Parameter Competition Balancing for Model Merging

Guodong Du'* Junlin Lee'* Jing Li'" Runhua Jiang® Yifei Guo> Shuyang Yu?
Hanting Liu® Sim Kuan Goh? Ho-Kin Tang'’ Daojing He! Min Zhang!
Harbin Institute of Technology, Shenzhen, China
2Xiamen University Malaysia
3Johns Hopkins University
duguodong7@gmail.com Jjingli.phd@hotmail.com
denghaojian@hit.edu.cn

Abstract

While fine-tuning pretrained models has become common practice, these models
often underperform outside their specific domains. Recently developed model
merging techniques enable the direct integration of multiple models, each fine-
tuned for distinct tasks, into a single model. This strategy promotes multitasking
capabilities without requiring retraining on the original datasets. However, exist-
ing methods fall short in addressing potential conflicts and complex correlations
between tasks, especially in parameter-level adjustments, posing a challenge in
effectively balancing parameter competition across various tasks. This paper
introduces an innovative technique named PCB-MERGING (Parameter Competi-
tion Balancing), a lightweight and training-free technique that adjusts the coeffi-
cients of each parameter for effective model merging. PCB-MERGING employs
intra-balancing to gauge parameter significance within individual tasks and inter-
balancing to assess parameter similarities across different tasks. Parameters with
low importance scores are dropped, and the remaining ones are rescaled to form
the final merged model. We assessed our approach in diverse merging scenarios,
including cross-task, cross-domain, and cross-training configurations, as well as
out-of-domain generalization. The experimental results reveal that our approach
achieves substantial performance enhancements across multiple modalities, do-
mains, model sizes, number of tasks, fine-tuning forms, and large language models,
outperforming existing model merging methods. The code is publicly available at:
https://github.com/duguodong7/pcb-merging.

1 Introduction

Pre-trained models (PTMs) are fundamental in deep learning, underpinning many current techniques
due to their ability to learn generalized features from large datasets [99, 5]. Fine-tuning PTMs
for specific tasks is a common practice to boost performance [71, 31]. This approach is prevalent,
resulting in thousands of fine-tuned checkpoints [85], based on widely used PTMs [59, 80, 58].
However, fine-tuning the same model for different tasks can result in performance variations, posing
a significant challenge [57]. Multi-task learning [66, 59] has been proposed as a solution, but it
incurs substantial training costs and requires simultaneous access to data and labels for all tasks [16].
Recently, some researchers have developed methods to merge multiple independently-trained models
into a single model without the need for original training data [20, 86, 27]. This merging technique
not only adheres to data privacy regulations [83] but also enhances efficiency by eliminating the need
for retraining.

* Equal contribution.
T Corresponding authors.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

84746 https://doi.org/10.52202/079017-2691

https://github.com/duguodong7/pcb-merging

Table 1: Comparison of different model merging methods. A merging method is deemed self-aware
if it manages parameter competition within individual task models, and cross-aware if it balances
competition within a population of task models. For more details, please refer to App. A.

Method Drop Scale Self-aware | Cross-aware | Granularity Level
Fisher Merging (neurips22) [46] - Fisher Matric v X Parameter
RegMean;iciro3 [30] - Inner Product Matric X v Parameter
Task Arithmeticiicir23 [28] - Uniformed X X Task
TIES-Mergingneuries23 [89] | Magnitude Uniformed v v Parameter
DAREucvi24 [94] | Bernoulli (p) 1/(1—p) v X Parameter
LoraHubjcormes [25] - Evolver Searched X v Task
AdaMergingjiciro4 [90] - Unsupervised Optimized X v Layer
PCB-MERGING (ours) | Competition Balancing Matric v v Parameter

Previous research [20, 86, 27] has shown that averaging the weights of multiple task-specific models,
fine-tuned from the same pre-trained initialization, can enhance performance across various tasks.
Many studies [46, 30] have explored the creation of additional matrices, matching the model dimen-
sions, to adjust parameter coefficients for different tasks. Other studies [28, 89, 90, 96, 94] focus on
task vectors [28], defined as the differences between the parameter values of the fine-tuned model
and the original pre-trained model. While these task vector-based methods have shown promising
results, they typically apply a uniform coefficient for each task and parameter, which may limit
their effectiveness. Our research seeks to fully harness task vector-based methods by fine-tuning
parameter-level coefficients through a balancing mechanism that resolves parameter competition.

Parameter competition is crucial in model fusion, occur-

ring both within parameters of the same task and among

models for different tasks. Firstly, within a single model, ¢ 5

task-specific fine-tuned parameters often compete, where 8

some are critical while many prove redundant. Previousre- 578

search [89, 94] has demonstrated that dropping numerous % Finetuned

parameters based on task vector magnitude can maintain £ — Top 20% Magnitude
£ 1 to th ioinal. Additi 1 ~ 3 76 —— Top 30% Magnitude

performance close to the original. itionally, appro- g — Top 50% Magnitude

priately rescaling important parameters and suppressing 75 — Entire Segment

redundant ones can further enhance the performance of the 0.6 0.7 0.8 09 1.0 1.1 1.2

fine-tuned model (see Fig. 1). Secondly, between different Scale

models, parameters also engage in competition (see Fig. 2).
Rescaling a task vector for one task can boost performance
for that specific task but may negatively affect cross-task
capabilities. Therefore, balancing the coefficients assigned
to task vectors requires careful consideration of their im-
pact on overall performance.

Figure 1: Parameter competition within
individual task models. Intra-balancing
enhances performance beyond finetun-

ing.

~
[oe]

We argue that merging methods capable of managing
intra-parameter competition within tasks demonstrate self-
awareness, while those that balance inter-parameter com-

]
N

Accuracy
~
o

petition between tasks exhibit cross-awareness. We sys- —— AVE. Acc

. .. . 66
tematically compare and analyze existing model merging Acc Cars
methods in terms of these criteria, as presented in Tab. 1. 62 —— Acc SUN397

To establish a balancing matrix that is both self-aware 08 10 12 14
and cross-aware for parameter scaling, we introduce PCB- Scale
MERGING (Parameter Competition Balancing for Model
Merging), a training-free and dataless method for merging
models. Specifically, we use intra-balancing to weight the
importance of parameters within tasks and inter-balancing
to assess parameter similarities across tasks. Low-scoring
parameters are then dropped, and the remaining ones are rescaled. Finally, we merge the modulated
task vectors into the pretrained model to create the final merged model.

Figure 2: Parameter competition within
task model populations. Inter-balancing
improves cross-task generalization.

To empirically demonstrate the effectiveness of PCB-MERGING, we conducted extensive experi-
ments comparing it with existing model merging approaches. We showcased the superiority of our

https://doi.org/10.52202/079017-2691 84747

approach from four perspectives: (1) Cross-task merging: We evaluated our approach across a range
of NLP and Vision tasks using various models, such as T5 [59], ViT [12], and Llama2 [80]. We also
assessed its ability to fuse multiple PEFT [42, 24] adapters. All experiments demonstrated significant
improvements over previous state-of-the-art methods, notably achieving a 4.3% performance increase
with the T5-base model. (2) Cross-domain merging: Our approach merged multiple domain-specific
models for tasks like emotion classification [53, 30], demonstrating its effective handling of diverse
domain data. (3) Cross-training configurations: Merging multiple models from different training
environments on single tasks, highlighting its flexibility and robustness. (4) Out-of-Domain Gener-
alization: We assessed multi-task and multi-domain fusion performance on domain shift datasets,
testing generalizability across various frameworks.

This paper makes three significant contributions: (1) We re-examine existing model merging methods,
highlighting the critical role of parameter competition awareness; (2) We introduce a novel approach
called PCB-MERGING, which effectively adjusts parameter coefficients through balancing parameter
competition; (3) Our proposed method stabilizes and enhances model merging performance across
various application scenarios without additional training.

2 Related Work

2.1 Overview of model fusion

Deep model fusion is gaining attention due to data privacy and resource conservation concerns, with
potential applications across various domains [39, 14]. It’s typically divided into three main categories.
Ensemble learning [64], combines model outputs to improve prediction accuracy and robustness but
requires parallel deployment of multiple models. An alternative method involves mode connectivity
[18] and alignment [1], aiming to bring solutions closer together for better initial conditions in
averaging. This is achieved by either linking optimization paths [15, 98] or addressing permutation
invariances [72, 79, 40, 30] . Recent researches [88, 75] focus on training-free approaches to enhance
model fusion usability. The third approach, weight averaging [20, 86], requires models with identical
structures. While advancements like [81] support merging diverse large language models (LLMs),
they require knowledge distillation [23] and complex training. This paper follows the third type of
track due to its simplicity, efficiency, and broad applicability.

2.2 Merging fine-tuned models with same initialization

Previous studies found that when multiple models are fine-tuned from the same pre-trained initializa-
tion, averaging their weights can lead to improved performance on single tasks [20, 86, 13, 29, 92]
different tasks [27] and out-of-distribution generalization [3, 60]. Fisher Merging [46] goes beyond
simple averaging to identify the importance of individual parameters using Fisher information matrix
[17] and uses it to weigh the parameters in each model when merging. RegMean [30] proposed a
closed-form solution for the merged model’s parameters by solving a local linear regression problem
for each individual linear layer in the model. However, both the Fisher Merging and RegMean
methods are time-consuming and computationally intensive.

Task Arithmetic [28] introduces the concept of fask vectors, demonstrating their effectiveness and
lightweight nature in facilitating cross tasks generalization. Expanding on this groundwork, PEM
Composition [96] extends the task arithmetic framework to merge LoRA [24] models, while Ties-
Merging [89] addresses task conflicts by resetting redundant parameters and resolving sign conflicts.
However, these methods share a merging coefficient across all task vectors, limiting flexibility. In
contrast, Lorahub [25] and AdaMerging [90] utilize different coefficients for enhanced adaptability,
but Lorahub’s performance is restricted as it only searches coefficients at the task level. AdaMerging
also demands complex training and unlabeled test datasets and is applicable solely to classification
problems. DARE [94] proposes drop and rescale as a preprocessing step when merging fine-tuned
LLMs. Our approach primarily employs strategies of dropping to minimize interference and rescaling
at the parameter level, while considering both self-awareness and cross-model awareness.

84748 https://doi.org/10.52202/079017-2691

N OQSO--» [a) —® —® —® Number of Tasks

Task Vectors

NxD - @ Model Parameter
! Inter-Balancil finter-Balanci T — () Task Vector Parameter
2Q0A.--0) | l:f—J | X Element Wise Product
N
D

Model Dimension

pcg Parameter Competition
Balancing

— @0a-0 00a--0 ana-0

O — Task Vector 1 Task Vector 2 Task Vector N
Pretrained Model Ve + ~N 4
[PP B —— T R B
Nx (= S e 88008

1 Drop and Resale Drop and Resale Merged Model

2 eo&-0 cati-e

NOOO0.0 ;

Finetuned Models G‘/ @ @ - @

Figure 3: An illustration of the steps in PCB-MERGING. Different colored blocks represent
parameters with varying values. We start with multiple fine-tuned models and a pretrained model,
establishing a PCB matrix through intra-balancing and inter-balancing. Low-scoring parameters are
dropped, and the remaining ones are rescaled. Finally, we merge the modulated task vectors into the
pretrained model to create the final merged model.

3 Method

In Sec. 3.1, we established the notation and outlined the problem of model merging. Sec. 3.2 delves
into the detailed exposition of the proposed PCB-MERGING method, which aims to balance parameter
competition. Furthermore, in Sec. 3.3, we employ evolutionary algorithms to further enhance the
performance of our approach.

3.1 Preliminaries

Initially, we are faced with a set of tasks {77, ...,T,} and various pre-trained models, such as
VAT [12], TS [59], or llama2 [80]. We have the option to fine-tune the entire model or employ
a parameter-efficient fine-tuning (PEFT) method [42, 24]. During fine-tuning, we represent the
trainable parameters as 6, initialized as 0p., and the fine-tuned parameters as ;. The model merging
problem involves how to combine the weight sets {61, ..., 8, } to form a new weight 6,,,, without the
need to retrain using the initial training data for each task, and ensuring that #,,, can simultaneously
perform tasks {1,..., N}.

Recent research [28] introduced the concept of task vectors and completed various task arithmetic
operations and model merging based on task vectors. Specifically, for task T}, the task vector 7; € RY
is defined as the vector obtained by subtracting the fine-tuned weights 6; from the pre-trained weights
Opre» 1.€., T; = 0; — Opre . This allows us to focus on the changes that occur during each task-specific
model’s fine-tuning phase. The task vector-based multi-task model merging method can be expressed
as 0, = Ope + A * Y., 7;, where the coefficient A represents the importance of merged task
vector 7,,. This concept is simple yet effective, significantly outperforming simple weight averaging
schemes, i.e., 0, = (1/N)>""", ;.

3.2 Parameter Competition Balancing

Our approach aims to modulate the scaling factors for each task and parameter, achieving intra-
balancing and inter-balancing within and between tasks. Specifically, we use the parameter competi-
tion balancing (PCB) matrix 3; € R to adjust the scale of parameters in each task model 6; € R4,
resulting in the final fused model, as shown in Fig. 3. The specific calculation process is as follows:

1. Intra-Balancing: Initially, we implement self-awareness by applying a nonlinear activation
function (i.e., softmax) to the magnitudes of task vectors, emphasizing important parameters
while suppressing redundant ones to some extent. As the number of fusion tasks increases,
competition among parameters intensifies. Therefore, the number of tasks [V is used to control
the extent of suppression applied to redundant parameters. "Norm" refers to normalization.

Bintra,i; = Softmax(N * Norm(7; ® 7;)) (1)

https://doi.org/10.52202/079017-2691 84749

2. Inter-Balancing: Next, we realize cross-awareness to enable the parameters within a population
of tasks to interact with others, addressing potential conflicts and complex correlations between
tasks. To achieve this, we compute the similarity between parameters at the same positions
across different task vectors, allowing each parameter to update its score based on information
from other tasks. The calculation process is as follows:

Binter.i = Z:Zl Softmax(Norm(; ® 7)) (2)

3. Drop and Rescale: Subsequently, we obtain 3; = Bintra,i © Binter,i- Next, we construct a
mask m; € R? based on 3; to focus on the more important parameters. Specifically, this mask
my; is used to select high-scoring elements from the D elements of ;. We define the mask ratio
as r, where 0 < r < 1. The mask m; can be derived from:

1, if B; 4 > sorted(5;)[(1 — D
mig =40 if 5, 4 = sorte (8)[(1 —7r) x D] 3)
0, otherwise
The importance score is defined as B = m; @ B;. Finally, we use the score of the masked
balancing matrix to weight the importance of each parameter in each task vector. The final
merged task vector 7, is as follows:

= (Bemw)/Y B 4)

From the final merged task vector 7,,, we can further adjust its magnitude proportionally and integrate
it with the initial parameter values to yield the amalgamated model parameters 6,,, represented by
Om = Opre + A * T, With A serving as a scaling hyperparameter. More details about the method
workflow are presented in App. A and Algorithm 1.

3.3 Searching Coefficients

Research from articles [28, 90] shows that model merging methods based on task vectors are highly
sensitive to the merging coefficient A\. Even with an appropriately chosen uniform A, achieving further
improvements in fusion performance necessitates grid searching the merging coefficients for each
task vector, which becomes increasingly complex and time-consuming, especially when managing a
large number of tasks.

Inspired by prior research [77, 25], we employ intelligent optimization algorithms to search for
mixing coefficients, aiming for greater improvements compared to using a uniform coefficient. The

optimization process seeks the best set {1, . .., A, } to enhance validation accuracy, with the ultimate
goal of maximizing validation accuracy with the merged model.
9m = Hpre + Zi:l(ﬁi ©)\iTi)/ Zi:l ﬁi 5)

In most of our experimental setups, we primarily utilize Covariance Matrix Adaptive Evolution
Strategies (CMA-ES) [21]. As a probabilistic population-based optimization algorithm, CMA-ES
dynamically adjusts the search distribution defined by the covariance matrix. It systematically updates
the mean and covariance of this distribution at each iteration to learn and exploit the underlying
structure of the search space for optimization efficiency.

4 Experimental setup

Evaluation Settings. We anticipate that merging models will offer two significant advantages
for developers. Firstly, by integrating insights from individual models 6;_,, trained in different
environments (such as tasks, domains, or various training configurations within a single task), we
expect the resulting merged model 6,,, to demonstrate competitive test performance across tasks,
domains, or within a single task. Secondly, this merged model is poised to exhibit enhanced cross-
domain (OOD) generalization capability. For further details about compute resources and fine-tuning
procedures, please refer to App. F.1 and F.2.

84750 https://doi.org/10.52202/079017-2691

Baseline Methods. Our baselines are primarily divided into two categories: non-model merging,
which involves fine-tuned individual models and multitask learning, and various advanced model
merging methods such as simple averaging [86], Fisher merging [46], RegMean [30], Task Arithmetic
[28], Ties-Merging [89], and AdaMerging [90]. Detailed information on these baselines can be found
in App. E. Notably, Task Arithmetic, Ties-Merging, AdaMerging, and our proposed PCB-MERGING
method are all based on task vectors. In addition, when merging LLMs across different tasks, we
present the results with DARE [94] as preprocessing. Since AdaMerging demands unlabeled test
datasets and is applicable solely to classification problems, we compare with it only when merging
finetuned ViT models for image classification, as shown in App. C.2.

Validation Set. Most model merging methods necessitate access to a validation set, utilized for
computing the Fisher matrix or tuning hyperparameters. While ReMean can derive inner product
matrices for each task using unlabeled training data, additional validation is required to ascertain
the optimal value of the non-diagonal multiplier a. Both Fisher merging and ReMean are time-
consuming and require significant computational resources. In contrast, task vector-based methods
are more lightweight and training-free to implement and can be utilized even without a validation set.
Therefore, we conducted additional experiments to compare task vector-based methods without a
validation set.

Hyperparameters. When no additional validation is performed, we use a default value of A = 1
for all task-vector based methods. For TIES-Merging and PCB-MERGING, which require a masking
ratio, we set mask ratio » = 0.2 as the default value for all experiments, except in LLM experiments
where r = 0.1.

When validation is allowed, we set the non-diagonal multiplier o in RegMean to 0.9, except for the
T5-base model where it is set to 0.1. For Task Arithmetic, we conduct a search over A ranging from
0.2 to 1.5 with a step size of 0.1. For TIES-Merging and PCB-MERGING, we search over ratios in
{0.05, 0.1, 0.2}, and X ranging from 0.8 to 2.5 with a step size of 0.1. In cases where evolutionary
strategies are employed for coefficient search for each task, we conduct continuous variable searches
within the range of 0.8 to 2.5. For more hyperparameter details, please refer to App. F.3 and Tab. 17.

5 Results

In this section, we evaluated the performance of the PCB-MERGING method across various experi-
mental settings, including cross-task, cross-domain, cross-training configurations, and out-of-domain
scenarios. Additionally, we conducted several experiments to further assess the effectiveness of our
method: merging different numbers of tasks (App. C.1 and Fig. 8), comparison with AdaMerging on
vision tasks (App. C.2 and Tab. 7), and providing additional results using evolutionary strategies (ES)
(App. C.3 and Tab. 8). Lastly, we present comprehensive task-level results in App. C.4.

5.1 Cross Task Merging

Merging NLP Models. For the NLP domain, we adhere to the experimental setting from [89]. We
employ the T5-base and T5-large [59] models and fine-tune both on seven tasks. This setting considers
a variety of NLP domains such as question answering, paraphrase identification, sentence completion,
and coreference resolution (dataset details in App. D). Tab. 2 shows that using PCB-MERGING
to merge fully fine-tuned T5-base and T5-large models leads to an average improvement of 4.3%
and 3.5% over 7 tasks, without extra data. With validation datasets, PCB-MERGING improves by
1.8% and 1.8% over other methods for T5-base and T5-large, respectively. Notably, PCB-MERGING
without validation outperforms TIES-merging [89] by 5.4% for T5-large. For more detailed results,
refer to App. Tab. 9 and 10.

Merging PEFT Model Adapters. Following the work of [89], we consider merging parameters
used for efficient fine-tuning calculations and employ the (IA)? [42] method for experimentation.
This approach, a form of Parameter-Efficient Fine-Tuning (PEFT), extends the activations of base
models with learned vectors. We select TO-3B [66] as the base model and fine-tune (IA)® models
on the training sets of eleven datasets, including sentence completion, natural language inference,
coreference resolution, and word sense disambiguation (dataset details in App. D). During fine-tuning
of the TO-3B model, we utilize prompt templates from the Public Prompt Pool (P3 [4]) to convert

https://doi.org/10.52202/079017-2691 84751

Table 2: Comparison of different model merging methods across various fine-tuning configurations
and modalities, with average performance reported for different tasks.

Task (—) Validation 7 NLP Tasks 11 PEFT Tasks | 3 LLM Tasks] 8 Vision Tasks
Method ({) T5-Base T5-Large (IA)3 LLaMa2 ViT-B/32 ViT-L/14
Fine-tuned - 83.1 88.9 71.4 40.4 90.5 94.2
Multitask - 83.6 88.1 73.1 - 88.9 93.5
Averagingicvioo [86] X 65.3 54.7 57.9 30.3 65.8 79.6
Task Arithmeticiiciros [28] X 53.5 73.6 59.2 30.4 60.4 83.3
Ties-Mergingneuirss) [89] X 69.5 71.7 64.9 34.2 72.4 86.0
PCB-MERGING (ours) X 73.8 (+4.3) 77.1(+3.5) | 66.1 (+1.2) 35.1 (+0.9) 75.9 (+3.5) 86.9 (+0.9)
Fisher Merging ncuirs2o) [46] v 68.3 68.7 62.2 - 68.3 82.2
RegMeaniciros [30] v 72.7 79.8 58.0 - 71.8 83.7
Task Arithmeticiiciros [28] v 73.0 80.2 63.9 30.4 70.1 84.5
Ties-Mergingneurirs2s) [89] v 73.6 80.3 66.8 342 73.6 86.0
PCB-MERGING (ours) v 754 (+1.8) 82.1 (+1.8) | 68.1 (+1.3) 35.1 (+0.9) 76.3 (+2.7) 87.5 (+1.5)
PCB-MERGING + ES (ours) v 76.7 (+3.1) 83.2(+2.9) | 68.8 (+2.0) 35.3 (+1.1) 77.0 (+3.4) 88.1 (+2.1)

each example in each dataset into a text-to-text format, where each label corresponds to a different
string. For experiments with (IA)3, we report the median score across all templates for each dataset.
Tab. 2 illustrates that PCB-MERGING achieves an average improvement of 1.2% and 1.3% across 11
tasks compared to the top baseline, both with and without validation set. For further details, please
refer to App. Tab. 11.

Merging LLMs. In our experiment,
we merged three specialized large lan-
guage models based on the Llama-2-7b
architecture [80]—focusing on Chinese Model DARE | CMMLU _GSMSK _Human-Eval

Table 3: Comparison of the performance of different methods
on 3 datasets after merging LLMs.

Average
language proficiency’, mathematical Chinese _ 386 23 3.4 8.1
reasoning [93]%, and code generation Math - 31.2 65.6 0 323

[63]°. Each model was assessed using Code - 333 0 17.1 16.8
tailored benchmarks: CMMLU [38] Averaging X 35.6 48.5 6.7 30.3
for Chinese, GSM8K [10] for math, w22 [86] 4 36 418 85 307

Task Arithmetic X 354 46.1 9.8 30.4
and HumanEval [6] for code genera-

. d d ils in A D). A neLr23) [28] v 355 46.1 10.4 30.7
tion (dataset details in App. D). As TIES-Merging X 365 534 128 343
shown in Tab. 3, PCB-MERGING im- 231 [89] v 36.4 53.4 14.0 346
proved overall performance by an av- PCB-MERGING X 36.4 523 165 35.1
erage of 0.8% (no DARE) and 0.6% (ours) v 365 527 16.5 352
(with DARE). The most significant per- PcB-MERGING +ES | X 36.4 53.1 165 353
formance gain was in code generation, (ours) v 3604 538 16.5 35.6

with 3.7% improvement without DARE
and 2.5% with DARE [94]. The results indicate that although the DARE preprocessing provided
modest improvements, our proposed methodology notably enhanced the overall performance.

Merging Vision Models. For image classification tasks, we adopt the experimental setup outlined
by Ilharco et al. [27, 28]. We utilize two versions of the CLIP model [58] featuring ViT-B/32 and
ViT-L/14 models [12] as visual encoders. Subsequently, we fine-tune the visual encoder on eight
tasks sourced from Ilharco et al. [28] and Radford et al. [58], while maintaining the text encoder
unchanged. This configuration encompasses diverse classification domains including remote sensing,
traffic classification, and satellite imagery recognition (dataset details in App. D). PCB-MERGING
performs better than the top baseline by 3.5% and 0.9% for ViT-B/32 and ViT-L/14, respectively, when
validation is not utilized. With additional data, these improvements are 2.7% and 1.5%, respectively,
and further increase to 3.4% and 2.1% after incorporating evolutionary search. For more detailed
findings, please refer to App. Tab. 12, 13 and Fig. 9.

*https://huggingface.co/LinkSoul/Chinese-Llama-2-7b
*nttps://huggingface.co/meta-math/MetaMath-7B-V1.0
Shttps://huggingface.co/qualis2006/1lama-2-7b-int4-python-code-18k

84752 https://doi.org/10.52202/079017-2691

https://huggingface.co/LinkSoul/Chinese-Llama-2-7b
https://huggingface.co/meta-math/MetaMath-7B-V1.0
https://huggingface.co/qualis2006/llama-2-7b-int4-python-code-18k

Cross-Task Merging

Cross-Domain Merging

S
o

42{ ® Simple Averaging T5-large * ® Simple Averaging o v *
® Fisher Merging 354 ® Fisher Merging ®
3 ¢ RegMean Yy 3 ¢ RegMean T5-base
% 39] V¥ TIES-Merging % V¥ TIES-Merging
g Y PCB-Merging (Ours) T5-base g 301 Y PCB-Merging (Ours)
(<] (<]
t * $25
2 36 ¢ o
[a) v [a) - *
o Q 201
© ° ¢ © . Robert-base
o33)]
> > g
Z v . Z 15
30 ® 101 ®
55 60 65 70 75 80 20 24 28 32 36 40

Avg. In-Domain Performance

Figure 4: Comparison of average performance
on 7 in-domain and 6 held-out datasets after
cross-task merging.

Avg. In-Domain Performance

Figure 5: Comparison of average performance
on 5 in-domain and 5 distribution shift datasets
after cross-domain merging.

Out of Domain Gegeralization. Following the experimental setup of [89], we also examined the
ability of cross-task merged models to better generalize across different domains. We merged the T5-
base and T5-large models using the same approach as in the previous experiments, combining them on
seven in-domain datasets. Subsequently, we evaluated their performance on six held-out datasets from
the TO mixture [66] to assess out-of-domain generalization. These out-of-domain datasets encompass
various tasks, including question answering, word sense disambiguation, and sentence completion
(details in App. D). Both in-domain and out-of-domain performance are presented together in Fig. 4.
The results show that PCB-MERGING outperforms the strongest baseline for both T5-base and
T5-Large models by 1.9% and 2.1%, respectively, indicating superior out-of-domain generalization.
For more detailed results, please refer to App. Tab. 14.

5.2 Cross Domain Merging

We conducted further experiments to compare the performance of different methods in merging
five distinct domain-specific models for emotion classification. Following the methodology of Jin
et al. [30], we employed the Roberta-base and T5-base models and utilized a set of preprocessed
datasets from Ober et al. [53]. For training individual models, we selected five high-resource datasets,
while five low-resource datasets were chosen for evaluating out-of-domain generalization ability.
Our analysis reports the average accuracy of in-domain datasets and the average accuracy of out-of-
domain datasets using various model merging techniques. In addition, we conducted the experiment
with different random seeds and reported the average results across five seeds. Fig. 5 provides a
summarized overview of these results. Our findings indicate that PCB-MERGING outperforms the
strongest baseline by 1.1% for Roberta-base and 1.3% for T5-base, while improving generalization
across domain shifts by 0.8% and 0.7%, respectively. Further details regarding the datasets can be
found in App. D and Tab. 16, and additional results are provided in App. C.4 and Tab. 15.

5.3 Cross Training Configurations Merging

In this experiment, our main focus was to com-
pare the ability of methods to merge multiple
checkpoints of the same task. These check-

Table 4: Comparison of the performance of differ-
ent methods on 4 datasets after merging multiple

https://doi.org/10.52202/079017-2691

points were generated by employing different

checkpoints with various training configurations.

training configurations during fine-tuning, which Method MRPC_RTE _COLA SST2 4@k Avg,
1 Tat1 3 _ Avg. Individuals 81.7 65.2 43.1 86.5 69.1
1ngluded varliatlons in hyperpara.n}ete.rs, augmen et | o7 1 a8 s o
tation strategies, and dataset partitioning. Follow- Fisherorsi[46] | 833 654 534 886 727
- _ RegMeaniciros [30] 81.2 66.8 48.7 88.1 71.2
lng the Setup Of mOdel SOupS [86]’ we ﬁne tuneq Task Arithmeticiiciro3 [28] 81.9 68.7 423 87.9 69.7
RoBERT-base [44] models on four text classi- TIES-Mergingroisn[89] | 842 693 557 889 74.5
fication tasks from the GLUE benchmark [82]: PCB-MERGING (ours) | 85.3 703 584 892 758

MRPC [11], RTE [19], CoLA [84] and SST-2 [73].

84753

We fine-tuned 10 models for each dataset using a random hyperparameter search over learning
rate, batch size, and number of epochs (training details in App. F.2). Additionally, we randomly
selected training subsets with 1000 examples from the entire training datasets, resulting in each subset
having different label distributions. We use the standard metric for each dataset: average of accuracy
and F} score for MRPC, accuracy for RTE, Matthews correlation [47] for CoLLA and accuracy for
SST-2. We repeated this experiment with different random seeds and reported the average results
across five seeds. Tab. 4 presents the corresponding metrics on the validation set, showing consistent
performance improvements with PCB-MERGING across all datasets.

6 Analysis

6.1 Ablation of PCB-MERGING Components

We conducted ablation experiments on various components 1.
of our approach to assess their importance. Tab. 5 compares
the performance of our method with different components re-

5: Ablation study on individ-
ual components of PCB-MERGING.

moved, testing ViT-B/32 and T5-base models on the validation Task(—) Vision NLP
set. Removing the Rescale step implies using a uniform scale Method(/) VIT-B/32 T5-base
A = 1 and computing a disjoint mean as in TIES-Merging [89], " /o Intra-Balance 74.4 73.7
ignoring zero values. The table demonstrates the crucial im- 4 [nter-Balance 74.8 73.9
portance of all components for achieving optimal performance. w/o Drop 712 705
Specifically, the Drop component was found to be the most w/o Rescale 73.8 72.9
critical, resulting in performance drops of 5.1% for ViT-B/32 55 MerainG 76.3 75.4

and 4.9% for T5-base, respectively. More ablation study details
are provided in App. B.1 and Tab. 6.

6.2 Effect of Hyper-Parameters on the Performance.

We examined the impact of hyper-parameters A and r on the performance when merging multiple NLP
tasks, as discussed in Section 5.1. Initially, we illustrate the performance of various models across
different values of A while keeping » = 0.1. Our method is compared against the state-of-the-art
baseline method, TIES-Merging. From Fig. 6, We can observe that our approach demonstrates a
higher performance ceiling within the suitable range of 1.4 to 1.8. As) increases, the performance
initially decreases and then saturates. Additionally, we provide a performance analysis for different
ratios 7. We conduct a grid search for A to determine its optimal performance for each ratio. Notably,
for r < 0.3, our method consistently showcases significant improvements. This underscores the
importance of the information filtered out by our parameter competition balancing approach in the
merging process. More analysis about hyper-parameters are shown in App. B.2 and Fig. 7.

T5-base T5-large T5-base

ch 76 g 84 § 76 —— TIES-Merging
© © © —— PCB-Merging (ours)
£73 £80 £73
£70 276 £
9] o] o]
<67 TESM 72 ' o 70
o —_— -Merging o —— TIES-Merging o
<>(64 —— PCB-Merging (ours) <>(68 —— PCB-Merging (ours) g 67

08 1.0 12 14 16 18 2.0 1.0 1.2 14 16 1.8 2.0 22 01 02 03 04 05 0.6

various A at r=0.1 various A at r=0.1 various r with the optimal A

Figure 6: Performance with various hyperparameters A and 7.

6.3 Limitation and Future Work

While our approach provides valuable insights into model merging, several limitations should be
noted: (1) PCB-MERGING, like previous methods, relies on identical model architectures and shared
initializations, constraining its applicability across various model types. (2) Limited theoretical
understanding: model merging effectiveness may be influenced by task independence [34] and weight
disentanglement [55, 54], warranting further exploration. (3) Our approach does not effectively
address parameter redundancy, still relying on drop operations to mitigate interference and improve
performance. (4) Task vector magnitudes may not always effectively represent parameter importance,
necessitating further exploration for more efficient methods.

84754 https://doi.org/10.52202/079017-2691

7 Conclusions

In summary, we introduce PCB-MERGING to tackle challenges in model merging by incorporating
parameter competition balancing to rescale task vectors at the parameter level. Our method enhances
model merging performance without requiring additional training, leading to improved stability
and effectiveness across various scenarios. We demonstrate significant advancements in cross-task
merging, cross-domain merging, different training configurations, and out-of-domain generalization,
highlighting its potential impact in practical applications.

Acknowledgements

We thank all the reviewers for their valuable feedback on this paper. This work
was supported in part by National Science Foundation of China (62476070, 62376074,
12204130), Shenzhen College Stability Support Plan (GXWD20231128103232001) and Depart-
ment of Science and Technology of Guangdong (2024A1515011540), the Shenzhen Science
and Technology Program (Grants:JSGGKQTD20221101115655027, RKX20231110090859012,
SGDX20230116091244004), Shenzhen Start-Up Research Funds (Grant No.HA11409065), and the
Fundamental Research Funds for the Central Universities (Grant No. HIT.OCEF.2024047).

References

[1] S. K. Ainsworth, J. Hayase, and S. Srinivasa. Git re-basin: Merging models modulo permutation
symmetries. In Proceedings of the International Conference on Learning Representations
(ICLR), 2023.

[2] C. O. Alm, D. Roth, and R. Sproat. Emotions from text: machine learning for text-based
emotion prediction. In Proceedings of the Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 579-586, 2005.

[3] D. Arpit, H. Wang, Y. Zhou, and C. Xiong. Ensemble of averages: Improving model selection
and boosting performance in domain generalization. Advances in Neural Information Processing
Systems (NeurIPS), 35:8265-8277, 2022.

[4] S. H. Bach, V. Sanh, Z.-X. Yong, A. Webson, C. Raffel, N. V. Nayak, A. Sharma, T. Kim, M. S.
Bari, T. Fevry, et al. Promptsource: An integrated development environment and repository
for natural language prompts. In Proceedings of the Annual Meeting of the Association for
Computational Linguistics (ACL), 2022.

[5] R. Bommasani, D. A. Hudson, E. Adeli, R. Altman, S. Arora, S. von Arx, M. S. Bernstein,
J. Bohg, A. Bosselut, E. Brunskill, et al. On the opportunities and risks of foundation models.
arXiv preprint arXiv:2108.07258, 2021.

[6] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. d. O. Pinto, J. Kaplan, H. Edwards, Y. Burda,
N. Joseph, G. Brockman, et al. Evaluating large language models trained on code. arXiv
preprint arXiv:2107.03374, 2021.

[7] G. Cheng, J. Han, and X. Lu. Remote sensing image scene classification: Benchmark and state
of the art. Proceedings of the IEEE, 105(10):1865-1883, 2017.

[8] L. Choshen, E. Venezian, N. Slonim, and Y. Katz. Fusing finetuned models for better pretraining.
arXiv preprint arXiv:2204.03044, 2022.

[9] M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, and A. Vedaldi. Describing textures in the
wild. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR),2014.

[10] K. Cobbe, V. Kosaraju, M. Bavarian, M. Chen, H. Jun, L. Kaiser, M. Plappert, J. Tworek,
J. Hilton, R. Nakano, C. Hesse, and J. Schulman. Training verifiers to solve math word
problems. arXiv preprint arXiv:2110.14168, 2021.

[11] B. Dolan and C. Brockett. Automatically constructing a corpus of sentential paraphrases. In
International Workshop on Paraphrasing (IWP), 2005.

https://doi.org/10.52202/079017-2691 84755

[12] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani,
M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby. An image is worth 16x16
words: Transformers for image recognition at scale. In Proceedings of the International
Conference on Learning Representations (ICLR), 2021.

[13] G. Du, R. Jiang, S. Yang, H. Li, W. Chen, K. Li, S. K. Goh, and H.-K. Tang. Impacts of
darwinian evolution on pre-trained deep neural networks. arXiv preprint arXiv:2408.05563,
2024.

[14] G.Du,]J. Li, H. Liu, R. Jiang, S. Yu, Y. Guo, S. K. Goh, and H.-K. Tang. Knowledge fusion by
evolving weights of language models. arXiv preprint arXiv:2406.12208, 2024.

[15] D. Ferbach, B. Goujaud, G. Gidel, and A. Dieuleveut. Proving linear mode connectivity of
neural networks via optimal transport. In Proceedings of the International Conference on
Artificial Intelligence and Statistics (AISTATS), pages 3853-3861, 2024.

[16] C. Fifty, E. Amid, Z. Zhao, T. Yu, R. Anil, and C. Finn. Efficiently identifying task groupings
for multi-task learning. Advances in Neural Information Processing Systems (NeurlPS), 34:
27503-27516, 2021.

[17] R. A. Fisher. On the mathematical foundations of theoretical statistics. Philosophical transac-
tions of the Royal Society of London. Series A, containing papers of a mathematical or physical
character, 222(594-604):309-368, 1922.

[18] T. Garipov, P. Izmailov, D. Podoprikhin, D. P. Vetrov, and A. G. Wilson. Loss surfaces, mode
connectivity, and fast ensembling of dnns. Advances in Neural Information Processing Systems
(NeurlIPS), 31, 2018.

[19] D. Giampiccolo, B. Magnini, I. Dagan, and W. B. Dolan. The third pascal recognizing textual
entailment challenge. In Proceedings of the ACL-PASCAL workshop on textual entailment and
paraphrasing, pages 1-9, 2007.

[20] V. Gupta, S. A. Serrano, and D. DeCoste. Stochastic weight averaging in parallel: Large-batch
training that generalizes well. arXiv preprint arXiv:2001.02312, 2020.

[21] N. Hansen and A. Ostermeier. Adapting arbitrary normal mutation distributions in evolution
strategies: The covariance matrix adaptation. In Proceedings of IEEE International Conference
on Evolutionary Computation (ICEC), pages 312-317, 1996.

[22] P. Helber, B. Bischke, A. Dengel, and D. Borth. Eurosat: A novel dataset and deep learning
benchmark for land use and land cover classification. Journal of Selected Topics in Applied
Earth Observations and Remote Sensing, 12(7):2217-2226, 2019.

[23] G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015.

[24] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and W. Chen. Lora:
Low-rank adaptation of large language models. In Proceedings of the International Conference
on Learning Representations (ICLR), 2022.

[25] C. Huang, Q. Liu, B. Y. Lin, T. Pang, C. Du, and M. Lin. Lorahub: Efficient cross-task
generalization via dynamic lora composition. arXiv preprint arXiv:2307.13269, 2023.

[26] L. Huang, R. Le Bras, C. Bhagavatula, and Y. Choi. Cosmos ga: Machine reading comprehen-
sion with contextual commonsense reasoning. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing and the International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), pages 2391-2401, 2019.

[27] G. Ilharco, M. Wortsman, S. Y. Gadre, S. Song, H. Hajishirzi, S. Kornblith, A. Farhadi, and
L. Schmidt. Patching open-vocabulary models by interpolating weights. Advances in Neural
Information Processing Systems (NeurlPS), 35:29262-29277, 2022.

[28] G. Ilharco, M. T. Ribeiro, M. Wortsman, S. Gururangan, L. Schmidt, H. Hajishirzi, and
A. Farhadi. Editing models with task arithmetic. In Proceedings of the International Conference
on Learning Representations (ICLR), 2023.

84756 https://doi.org/10.52202/079017-2691

[29] R. Jiang, G. Du, S. Yu, Y. Guo, S. K. Goh, and H.-K. Tang. Cade: Cosine annealing differential
evolution for spiking neural network. arXiv preprint arXiv:2406.02349, 2024.

[30] X. Jin, X. Ren, D. Preotiuc-Pietro, and P. Cheng. Dataless knowledge fusion by merging
weights of language models. In Proceedings of the International Conference on Learning
Representations (ICLR), 2023.

[31] J. D. M.-W. C. Kenton and L. K. Toutanova. BERT: Pre-training of deep bidirectional trans-
formers for language understanding. In Proceedings of the Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies
(NAACL-HLT), pages 4171-4186, 2019.

[32] T. Khot, P. Clark, M. Guerquin, P. Jansen, and A. Sabharwal. Qasc: A dataset for question
answering via sentence composition. In Proceedings of the AAAI Conference on Artificial
Intelligence (AAAI), volume 34, pages 8082-8090, 2020.

[33] D.P. Kingma and J. Ba. Adam: A method for stochastic optimization. In Proceedings of the
International Conference on Learning Representations (ICLR), 2015.

[34] M. Klimaszewski, P. Andruszkiewicz, and A. Birch. No train but gain: Language arithmetic for
training-free language adapters enhancement. arXiv preprint arXiv:2404.15737, 2024.

[35] J. Krause, M. Stark, J. Deng, and L. Fei-Fei. 3d object representations for fine-grained
categorization. In Proceedings of the IEEE International Conference on Computer Vision
Workshops (ICCVW), pages 554-561, 2013.

[36] Y. LeCun. The mnist database of handwritten digits, 1998. http://yann.lecun.com/
exdb/mnist/.

[37] H. Levesque, E. Davis, and L. Morgenstern. The winograd schema challenge. In Proceedings
of the International Conference on the Principles of Knowledge Representation and Reasoning

(KR), 2012.

[38] H.Li, Y. Zhang, F. Koto, Y. Yang, H. Zhao, Y. Gong, N. Duan, and T. Baldwin. Cmmlu: Mea-
suring massive multitask language understanding in chinese. arXiv preprint arXiv:2306.09212,
2023.

[39] W. Li, Y. Peng, M. Zhang, L. Ding, H. Hu, and L. Shen. Deep model fusion: A survey. arXiv
preprint arXiv:2309.15698, 2023.

[40] Y. Li, J. Yosinski, J. Clune, H. Lipson, and J. Hopcroft. Convergent learning: Do different
neural networks learn the same representations? arXiv preprint arXiv:1511.07543, 2015.

[41] Y. Li, H. Su, X. Shen, W. Li, Z. Cao, and S. Niu. Dailydialog: A manually labelled multi-turn
dialogue dataset. arXiv preprint arXiv:1710.03957, 2017.

[42] H. Liu, D. Tam, M. Mugeeth, J. Mohta, T. Huang, M. Bansal, and C. A. Raffel. Few-shot
parameter-efficient fine-tuning is better and cheaper than in-context learning. Advances in
Neural Information Processing Systems (NeurIPS), 35:1950-1965, 2022.

[43] V. Liu, C. Banea, and R. Mihalcea. Grounded emotions. In Proceedings of the International
Conference on Affective Computing and Intelligent Interaction (ACII), pages 477-483, 2017.

[44] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer,
and V. Stoyanov. Roberta: A robustly optimized bert pretraining approach. arXiv preprint
arXiv:1907.11692, 2019.

[45] M.-C. d. Marneffe, M. Simons, and J. Tonhauser. The CommitmentBank: Investigating
projection in naturally occurring discourse. In proceedings of Sinn und Bedeutung, volume 23,
pages 107-124, 2019.

[46] M. S. Matena and C. A. Raffel. Merging models with fisher-weighted averaging. Advances in
Neural Information Processing Systems (NeurIPS), 35:17703-17716, 2022.

https://doi.org/10.52202/079017-2691 84757

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

[47] B. W. Matthews. Comparison of the predicted and observed secondary structure of t4 phage
lysozyme. Biochimica et Biophysica Acta (BBA)-Protein Structure, 1975.

[48] S. Mohammad and F. Bravo-Marquez. Wassa-2017 shared task on emotion intensity. In
Proceedings of the Workshop on Computational Approaches to Subjectivity, Sentiment and
Social Media Analysis (WASSA), pages 34-49, 2017.

[49] S. M. Mohammad. #emotional tweets. In Proceedings of the First Joint Conference on Lexical
and Computational Semantics (SEM), pages 246-255, 2012.

[50] S. M. Mohammad, X. Zhu, S. Kiritchenko, and J. Martin. Sentiment, emotion, purpose, and
style in electoral tweets. Information Processing & Management, 51(4):480-499, 2015.

[51] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, A. Y. Ng, et al. Reading digits in
natural images with unsupervised feature learning. In NIPS workshop on deep learning and
unsupervised feature learning, volume 2011, page 7, 2011.

[52] Y. Nie, A. Williams, E. Dinan, M. Bansal, J. Weston, and D. Kiela. Adversarial NLI: A new
benchmark for natural language understanding. In Proceedings of the Annual Meeting of the
Association for Computational Linguistics (ACL), 2020.

[53] L. A. M. Oberlidnder and R. Klinger. An analysis of annotated corpora for emotion classification
in text. In Proceedings of the International Conference on Computational Linguistics (COLING),
pages 2104-2119, 2018.

[54] H. Orgad, B. Kawar, and Y. Belinkov. Editing implicit assumptions in text-to-image diffusion
models. In Proceedings of the IEEE/CVF International Conference on Computer Vision (CVPR),
pages 7053-7061, 2023.

[55] G. Ortiz-Jimenez, A. Favero, and P. Frossard. Task arithmetic in the tangent space: Improved
editing of pre-trained models. Advances in Neural Information Processing Systems (NeurIPS),
36, 2024.

[56] M. T. Pilehvar and J. Camacho-Collados. WiC: The word-in-context dataset for evaluating
context-sensitive meaning representations. In Proceedings of the Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics: Human Language Technologies
(NAACL-HLT), 2019.

[57] C. Poth, J. Pfeiffer, A. Riicklé, and I. Gurevych. What to pre-train on? efficient intermediate
task selection. In Proceedings of the Conference on Empirical Methods in Natural Language
Processing (EMNLP), 2021.

[58] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,
P. Mishkin, J. Clark, et al. Learning transferable visual models from natural language supervision.
In Proceedings of the International Conference on Machine Learning (ICML), pages 8748—8763,
2021.

[59] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J.
Liu. Exploring the limits of transfer learning with a unified text-to-text transformer. Journal of
Machine Learning Research (JMLR), 21(140):1-67, 2020.

[60] A. Rame, M. Kirchmeyer, T. Rahier, A. Rakotomamonjy, P. Gallinari, and M. Cord. Di-
verse weight averaging for out-of-distribution generalization. Advances in Neural Information
Processing Systems (NeurIPS), 35:10821-10836, 2022.

[61] M. Roemmele, C. A. Bejan, and A. S. Gordon. Choice of plausible alternatives: An evaluation
of commonsense causal reasoning. In 2011 AAAI Spring Symposium Series, 2011.

[62] A.Rogers, O. Kovaleva, M. Downey, and A. Rumshisky. Getting closer to Al complete question

answering: A set of prerequisite real tasks. In Proceedings of the AAAI Conference on Artificial
Intelligence (AAAI), volume 34, pages 8722-8731, 2020.

84758 https://doi.org/10.52202/079017-2691

[63] B. Roziere, J. Gehring, F. Gloeckle, S. Sootla, I. Gat, X. E. Tan, Y. Adi, J. Liu, R. Sauvestre,
T. Remez, J. Rapin, A. Kozhevnikov, 1. Evtimov, J. Bitton, M. Bhatt, C. C. Ferrer, A. Grattafiori,
W. Xiong, A. Défossez, J. Copet, F. Azhar, H. Touvron, L. Martin, N. Usunier, T. Scialom, and
G. Synnaeve. Code llama: Open foundation models for code. arXiv preprint arXiv:2308.12950,
2023.

[64] O. Sagi and L. Rokach. Ensemble learning: A survey. Wiley interdisciplinary reviews: data
mining and knowledge discovery, 8(4):e1249, 2018.

[65] K. Sakaguchi, R. L. Bras, C. Bhagavatula, and Y. Choi. Winogrande: An adversarial winograd
schema challenge at scale. Communications of the ACM, 64(9):99-106, 2021.

[66] V. Sanh, A. Webson, C. Raffel, S. H. Bach, L. Sutawika, Z. Alyafeai, A. Chaffin, A. Stiegler,
T. L. Scao, A. Raja, et al. Multitask prompted training enables zero-shot task generalization. In
Proceedings of the International Conference on Learning Representations (ICLR), 2022.

[67] M. Sap, H. Rashkin, D. Chen, R. Le Bras, and Y. Choi. Social iga: Commonsense reasoning
about social interactions. In Proceedings of the Conference on Empirical Methods in Natural

Language Processing and the International Joint Conference on Natural Language Processing
(EMNLP-1JCNLP), pages 4463—4473, 2019.

[68] K.R. Scherer and H. G. Wallbott. Evidence for universality and cultural variation of differential
emotion response patterning. Journal of personality and social psychology, 66(2):310, 1994.

[69] H. Schuff, J. Barnes, J. Mohme, S. Padd, and R. Klinger. Annotation, modelling and analysis
of fine-grained emotions on a stance and sentiment detection corpus. In Proceedings of the
Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis
(WASSA), pages 13-23, 2017.

[70] R. Sharma, J. Allen, O. Bakhshandeh, and N. Mostafazadeh. Tackling the story ending biases in
the story cloze test. In Proceedings of the Annual Meeting of the Association for Computational
Linguistics (ACL), pages 752757, 2018.

[71] E. Shnarch, A. Halfon, A. Gera, M. Danilevsky, Y. Katsis, L. Choshen, M. S. Cooper, D. Epel-
boim, Z. Zhang, D. Wang, et al. Label sleuth: From unlabeled text to a classifier in a few

hours. In Proceedings of the Conference on Empirical Methods in Natural Language Processing
(EMNLP), 2022.

[72] S. P. Singh and M. Jaggi. Model fusion via optimal transport. Advances in Neural Information
Processing Systems (NeurIPS), 33:22045-22055, 2020.

[73] R. Socher, A. Perelygin, J. Wu, J. Chuang, C. D. Manning, A. Y. Ng, and C. Potts. Recursive
deep models for semantic compositionality over a sentiment treebank. In Proceedings of the
Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 1631-1642,
2013.

[74] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel. The german traffic sign recognition
benchmark: a multi-class classification competition. In Proceedings of the International Joint
Conference on Neural Networks (IJCNN), 2011.

[75] G. Stoica, D. Bolya, J. Bjorner, P. Ramesh, T. Hearn, and J. Hoffman. Zipit! merging models
from different tasks without training. In Proceedings of the International Conference on
Learning Representations (ICLR), 2024.

[76] C. Strapparava and R. Mihalcea. Semeval-2007 task 14: Affective text. In Proceedings of the
International Workshop on Semantic Evaluations (SemEval), pages 7074, 2007.

[77] T. Sun, Y. Shao, H. Qian, X. Huang, and X. Qiu. Black-box tuning for language-model-as-a-

service. In Proceedings of the International Conference on Machine Learning (ICML), pages
20841-20855, 2022.

[78] O. Tafjord, M. Gardner, K. Lin, and P. Clark. Quartz: An open-domain dataset of qualitative
relationship questions. In Proceedings of the Conference on Empirical Methods in Natural

Language Processing and the International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 5940-5945, 2019.

https://doi.org/10.52202/079017-2691 84759

[79] N. Tatro, P.-Y. Chen, P. Das, I. Melnyk, P. Sattigeri, and R. Lai. Optimizing mode connectivity

via neuron alignment. Advances in Neural Information Processing Systems (NeurlPS), 33:
15300-15311, 2020.

[80] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov, S. Batra,
P. Bhargava, S. Bhosale, et al. Llama 2: Open foundation and fine-tuned chat models. arXiv
preprint arXiv:2307.09288, 2023.

[81] F. Wan, X. Huang, D. Cai, X. Quan, W. Bi, and S. Shi. Knowledge fusion of large language
models. arXiv preprint arXiv:2401.10491, 2024.

[82] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. R. Bowman. Glue: A multi-task
benchmark and analysis platform for natural language understanding. In Proceedings of the
International Conference on Learning Representations (ICLR), 2019.

[83] H. Wang, M. Yurochkin, Y. Sun, D. Papailiopoulos, and Y. Khazaeni. Federated learning with

matched averaging. In Proceedings of the International Conference on Learning Representations
(ICLR), 2020.

[84] A. Warstadt, A. Singh, and S. Bowman. Neural network acceptability judgments. Transactions
of the Association for Computational Linguistics, 7:625-641, 2019.

[85] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T. Rault, R. Louf,
M. Funtowicz, et al. Huggingface’s transformers: State-of-the-art natural language processing.
arXiv preprint arXiv:1910.03771, 2019.

[86] M. Wortsman, G. Ilharco, S. Y. Gadre, R. Roelofs, R. Gontijo-Lopes, A. S. Morcos,
H. Namkoong, A. Farhadi, Y. Carmon, S. Kornblith, et al. Model soups: averaging weights
of multiple fine-tuned models improves accuracy without increasing inference time. In Pro-
ceedings of the International Conference on Machine Learning (ICML), pages 2396523998,
2022.

[87] J. Xiao, K. A. Ehinger, J. Hays, A. Torralba, and A. Oliva. Sun database: Exploring a large
collection of scene categories. International Journal of Computer Vision (IJCV), 119:3-22,
2016.

[88] Z. Xu, K. Yuan, H. Wang, Y. Wang, M. Song, and J. Song. Training-free pretrained model
merging. arXiv preprint arXiv:2403.01753, 2024.

[89] P. Yadav, D. Tam, L. Choshen, C. A. Raffel, and M. Bansal. Ties-merging: Resolving interfer-
ence when merging models. Advances in Neural Information Processing Systems (NeurlPS),
36, 2024.

[90] E. Yang, Z. Wang, L. Shen, S. Liu, G. Guo, X. Wang, and D. Tao. Adamerging: Adaptive model
merging for multi-task learning. In Proceedings of the International Conference on Learning
Representations (ICLR), 2024.

[91] Y. Yang, W.-t. Yih, and C. Meek. Wikiqa: A challenge dataset for open-domain question
answering. In Proceedings of the Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 2013-2018, 2015.

[92] Y. Yang, G. Du, C. K. Toa, H.-K. Tang, and S. K. Goh. Evolutionary neural architecture search
for 3d point cloud analysis. arXiv preprint arXiv:2408.05556, 2024.

[93] L. Yu, W. Jiang, H. Shi, J. Yu, Z. Liu, Y. Zhang, J. T. Kwok, Z. Li, A. Weller, and W. Liu.
Metamath: Bootstrap your own mathematical questions for large language models. arXiv
preprint arXiv:2309.12284, 2023.

[94] L. Yu, B. Yu, H. Yu, F. Huang, and Y. Li. Language models are super mario: Absorbing abilities
from homologous models as a free lunch. arXiv preprint arXiv:2311.03099, 2023.

[95] R. Zellers, A. Holtzman, Y. Bisk, A. Farhadi, and Y. Choi. HellaSwag: Can a machine
really finish your sentence? In Proceedings of the Annual Meeting of the Association for
Computational Linguistics (ACL), 2019.

84760 https://doi.org/10.52202/079017-2691

[96] J. Zhang, J. Liu, J. He, et al. Composing parameter-efficient modules with arithmetic operation.
Advances in Neural Information Processing Systems (NeurIPS), 36:12589-12610, 2023.

[97] Y. Zhang, J. Baldridge, and L. He. Paws: Paraphrase adversaries from word scrambling. In Pro-
ceedings of the Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies (NAACL-HLT), 2019.

[98] Z.Zhou, Y. Yang, X. Yang, J. Yan, and W. Hu. Going beyond linear mode connectivity: The
layerwise linear feature connectivity. Advances in Neural Information Processing Systems

(NeurIPS), 36, 2024.

[99] F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, and Q. He. A comprehensive
survey on transfer learning. Proceedings of the IEEE, 2020.

https://doi.org/10.52202/079017-2691 84761

Appendix for PCB-Merging

A Novelty and Contribution

Our research aims to unlock the full potential of task vector-based approaches by adjusting coefficients
at the parameter level through a balancing mechanism that addresses parameter competition across
different tasks. We re-examine existing model merging methods and highlight the critical role of
parameter competition awareness. To clearly demonstrate the innovation of our method, we conduct
a comparative analysis with existing state-of-the-art baseline methods.

Comparison with TIES-Merging Both the TIES-Merging [89] and our approach address parameter
competition or interference through self-awareness and cross-awareness. However, there are several
key differences:

1. When performing Drop / Trim to reduce redundancy, we consider both intra-competition
and inter-competition, whereas TIES-Merging primarily considers parameter magnitude.

2. In terms of cross-awareness, TIES-Merging only considers the direction of parameters
across different tasks, neglecting parameter weights. Our method more accurately measures
the similarity of task vectors to assess conflict levels. We conducted ablation experiments to
demonstrate the effectiveness of inter-balancing, as shown in App. B.1 and Tab. 6.

3. Our approach modulates the coefficient of each parameter, while TIES-Merging uses a
uniform scale for all tasks and parameters. Ablation experiments in the Analysis section
validate the superiority of our method, as shown in Section 6.1 and Tab. 5.

Comparison with AdaMerging Although AdaMerging [90] has achieved significant performance
improvements in image classification, it has several drawbacks:

1. This method requires unsupervised test samples, which is often impractical.

2. The use of Shannon entropy to train the adaptive weights limits the method to classification
tasks.

3. AdaMerging requires unsupervised training with the availability of (unlabeled) test samples,
which is a different setup than generalizing to an entirely unseen test set.

In contrast, our proposed PCB-Merging retains the efficiency and lightwight nature as most previous
merging methods. Additionally, we conducted experiments on image classification tasks to compare
the two methods, as shown in App. C.2 and Tab. 7.

Comparison with Fisher Merging and RegMean The same as Fisher Merging [46] and Reg-
Mean [30], our PCB-Merging method also introduces additional matrices to adjust parameter coeffi-
cients, but there are two key differences:

1. Fisher Merging and RegMean consider only self-awareness or cross-awareness, respectively.
In contrast, our method accounts for various scenarios of parameter competition.

2. Both Fisher Merging and RegMean require additional gradient-based computations to obtain
the Fisher Information Matrix or Inner Product Matrix, which demand more GPU resources.
Our method, however, is based on task vectors, making it easier and lightwight to implement.

Comparison with DARE Both DARE [94] and PCB-Merging drop and rescale task vectors for
model merging, but there are significant differences:

1. DARE randomly drops parameters according to a drop rate p, while we consider parameter
competition.

2. DARE rescales the remaining parameters by a uniform factor of 1/(1 — p), whereas we
compute a specific coefficient for each task and each parameter.

3. DARE is mainly used in LLM model merging to maintain the original fine-tuned perfor-
mance. In contrast, we find that dropping parameters can further enhance performance
beyond the fine-tuned model with a suitable scale and intra-balancing.

84762 https://doi.org/10.52202/079017-2691

Comparison with Lorahub Lorahub [25] aims
to establish a strategic framework for composing
LoRA modules trained on diverse tasks to achieve
adaptable performance on new tasks. This frame-
work utilizes an evolution algorithm (CMA-ES
[21]) to search for the coefficients of each LoRA
module, as introduced in Section 3.3. However,
this search-based approach is time-consuming and
can only be applied at the task level, leading
to limited performance. Moreover, LoRA lacks
self-awareness and considers only competition
between different tasks.

Comparison with Task Arithmetic and PEM
Compositon Both Task Arithmetic [28] and
PEM Composition [96] methods primarily focus
on exploring potential applications of task vectors,
including distribution generalization, unlearning,
and domain transfer. However, they do not ad-
dress parameter competition or balance the coef-
ficients of different tasks or parameters, which
limits their performance.

B Additional Analysis

B.1 Additional Ablation Studies

Algorithm 1 PCB-Merging Procedure.

Input: Fine-tuned models {6;}! ;, Initializa-
tion Oy, mask ratio r and coefficient A.

Output: Merged Model 6,,

> Create task vectors.

{mitie = {021 — Opre

for i inl,...,n do

> Step 1: Intra-Balancing.

Bintra,i = Softmax(N * Norm(r; ©® 7;))

> Step 2: Inter-Balancing.
n
Binter,i = Ej:1 SOftmaX(Ti O] Tj)
> Step 3: Drop low-scoring parameters.

ﬂi = ﬂintra,i © ﬁinter,i
m; = f; > sorted(5;)[(1 —r) x D]

Bi=mi © B

end

> sStep 4:
Tm = Z?:l(ﬁi ©7)/ Z?:l Bi
> Obtain merged checkpoint
O < Ot + X * Ty

return 6,,

Rescale task vectors.

We present additional ablation experiments on PCB-MERGING, as shown in Tab. 6. In addition to the
four main steps discussed in Section 6.1 (Intra-Balancing, Inter-Balancing, Drop, and Rescale), we
also tested other influencing factors:

1. Activation functions: We replaced the softmax activation function with common alternatives
like sigmoid, ReLLU, and tanh. The results show minimal performance loss with different
activation functions, except for ReLU in intra-balancing. This is because these activation
functions can represent complex nonlinear relationships to balance the values of parameters.

2. Without regulator N: We removed the regulator N in intra-balancing, which controls intra-
competition according to the number of models being merged.

3. Inter-balancing with only sign: We computed inter-balancing using only the sign (—1,1)
instead of the actual values, where the sign represents a direction in the D-dimensional
parameter space relative to initialization. This experiment aims to compare with TIES-
Merging, which addresses sign conflicts.

4. Element-wise multiplication vs. Addition: We combined intra-balancing and inter-balancing
using addition instead of multiplication. This resulted in a performance loss of 4.1% and
3.9% on the ViT-B/32 and T5-base models, respectively.

In summary, these ablation experiments demonstrate the functionality and impact of each component
in our method.
Table 6: More extensive ablation studies on PCB-MERGING

Ablation (—) activation in intra-balancing | activation in inter-balancing without inter-balancing replace multiplication PCB
Model (}) sigmoid relu tanh sigmoid relu tanh regulator N | with only sign by adding Merging

ViT-B/32 76.1 74.9 76.1 76.2 76.1 76.4 74.7 75.7 72.2 76.3

T5-base 75.3 72.8 75.2 75.3 75.2 75.4 74.1 74.5 71.5 75.4

B.2 Additional Hyper-parameters Analysis

In this section, we present additional experimental results regarding hyper-parameters, observing
similar phenomena and conclusions as those in Section 6.2. We explored the effects of A and on

https://doi.org/10.52202/079017-2691 84763

the performance of merging multiple NLP tasks, as discussed in Section 5.1. First, we show the
performance of various models for different values of A, keeping r = 0.2. Our method is compared
to the state-of-the-art baseline, TIES-Merging. As shown in Fig. 7, our approach achieves a higher
performance ceiling within the optimal range of 0.8 to 1.6. As) increases, the performance initially
decreases and then levels off.

Furthermore, we provide a performance analysis for different values of r with T5-large. We conducted
a grid search for) to find its optimal performance for each ratio. Significantly, for » < 0.4, our method
consistently shows substantial improvements. This highlights the importance of the information
filtered by our parameter competition balancing approach in the merging process.

T5-base T5-large T5-large
§ 74 § 82 § 82 —— TIES-Merging
—— PCB-Merging (ours)
© © ©
§ 72 § 78 g 80
£70 74 £78
& & &
6168 —— TIES-Merging 6170 —— TIES-Merging 0'176
<>(66 —— PCB-Merging (ours) <>(661« —— PCB-Merging (ours) <>(74
0.8 1.0 1.2 1.4 1.6 08 1.0 12 14 16 1.8 2.0 01 02 03 04 05 0.6
various A at r=0.2 various A at r=0.2 various r with the optimal A

Figure 7: Performance with various hyperparameters A and 7.

C Additional Results

C.1 Merging Different Number of Tasks

We evaluated the performance of the merged 11
1 3 3 ()] . Weight A\ i TIES-Mergi PCB-M ()
model on in-domain tasks and analyzed how it Y o WelghtAveraging —&= TIESMerging = PCB-Merging (ours

varies with the number of tasks being merged. G 1 o

In Fig. 8, we normalized each task’s accuracy to £

its fine-tuned model’s performance and reported © 0.9
—

the average normalized accuracy for in-domain

tasks with T5-base model. We compared our % 0.8
method against the strongest baseline, TIES- 3
Merging [89], and simple averaging [86]. Each < 0.7
data point represents the merging of a subset
of tasks, with the solid line indicating the aver-
age performance across multiple subsets. We
observed that as the number of merged tasks
increases, the performance of all methods de-
clines, suggesting that more tasks lead to increased parameter competition. Additionally, TIES-
Merging’s performance drops faster than PCB-Merging, indicating that our PCB-Merging method is
more effective in balancing parameter competition.

2 3 4 5 6 7
Number of Tasks

Figure 8: Average normalized performance when
merging a different number of tasks.

C.2 Compare with Adamerging

We conducted cross-task merging experiments
on image classification tasks to compare our
method with AdaMerging [90]. AdaMerging
employs unsupervised training to learn merging

Table 7: Compare the performance of different
merging methods after applying unsupervised train-
ing with AdaMerging.

coefficients for each task vector in Task Arith- Model | Coefficient | AdaMerge Ada + TIES Ada + PCB
metic using unlabeled test datasets. Addition- . o ., | Task-wise 71.8 74.9 77.1
ally, Layer-wise AdaMerging learns coefficients Layer-wise | 80.1 8L.1 81.7
for each layer of each task vector. ViTL/14 | Teskewise | 85.6 86.8 88.2
Layer-wise 90.8 91.0 91.3

AdaMerging can be further improved by apply-
ing strategies from TIES-Merging to modify task vectors or using PCB-Matrix to adjust the task
vectors. As shown in Tab. 7, our method enhances AdaMerging, resulting in performance improve-
ments of 2.2% and 1.4% on the ViT-B/32 and ViT-L/14 models, respectively.

84764 https://doi.org/10.52202/079017-2691

C.3 Compare with TIES-Merging using Evolutionary Strategy

To validate the effectiveness of the evolutionary strategy (ES) proposed in Section 3.3, we applied ES
to intelligently search for coefficients of different tasks in other baseline methods. The results are
shown in Tab. 8. Notably, after applying ES, TIES-Merging showed significant improvement. We
also compared TIES-Merging with ES against our approach with ES. The results demonstrate the
effectiveness of PCB-MERGING, particularly with a 2.2% performance gain on the T5-large model.

Table 8: Comparing the performance of different methods with evolutionary strategies (ES) after
cross-task merging.

Task (—) 7 NLP Tasks 11 PEFT Tasks | 3 LLM Tasks 8 Vision Tasks
Method (}) | T5-Base TS-Large (I1A)? LLaMa2 ViT-B/32 ViT-L/14
Ties-Merging | 73.6 80.3 66.8 34.2 73.6 86.0
PCB-MERGING (ours) | 75.4 (+1.8) 82.1 (+1.8) | 68.1 (+1.3) 35.1 (+0.9) 76.4 (+2.8) 87.5 (+1.5)
Ties-Merging + ES | 74.8 81.0 67.6 34.3 74.9 86.8
PCB-MERGING + ES (ours) | 76.7 (+1.9) 83.2 (+2.2) | 68.8 (+1.2) 35.3 (+1.0) 77.0 (+2.1) 88.1 (+1.6)

C.4 Comprehensive Task-Level Results

We provide the task level for all the cross-task merging experiments in the main Tab. 2.
Tab. 9, 10, 11, 12, and 13 provide the task level results T5-Base, T5-Large [59], IA3 [42], ViT-
B/32, and ViT-L/14 [12] respectively. The task level results of the out-of-domain experiments for
T5-Base and T5-Large can be found in Tab. 14.

Table 9: Test set performance when merging T5-base models on seven NLP tasks. Please refer to
Section 5.1 for experimental details.

Task(—) L. Test Set Performance
Validation | Average . .

Method({) paws qasc quartz story_cloze wiki_qa winogrande wsc
Zeroshot - 53.5 499 358 533 48.1 76.2 50 61.1
Fine-tuned - 83.1 946 984 8l.1 84.9 95.8 64.5 62.5
Multitask - 83.6 94 979 825 86.7 95 64.1 65.3
Averaging o) [86] X 65.3 674 834 608 50.3 93.2 51.7 50.0
Task Arithmeticjiciroz [28] X 535 50.6 224 550 63.6 79.2 53.9 50.0
Ties-Merging cuirs23 [89] X 69.5 76.1 795 68.5 65.6 86.3 56.2 54.2
PCB-MERGING (ours) X 73.8 77.1 915 685 75.8 88.2 61.1 54.2
Fisher Mergingxcuirs2 [46] v 68.3 66.7 856 635 57.1 90.1 54.2 60.8
RegMean;icir23 [30] v 72.7 772 938 63.6 64.6 90.4 58.4 60.7
Task Arithmeticjicir23 [28] v 73.0 69.6 915 673 76.1 91.3 58.3 56.9
Ties-Mergingeuirs23 [89] v 73.6 822 848 66.1 73.5 87.0 60.2 61.1
PCB-MERGING (ours) v 75.4 79.0 932 658 76.1 89.9 59.8 63.9

Table 10: Test set performance when merging T5-large models on seven NLP tasks. Please refer to
Section 5.1 for experimental details.

Task(—) Sy . Test Set Performance
Validation | Average . .

Method(]) paws qasc quartz story_cloze wiki_qa winogrande wsc
Zeroshot - 53.1 582 542 541 543 70.9 49.2 63.9
Fine-tuned - 88.9 945 983 885 914 96.2 74.5 79.2
Multitask - 88.1 942 985 893 92 95.4 73.5 73.6
Averaging oy [86] X 54.7 572 264 714 54.8 86.6 50.2 36.1
Task Arithmeticjicir2s [28] X 73.6 69.7 836 583 77.4 94.4 59.3 72.2
Ties-Merging euirs23 [89] X 71.7 712 971 742 74.9 73.3 62.9 48.6
PCB-MERGING (ours) X 77.1 78.1 98 75.4 71.7 89.1 64.6 56.9
Fisher Mergingcuirs2 [46] v 68.7 684 83 65.5 624 94.1 58.2 49.2
RegMeanici k23 [30] v 79.8 839 972 732 82.6 94.1 63.2 64.4
Task Arithmeticjiciro3 [28] v 80.2 776 96.6 75.1 85.6 93.8 61.8 70.8
Ties-Mergingneuirs23 [89] v 80.3 782 975 728 83.7 94.5 64.5 70.8
PCB-MERGING (ours) v 82.1 82.0 984 722 85.6 94.0 67.5 75.0

https://doi.org/10.52202/079017-2691 84765

Table 11: Test set performance when merging (IA)? models on eleven tasks. Please refer to Section
5.1 for experimental details.

Task(—) co Natural Language Inference Sentence Completion Co-reference | WSD
Validation Average . X

Method(]) RTE CB ANLIlI ANLI2 ANLI3 COPA Hella. Story. WSC Wino. | WiC

Zeroshot - 53.1 582 542 355 344 344 75.0 39.2 8.5 639 512 51.9

Fine-Tuned - 71.4 827 958 704 46.5 53.0 853 444 950 653 751 71.7

57.9 812 583 433 39.1 40.0 80.9 40.1 924 528 538 55.0
59.2 765 792 598 475 48.2 66.2 314 815 514 577 51.6
64.9 812 875 581 46.5 47.4 80.2 426 91.1 583 608 59.9
66.1 859 833 642 478 45.9 824 4.7 912 639 619 57.1
62.2 833 833 459 41.0 422 83.1 422 941 583 567 54.2
58 812 583 433 39.2 40.2 80.9 40.1 925 535 538 55

63.9 74.1 833 608 49.4 50.0 87.5 41.5 953 493 628 491
66.8 78.6 875 66.6 513 51.5 81.7 432 909 576 670 584
68.1 80.0 833 67.1 511 49.6 88.3 4.7 928 618 67.6 64.7

Averagingicyi [86]

Task Arithmeticjici o3 [28]
TIES-Merging~curirs2s) [89]
PCB-MERGING (ours)
Fisher Merging~rs2 [46]
RegMeanicir3 [30]

Task Arithmeticiicir>3[28]
TIES-Mergingxcuirs2s [89]
PCB-MERGING (ours)

CNN N A% % %

Table 12: Test set performance when merging ViT-B/32 models on 8 vision tasks. Please refer to
Section 5.1 for experimental details.

Task(—) A Test Set Performance
Validation | Average
Method(]) SUN397 Cars RESISC45 EuroSAT SVHN GTSRB MNIST DTD
Individual - 90.5 75.3 71.7 96.1 99.7 97.5 98.7 99.7 79.4
Multitask - 88.9 74.4 719 98.2 98.9 99.5 93.9 72.9 95.8
Averaging v [86] X 65.8 65.3 63.4 71.4 71.7 64.2 52.8 87.5 50.1
Task Arithmeticiiciro: [28] X 60.4 36.7 41 53.8 64.4 80.6 66 98.1 425
Ties-Merging s> [89] X 724 59.8 58.6 70.7 79.7 86.2 72.1 98.3 54.2
PCB-MERGING (ours) X 75.9 65.8 64.4 78.1 81.1 84.9 771 98.0 58.4
Fisher Mergingncuirs22 [46] v 68.3 68.6 69.2 70.7 66.4 72.9 51.1 87.9 59.9
RegMeanicir23 [30] v 71.8 65.3 63.5 75.6 78.6 78.1 67.4 93.7 52
Task Arithmeticiicir23 [28] v 70.1 63.8 62.1 72 77.6 74.4 65.1 94 522
Ties-Merging s> [89] v 73.6 64.8 62.9 74.3 78.9 83.1 71.4 97.6 56.2
PCB-MERGING (ours) v 76.3 66.7 65.5 78.5 79.3 86.4 77.1 98.2 59.1

Table 13: Test set performance when merging ViT-L/14 models on 8 vision tasks. Please refer to
Section 5.1 for experimental details.

Task(—) S Test Set Performance
Validation | Average

Method(]) SUN397 Cars RESISC45 EuroSAT SVHN GTSRB MNIST DTD

Fine-tuned - 94.2 82.3 92.4 97.4 100 98.1 99.2 99.7 84.1

Multitask - 93.5 90.6 84.4 99.2 99.1 99.6 96.3 80.8 97.6

Averagingicviio [86] X 79.6 72.1 81.6 82.6 91.9 78.2 70.7 97.1 62.8

Task Arithmeticiciros [28] X 83.3 72.5 79.2 84.5 90.6 89.2 86.5 99.1 64.3
Ties-Mergingncuirs23 [89] X 86 76.5 85 89.3 95.7 90.3 83.3 99 68.8

PCB-MERGING (ours) X 86.9 75.8 86 89.2 96 88 90.9 99.1 70

Fisher Merging ncuivs22 [46] v 82.2 69.2 88.6 875 93.5 80.6 74.8 933 70
RegMeanicir23 [30] v 83.7 73.3 81.8 86.1 97 88 84.2 98.5 60.8

Task Arithmeticiiciros [28] v 84.5 74.1 82.1 86.7 93.8 87.9 86.8 98.9 65.6
Ties-Mergingncurs23 [89] v 86 76.5 85 89.4 95.9 90.3 833 99 68.8
PCB-MERGING (ours) v 87.5 76.8 86.2 89.4 96.5 88.3 91 98.6 73.6

Additionally, we present the results of merging vision tasks using radar charts for a more intuitive
comparison of performance across each task, as shown in Fig. 9. The previous baseline methods
show unstable performance, with poor results in some tasks. In contrast, our method is more robust,
achieving near-best performance across all tasks.

We also present task-level results of cross-domain merging experiments, as introduced in Section 5.2.
Firstly, we fine-tuned five distinct domain-specific models for Emotion Classification and then
employed different model merging methods to obtain a single model. For models with an encoder-
only architecture, we used the same shared classification head initialization during merging. We
tested the performance of the merged model on the original five domains and its generalization on

84766 https://doi.org/10.52202/079017-2691

VIT- B/32 ViT- L/14

SUN397 SUN397

MNIST MNIST

SVHN SVHN

Averaging
RegMean

Task Arithmetic Fisher Merging
TIES-Merging PCB — Merging (ours)

Figure 9: Test set performance when merging ViT-B/32 and ViT-L/14 models on eight image
classification tasks.

Table 14: Out-of-distribution performance across six held-out tasks after merging the checkpoints of
T5-base and T5-large models from seven NLP tasks. Please refer to Section 5.1 for experimental

details.
Task(—) Question Answering WSD | Sentence Completion
model Average L . .

Method(]) cosmos_ga social_iqga quail | wic | copa h-swag
Pretrained 31.1 21.9 18.8 24.1 65.6 43.8 12.5
Averagingicvi2 [86] 31.7 21.9 21.9 246 688 375 15.6
Fisher Merging cuirs2) [46] TS-base 33.8 15.6 21.9 249 656 53.1 21.9
Task Arithmeticiiciz3[28] 31.9 15.6 31.2 257 28.1 68.8 21.9
RegMeanjicir23 [30] 343 23.1 28.1 249 484 625 18.8
TIES-Merging neurips23) [89] 353 21.9 25 25.7 50 65.6 23.8
PCB-MERGING (ours) 37.2 23.6 29.2 266 519 67.1 24.8
Pretrained 27.6 21.9 21.9 249 28.1 562 12.5
Averagingicvi2 [86] 30.4 31.2 25 263 312 594 9.4
Fisher Merging cuirs2) [46] T5-large 32 34.4 25 26.1 40.6 562 9.4
Task Arithmeticiiciz3 [28] 333 21.9 34.4 246 406 594 18.8
RegMean;icir23 [30] 36 344 28.1 25.3 62.5 50 15.6
TIES-Mergingneurirs23 [89] 40.4 31.2 43.8 26.6 594 594 21.9
PCB-MERGING (ours) 42.5 33.6 45.8 29.6 622 592 24.6

unseen datasets from five other domains. For more dataset details, please refer to App. D. To ensure
the reliability of the results, we fine-tuned the models five times with different random seeds and
reported the average performance for these runs, as shown in Tab. 15.
Table 15: In domain and Out of domain performance when merging Roberta-base models on 5
emotion datasets. Please refer to Section 5.2 for experimental details.

Dataset(—) ‘ In Domain Out of Domain
Method(|) Average Dialy. Crowd. TEC Tales ISEAR | Average ‘ Emoint SSEC Elect. Ground. Affec.
Fine-Tuned 51.38 49.3 28.9 564 492 73.1 -

Averaging o2 [86] 232 29.9 16.6 170 252 27.1 11.6 27.8 52 6.5 14.0 43
Fisher Mergingcuips22 [46] 26.1 29.8 259 19.5 262 29.0 16.2 32.7 10.7 12.0 14.8 10.9
RegMean;icir23 [30] 34.2 33.1 20.7 341 350 48.3 213 43. 15.4 13.7 20.0 14.6

TIES-Merging~curss [89] 34.5 322 20.6 355 351 49.3 21.5 43.4 16.1 133 19.7 15.0
PCB-MERGING (ours) 35.6 32.1 21.2 374 36.0 51.2 22.2 4.2 17.5 13.5 19.7 16.1

https://doi.org/10.52202/079017-2691 84767

D Dataset details
This section provides a detailed dataset description.

Merging NLP Tasks Following TIES-Merging [89], we choose seven datasets for merging NLP
models: question answering (QASC [32], WikiQA [91], and QuaRTz [78]), paraphrase identification
(PAWS [97]), sentence completion (Story Cloze [70]), and coreference resolution (Winogrande [65]
and WSC [37]).

Merging PEFT Models Following TIES-Merging [89], we use eleven datasets including sentence
completion (COPA [61], H-SWAG [95], and Story Cloze [70] datasets), natural language inference
(ANLI [52], CB [45], and RTE [19]), coreference resolution (WSC [37] and Winogrande [65]), and
word sense disambiguation (WiC [56]).

Merging Vision Tasks Following Task Arithmetic [28], we study multi-task model merging on
eight image classification datasets below. Stanford Cars [35] is a car classification dataset consisting
of 196 classes of cars. DTD [9] is a texture classification dataset comprising 47 classes. EuroSAT [22]
comprises 10 classes of geo-referenced satellite images. GTSRB [74] includes 43 classes of traffic
signs. MNIST [36] features grayscale images of handwritten digits across 10 classes. RESISC45 [7]
encompasses 45 classes of remote sensing image scenes. SUN397 [87] consists of 397 classes of
scene images. Lastly, SVHN [51] encompasses 10 classes of real-world digital classification images.

Merging LLMs Table 16: Statistics of in domain and out-of-
« CMMLU [38] is a comprehensive Chinese evalu- domain emotion classification datasets.
ation benchmark specifically designed to assess

language models’ knowledge and reasoning abil- Train Dev Test

ities in a Chinese context. It covers 67 topics n-domain

ranging from basic subjects to advanced profes- DialyDialog 72,085 10,298 20,596

sional levels. CrowdFlower 27818 3974 7948
¢ GSMSK [10] is a collection of 8.5K high-quality, Tgc 14735 2,105 4211

linguistically varied math word problems from Tyjes-Emotion 10339 1477 2955

grade school, crafted by skilled human authors. ggar 5.366 766 1534

The solutions predominantly require executing

a series of basic arithmetic operations (+, —, x, Qw-of-domain

+) to derive the final answer. Emoint 7,102
* HumankEval [6] is a dataset for evaluating code gen- SSEC 4,868

eration ability, containing 164 manually crafted ~ElectoralTweets 4,056

programming problems covering aspects such as ~ GroundedEmotions 2,585

language understanding, reasoning, algorithms, —AffectiveText 1,250

and simple mathematics.

Out of Domain Generalilzation The average performance is reported over the following tasks and
datasets: Cosmos QA [26], Social IQA [67], and QuAIL [62] for question answering; WiC [56] for
word sense disambiguation; and COPA [61], and H-SWAG [95] for sentence completion.

Cross-Domain Merging In order to investigate the performance of the sentiment classification
task, following RegMean [30], we selected a diverse and challenging set of datasets. Among them,
DailyDialogs [41], CrowdFlower, TEC [49], Tales-Emotion [2], and ISEAR [68] is utilized to
train domain-specific model. For acessing OOD generalization performance, we use Emoint [48],
SSEC [69], ElectoralTweets [50], GroundedEmotions [43], and AffectiveText [76]. For OOD
evaluation, we focus exclusively on the fundamental emotions: anger, disgust, fear, joy, sadness, and
surprise. A detailed overview of the datasets and statistics is provided in Tab. 16.

Cross-Training Configurations Merging We study four GLUE benchmark text classification
datasets [82]. (1) MRPC [11]: Sentence pairs labeled for semantic equivalence; (2) RTE [19]:
Sentence pairs for entailment prediction; (3) CoLA [84]: Sentences labeled for grammaticality; (4)
SST-2 [73]: Sentences labeled for sentiment.

84768 https://doi.org/10.52202/079017-2691

E Baseline details

This section provides a detailed baseline description. Our experiments encompass seven comparison
methods:

* Individual means that each task uses an independent fine-tuned model, which has no
interference between tasks, but cannot perform multiple tasks simultaneously.

* Traditional MTL collects the original training data of all tasks together to train a multi-task
model. It can be used as a reference upper bound for model merging work.

* Weight Averaging is the simplest method of model merging, which directly averages the
parameters of multiple models using 6,,, = >"}"_; 6;/n, calculating the element-wise mean
of all individual models. It can be used as a lower bound for model merging. [8, 86].

e Fisher Merging [46] calculates the Fisher information matrix [17] Ft =
Esnn,Eypy, (ylz) Vo, (l0g po, (y|z+))? to measure the importance of each parameter when
merging models for task ¢, where and model merging is performed according to the guidance
of this importance.

* RegMean [30] imposes a constraint when merging models, that is, the L, distance between
the merged model’s and the individual models’ activations. It computes a least-squares
solution as 0, = (37, X7 X3) 7t Y7 (X X,0;), where X, is the input activation of
the corresponding layer.

» Task Arithmetic [28] first defines the concept of “task vectors” and merges these vectors
into a pre-trained model to execute multi-task learning. The model is produced by scaling
and adding the task vectors to the initial model as 6,,, = Oinic + A * >, 7.

» Ties-Merging [89] further solves the task conflict problem in Task Arithmetic [28]. It
eliminates redundant parameters and resolves symbol conflicts through three steps: Trim,
Elect Sign, and Disjoint Merge.

* AdaMerging automatically learns a merging coefficient for each layer of each task vector
in Task Arithmetic [28].

e LoraHub [25] employs Low-rank Adaptations to dynamically combine task-specific mod-
ules for cross-task generalization, and adapts to new tasks by configuring 8’ = Zszl wg - O

* DARE [94] sets the majority of delta parameters to zero and rescale the rest by ¢ =
0 - (1/(1 — p)) where p is the proportion of delta parameters dropped, therefore efficiently
reduces parameter redundancy.

F Implementation details

F.1 Computational Resources and Runtimes

Our experiments were conducted on Nvidia A6000 GPUs with 48GB of RAM. Depending on the
dataset size, fine-tuning the T5-Base and T5-Large models for single tasks took between 15 minutes
and 2 hours, while fine-tuning the multitask checkpoint took around eight hours. The fine-tuned (IA)3
models were provided by Yadav et al. [89].%. We also used vision models ViT-B/32 and ViT-L/14 as
provided by Ilharco et al. [28].”.

Merge experiments were highly efficient, with evaluations for RoBerta-base, T5-Base, T5-Large,
ViT-B/32, and ViT-L/14 models taking less than 2 minutes. However, two specific experiments
required more time: (1) Evaluating (IA)> models took about one hour for 11 datasets due to the
need to use multiple templates from prompt sources and compute median results across them. (2)
Validation on LLMs (LLaMa?2) was also slow, usually requiring about 40 minutes for evaluating 3
datasets.

F.2 Training details

Cross-Task Merging We trained the T5-base and T5-large models for up to 75,000 steps, using
an effective training batch size of 1024 and a learning rate of 0.0001. To prevent overfitting, we
implemented an early stopping mechanism with a patience of 5. Training was conducted in bfloat16 to

®https://github.com/prateeky2806/ties-merging
Thttps://github.com/mIfoundations/task_vectors#checkpoints

https://doi.org/10.52202/079017-2691 84769

https://github.com/prateeky2806/ties-merging
https://github.com/mlfoundations/task_vectors#checkpoints

conserve GPU memory, with a maximum sequence length of 128 tokens. For the PEFT configuration
of the (IA)3 approach on the T0-3B model, we adjusted the parameters accordingly. The training
batch size was set at 16, and the evaluation batch size was 32, while keeping the learning rate at
0.0001. Given the increased complexity, we extended the early stopping patience to 10. No learning
rate scheduler or weight decay was used in any of our training processes. For large language models,
we directly utilized the fine-tuned checkpoints provided by Huggingface®.

Cross-Domain Merging We performed fine-tuning of the RoOBERTa-base model starting with an
initial learning rate of le-5, and for the T5-base model, we used an initial learning rate of le-4.
We applied the AdamW optimizer consistently across all experiments. The learning rate was set
to gradually increase during the first 6% of training steps and then linearly decreased to zero. The
models were trained with a batch size of 16 over 30 epochs for the task of emotion classification. We
assessed model performance at the end of each epoch and, upon completing the training, resumed
from the best-performing checkpoint.

Cross-Training Configurations Merging When merging multiple checkpoints of the same task,
each model is fine-tuned 10 times on each dataset using a random hyperparameter search. The
learning rate is randomly selected in log space from [10~5, 10~3], the batch size from {8, 16, 32, 64},
and the number of epochs from {2, 3, 5}. Evaluation occurs once at the end of training without early
stopping. We use a maximum sequence length of 128 tokens and train the models using the Adam
optimizer [33], with 81 = 0.9, B2 = 0.999 and € = 10~3. Training includes gradient clipping at 1.0,
no weight decay, and a learning rate that linearly decays to zero by the end of the process.

F.3 Hyper-parameter settings

Given the sensitivity of task vector-based model merging methods to hyperparameters, we present the
optimal values of A and r as determined in our experiments, as shown in Tab. 17. For Task Arithmetic,
we conduct a search over A ranging from 0.2 to 1.5 with a step size of 0.1. For TIES-Merging and
PCB-MERGING, we search over mask ratios r in {0.05, 0.1, 0.2}, and A ranging from 0.8 to 2.5 with
a step size of 0.1.

Table 17: Optimal A and mask ratio r for cross-task merging

Task (—) 7 NLP Tasks 11 PEFT Tasks | 3 LLM Tasks 8 Vision Tasks
Method () | TS5-Base TS-Large (I1A)? LLaMa2 ViT-B/32 ViT-L/14
Task Arithmeticiiciros [28] [A] 0.4 0.5 0.5 0.3 0.3 0.3
Ties-Mergingeuirs23 [89] [A,] | [1.7,0.1] [2.4, 0.05] [1.7,0.1] [1.0,0.1] [1.0,0.1] [l.1,0.05]
PCB-MERGING (ours) [A, 7] | [1.9,0.05] [2.2,0.05] [1.8,0.1] [0.9,0.1] [1.2,0.05] [1.2,0.05]

$https://huggingface.co/

84770 https://doi.org/10.52202/079017-2691

https://huggingface.co/

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: As shown in Section 1.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of the work are shown in Section 6.3.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

https://doi.org/10.52202/079017-2691 84771

Justification: As shown in Section 3.1 and Appendix E.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide the dataset details in Appendix D and implementation details in F
to reproduce the main experimental results.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

84772 https://doi.org/10.52202/079017-2691

Answer: [Yes]

Justification: we have released the code and experiment setting details in our supplemental
material.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide the dataset details in Appendix D, implementation details in F and
hyperparameter details in Section 4 and Appendix F.3.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report the average performance of 5 different random seeds for finetuning
procedures, as shown in Section 5.2, 5.3, Figure 5 and Table 4. Besides, we report the
average performance when merging different numbers of tasks, as shown in Appendix C.1
and Table 8.

Guidelines:

» The answer NA means that the paper does not include experiments.

¢ The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

https://doi.org/10.52202/079017-2691 84773

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: As shown in Appendix F.1.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This research is conducted in the paper conform, with the NeurIPS Code of
Ethics.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: As shown in Section | and Appendix A.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

84774 https://doi.org/10.52202/079017-2691

https://neurips.cc/public/EthicsGuidelines

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]
Justification: As shown in Appendix D.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: As shown in Section 5.1 and Appendix D.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

https://doi.org/10.52202/079017-2691 84775

paperswithcode.com/datasets

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
13. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: As shown in Section 5.1 and Appendix F.2.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer:
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
* Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer:
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

84776 https://doi.org/10.52202/079017-2691

