =
fθ(xt′ , t

′, s) with s ≤ min(t, t′) and t, t′ ∈ [ϵ, T ]. However, the learning objectives of CTMs
are redundant, including many trajectories that will never be applied for inference. More specifi-
cally, if we split the continuous time trajectory into N discrete points, diffusion models learn O(N)
objectives (i.e., each point learns to move to its adjacent point), consistency models learn O(N)
objectives (i.e., each point learns to move to solution point), and consistency trajectory models
learn O(N2) objectives (i.e., each point learns to move to all the other points in the trajectory).
Hence, except for the current timestep embedding, CTMs should additionally learn a target timestep
embedding, which is not comprised of the design space of diffusion models.

Different from the above approaches, PCMs can be optimized efficiently and support deterministic
sampling without additional stochastic error. Overall, Fig. 3 illustrates the difference in training and
inference processes among diffusion models, consistency models, consistency trajectory models, and
phased consistency models.

3 Method

In this section, we introduce the technical details of PCMs, which overcome the limitations of LCMs
in terms of consistency, controllability, and efficiency. Consistency: Specifically, we first introduce
the main framework of PCMs, consisting of definition, parameterization, the distillation objective,
and the sampling procedure in Sec. 3.1. In particular, by enforcing the self-consistency property in
multiple ODE sub-trajectories respectively, PCMs can support deterministic sampling to preserve
image consistency with varying inference steps. Controllability: Secondly, in Sec. 3.2, to improve
the controllability of text guidance, we revisit the potential drawback of the guided distillation adopted
in LCMs, and propose to optionally remove the CFG for consistency distillation. Efficiency: Thirdly,
in Sec. 3.3, to further improve inference efficiency, we introduce an adversarial consistency loss to
enforce the modeling of data distribution, which facilitates 1-step generation.

3.1 Main Framework

Definition. For a solution trajectory of a diffusion model {xt}t∈[ϵ,T ] following the PF-ODE, we
split the trajectory into multiple sub-trajectories with hyper-defined edge timesteps s0, s1, . . . , sM ,
where s0 = ϵ and sM = T . The M sub-trajectories can be represented as {xt}t∈[sm,sm+1] with
m = 0, 1, . . . ,M − 1. We treat each sub-trajectory as an independent CM and define the consistency
function as fm : (xt, t) → xsm , t ∈ [sm, sm+1]. We learn fm

θ to estimate f by enforcing the
self-consistency property on each sub-trajectory that its outputs are consistent for arbitrary pairs
on the same sub-trajectory. Namely, fm(xt, t) = fm(xt′ , t

′) for all t, t′ ∈ [sm, sm+1]. Note
that the consistency function is only defined on the sub-trajectory. However, for sampling, it is
necessary to define a transition from timestep T (i.e., sM ) to ϵ (i.e., s0). Thereby, we defined
fm,m′

= fm′ (· · ·fm−2
(
fm−1 (fm(xt, t) , sm), sm−1

)
· · · , sm′

)
that transforms any point xt on

m-th sub-trajectory to the solution point of m′-th trajectory.

Parameterization. Following the definition, the corresponding consistency function of each sub-
trajectory should satisfy boundary condition fm(xsm , sm) = xsm , which is crucial for guaranteeing
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the successful training of consistency models. To satisfy the boundary condition, we typically need
to explicitly parameterize fm

θ (x, t) as fm
θ (xt, t) = cmskip(t)xr + cmout(t)Fθ(xt, t, sm), where cmskip(t)

gradually increases to 1 and cmout(t) gradually decays to 0 from timestep sm+1 to sm.

Another important thing is how to parameterize Fθ(xt, t, s), basically it should be able to indicate
the target prediction at timestep s given the input x at timestep t. Since we build upon the epsilon
prediction models, we hope to maintain the epsilon-prediction learning target.

For the above-discussed PF-ODE, there exists an exact solution [33] from timestep t to s

xs =
αs

αt
xt + αs

∫ λs

λt

e−λσtλ(λ)∇ logPtλ(λ)(xtλ(λ))dλ (2)

where λt = ln αt

σt
and tλ is a inverse function with λt. The equation shows that the solution of the

ODE from t to s is the scaling of xt and the weighted sum of scores. Given a epsilon prediction diffu-
sion network ϵϕ(x, t), we can estimate the solution as xs =

αs

αt
xt−αs

∫ λs

λt
e−λϵϕ(xtλ(λ), tλ(λ))dλ.

However, note that the solution requires knowing the epsilon prediction at each timestep between t
and s, but consistency modes need to predict the solution with only xt available with single network
evaluation. Thereby, we parameterize the Fθ(x, t, s) as following,

xs =
αs

αt
xt − αsϵ̂θ(xt, t)

∫ λs

λt

e−λdλ . (3)

One can show that the parameterization has the same format with DDIM xs = αs(
xt−σtϵθ(xt,t)

αt
) +

σsϵθ(xt, t) (see Theorem 3). But here we clarify that the parameterization has an intrinsic difference
from DDIM. DDIM is the first-order approximation of solution ODE, which works because we assume
the linearity of the score in small intervals. This causes the DDIM to degrade dramatically in few-step
settings since the linearity is no longer satisfied. Instead, our parameterization is not approximation but
exact solution learning. The learning target of ϵ̂θ(x, t) is no more the scaled score −σt∇x logPt(x)

(which epsilon-prediction diffusion models learn to estimate) but
∫ λs
λt

e−λϵϕ(xtλ(λ),tλ(λ))dλ∫ λs
λt

e−λdλ
. Actually,

we can define the parameterization in other formats, but we find this format is simple and has
a small gap between the original diffusion models. The parameterization of Fθ also allows for
a better property that we can drop the introduced cmskip and cmout in consistency models to ease
the complexity of the framework. Note that following Eq. 3, we can get Fθ(xsm , sm, sm) =
αsm

αsm
xsm − 0 = xsm . Therefore, the boundary condition is already satisfied. Hence, we can simply

define fm
θ (x, t) = Fθ(x, t, sm). This parameterization also aligns with several previous diffusion

distillation techniques [46, 3, 74] utilizing DDIM format, building a deep connection with previous
distillation methods. The difference is that we provide a more fundamental explanation of the meaning
and learning objective of parameterizations.

Phased consistency distillation objective. Denote the pre-trained diffusion models as sϕ(x, t) =
− ϵϕ(x,t)

σt
, which induces an empirical PF-ODE. We firstly discretize the whole trajectory into N

sub-intervals with N + 1 discrete timesteps from [ϵ, T ], which we denote as t0 = ϵ < t1 <
t2 < · · · < tN = T . Typically N should be sufficiently large to make sure the ODE solver
approximates the ODE trajectory correctly. Then we sample M + 1 timesteps as edge timesteps
s0 = t0 < s1 < s2 < · · · < sM = tN ∈ {ti}Ni=0 to split the ODE trajectory into M sub-trajectories.
Each sub-trajectory [si, si+1] consists of the set of sub-intervals {[tj , tj+1]}tj≥si,tj+1≤si+1

.

Here we define Φ(xtn+k
, tn+k, tn;ϕ) as the k-step ODE solver that approximate xϕ

tn from xtn+k
on

the same sub-trajectory following Equation 2, namely,

x̂ϕ
tn = Φ(xtn+k

, tn+k, tn;ϕ). (4)

Following CMs [56], we set k = 1 to minimize the ODE solver cost. The training loss is defined as

LPCM(θ,θ−;ϕ) = EP(m),P(n|m),P(xtn+1
|n,m)

[
λ(tn)d

(
fm
θ (xtn+1 , tn+1),f

m
θ−(x̂

ϕ
tn , tn)

)]
(5)

where P(m) := uniform({0, 1, . . . ,M − 1}), P(n|m) := uniform({n + 1|tn+1 ≤ sm+1, tn ≥
sm}), P(xtn+1

|n,m) = Ptn+1
(x), and θ− = µθ− + (1− µ)θ.

5
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Figure 5: Qualitative Comparison. Our method achieves top-tier performance.

We show that when LPCM(θ,θ−;ϕ) = 0 and local errors of ODE solvers uniformly bounded by
O((∆t)p+1), the solution estimation error within the arbitrary sub-trajectory fm

θ (xtn , tn) is bounded
by O((∆t)p) in Theorem 1. Additionally, the solution estimation error across any sets of sub-
trajectories (i.e., the error between fm,m′

θ (xtn , tn) and fm,m′
(xtn+1,tn+1

;ϕ)) is also bounded by
O((∆t)p) in Theorem 2.

Sampling. For a given initial sample at timestep t which belongs to the sub-trajectory [sm, sm+1],
we can support deterministic sampling following the definition of fm,0. Previous work [21, 67]
reveals that introducing a certain degree of stochasticity might lead to better generation quality. We
show that our sampling method can also introduce randomness through a simple modification, which
we discuss at Sec. IV.1

3.2 Guided Distillation

For convenience, we take the epsilon-prediction format with text conditions c for the following
discussion. The consistency model is denoted as ϵθ(xt, t, c), and the diffusion model is denoted as
ϵϕ(xt, t, c). A commonly applied strategy for text-conditioned diffusion models is classifier-free
guidance (CFG) [16, 51, 1]. At training, c is randomly substituted with null text embedding ∅.
At each inference step, the model computes ϵϕ(xt, t, c) and ϵϕ(xt, t, cneg) simultaneously, and the
actual prediction is the linear combination of them. Namely,

ϵϕ(xt, t, c, cneg;w) = ϵϕ(xt, t, cneg) + w(ϵϕ(xt, t, c)− ϵϕ(xt, t, cneg)), (6)

where w controlling the strength and cneg can be set to ∅ or text embeddings of unwanted char-
acteristics. A noticeable phenomenon is that diffusion models with this strategy can not generate
content with good quality without using CFG. That is, the empirical ODE trajectory induced with
pure ϵϕ(xt, t, c) deviates away from the ODE trajectory to real data distribution. Thereby, it is
necessary to apply CFG-augmented prediction ϵϕ(xt, t, c, cneg;w) for ODE solvers. Recall that we
have shown that the consistency learning target of the consistency model ϵθ(xt, t, c) is the weighted
sum of epsilon prediction on the trajectory. Thereby, we have ϵθ(xt, t, c) ∝ ϵϕ(xt′ , t

′, c,∅;w), for
all t′ ≤ t. On this basis, if we additionally apply the CFG for the consistency models, we can prove
that

ϵθ(xt, t, c, cneg;w
′) ∝ ww′(ϵϕ(xt′ , t

′, c)− ϵmerge
ϕ )) + ϵϕ(xt′ , t

′, cneg) , (7)

where ϵmerge
ϕ = (1 − α)ϵϕ(xt′ , t

′, cneg) + αϵϕ(xt′ , t
′,∅) and α = (w−1)

ww′ (See Theorem 4). This
equation indicates that applying CFG w′ to the consistency models trained with CFG-augmented
ODE solver confined with w, is equivalent to scaling the prediction of original diffusion models by
w′w, which explains the the exposure problem. We can also observe that the epsilon prediction with
negative prompts is diluted by the prediction with null text embedding, which reveals that the impact
of negative prompts is reduced.

6
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Table 1: Comparison of FID-SD and FID-CLIP with Stable Diffusion v1-5 based methods under different steps.

METHODS
FID-SD FID-CLIP

COCO-30K CC12M-30K COCO-30K

1 2 4 8 16 1 2 4 8 16 1 2 4 8 16

InstaFlow [31] 11.51 69.79 102.15 122.20 139.29 11.90 62.48 88.64 105.34 113.56 9.56 29.38 38.24 43.60 47.32
SD-Turbo [49] 10.62 12.22 16.66 24.30 30.32 10.35 12.03 15.15 19.91 23.34 12.08 15.07 15.12 14.90 15.09

LCM [35] 53.43 11.03 6.66 6.62 7.56 42.67 10.51 6.40 5.99 9.02 21.04 10.18 10.64 12.15 13.85
CTM [21] 63.55 9.93 9.30 15.62 21.75 28.47 8.98 8.22 13.27 17.43 30.39 10.32 10.31 11.27 12.75

Ours 8.27 9.79 5.81 5.00 4.70 7.91 8.93 4.93 3.88 3.85 11.66 9.17 9.07 9.49 10.13
Ours* - - 7.46 6.49 5.78 - - 4.99 5.01 5.13 - - 8.85 8.33 8.09

We ask the question: Is it possible to conduct consistency distillation with diffusion models trained for
CFG usage without applying CFG-augmented ODE solver? Our finding is that it is not applicable for
original CMs but works well for PCMs especially when the number of sub-trajectory M is large. We
empirically find that M = 4 is sufficient for successful training. As we discussed, the text-conditioned
diffusion models trained for CFG usage fail at achieving good generation quality when removing
CFG for inference. That is, target data distribution induced by PF-ODE with ϵϕ(xt, t, c) has a large
distribution distance to real data distribution. Therefore, fitting the spoiled ODE trajectory is only to
make the generation quality bad. In contrast, when phasing the whole ODE trajectory into several
sub-trajectories, the negative influence is greatly alleviated. On one hand, the starting point xsm+1

of sub-trajectories is replaced by adding noise to the real data. On the other hand, the distribution
distance between the distribution of solution points xsm of sub-trajectories and real data distribution
Pdata
sm at the same timestep is much smaller proportional to the noise level introduced. To put it

straightforwardly, even though the distribution gap between the real data and the samples generated
from ϵϕ(xt, t, c) is large, adding noise to them reduce the gap. Thereby, we can optionally train a
consistency model whether supporting larger values of CFG or not.

3.3 Adversarial Consistency Loss

We introduce an adversarial loss to enforce the distribution consistency, which greatly improves the
generation quality in few-step settings. For convenience, we introduce an additional symbol Tt→s

which represents a flow from Pt to Ps. Let T ϕ
t→s, T θ

t→s be the transition mapping following the
ODE trajectory of pre-trained diffusion and our consistency models. Additionally, let T −

s→t be the
distribution transition following the forward process SDE (adding noise). The loss function is defined
as the following

Ladv
PCM(θ,θ−;ϕ,m) = D

(
T −
sm→sT θ

tn+k→sm#Ptn+k

∥∥∥T −
sm→sT θ−

tn→smT ϕ
tn+1→tn#Ptn+1

)
, (8)

where # is the pushforward operator, and D is the distribution distance metric. To penalize the
distribution distance, we apply the GAN-style training paradigm. To be specific, as shown in Fig. 4,
for the sampled xtn+k

and the xϕ
tn solved through the pre-trained diffusion model ϕ, we first compute

their predicted solution point x̃sm = fm
θ (xtn+k

, tn+k) and x̂sm = fθ−(xϕ
tn , tn). Then we randomly

add noise to x̃sm and x̂sm to obtain x̃s and x̂s with randomly sampled s ∈ [sm, sm+1]. We optimize
the adversarial loss between x̃s and x̂s. Specifically, the Ladv

PCM can be re-written as

Ladv
PCM(θ,θ−;ϕ,m) = ReLU(1 +D(x̃s, s, c)) + ReLU(1−D(x̂s, s, c)), (9)

where ReLU(x) = x if x > 0 else ReLU(x) = 0, D is the discriminator, c is the image condi-
tions (e.g., text prompts), and the loss is updated in a min-max manner [12]. Therefore the eventual
optimization objective is LPCM + λLadv

PCM with λ as a hyper-parameter controlling the trade-off of
distribution consistency and instance consistency. We adopt λ = 0.1 for all training settings. How-
ever, we hope to clarify that the adversarial loss has an intrinsic difference from the GAN. The GAN
training aims to align the training data distribution and the generation distribution of the model. That
is, D(T θ

tn+k→sm#Ptn+k
∥Psm) In Theorem 5, we show that consistency property is enforced, our

introduced adversarial loss will also coverage to zero. Yet in Theorem 6, we show that combining
standard GAN with consistency distillation is a flawed design when considering the pre-trained
data distribution and distillation data distribution mismatch. Its loss will be non-zero when the
self-consistency property is achieved, thus corrupting the consistency distillation learning. Our
experimental results also verify our statement (Fig. 7).
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Table 2: One-step generation comparison on Stable Diffusion v1-5.
METHODS

COCO-30K CC12M-30K CONSISTENCY ↑
FID ↓ FID-CLIP ↓ FID-SD ↓ CLIP SCORE ↑ FID ↓ FID-CLIP ↓ FID-SD ↓ CLIP SCORE ↑

InstaFlow [31] 13.59 9.56 11.51 29.37 15.06 6.16 11.90 24.52 0.61
SD-Turbo [49] 16.56 12.08 10.62 31.21 17.17 6.18 12.48 26.30 0.71

CTM [21] 67.55 30.39 63.55 23.98 56.39 28.47 56.34 18.81 0.65
LCM [35] 53.81 21.04 53.43 25.23 44.35 18.58 42.67 20.38 0.62
TCD [74] 71.69 31.69 68.04 23.60 57.97 30.03 57.21 18.57 -

Ours 17.91 11.66 8.27 29.26 14.79 5.38 7.91 26.33 0.81

4 Experiments

4.1 Experimental Setup

Dataset. Training dataset: For image generation, we train all models on the CC3M [5] dataset. For
video generation, we train the model on WebVid-2M [2]. Evaluation dataset: For image generation,
we evaluate the performance on the COCO-2014 [28] following the 30K split of karpathy. We also
evaluate the performance on the CC12M with our randomly chosen 30K split. For video generation,
we evaluate with the captions of UCF-101 [58].

Backbones. We verify the text-to-image generation based on Stable Diffusion v1-5 [45] and Stable
Diffusion XL [41]. We verify the text-to-video generation following the design of AnimateLCM [63]
with decoupled consistency distillation.

Evaluation metrics. Image: We report the FID [14] and CLIP score [43] of the generated images
and the validation 30K-sample splits. Following [8, 47], we also compute the FID with CLIP
features (FID-CLIP). Note that, all baselines and our method focus on distilling the knowledge from
the pre-trained diffusion models for acceleration. Therefore, we also compute the FID of all baselines
and the generated images of original pre-trained diffusion models including Stable Diffusion v1-5
and Stable Diffusion XL (FID-SD). Video: For video generation, we evaluate the performance from
three perspectives: the CLIP Score to measure the text-video alignment, the CLIP Consistency to
measure the inter-frame consistency of the generated videos, the Flow Magnitude to measure the
motion magnitude of the generated videos with Raft-Large [59].

4.2 Comparison

Comparison methods. We compare PCM with Stable Diffusion v1-5 to methods including Stable
Diffusion v1-5 [45], InstaFlow [31], LCM [35], CTM [21], TCD [74] and SD-Turbo [49]. We
compare PCM with Stable Diffusion XL to methods including Stable Diffusion XL [41], CTM [21],
SDXL-Lightning [27], SDXL-Turbo [49], and LCM [35]. We apply the ‘Ours’ and ‘Ours*’ to denote
our methods trained with CFG-augmented ODE solver or not. We only report the performance of
‘Ours*’ with more than 4 steps which aligns with our claim that it is only possible when phasing the
ODE trajectory into multiple sub-trajectories. For video generation, we compare with DDIM [54],
DPM [33], and AnimateLCM [63].

Qualitative comparison. We evaluate our model and comparison methods with a diverse set of
prompts in different inference steps. The results are listed in Fig. 5. Our method shows clearly the
top performance in both image visual quality and text-image alignment across 1–16 steps.

Quantitative comparison. One-step generation: We show the one-step generation results com-
parison of methods based on Stable Diffusion v1-5 and Stable Diffusion XL in Table 2 and Table 5,
respectively. Notably, PCM consistently surpasses the consistency model-based methods including
LCM and CTM by a large margin. Additionally, it achieves comparable or even superior to the
state-of-the-art GAN-based (SD-Turbo, SDXL-Turbo, SDXL-Lightning) or Rectified-Flow-based (In-
staFlow) one-step generation methods. Note that InstaFlow applies the LIPIPS [72] loss for training
and SDXL-Turbo can only generate 512 × 512 resolution images, therefore it is easy for them to
obtain higher scores. Multi-step generation: We report the FID changes of different methods
on COCO-30K and CC12M-30K in Table 1 and Table 3. ‘Ours’ and ‘Ours*’ achieve the best or
second-best performance in most cases. It is notably the gap of performance between our methods
and other baselines becoming large as the timestep increases, which indicates the phased nature
of our methods supports more powerful multi-step sampling ability. Video generation: We show
the quantitative comparison of video generation in Table 4, our model achieves consistent superior
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Table 3: Comparison of FID-SD on
CC12M-30K with Stable Diffusion XL.

METHODS 1-Step 2-Step 4-Step 8-Step 16-Step

SDXL-Lightning [27] 8.69 7.29 5.26 5.83 6.10
SDXL-Turbo (512× 512) [49] 6.64 6.53 7.39 13.88 26.55

SDXL-LCM [35] 57.70 19.64 11.22 12.89 23.33
SDXL-CTM [21] 72.45 24.06 20.67 39.89 39.18

Ours 8.76 7.02 6.59 5.19 4.92
Ours* - - 6.26 5.27 5.09

Table 4: Quantitative comparison for video generation.
Methods CLIP Score ↑ Flow Magnitude ↑ CLIP Consistency ↑

1-Step 2-Step 4-Step 1-Step 2-Step 4-Step 1-Step 2-Step 4-Step

DDIM [54] 4.44 7.09 23.05 - - 1.47 - - 0.877
DPM [33] 11.21 17.93 28.57 - - 1.95 - - 0.947

AnimateLCM [63] 25.41 29.39 30.62 1.10 1.81 2.40 0.967 0.957 0.965

Ours 29.88 30.22 30.72 4.56 4.38 4.69 0.956 0.962 0.968

Table 5: One-step and two-step generation comparison on Stable Diffusion XL.
METHODS

COCO-30K (one-step) CC12M-30K (two-step) CONSISTENCY ↑
FID ↓ FID-CLIP ↓ FID-SD ↓ CLIP SCORE ↑ FID ↓ FID-CLIP ↓ FID-SD ↓ CLIP SCORE ↑

SDXL-Turbo (512× 512) [49] 19.84 13.56 9.40 32.31 15.36 5.26 6.53 27.91 0.74
SDXL-Lightning [27] 19.73 13.33 9.11 30.81 17.99 7.39 7.29 26.31 0.76

SDXL-LCM [35] 74.65 31.63 74.46 27.29 25.88 10.36 19.64 25.84 0.66
SDXL-CTM [21] 82.14 37.43 88.20 26.48 32.05 12.50 24.06 24.79 0.66

Ours 21.23 13.66 9.32 31.55 17.87 5.67 7.02 27.10 0.83

performance. The 1-step and 2-step generation results of DDIM and DPM are very noisy, therefore it
is meaningless to evaluate their Flow Magnitude and CLIP Consistency.

Human evaluation metrics. To more comprehensively reflect the performance of phased consistency
models, we conduct a thorough evaluation using human aesthetic preference metrics, encompass-
ing 1–16 steps. This assessment employs well-regarded metrics, including HPSv2 (HPS) [66],
PickScore (PICKSCORE) [23], and Laion Aesthetic Score (AES) [50], to benchmark our method
against all comparative baselines. As shown in Table 6 and Table 7, across all evaluated settings,
our method consistently achieves either superior or comparable results, with a marked performance
advantage over the consistency model baseline LCM, demonstrating its robustness and appeal across
diverse human-centric evaluation criteria. We conduct a human preference ablation study on the pro-
posed adversarial consistency loss, with the results presented in Table 8. The inclusion of adversarial
consistency loss consistently enhances human evaluation metrics across different inference steps.

Table 6: Aesthetic evaluation on SD v1-5.
Steps Methods HPS AES PICKSCORE

1

InstaFlow 0.267 5.010 0.207
SD-Turbo 0.276 (1) 5.445 (1) 0.223 (1)

CTM 0.240 5.155 0.195
LCM 0.251 5.178 0.201
Ours 0.276 (1) 5.389 (2) 0.213 (2)

2

InstaFlow 0.249 5.050 0.196
SD-Turbo 0.278 (1) 5.570 (1) 0.226 (1)

CTM 0.267 5.117 0.208
LCM 0.266 5.135 0.210
Ours 0.275 (2) 5.370 (2) 0.217 (2)

4

InstaFlow 0.243 4.765 0.192
SD-Turbo 0.278 (2) 5.537 (1) 0.224 (1)

CTM 0.274 5.189 0.213
LCM 0.273 5.264 0.215
Ours 0.279 (1) 5.412 (2) 0.217 (2)

8

InstaFlow 0.267 4.548 0.189
SD-Turbo 0.276 (2) 5.390 (2) 0.221 (1)

CTM 0.271 5.026 0.210
LCM 0.274 5.366 0.216
Ours 0.278 (1) 5.398 (1) 0.218 (2)

16

InstaFlow 0.237 4.437 0.187
SD-Turbo 0.277 (1) 5.275 0.219 (1)

CTM 0.270 4.870 0.209
LCM 0.274 5.352 (2) 0.216
Ours 0.277 (1) 5.442 (1) 0.217 (2)

Table 7: Aesthetic evaluation on SDXL.
Steps Methods HPS AES PICKSCORE

1

SDXL-Lightning 0.278 5.65 (1) 0.223
SDXL-Turbo 0.279 (1) 5.40 0.228 (1)
SDXL-CTM 0.239 4.86 0.201
SDXL-LCM 0.205 5.04 0.206

Ours 0.280 (1) 5.62 (2) 0.225 (2)

2

SDXL-Lightning 0.280 5.72 (1) 0.227 (1)
SDXL-Turbo 0.281 (2) 5.46 0.226 (2)
SDXL-CTM 0.267 5.58 0.216
SDXL-LCM 0.265 5.40 0.217

Ours 0.282 (1) 5.688 (2) 0.225

4

SDXL-Lightning 0.281 5.76 (2) 0.228 (1)
SDXL-Turbo 0.284 (1) 5.49 0.224
SDXL-CTM 0.278 5.84 (1) 0.221
SDXL-LCM 0.274 5.48 0.223

Ours 0.284 (1) 5.645 0.228 (2)

8

SDXL-Lightning 0.282 5.75 (2) 0.229 (1)
SDXL-Turbo 0.283 (2) 5.59 0.225
SDXL-CTM 0.276 5.88 (1) 0.218
SDXL-LCM 0.277 5.57 0.223

Ours 0.285 (1) 5.676 0.229 (2)

16

SDXL-Lightning 0.280 (2) 5.72 (2) 0.225 (2)
SDXL-Turbo 0.277 5.56 0.219
SDXL-CTM 0.274 5.85 (1) 0.215
SDXL-LCM 0.276 5.64 0.221

Ours 0.284 (1) 5.646 0.228 (1)

Table 8: Aesthetic ablation study on the adversarial consistency loss.
Methods Step 1 Step 2 Step 4 Step 8 Step 16

HPS AES PICKSCORE HPS AES PICKSCORE HPS AES PICKSCORE HPS AES PICKSCORE HPS AES PICKSCORE

PCM w/ adv 0.280 5.620 0.225 0.282 5.688 0.225 0.284 5.645 0.228 0.285 5.676 0.229 0.284 5.646 0.228
PCM w/o adv 0.251 4.994 0.206 0.275 5.502 0.220 0.281 5.576 0.225 0.283 5.637 0.227 0.283 5.620 0.227

4.3 Ablation Study

Sensitivity to negative prompt. To show the comparison of sensitivity to negative prompt between
our model tuned without CFG-augmented ODE solver and LCM. We provide an example of a prompt
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Figure 6: Sensitivity to nega-
tive prompt.

Figure 7: Effectiveness of ad-
versarial consistency loss.

r = 1 r = 0.8 r = 0.7 r = 0.6

r = 0.5 r = 0.4 r = 0.2 r = 0.0

Figure 8: Randomness for sam-
pling.

Ours Ours

Replace latent discriminator with DINO Replace our adversarial loss with normal GAN loss

Figure 9: Ablation study on the adversarial consistency design. (Left) Replacing latent discrimi-
nator with DINO causes detail loss. (Right) Replacing our adversarial loss with normal GAN loss
causes training conflicted objectives and instability.

and negative prompt to GPT-4o and ask it to generate 100 pairs of prompts and their corresponding
negative prompts. For each prompt, we generate 10 images. We first generate images without using
the negative prompt to show the positive prompt alignment comparison. Then we generate images
with positive and negative prompts. We compute the CLIP score of generated images and the prompts
and negative prompts. Fig. 6 shows that we not only achieve better prompt alignment but are much
more sensitive to negative prompts.

Consistent generation ability. Consistent generation ability under different inference steps is
valuable in practice for multistep refinement. We compute the average CLIP similarity between the
1-step generation and the 16-step generation for each method. As shown in the rightmost column of
Table 2 and Table 5, our method achieves significantly better consistent generation ability.

Adversarial consistency design and its effectiveness. We show the ablation study on the adversarial
consistency loss design and its effectiveness. From the architecture level of discriminator, we
compare the latent discriminator shared from the teacher diffusion model and the pixel discriminator
from pre-trained DINO [4]. Note that DINO is trained with 224 resolutions, therefore we should
resize the generation results and feed them into DINO. We find this could make the generation results
fail at details as shown in the left of Fig. 9. From the adversarial loss, we compare our adversarial
loss to the normal GAN loss. We find normal GAN loss causes the training to be unstable and
corrupts the generation results, which aligns with our previous analysis. For its effectiveness, we
compare the FID-CLIP and FID scores with the adversarial loss or without the adversarial loss under
different inference steps. Fig. 7 shows that it greatly improves the FID scores in the low-step regime
and gradually coverage to similar performance of our model without using the adversarial loss as the
step increases.

Randomness for sampling. Fig. 8 illustrates the influence of the randomness introduced in sampling
as Eq. 44. The figure shows that introducing a certain of randomness in sampling may help to alleviate
unrealistic objects or shapes.

5 Limitations and Conclusions
Despite being able to generate high-quality images and videos in a few steps, we find that when the
number of steps is very low, especially with only one step, the generation quality is unstable. The
model may produce structural errors or blurry images. Fortunately, we discover that this phenomenon
can be mitigated through multi-step refinement. In conclusion, in this paper, we observe the defects
in latent consistency models. We summarize these defects on three levels, analyze their causes, and
generalize the design framework to address these defects.
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I Related Works

I.1 Diffusion Models

Diffusion models [15, 57, 20, 73] have gradually become the dominant foundation models in image
synthesis. Many works have greatly explored the nature of diffusion models [29, 6, 57, 22] and
generalize/improve the design space of diffusion models [54, 20, 22]. Some works explore the
model architecture for diffusion models [7, 40, 9, 75]. Some works scale up the diffusion models
for text-conditioned synthesis or real-world applications [45, 41, 52, 64, 18, 36, 69, 17, 61]. Some
works explore the sampling acceleration methods, including scheduler-level [20, 33, 54] or training-
level [38, 56]. The formal ones are basically to explore better approximation of the PF-ODE [33, 54].
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The latter are mainly distillation methods [38, 46, 30, 65, 70, 10] or initializing diffusion weights for
GAN training [49, 27, 39, 19].

I.2 Consistency Models

The consistency model is a new family of generative models [11, 56, 55, 62, 26, 32] supporting
fast and high quality generation. It can be trained either by distillation or direct training without
teacher models. Improved techniques even allow consistency training excelling the performance of
diffusion training [55]. Consistency trajectory model [21] proposes to learn the trajectory consistency,
providing a more flexible framework. Some works combine [24] consistency training with GAN [24]
for better training efficiency. Some works adopt continuous consistency models and achieve excelling
performance [11, 62, 32]. Some works apply the idea of consistency model to language model [25]
and policy learning [42, 34]. Some works extends the application scope of consistency models for
text-conditioned image generation [35, 44, 74] and text-conditioned video generation [63, 37, 71, 60].

We notice that a recent work multistep consistency models [13] also proposes to splitting the ODE
trajectory into multi-parts for consistency learning, and here we hope to credit their work for the
valuable exploration. However, our work is principally different from multistep consistency models.
Since they do not open-source their code and weights, we clarify the difference between our work
and multistep consistency models based on the details of their technical report. Firstly, they didn’t
provide explicit model definitions and boundary conditions nor theoretically show the error bound to
prove the soundness of their work. Yet in our work, we believe we have given an explicit definition
of important components and theoretically shown the soundness of important techniques applied. For
example, they claimed using DDIM for training and inference, while in our work, we have shown
that although we can also optionally parameterize as the DDIM format, there’s an intrinsic difference
between that parameterization and DDIM (i.e., the difference between exact solution learning and
first-order approximation). The aDDIM and invDDIM as highlighted in their pseudo code have no
relation to PCM. Secondly, they are mainly for the unconditional or class-conditional generation, yet
we aim for text-conditional generation in large models and dive into the influence of classifier-free
guidance in consistency distillation. Besides, we introduce an adversarial loss that aligns well with
consistency learning and improves the generation results in few-step settings. We recommend readers
to read their work for better comparison.

II Proofs

II.1 Phased Consistency Distillation

The following is an extension of the original proof of consistency distillation for phased consistency
distillation.

Theorem 1. For arbitrary sub-trajectory [sm, sm+1]. let ∆tm := maxtn,tn+1∈[sm,sm+1]{|tn+1 −
tn|}, and fm(·, ·;ϕ) be the target phased consistency function induced by the pre-trained diffusion
model (empirical PF-ODE). Assume the fm

θ is L-Lipschitz and the ODE solver has local error
uniformly bounded by O((tn+1 − tn)

p+1) with p ≥ 1. Then, if LPCM(θ,θ;ϕ) = 0, we have

sup
tn,tn+1∈[sm,sm+1],x

∥fm
θ (x, tn)− fm(x, tn)∥ = O((∆tm)p).

Proof. From the condition LPCM(θ,θ;ϕ) = 0, for any xtn and tn, tn+1 ∈ [sm, sm+1], we have

fm
θ (xtn+1,tn+1) ≡ fm

θ (x̂ϕ
tn , tn) (10)

Denote emn := fm
θ (xtn , tn)− fm(xtn , tn;ϕ), we have

emn+1 = fm
θ (xtn+1 , tn+1)− fm(xtn+1 , tn+1;ϕ)

= fm
θ (x̂ϕ

tn , tn)− fm(xtn , tn;ϕ)

= fm
θ (x̂ϕ

tn , tn)− fm
θ (xtn , tn) + fm

θ (xtn , tn)− fm(xtn , tn;ϕ)

= fm
θ (x̂ϕ

tn , tn)− fm
θ (xtn , tn) + emn .

(11)
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Considering that fm
θ is L-Lipschitz, we have

∥emn+1∥2 = ∥emn + fm
θ (x̂ϕ

tn , tn)− fm
θ (xtn , tn)∥2

≤ ∥emn ∥2 + ∥fm
θ (x̂ϕ

tn , tn)− fm
θ (xtn , tn)∥2

≤ ∥emn ∥2 + L∥xtn − xϕ
tn∥2

= ∥emn ∥2 + L · O((tn+1 − tn)
p+1)

≤ ∥emn ∥2 + L(tn+1 − tn) · O((∆tm)p) .

(12)

Besides, due to the boundary condition, we have

emsm = fm
θ (xsm , sm)− fm(xsm , sm;ϕ)

= xsm − xsm

= 0

. (13)

Hence, we have

∥emn+1∥2 ≤ ∥emsm∥2 + L · O((∆t)p)
∑

ti,ti+1∈[sm,sm+1]

ti+1 − ti

= 0 + L · O((∆t)p) · (sm+1 − sm)

= O((∆tm)p)

(14)

Theorem 2. For arbitrary set of sub-trajectories {[si, si+1]}m
′

i=m. Let ∆tm :=

maxtn,tn+1∈[sm,sm+1]{|tn+1−tn|}, ∆tm,m′ := maxi∈[m′,m]{∆ti}, and fm,m′
(·, ·;ϕ) be the target

phased consistency function induced by the pre-trained diffusion model (empirical PF-ODE). Assume
the fm,m′

θ is L-Lipschitz and the ODE solver has local error uniformly bounded by O((tn+1−tn)
p+1)

with p ≥ 1. Then, if LPCM(θ,θ;ϕ) = 0, we have

sup
tn∈[sm,sm+1),x

∥fm,m′

θ (x, tn)− fm,m′
(x, tn)∥ = O((∆tm,m′)p).

Proof. From the condition LPCM(θ,θ;ϕ) = 0, for any xtn and tn, tn+1 ∈ [sm, sm+1], we have

fm
θ (xtn+1,tn+1

) ≡ fm
θ (x̂ϕ

tn , tn) (15)

Denote em,m′

n := fm,m′

θ (xtn , tn)− fm,m′
(xtn , tn;ϕ), we have

em,m′

n+1 = fm,m′

θ (xtn+1 , tn+1)− fm,m′
(xtn+1 , tn+1;ϕ)

= fm,m′

θ (x̂ϕ
tn , tn)− fm,m′

(xtn , tn;ϕ)

= fm,m′

θ (x̂ϕ
tn , tn)− fm,m′

θ (xtn , tn) + fm,m′

θ (xtn , tn)− fm,m′
(xtn , tn;ϕ)

= fm,m′

θ (x̂ϕ
tn , tn)− fm,m′

θ (xtn , tn) + em,m′

n .

(16)

Considering that fm
θ is L-Lipschitz, we have

∥em,m′

n+1 ∥2 = ∥em,m′

n + fm,m′

θ (x̂ϕ
tn , tn)− fm,m′

θ (xtn , tn)∥2
≤ ∥em,m′

n ∥2 + ∥fm,m′

θ (x̂ϕ
tn , tn)− fm,m′

θ (xtn , tn)∥2
≤ ∥em,m′

n ∥2 + L∥fm,m′+1
θ (x̂ϕ

tn , tn)− fm,m′+1
θ (xtn , tn)∥2

≤ ∥em,m′

n ∥2 + L2∥fm,m′+2
θ (x̂ϕ

tn , tn)− fm,m′+2
θ (xtn , tn)∥2

≤
...

≤ ∥em,m′

n ∥2 + Lm−m′
∥fm

θ (x̂ϕ
tn , tn)− fm

θ (xtn , tn)∥2
≤ ∥em,m′

n ∥2 + Lm−m′+1∥xtn − xϕ
tn∥2

= ∥em,m′

n ∥2 + Lm−m′+1 · O((tn+1 − tn)
p+1)

≤ ∥em,m′

n ∥2 + Lm−m′+1(tn+1 − tn) · O((∆tm)p) .

(17)
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Hence, we have

∥em,m′

n+1 ∥2 ≤ ∥em,m′

sm ∥2 + Lm−m′+1 · O((∆t)p)
∑

ti,ti+1∈[sm,sm+1]

ti+1 − ti

= ∥em,m′

sm ∥2 + Lm−m′+1 · O((∆t)p) · (sm+1 − sm)

= ∥em,m′

sm ∥2 +O((∆tm)p)

= ∥em−1,m′

sm ∥2 +O((∆tm)p)

, (18)

Where the last equation is due to the boundary condition fm,m′

θ (xsm , sm) =

fm−1,m′

θ (fm
θ (xsm , sm), sm) = fm−1,m′

θ (xsm , sm).

Thereby, we have

∥em,m′

n+1 ∥2 ≤ ∥em−1,m′

sm ∥2 +O((∆tm)p)

≤ ∥em−2,m′

sm−1
∥2 +O((∆tm)p) +O((∆tm−1)

p)

≤
...

≤ ∥em
′

sm′+1
∥+

m′+1∑
i=m

O((∆ti)
p)

≤
m′∑
i=m

O((∆ti)
p)

≤ (m−m′ + 1)O((∆tm,m′)p)

= O((∆tm,m′)p)

(19)

II.2 Parameterization Equivalence

We show that the parameterization of Equation 3 is equal to the DDIM inference format [33, 54].

Theorem 3. Define Fθ(xt, t, s) =
αs

αt
xt − αsϵ̂θ(xt, t)

∫ λs

λt
e−λdλ, then the parameterization has

the same format of DDIM xs = αs

(
xt−σtϵ̂θ(xt,t)

αt

)
+ σsϵ̂θ(xt, t).

Proof.

Fθ(xt, t, s) =
αs

αt
xt − αsϵ̂θ(xt, t)

∫ λs

λt

e−λdλ

=
αs

αt
xt − αsϵ̂θ(xt, t)

(
e−λt − e−λs

)
=

αs

αt
xt − αsϵ̂θ(xt, t)(

σt

αt
− σs

αs
)

=
αs

αt
xt −

αsσt

αt
ϵ̂θ(xt, t) + σsϵ̂θ(xt, t)

= αs

(
xt − σtϵ̂θ(xt, t)

αt

)
+ σsϵ̂θ(xt, t)

(20)

II.3 Guided Distillation

We show the relationship of epsilon prediction of consistency models trained with guided distillation
and diffusion models when considering the classifier-free guidance.
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Theorem 4. Assume the consistency model ϵθ is trained by consistency distillation with the teacher
diffusion model ϵϕ, and the ODE solver is augmented with CFG value w and null text embedding
∅. Let c and cneg be the prompt and negative prompt applied for the inference of consistency model.
Then, if the ODE solver is perfect and the LPCM(θ,θ) = 0, we have

ϵθ(x, t, c, cneg;w
′) ∝ ww′

[
ϵϕ(x, t, c)− ((1− w − 1

ww′ )ϵϕ(x, t, cneg) +
w − 1

ww′ ϵϕ(x, t,∅))

]
+ ϵϕ(x, t, cneg)

Proof. If the ODE solver is perfect, that means the empirical PF-ODE is exactly the PF-ODE of the
training data. Then considering Theorem 1 and Theorem 2, it is apparent that the consistency model
will fit the PF-ODE. To show that, considering the case in Theorem 1, we have

emn+1 = fm
θ (xtn+1

, tn+1)− fm(xtn+1
, tn+1;ϕ)

= fm
θ (x̂ϕ

tn , tn)− fm(xtn , tn;ϕ)

= fm
θ (x̂ϕ

tn , tn)− fm
θ (xtn , tn) + fm

θ (xtn , tn)− fm(xtn , tn;ϕ)

= fm
θ (x̂ϕ

tn , tn)− fm
θ (xtn , tn) + emn

(i)
= fm

θ (xtn , tn)− fm
θ (xtn , tn) + emn

= emn

=
...

= emsm
= 0 ,

(21)

where (i) is because the ODE solver is perfect. Considering our parameterization in Equation 3, then
it should be equal to the exact solution in Equation 2. That is,

αs

αt
xt − αsϵ̂θ(xt, t)

∫ λs

λt

e−λdλ =
αs

αt
xt + αs

∫ λs

λt

e−λσtλ(λ)∇ logPtλ(λ)(xtλ(λ))dλ

ϵ̂θ(xt, t)

∫ λs

λt

e−λdλ =

∫ λs

λt

e−λϵϕ(xtλ(λ), tλ(λ))dλ

ϵ̂θ(xt, t) =

∫ λs

λt
e−λϵϕ(xtλ(λ), tλ(λ))dλ∫ λs

λt
e−λdλ

.

(22)

Then we have the epsilon prediction is weighted integral of diffusion-based epsilon prediction on the
trajectory. Therefore, it is apparent that, for any t′ ≤ t and t′ on the same sub-trajectory with t, we
have

ϵ̂θ(xt, t) ∝ ϵϕ(xt′ , t
′) (23)

When considering the text-conditioned generation and the ODE solver being augmented with the
CFG value w, we have

ϵ̂θ(xt, t, c) ∝ ϵϕ(xt′ , t
′,∅) + w(ϵϕ(xt′ , t

′, c)− ϵϕ(xt′ , t
′,∅)) . (24)

If we additionally apply the classifier-free guidance to the consistency models with negative prompt
embedding cneg and CFG value w′, we have

ϵ̂θ(xt, t, c, cneg;w
′)

= ϵ̂θ(xt, t, cneg) + w′(ϵ̂θ(xt, t, c)− ϵ̂θ(xt, t, cneg))

∝ ϵϕ(xt′ , t
′,∅) + w(ϵϕ(xt′ , t

′, c)− ϵϕ(xt′ , t
′,∅))

+ w′{[ϵϕ(xt′ , t
′,∅) + w(ϵϕ(xt′ , t

′, c)− ϵϕ(xt′ , t
′,∅))]

− [ϵϕ(xt′ , t
′,∅) + w(ϵϕ(xt′ , t

′, c)− ϵϕ(xt′ , t
′,∅))]}

= ϵϕ(xt′ , t
′,∅) + w(ϵϕ(xt′ , t

′, cneg)− ϵϕ(xt′ , t
′,∅)) + ww′(ϵϕ(xt′ , t

′, c)− ϵϕ(xt′ , t
′, cneg))

= ww′(ϵϕ(xt′ , t
′, c)− ((1− α)ϵϕ(xt′ , t

′, cneg) + αϵϕ(xt′ , t
′,∅))) + ϵϕ(xt′ , t

′, cneg)
(25)
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II.4 Distribution Consistency Convergence

We firstly show that when LPCM = 0 is achieved, our distribution consistency loss will also converge
to zero. Then, we additionally show that, when considering the pre-train data distribution and
distillation data distribution mismatch, combining GAN is a flawed design. The loss is still non-zero
even when the self-consistency is achieved, thus corrupting the training.

Theorem 5. Denote the data distribution applied for consistency distillation phased is P0. And
considering that the forward conditional probability path is defined by αtx0 + σtϵ, we further
define the intermediate distribution Pt(x) = (P0(

x
αt
) · 1

αt
) ∗ N (0, σt). Similarly, we denote the data

distribution applied for pretraining the diffusion model is Ppretrain
0 (x) and the intermediate distribution

following forward process are Ppretrain
t (x) = (Ppretrain

t (x) = (Ppretrain
0 ( x

αt
) · 1

αt
) ∗ N (0, σt)). This is

reasonable since current large diffusion models are typically trained with much more resources on
much larger datasets compared to those of consistency distillation. And, we denote the flow T ϕ

t→s,
T θ
t→s, and T ϕ′

t→s correspond to our consistency model, pre-trained diffusion model, and the PF-ODE
of the data distribution used for consistency distillation, respectively. Additionally, let T −

s→t be the
distribution transition following the forward process SDE (adding noise). Then, if the LPCM = 0, for
arbitrary sub-trajectory [sm, sm+1], we have,

Ladv
PCM(θ,θ;ϕ,m) = D

(
T −
sm→sT θ

tn+1→sm#Ptn+1

∥∥∥T −
sm→sT θ

tn→smT ϕ
tn+1→tn#Ptn+1

)
= 0.

Proof. Firstly, considering that the forward process T −
s→t is equivalent to scaling the original variables

and then performing convolution operations with N (0, σ2
s→tI). Therefore, as long as

D
(
T θ
tn+1→sm#Ptn+1

∥∥∥T θ
tn→smT ϕ

tn+1→tn#Ptn+1

)
= 0 , (26)

then we have

D
(
T −
sm→sT θ

tn+1→sm#Ptn+1

∥∥∥T −
sm→sT θ

tn→smT ϕ
tn+1→tn#Ptn+1

)
= 0 . (27)

From the condition LPCM(θ,θ;ϕ) = 0, for any xtn ∈ Ptn and xtn+1
∈ Ptn+1

and tn, tn+1 ∈
[sm, sm+1], we have

fm
θ (xtn+1,tn+1) ≡ fm

θ (x̂ϕ
tn , tn) , (28)

which induces that

T θ
tn+1→sm#Ptn+1

≡ T θ
tn→smT ϕ

tn+1→tn#Ptn+1
. (29)

Therefore, we show that if LPCM (θ,θ;ϕ) = 0, then

Ladv
PCM(θ,θ;ϕ) = 0 (30)

Theorem 6. Denote the data distribution applied for consistency distillation phased is P0. And
considering that the forward conditional probability path is defined by αtx0 + σtϵ, we further
define the intermediate distribution Pt(x) = (P0(

x
αt
) · 1

αt
) ∗ N (0, σt). Similarly, we denote the data

distribution applied for pretraining the diffusion model is Ppretrain
0 (x) and the intermediate distribution

following forward process are Ppretrain
t (x) = (Ppretrain

t (x) = (Ppretrain
0 ( x

αt
) · 1

αt
) ∗ N (0, σt)). This is

reasonable since current large diffusion models are typically trained with much more resources on
much larger datasets compared to those of consistency distillation. And, we denote the flow T ϕ

t→s,
T θ
t→s, and T ϕ′

t→s correspond to our consistency model, pre-trained diffusion model, and the PF-ODE
of the data distribution used for consistency distillation, respectively. Then, if the LPCM = 0, for
arbitrary sub-trajectory [sm, sm+1], we have,

Ladv
PCM(θ,θ;ϕ,m) = D

(
T θ
tn+1→sm#Ptn+1

∥∥∥Psm

)
≥ 0.
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Proof. From the condition LPCM(θ,θ;ϕ) = 0, for any xtn ∈ Ptn and xtn+1 ∈ Ptn+1 and tn, tn+1 ∈
[sm, sm+1], we have

fm
θ (xtn+1,tn+1

) ≡ fm
θ (x̂ϕ

tn , tn) , (31)

which induces that
T θ
tn+1→sm#Ptn+1 ≡ T ϕ

tn+1→sm#Ptn+1 . (32)

Besides, since T ϕ′

t→s corresponds to the PF-ODE of the data distribution used for consistency distilla-
tion, we can rewrite

Psm ≡ T ϕ′

tn+1→sm#Ptn+1 . (33)

Therefore, we have

D
(
T θ
tn+1→sm#Ptn+1

∥∥∥Psm

)
= D

(
T ϕ
tn+1→sm#Ptn+1

∥∥∥Tϕ′

tn+1→sm#Ptn+1

)
. (34)

Since we know that Ppretrain
0 ̸= P0. Therefore, there exists m and n achieving the strict inequality.

Specifically, if we set sm = ϵ and tn+1 = T , we have

D
(
T ϕ
T→ϵ#PT

∥∥∥Tϕ′

T→ϵ#PT

)
= D

(
Ppretrain
0

∥∥∥P0

)
> 0 . (35)

III Discussions

III.1 Numerical Issue of Parameterization

Even though our above-discussed parameterization is theoretically sound, it poses a numerical issue
when applied to the epsilon-prediction-based models, especially for the one-step generation. To be
specific, for the one-step generation, we are required to predict the solution point x0 with xt from the
self-consistency property of consistency models. With epsilon-prediction models, the formula can
represented as the following

x0 =
xt − σtϵθ(xt, t)

αt
. (36)

However, when inference, we should choose t = T since it is the noisy timestep that is closest to the
normal distribution. For the DDPM framework, there should be σT ≈ 1 and αT ≈ 0 to make the
noisy timestep T as close to the normal distribution as possible. For instance, the noise schedulers
applied by Stable Diffusion v1-5 and Stable Diffusion XL all have the αT = 0.068265. Therefore,
we have

x0 =
xT − σT ϵθ(xt, t)

αT
≈ 14.64(xT − σT ϵθ(xt, t)) . (37)

This indicates that we will multiply over 10× to the model prediction. In our experiments, we find
the SDXL is more influenced by this issue, tending to produce artifact points or lines.

Generally speaking, using the x0-prediction and v-prediction can well solve these issues. It is obvious
for the x0-prediction. For the v-prediction, we have

x0 = αtxt − σtvθ(xt, t) . (38)

However, since the diffusion models are trained with the epsilon-prediction, transforming them into
the other prediction formats takes additional computation resources and might harm the performance
due to the relatively large gaps among different prediction formats.

We solve this issue through a simple way that we set a clip boundary to the value of αt. Specifically,
we apply

x0 =
xt − σtϵθ(xt, t)

max{αt, 0.5}
. (39)
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III.2 Why CTM Needs Target Timestep Embeddings?

Consistency trajectory model (CTM), as we discussed, proposes to learn how ‘move’ from arbitrary
points on the ODE trajectory to arbitrary other points. Thereby, the model should be aware of ‘where
they are’ and ‘where they target’ for precise prediction.

Basically, they can still follow our parameterization with an additional target timestep embedding.

xs =
αs

αt
xt − αsϵ̂θ(xt, t, s)

∫ λs

λt

e−λdλ (40)

In this design, we have

ϵ̂θ(xt, t, s) =

∫ λs

λt
e−λϵϕ(xtλ(λ), tλ(λ))dλ∫ λs

λt
e−λdλ

. (41)

Here, we show that dropping the target timestep embedding s is a flawed design.

Assume we hope to predict the results at timestep s′ and timestep s′′ from timestep t and sample xt,
where s′ < s′′.

If we hope to learn both xs′ and xs′′ correctly, without the target timestep embedding, we must have

ϵ̂θ(xt, t) =

∫ λs′

λt
e−λϵϕ(xtλ(λ), tλ(λ))dλ∫ λs′

λt
e−λdλ

(42)

ϵ̂θ(xt, t) =

∫ λs′′

λt
e−λϵϕ(xtλ(λ), tλ(λ))dλ∫ λs′′

λt
e−λdλ

. (43)

This will lead to the conclusion that all the segments [t, s] on the ODE trajectory have the same
weighted epsilon prediction, which violates the truth, ignoring the dynamic variations and dependen-
cies specific to each segments.

III.3 Contributions

Here we re-emphasize the key components of PCM and summarize the contributions of our work.

The motivation of our work is to accelerate the sampling of high-resolution text-to-image and text-
to-video generation with consistency models training paradigm. Previous work, latent consistency
model (LCM), tried to replicate the power of the consistency model in this challenging setting but
did not achieve satisfactory results. We observe and analyze the limitations of LCM from three
perspectives and propose PCM, generalizing the design space and tackling all these limitations.

At the heart of PCM is to phase the whole ODE trajectory into multiple phases. Each phase
corresponding to a sub-trajectory is treated as an independent consistency model learning objective.
We provide a standard definition of PCM and show that the optimal error bounds between the
prediction of trained PCM and PF-ODE are upper-bounded by O((∆t)p). The phasing technique
allows for deterministic multi-step sampling, ensuring consistent generation results under different
inference steps.

Additionally, we provide a deep analysis of the parameterization when converting pre-trained diffusion
models into consistency models. From the exact solution format of PF-ODE, we propose a simple
yet effective parameterization and show that it has the same formula as first-order ODE solver DDIM.
However, we show that the parameterization has a natural difference from the DDIM ODE solver.
That is the difference between exact solution learning and score estimation. Besides, we point out that
even though the parameterization is theoretically sound, it poses numerical issues when building the
one-step generator. We propose a simple yet effective threshold clip strategy for the parameterization.

We introduce an innovative adversarial loss, which greatly boosts the generation quality at a low-step
regime. We implement the loss in a GAN style. However, we show that our method has an intrinsic
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difference from traditional GAN. We show that our introduced adversarial loss will converge to zero
when the self-consistency property is achieved. However, the GAN loss will still be non-zero when
considering the distribution distance between the pre-trained dataset for diffusion training and the
distillation dataset for consistency distillation. We investigate the structures of discriminators and
compare the latent-based discriminator and pixel-based discriminator. Our finding is that applying the
latent-based visual backbone of pre-trained diffusion U-Net makes the discriminator design simple
and can produce better visual results compared to pixel-based discriminators. We also implement a
similar discriminator structure for the text-to-video generation with a temporal inflated U-Net.

For the setting of text-to-image generation and text-to-video generation, classifier-free guidance
(CFG) has become an important technique for achieving better controllability and generation quality.
We investigate the influence of CFG on consistency distillation. And, to our knowledge, we, for the
first time, point out the relations of consistency model prediction and diffusion model prediction
when considering the CFG-augmented ODE solver (guided distillation). We show that this technique
causes the trained consistency models unable to use large CFG values and be less sensitive to the
negative prompt.

We achieve state-of-the-art few-step text-to-image generation and text-to-video generation with only
8 A 800 GPUs, indicating the advancements of our method.

IV Sampling

IV.1 Introducing Randomness for Sampling

For a given initial sample at timestep t belonging to the sub-trajectory [sm, sm+1], we can support
deterministic sampling according to the definition of fm,0.

However, previous work [21, 67] reveals that introducing a certain degree of stochasticity can lead to
better generation results. We also observe a similar trade-off phenomenon in our practice. Therefore,
we reparameterize the Fθ(x, t, s) as

αs(
xt − σtϵθ(xt, t)

αt
) + σs(

√
rϵθ(xt, t) +

√
(1− r)ϵ), ϵ ∼ N (0, I). (44)

By controlling the value of r ∈ [0, 1], we can determine the stochasticity for generation. With
r = 1, it is pure deterministic sampling. With r = 0, it degrades to pure stochastic sampling. Note
that, introducing the random ϵ will make the generation results be away from the target induced
by the diffusion models. However, since ϵθ and ϵ all follows the normal distribution, we have√
rϵθ(xt, t) +

√
(1− r)ϵ ∼ N (0, I) and thereby the predicted xs should still follow the same

distribution Ps approximately.

IV.2 Improving Diversity for Generation

Our another observation is the generation diversity with guided distillation is limited compared to
original diffusion models. This is due to that the consistency models are distilled with a relatively
large CFG value for guided distillation. The large CFG value, though known for enhancing the
generation quality and text-image alignment, will degrade the generation diversity. We explore a
simple yet effective strategy by adjusting the CFG values. w′ϵθ(x, t, c)+ (1−w′)ϵθ(x, t,∅), where
w′ ∈ (0.5, 1]. The epsilon prediction is the convex combination of the conditional prediction and the
unconditional prediction.

V Societal Impact

V.1 Positive Societal Impact

We firmly believe that our work has a profound positive impact on society. While diffusion techniques
excel in producing high-quality images and videos, their iterative inference process incurs significant
computational and power costs. Our approach accelerates the inference of general diffusion models by
up to 20 times or more, thus substantially reducing computational and power consumption. Moreover,
it fosters enthusiasm among creators engaged in AI-generated content creation and lowers entry
barriers.
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V.2 Negative Societal Impact

Addressing potential negative consequences, given the generative nature of the model, there’s a risk
of generating false or harmful content.

V.3 Safeguards

To mitigate this, we conduct harmful information detection on user-provided text inputs. If harmful
prompts are detected, the generation process is halted. Additionally, our method, fortunately, builds
upon the open-source Stable Diffusion model, which includes an internal safety checker for detecting
harmful content. This feature significantly enhances our ability to prevent the generation of harmful
content.

VI Implementation Details

VI.1 Training Details

For the comparison of baselines, the training code for InstaFlow [31], SDXL-Turbo [49], SD-
Turbo [49], TCD [74], and SDXL-Lightning [27] are not open-sourced yet, so we only compare their
open-source weights.

For LCM [35], CTM [21], and our method, they are all implemented by us and trained with the same
configuration.

Specifically, for multi-step models, we trained LoRA with a rank of 64. For models based on SD
v1-5, we used a learning rate of 5e-6, a batch size of 160, and trained for 5k iterations. For models
based on SDXL, we used a learning rate of 5e-6, a batch size of 80, and trained for 10k iterations.
We did not use EMA for LoRA training.

For single-step models, we followed the approach of SD-Turbo and SDXL-Lightning, training all
parameters. For models based on SD v1-5, we used a learning rate of 5e-6, a batch size of 160, and
trained for 10k iterations. For models based on SDXL, we used a learning rate of 1e-6, a batch size
of 16, and trained for 50k iterations. We used EMA=0.99 for training.

For CTM, we additionally learned a timestep embedding to indicate the target timestep.

For all training settings, we uniformly sample 50 timesteps from the 1000 timesteps of StableDiffusion
and apply DDIM as the ODE solver.

VI.2 Pseudo Training Code

Algorithm 1 Phased Consistency Distillation with CFG-augmented ODE solver (PCD)

Input: dataset D, initial model parameter θ, learning rate η, ODE solver Ψ(·, ·, ·, ·), distance metric d(·, ·),
EMA rate µ, noise schedule αt, σt, guidance scale [wmin, wmax], number of ODE step k, discretized timesteps
t0 = ϵ < t1 < t2 < · · · < tN = T , edge timesteps s0 = t0 < s1 < s2 < · · · < sM = tN ∈ {ti}Ni=0 to
split the ODE trajectory into M sub-trajectories.
Training data : Dx = {(x, c)}
θ− ← θ
repeat

Sample (z, c) ∼ Dz , n ∼ U [0, N − k] and ω ∼ [ωmin, ωmax]
Sample xtn+k ∼ N (αtn+kz;σ

2
tn+k

I)

Determine [sm, sm+1] given n

xϕ
tn
← (1 + ω)Ψ(xtn+k , tn+k, tn, c)− ωΨ(xtn+k , tn+k, tn,∅)

x̃sm = fm
θ (xtn+k , tn+k, c) and x̂sm = fθ−(xϕ

tn
, tn, c)

Obtain x̃s and x̂s through adding noise to x̃sm and x̂sm

L(θ,θ−) = d(x̃sm , x̂sm) + λ(ReLU(1 + x̃s) + ReLU(1− x̂s))

θ ← θ − η∇θL(θ,θ−)
θ− ← stopgrad(µθ− + (1− µ)θ)

until convergence
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Algorithm 2 Phased Consistency Distillation with normal ODE solver (PCD*)

Input: dataset D, initial model parameter θ, learning rate η, ODE solver Ψ(·, ·, ·, ·), distance metric d(·, ·),
EMA rate µ, noise schedule αt, σt, drop ratio η, number of ODE step k, discretized timesteps t0 = ϵ < t1 <
t2 < · · · < tN = T , edge timesteps s0 = t0 < s1 < s2 < · · · < sM = tN ∈ {ti}Ni=0 to split the ODE
trajectory into M sub-trajectories.
Training data : Dx = {(x, c)}
θ− ← θ
repeat

Sample (z, c) ∼ Dz , n ∼ U [0, N − k]
Sample xtn+k ∼ N (αtn+kz;σ

2
tn+k

I)

Determine [sm, sm+1] given n
r ∼ U [0, 1]
if r < η then
c = ∅
end if
xϕ
tn
← Ψ(xtn+k , tn+k, tn, c)

x̃sm = fm
θ (xtn+k , tn+k, c) and x̂sm = fθ−(xϕ

tn
, tn, c)

Obtain x̃s and x̂s through adding noise to x̃sm and x̂sm

L(θ,θ−) = d(x̃sm , x̂sm) + λ(ReLU(1 + x̃s) + ReLU(1− x̂s))

θ ← θ − η∇θL(θ,θ−)
θ− ← stopgrad(µθ− + (1− µ)θ)

until convergence

VI.3 Decoupled Consistency Distillation For Video Generation

Our video generation model follows the design space of most current text-to-video generation models,
viewing videos as temporal stacks of images and inserting temporal blocks to a pre-trained text-to-
image generation U-Net to accommodate 3D features of noisy video inputs. We term this process
temporal inflation.

Video generation models are typically much more resource-consuming than image generation models.
Also, the overall caption and visual quality of video datasets are generally inferior to those of image
datasets. Therefore, we apply the decoupled consistency learning to ease the training burden of
text-to-video generation, which was first proposed by the previous work AnimateLCM. To be specific,
we first conduct phased consistency distillation on stable diffusion v1-5 to obtain the one-step text-to-
image generation models. Then we apply the temporal inflation to adapt the text-to-image generation
model for video generation. Eventually, we conduct phased consistency distillation on the video
dataset. We observe an obvious training speed-up with this decoupled strategy. This allows us to train
the state-of-the-art fast video generation models with only 8 A 800 GPUs.

VI.4 Discriminator Design of Image Generation and Video Generation

VI.4.1 Image Generation

The overall discriminator design was greatly inspired by previous work StyleGAN-T [48], which
showed that a pre-trained visual backbone can work as a great discriminator. For training the
discriminator, we freeze the original weight of pre-trained visual backbones and insert light-weight
Convolution-based discriminator heads for training.

Discriminator backbones. We consider two types of visual backbones as the discriminator backbone:
pixel-based and latent-based.

We apply DINO [4] as the pixel-based backbone. To be specific, once obtaining the denoised latent
code, we decode it through the VAE decoder to obtain the generated image. Then, we resize the
generated image into the resolution that DINO trained with (e.g., 224 × 224) and feed it as the
inputs of the DINO backbone. We extract the hidden features of the DINO backbone of different
layers and feed them to the corresponding discriminator heads. Since DINO is trained in a self-
supervised manner and no texts are used for training. Therefore, it is necessary to incorporate the
text embeddings in the discriminator heads for text-to-image generation. To achieve that, we use the
embedding of [CLS] token in the last layer of the pre-trained CLIP text encoder, linearly map it to
the same dimension of discriminator output, and conduct affine transformation to the discriminator
output. However, the pixel-based backbones have inevitable drawbacks. Firstly, it requires mapping
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the latent code to a very high-dimensional image through the VAE decoder, which is much more
costly compared to traditional diffusion training. Secondly, it can only accept the inputs of clean
images, which poses challenges to PCM training, since we require the discrimination of inputs of
intermediate noisy inputs. Thirdly, it requires resizing the images into the relatively low resolution
it trained with. When applying this backbone design with high-dimensional image generation with
Stable-Diffusion XL, we observe unsatisfactory results.

We apply the U-Net of the pre-trained diffusion model as the latent-based backbone. It has several
advantages compared to the pixel-based backbones. Firstly, trained on the latent space, the U-
Net possesses rich knowledge about latent space and can directly work as the discriminator at
the latent space, avoiding costly decoding processes. Besides, it can accept the inputs of latent
code at different timesteps, which aligns well with the design of PCM and can be applied for
regularizing the consistency of all the intermediate distributions instead (i.e., Pt(x)) of distribution
at the edge points (i.e., Psm(x)). Additionally, since the text information is already encoded in
the U-Net backbone, we do not need to incorporate the text information in the discriminator head,
which simplifies the discriminator design. We insert several randomly initialized lightweight simple
discriminator heads after each block of the pre-trained U-Net. Each discriminator head consists of
two lightweight convolution blocks connected with residuals. Each convolution block is composed of
a convolution 2D layer, Group Normalization, and GeLU non-linear activation function. Then we
apply a 2D point-wise convolution layer and set the output channel to 1, thus mapping the input latent
feature to a 2D scalar value output map with the same spatial size.

We train our one-step text-to-image model on Stable Diffusion XL using these two choices of
discriminator respectively, while keeping the other settings unchanged. Our experiments reveal that
the latent-based discriminator not only reduces the training cost but also provides more visually
compelling generation results. Additionally, note that the teacher diffusion model applied for phased
consistency distillation is actually a pre-trained U-Net. And we freeze the parameters of U-Net for the
training discriminator. Therefore, we can apply the same U-Net, which simultaneously works as the
teacher diffusion model for numerical ODE solver computation and discriminator visual backbone.

VI.4.2 Video Generation

For the video discriminator, we mainly follow our design on the image discriminator. We use the
same U-Net with temporal inflation as the visual backbone for video latent code as well as the teacher
video diffusion model for phased consistency distillation. We still apply the 2D convolution layers as
discriminator heads for each frame of hidden features extracted from the temporal inflated U-Net
since we do not observe performance gain when using 3D convolutions. Note that the temporal
relationships are already processed by the pre-trained temporal inflated U-Net, therefore using simple
2D convolution layers as discriminator heads is enough for supervision of the distribution of video
inputs.

VII More Generation Results.
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Prompt: “a happy white man in black suit, sky, red tie, river, mountain, colourful, clouds, 
best view, fall”

1-
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ep

4-
st
ep

1-
st
ep

2-
st
ep

4-
st
ep

Prompt: “a astronaut walking on the moon”

Figure 10: PCM video generation results with Stable-Diffusion v1-5 under 1 ∼ 4 inference steps.
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Prompt: “Photo of a dramatic cliffside lighthouse in a storm, waves crashing, symbol of 
guidance and resilience”

1-
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ep
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st
ep

4-
st
ep

1-
st
ep

2-
st
ep

4-
st
ep

Prompt: “RAW photo, face portrait photo of beautiful 26 y.o woman, cute face, wearing 
black dress, happy face, hard shadows, cinematic shot, dramatic lighting”

Figure 11: PCM video generation results with Stable-Diffusion v1-5 under 1 ∼ 4 inference steps.
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Prompt: “a car running on the snowy road”
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ep

Prompt: “a monkey eating apple”

Figure 12: PCM video generation results with Stable-Diffusion v1-5 under 1 ∼ 4 inference steps.
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Prompt: “Vincent vangogh style, painting, a boy, clouds in the sky”
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ep

Prompt: “bonfire, wind, snow land”

Figure 13: PCM video generation results with Stable-Diffusion v1-5 under 1 ∼ 4 inference steps.
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Prompt: “a lion on the grass land”
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st
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4-
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PCM

AnimateLCM

Figure 14: PCM video generation results comparison with AnimateLCM under 1 ∼ 4 inference
steps.
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Prompt: “river reflecting mountain”
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PCM

AnimateLCM

Figure 15: PCM video generation results comparison with AnimateLCM under 1 ∼ 4 inference
steps.
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1-step 2-step 4-step 8-step 16-step
Prompt: “a monkey living on the tree”

Prompt: “a lion”

Prompt: “heart-like pink cloud in the sky”

Prompt: “a cat”

Prompt: “a red car”

Figure 16: PCM generation results with Stable-Diffusion v1-5 under different inference steps.
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1-step 2-step 4-step 8-step 16-step
Prompt: “a boy walking by the sea”

Prompt: “a dog”

Prompt: “a swimming pool”

Prompt: “a bike”

Prompt: “bedroom”

Figure 17: PCM generation results with Stable-Diffusion v1-5 under different inference steps.
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1-step 2-step 4-step 8-step 16-step
Prompt: “a blue bed in the bottle, surrounded by clouds”

Prompt: “a cat near the sea”

Prompt: “a girl with white dress”

Prompt: “an ice made lion”

Prompt: “Son Goku made of marble”

Figure 18: PCM generation results with Stable-Diffusion XL under different inference steps.
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1-step 2-step 4-step 8-step 16-step
Prompt: “a pink dog wearing blue sunglasses”

Prompt: “a dream island, surrounded by sea, with bird flying on the sky”

Prompt: “photography of a man kissing woman, vangogh style”

Prompt: “a pikachu made of wood”

Prompt: “firework in the night, best quality, modern city, river reflecting”

Figure 19: PCM generation results with Stable-Diffusion XL under different inference steps.
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Figure 20: PCM generation 1-step results with Stable-Diffusion v1-5.
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Figure 21: PCM generation 2-step results with Stable-Diffusion v1-5.
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Figure 22: PCM generation 4-step results with Stable-Diffusion v1-5.
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Figure 23: PCM generation 8-step results with Stable-Diffusion v1-5.
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Figure 24: PCM generation 16-step results with Stable-Diffusion v1-5.

27

83992https://doi.org/10.52202/079017-2668



Figure 25: PCM generation 1-step results with Stable-Diffusion XL.

28

83993 https://doi.org/10.52202/079017-2668



Figure 26: PCM generation 2-step results with Stable-Diffusion XL.
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Figure 27: PCM generation 4-step results with Stable-Diffusion XL.
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Figure 28: PCM generation 8-step results with Stable-Diffusion XL.
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Figure 29: PCM generation 16-step results with Stable-Diffusion XL.
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Figure 30: PCM generation 16-step results with Stable-Diffusion XL.
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Figure 31: Visual examples of ablation study on the proposed distribution consistency loss. Left:
Results generated without the distribution consistency loss. Right: Results generated with the
distribution consistency loss.
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r = 1 r = 0.9 r = 0.8 r = 0.7

r = 0.6 r = 0.5 r = 0.4 r = 0.3

r = 0.2 r = 0.1 r = 0.0

r = 1 r = 0.9 r = 0.8 r = 0.7

r = 0.6 r = 0.5 r = 0.4 r = 0.3

r = 0.2 r = 0.1 r = 0.0
Figure 32: Visual examples of ablation study on the proposed way for stochastic sampling. Pure
deterministic sampling algorithms sometimes bring artifacts in the generated results. Adding stochas-
ticity to a certain degree can alleviate those artifacts.
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CFG value = 1.0. The entropy of color: 1.75

CFG value = 0.6. The entropy of color: 2.16

Figure 33: Visual examples of ablation study on the proposed strategy for promoting diversity. Upper:
Batch samples generated with prompt "a car" with normal CFG=1.0 value in 4-step. Lower: Batch
sample generated with prompt "a car" with our proposed strategy with CFG=0.6.
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CFG value = 1.0. The entropy of color: 1.30

CFG value = 0.6. The entropy of color: 1.75

Figure 34: Visual examples of ablation study on the proposed strategy for promoting diversity. Upper:
Batch samples generated with prompt "a car" with normal CFG=1.0 value in 4-step. Lower: Batch
sample generated with prompt "a car" with our proposed strategy with CFG=0.6.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We have claimed in the abstract and introduction that, in this paper, we
identify three key flaws in the current design of LCM. We investigate the reasons behind
these limitations and propose the Phased Consistency Model (PCM), which generalizes the
design space and addresses all identified limitations. Accordingly, in Lines 32 to 42 in the
introduction of the main paper, we reveal the limitations of LCM, and in Sec. 3 we propose
PCM.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of work in Sec. 5
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We present a complete proof in Sec. II.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have carefully introduced the framework architecture in Sec. 3.1, the
training strategy in Sec. 3.2 and Sec. 3.3. Also, we enclose the pseudo training code, the
detailed framework design in the Appendix. Eventually, We will release the code and model
of this paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Code is available at https://github.com/G-U-N/
Phased-Consistency-Model.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We specify all the training and test details in Sec. VI, including the training and
testing details in Sec. VI.1, the pseudo training scripts in Sec. VI.2, and additional details in
Sec. VI.3 and Sec. VI.4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Error bars are not reported, because it would be too computationally expensive.
However, we indeed present plenty of qualitative results to demonstrate the statistical
significance of the experiments.

Guidelines:
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We have clarified in the Abstract and Sec. III that our results are achieved by
only 8 A800 GPUs.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conforms, in every respect, with the
NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
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Justification: The positive societal impacts are discussed in Sec. V.1, and the negative
societal impacts are discussed in Sec. V.2.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification: Yes, we are the image generators, which naturally have a risk of generating
harmful content. Therefore, in Sec. V.3, we introduce our solution to avoid harmful content.
We will include the safeguards in our pipeline when releasing the code and model.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All the assets used in this paper are public datasets, allowing for research use.
Specifically, the used datasets include:

• CC3M – custom terms reading: The dataset may be freely used for any purpose.
• WebVid-2M – custom terms reading: Non-Commercial research for 12 months,
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• COCO-2014 – Creative Commons Attribution 4.0 License.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not release new asserts in the submission. But we will release the code
and model shortly. We will prepare documentation alongside the assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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Answer: [NA]
Justification: We do not involve crowdsourcing, nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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