
Parameter Competition Balancing for Model Merging

Guodong Du1∗ Junlin Lee1∗ Jing Li1† Runhua Jiang2 Yifei Guo2 Shuyang Yu2

Hanting Liu3 Sim Kuan Goh2 Ho-Kin Tang1† Daojing He1 Min Zhang1
1Harbin Institute of Technology, Shenzhen, China

2Xiamen University Malaysia
3Johns Hopkins University

duguodong7@gmail.com jingli.phd@hotmail.com
denghaojian@hit.edu.cn

Abstract

While fine-tuning pretrained models has become common practice, these models
often underperform outside their specific domains. Recently developed model
merging techniques enable the direct integration of multiple models, each fine-
tuned for distinct tasks, into a single model. This strategy promotes multitasking
capabilities without requiring retraining on the original datasets. However, exist-
ing methods fall short in addressing potential conflicts and complex correlations
between tasks, especially in parameter-level adjustments, posing a challenge in
effectively balancing parameter competition across various tasks. This paper
introduces an innovative technique named PCB-MERGING (Parameter Competi-
tion Balancing), a lightweight and training-free technique that adjusts the coeffi-
cients of each parameter for effective model merging. PCB-MERGING employs
intra-balancing to gauge parameter significance within individual tasks and inter-
balancing to assess parameter similarities across different tasks. Parameters with
low importance scores are dropped, and the remaining ones are rescaled to form
the final merged model. We assessed our approach in diverse merging scenarios,
including cross-task, cross-domain, and cross-training configurations, as well as
out-of-domain generalization. The experimental results reveal that our approach
achieves substantial performance enhancements across multiple modalities, do-
mains, model sizes, number of tasks, fine-tuning forms, and large language models,
outperforming existing model merging methods. The code is publicly available at:
https://github.com/duguodong7/pcb-merging.

1 Introduction

Pre-trained models (PTMs) are fundamental in deep learning, underpinning many current techniques
due to their ability to learn generalized features from large datasets [99, 5]. Fine-tuning PTMs
for specific tasks is a common practice to boost performance [71, 31]. This approach is prevalent,
resulting in thousands of fine-tuned checkpoints [85], based on widely used PTMs [59, 80, 58].
However, fine-tuning the same model for different tasks can result in performance variations, posing
a significant challenge [57]. Multi-task learning [66, 59] has been proposed as a solution, but it
incurs substantial training costs and requires simultaneous access to data and labels for all tasks [16].
Recently, some researchers have developed methods to merge multiple independently-trained models
into a single model without the need for original training data [20, 86, 27]. This merging technique
not only adheres to data privacy regulations [83] but also enhances efficiency by eliminating the need
for retraining.

∗ Equal contribution.
† Corresponding authors.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

84746 https://doi.org/10.52202/079017-2691

https://github.com/duguodong7/pcb-merging

Table 1: Comparison of different model merging methods. A merging method is deemed self-aware
if it manages parameter competition within individual task models, and cross-aware if it balances
competition within a population of task models. For more details, please refer to App. A.

Method Drop Scale Self-aware Cross-aware Granularity Level
Fisher Merging [NeurIPS22] [46] - Fisher Matric ✓ ✗ Parameter

RegMean[ICLR23] [30] - Inner Product Matric ✗ ✓ Parameter
Task Arithmetic[ICLR23] [28] - Uniformed ✗ ✗ Task
TIES-Merging[NeurIPS23] [89] Magnitude Uniformed ✓ ✓ Parameter

DARE[ICML24] [94] Bernoulli (p) 1/(1− p) ✓ ✗ Parameter
LoraHub[COLM24] [25] - Evolver Searched ✗ ✓ Task

AdaMerging[ICLR24] [90] - Unsupervised Optimized ✗ ✓ Layer
PCB-MERGING (ours) Competition Balancing Matric ✓ ✓ Parameter

Previous research [20, 86, 27] has shown that averaging the weights of multiple task-specific models,
fine-tuned from the same pre-trained initialization, can enhance performance across various tasks.
Many studies [46, 30] have explored the creation of additional matrices, matching the model dimen-
sions, to adjust parameter coefficients for different tasks. Other studies [28, 89, 90, 96, 94] focus on
task vectors [28], defined as the differences between the parameter values of the fine-tuned model
and the original pre-trained model. While these task vector-based methods have shown promising
results, they typically apply a uniform coefficient for each task and parameter, which may limit
their effectiveness. Our research seeks to fully harness task vector-based methods by fine-tuning
parameter-level coefficients through a balancing mechanism that resolves parameter competition.

0.6 0.7 0.8 0.9 1.0 1.1 1.2
Scale

75

76

77

78

79

Ac
cu

ra
cy

 o
n

Ca
rs

Finetuned
Top 20% Magnitude
Top 30% Magnitude
Top 50% Magnitude
Entire Segment

Figure 1: Parameter competition within
individual task models. Intra-balancing
enhances performance beyond finetun-
ing.

0.8 1.0 1.2 1.4
Scale

62

66

70

74

78

Ac
cu

ra
cy

Balanced

AVE. Acc
Acc Cars
Acc SUN397

Figure 2: Parameter competition within
task model populations. Inter-balancing
improves cross-task generalization.

Parameter competition is crucial in model fusion, occur-
ring both within parameters of the same task and among
models for different tasks. Firstly, within a single model,
task-specific fine-tuned parameters often compete, where
some are critical while many prove redundant. Previous re-
search [89, 94] has demonstrated that dropping numerous
parameters based on task vector magnitude can maintain
performance close to the original. Additionally, appro-
priately rescaling important parameters and suppressing
redundant ones can further enhance the performance of the
fine-tuned model (see Fig. 1). Secondly, between different
models, parameters also engage in competition (see Fig. 2).
Rescaling a task vector for one task can boost performance
for that specific task but may negatively affect cross-task
capabilities. Therefore, balancing the coefficients assigned
to task vectors requires careful consideration of their im-
pact on overall performance.

We argue that merging methods capable of managing
intra-parameter competition within tasks demonstrate self-
awareness, while those that balance inter-parameter com-
petition between tasks exhibit cross-awareness. We sys-
tematically compare and analyze existing model merging
methods in terms of these criteria, as presented in Tab. 1.
To establish a balancing matrix that is both self-aware
and cross-aware for parameter scaling, we introduce PCB-
MERGING (Parameter Competition Balancing for Model
Merging), a training-free and dataless method for merging
models. Specifically, we use intra-balancing to weight the
importance of parameters within tasks and inter-balancing
to assess parameter similarities across tasks. Low-scoring
parameters are then dropped, and the remaining ones are rescaled. Finally, we merge the modulated
task vectors into the pretrained model to create the final merged model.

To empirically demonstrate the effectiveness of PCB-MERGING, we conducted extensive experi-
ments comparing it with existing model merging approaches. We showcased the superiority of our

2

84747https://doi.org/10.52202/079017-2691

approach from four perspectives: (1) Cross-task merging: We evaluated our approach across a range
of NLP and Vision tasks using various models, such as T5 [59], ViT [12], and Llama2 [80]. We also
assessed its ability to fuse multiple PEFT [42, 24] adapters. All experiments demonstrated significant
improvements over previous state-of-the-art methods, notably achieving a 4.3% performance increase
with the T5-base model. (2) Cross-domain merging: Our approach merged multiple domain-specific
models for tasks like emotion classification [53, 30], demonstrating its effective handling of diverse
domain data. (3) Cross-training configurations: Merging multiple models from different training
environments on single tasks, highlighting its flexibility and robustness. (4) Out-of-Domain Gener-
alization: We assessed multi-task and multi-domain fusion performance on domain shift datasets,
testing generalizability across various frameworks.

This paper makes three significant contributions: (1) We re-examine existing model merging methods,
highlighting the critical role of parameter competition awareness; (2) We introduce a novel approach
called PCB-MERGING, which effectively adjusts parameter coefficients through balancing parameter
competition; (3) Our proposed method stabilizes and enhances model merging performance across
various application scenarios without additional training.

2 Related Work

2.1 Overview of model fusion

Deep model fusion is gaining attention due to data privacy and resource conservation concerns, with
potential applications across various domains [39, 14]. It’s typically divided into three main categories.
Ensemble learning [64], combines model outputs to improve prediction accuracy and robustness but
requires parallel deployment of multiple models. An alternative method involves mode connectivity
[18] and alignment [1], aiming to bring solutions closer together for better initial conditions in
averaging. This is achieved by either linking optimization paths [15, 98] or addressing permutation
invariances [72, 79, 40, 30] . Recent researches [88, 75] focus on training-free approaches to enhance
model fusion usability. The third approach, weight averaging [20, 86], requires models with identical
structures. While advancements like [81] support merging diverse large language models (LLMs),
they require knowledge distillation [23] and complex training. This paper follows the third type of
track due to its simplicity, efficiency, and broad applicability.

2.2 Merging fine-tuned models with same initialization

Previous studies found that when multiple models are fine-tuned from the same pre-trained initializa-
tion, averaging their weights can lead to improved performance on single tasks [20, 86, 13, 29, 92]
different tasks [27] and out-of-distribution generalization [3, 60]. Fisher Merging [46] goes beyond
simple averaging to identify the importance of individual parameters using Fisher information matrix
[17] and uses it to weigh the parameters in each model when merging. RegMean [30] proposed a
closed-form solution for the merged model’s parameters by solving a local linear regression problem
for each individual linear layer in the model. However, both the Fisher Merging and RegMean
methods are time-consuming and computationally intensive.

Task Arithmetic [28] introduces the concept of task vectors, demonstrating their effectiveness and
lightweight nature in facilitating cross tasks generalization. Expanding on this groundwork, PEM
Composition [96] extends the task arithmetic framework to merge LoRA [24] models, while Ties-
Merging [89] addresses task conflicts by resetting redundant parameters and resolving sign conflicts.
However, these methods share a merging coefficient across all task vectors, limiting flexibility. In
contrast, Lorahub [25] and AdaMerging [90] utilize different coefficients for enhanced adaptability,
but Lorahub’s performance is restricted as it only searches coefficients at the task level. AdaMerging
also demands complex training and unlabeled test datasets and is applicable solely to classification
problems. DARE [94] proposes drop and rescale as a preprocessing step when merging fine-tuned
LLMs. Our approach primarily employs strategies of dropping to minimize interference and rescaling
at the parameter level, while considering both self-awareness and cross-model awareness.

3

84748 https://doi.org/10.52202/079017-2691

Task Vector Parameter

✕ Element Wise Product

Model Parameter

…

Number of Tasks

Model Dimension

N

D

Merged Model

Pretrained Model

…
Finetuned Models

1
2

N

…
…

…

…

…

…
……

1

2

N Intra-Balancing

Inter-Balancing

Task Vector 1

PCB Matrix

Drop and Resale

…

…

…

PCB Matrix

…

…

PCB Matrix

…

…

…
… …

N x D

Parameter Competition
Balancing

PCB

Drop and ResaleDrop and Resale

Task Vector NTask Vector 2

Task Vectors

Inter-BalancingInter-Balancing

Intra-BalancingIntra-Balancing

N x D

Figure 3: An illustration of the steps in PCB-MERGING. Different colored blocks represent
parameters with varying values. We start with multiple fine-tuned models and a pretrained model,
establishing a PCB matrix through intra-balancing and inter-balancing. Low-scoring parameters are
dropped, and the remaining ones are rescaled. Finally, we merge the modulated task vectors into the
pretrained model to create the final merged model.

3 Method

In Sec. 3.1, we established the notation and outlined the problem of model merging. Sec. 3.2 delves
into the detailed exposition of the proposed PCB-MERGING method, which aims to balance parameter
competition. Furthermore, in Sec. 3.3, we employ evolutionary algorithms to further enhance the
performance of our approach.

3.1 Preliminaries

Initially, we are faced with a set of tasks {T1, . . . , Tn} and various pre-trained models, such as
ViT [12], T5 [59], or llama2 [80]. We have the option to fine-tune the entire model or employ
a parameter-efficient fine-tuning (PEFT) method [42, 24]. During fine-tuning, we represent the
trainable parameters as θ, initialized as θpre, and the fine-tuned parameters as θft. The model merging
problem involves how to combine the weight sets {θ1, . . . , θn} to form a new weight θm, without the
need to retrain using the initial training data for each task, and ensuring that θm can simultaneously
perform tasks {1, . . . , N}.
Recent research [28] introduced the concept of task vectors and completed various task arithmetic
operations and model merging based on task vectors. Specifically, for task Ti, the task vector τi ∈ Rd

is defined as the vector obtained by subtracting the fine-tuned weights θi from the pre-trained weights
θpre, i.e., τi = θi − θpre . This allows us to focus on the changes that occur during each task-specific
model’s fine-tuning phase. The task vector-based multi-task model merging method can be expressed
as θm = θpre + λ ∗

∑n
i=1 τi, where the coefficient λ represents the importance of merged task

vector τm. This concept is simple yet effective, significantly outperforming simple weight averaging
schemes, i.e., θm = (1/N)

∑n
i=1 θi.

3.2 Parameter Competition Balancing

Our approach aims to modulate the scaling factors for each task and parameter, achieving intra-
balancing and inter-balancing within and between tasks. Specifically, we use the parameter competi-
tion balancing (PCB) matrix βi ∈ Rd to adjust the scale of parameters in each task model θi ∈ Rd,
resulting in the final fused model, as shown in Fig. 3. The specific calculation process is as follows:

1. Intra-Balancing: Initially, we implement self-awareness by applying a nonlinear activation
function (i.e., softmax) to the magnitudes of task vectors, emphasizing important parameters
while suppressing redundant ones to some extent. As the number of fusion tasks increases,
competition among parameters intensifies. Therefore, the number of tasks N is used to control
the extent of suppression applied to redundant parameters. "Norm" refers to normalization.

βintra,i = Softmax(N ∗ Norm(τi ⊙ τi)) (1)

4

84749https://doi.org/10.52202/079017-2691

2. Inter-Balancing: Next, we realize cross-awareness to enable the parameters within a population
of tasks to interact with others, addressing potential conflicts and complex correlations between
tasks. To achieve this, we compute the similarity between parameters at the same positions
across different task vectors, allowing each parameter to update its score based on information
from other tasks. The calculation process is as follows:

βinter,i =
∑n

j=1
Softmax(Norm(τi ⊙ τj)) (2)

3. Drop and Rescale: Subsequently, we obtain βi = βintra,i ⊙ βinter,i. Next, we construct a
mask mi ∈ Rd based on βi to focus on the more important parameters. Specifically, this mask
mi is used to select high-scoring elements from the D elements of βi. We define the mask ratio
as r, where 0 < r ≤ 1. The mask mi can be derived from:

mi,d =

{
1, if βi,d ≥ sorted(βi)[(1− r)×D]

0, otherwise
(3)

The importance score is defined as β̂ = mi ⊙ βi. Finally, we use the score of the masked
balancing matrix to weight the importance of each parameter in each task vector. The final
merged task vector τm is as follows:

τm =
∑n

i=1
(β̂i ⊙ τi)/

∑n

i=1
β̂i (4)

From the final merged task vector τm, we can further adjust its magnitude proportionally and integrate
it with the initial parameter values to yield the amalgamated model parameters θm, represented by
θm = θpre + λ ∗ τm, with λ serving as a scaling hyperparameter. More details about the method
workflow are presented in App. A and Algorithm 1.

3.3 Searching Coefficients

Research from articles [28, 90] shows that model merging methods based on task vectors are highly
sensitive to the merging coefficient λ. Even with an appropriately chosen uniform λ, achieving further
improvements in fusion performance necessitates grid searching the merging coefficients for each
task vector, which becomes increasingly complex and time-consuming, especially when managing a
large number of tasks.

Inspired by prior research [77, 25], we employ intelligent optimization algorithms to search for
mixing coefficients, aiming for greater improvements compared to using a uniform coefficient. The
optimization process seeks the best set {λ1, . . . , λn} to enhance validation accuracy, with the ultimate
goal of maximizing validation accuracy with the merged model.

θm = θpre +
∑n

i=1
(β̂i ⊙ λiτi)/

∑n

i=1
β̂i (5)

In most of our experimental setups, we primarily utilize Covariance Matrix Adaptive Evolution
Strategies (CMA-ES) [21]. As a probabilistic population-based optimization algorithm, CMA-ES
dynamically adjusts the search distribution defined by the covariance matrix. It systematically updates
the mean and covariance of this distribution at each iteration to learn and exploit the underlying
structure of the search space for optimization efficiency.

4 Experimental setup

Evaluation Settings. We anticipate that merging models will offer two significant advantages
for developers. Firstly, by integrating insights from individual models θ1..n trained in different
environments (such as tasks, domains, or various training configurations within a single task), we
expect the resulting merged model θm to demonstrate competitive test performance across tasks,
domains, or within a single task. Secondly, this merged model is poised to exhibit enhanced cross-
domain (OOD) generalization capability. For further details about compute resources and fine-tuning
procedures, please refer to App. F.1 and F.2.

5

84750 https://doi.org/10.52202/079017-2691

Baseline Methods. Our baselines are primarily divided into two categories: non-model merging,
which involves fine-tuned individual models and multitask learning, and various advanced model
merging methods such as simple averaging [86], Fisher merging [46], RegMean [30], Task Arithmetic
[28], Ties-Merging [89], and AdaMerging [90]. Detailed information on these baselines can be found
in App. E. Notably, Task Arithmetic, Ties-Merging, AdaMerging, and our proposed PCB-MERGING
method are all based on task vectors. In addition, when merging LLMs across different tasks, we
present the results with DARE [94] as preprocessing. Since AdaMerging demands unlabeled test
datasets and is applicable solely to classification problems, we compare with it only when merging
finetuned ViT models for image classification, as shown in App. C.2.

Validation Set. Most model merging methods necessitate access to a validation set, utilized for
computing the Fisher matrix or tuning hyperparameters. While ReMean can derive inner product
matrices for each task using unlabeled training data, additional validation is required to ascertain
the optimal value of the non-diagonal multiplier α. Both Fisher merging and ReMean are time-
consuming and require significant computational resources. In contrast, task vector-based methods
are more lightweight and training-free to implement and can be utilized even without a validation set.
Therefore, we conducted additional experiments to compare task vector-based methods without a
validation set.

Hyperparameters. When no additional validation is performed, we use a default value of λ = 1
for all task-vector based methods. For TIES-Merging and PCB-MERGING, which require a masking
ratio, we set mask ratio r = 0.2 as the default value for all experiments, except in LLM experiments
where r = 0.1.

When validation is allowed, we set the non-diagonal multiplier α in RegMean to 0.9, except for the
T5-base model where it is set to 0.1. For Task Arithmetic, we conduct a search over λ ranging from
0.2 to 1.5 with a step size of 0.1. For TIES-Merging and PCB-MERGING, we search over ratios in
{0.05, 0.1, 0.2}, and λ ranging from 0.8 to 2.5 with a step size of 0.1. In cases where evolutionary
strategies are employed for coefficient search for each task, we conduct continuous variable searches
within the range of 0.8 to 2.5. For more hyperparameter details, please refer to App. F.3 and Tab. 17.

5 Results

In this section, we evaluated the performance of the PCB-MERGING method across various experi-
mental settings, including cross-task, cross-domain, cross-training configurations, and out-of-domain
scenarios. Additionally, we conducted several experiments to further assess the effectiveness of our
method: merging different numbers of tasks (App. C.1 and Fig. 8), comparison with AdaMerging on
vision tasks (App. C.2 and Tab. 7), and providing additional results using evolutionary strategies (ES)
(App. C.3 and Tab. 8). Lastly, we present comprehensive task-level results in App. C.4.

5.1 Cross Task Merging

Merging NLP Models. For the NLP domain, we adhere to the experimental setting from [89]. We
employ the T5-base and T5-large [59] models and fine-tune both on seven tasks. This setting considers
a variety of NLP domains such as question answering, paraphrase identification, sentence completion,
and coreference resolution (dataset details in App. D). Tab. 2 shows that using PCB-MERGING
to merge fully fine-tuned T5-base and T5-large models leads to an average improvement of 4.3%
and 3.5% over 7 tasks, without extra data. With validation datasets, PCB-MERGING improves by
1.8% and 1.8% over other methods for T5-base and T5-large, respectively. Notably, PCB-MERGING
without validation outperforms TIES-merging [89] by 5.4% for T5-large. For more detailed results,
refer to App. Tab. 9 and 10.

Merging PEFT Model Adapters. Following the work of [89], we consider merging parameters
used for efficient fine-tuning calculations and employ the (IA)3 [42] method for experimentation.
This approach, a form of Parameter-Efficient Fine-Tuning (PEFT), extends the activations of base
models with learned vectors. We select T0-3B [66] as the base model and fine-tune (IA)3 models
on the training sets of eleven datasets, including sentence completion, natural language inference,
coreference resolution, and word sense disambiguation (dataset details in App. D). During fine-tuning
of the T0-3B model, we utilize prompt templates from the Public Prompt Pool (P3 [4]) to convert

6

84751https://doi.org/10.52202/079017-2691

Table 2: Comparison of different model merging methods across various fine-tuning configurations
and modalities, with average performance reported for different tasks.

Task (→) 7 NLP Tasks 11 PEFT Tasks 3 LLM Tasks 8 Vision Tasks

Method (↓)
Validation

T5-Base T5-Large (IA)3 LLaMa2 ViT-B/32 ViT-L/14
Fine-tuned - 83.1 88.9 71.4 40.4 90.5 94.2
Multitask - 83.6 88.1 73.1 - 88.9 93.5

Averaging[ICML22] [86] ✗ 65.3 54.7 57.9 30.3 65.8 79.6
Task Arithmetic[ICLR23] [28] ✗ 53.5 73.6 59.2 30.4 60.4 83.3
Ties-Merging[NeurIPS23] [89] ✗ 69.5 71.7 64.9 34.2 72.4 86.0

PCB-MERGING (ours) ✗ 73.8 (+4.3) 77.1 (+3.5) 66.1 (+1.2) 35.1 (+0.9) 75.9 (+3.5) 86.9 (+0.9)
Fisher Merging[NeurIPS22] [46] ✓ 68.3 68.7 62.2 - 68.3 82.2

RegMean[ICLR23] [30] ✓ 72.7 79.8 58.0 - 71.8 83.7
Task Arithmetic[ICLR23] [28] ✓ 73.0 80.2 63.9 30.4 70.1 84.5
Ties-Merging[NeurIPS23] [89] ✓ 73.6 80.3 66.8 34.2 73.6 86.0

PCB-MERGING (ours) ✓ 75.4 (+1.8) 82.1 (+1.8) 68.1 (+1.3) 35.1 (+0.9) 76.3 (+2.7) 87.5 (+1.5)
PCB-MERGING + ES (ours) ✓ 76.7 (+3.1) 83.2 (+2.9) 68.8 (+2.0) 35.3 (+1.1) 77.0 (+3.4) 88.1 (+2.1)

each example in each dataset into a text-to-text format, where each label corresponds to a different
string. For experiments with (IA)3, we report the median score across all templates for each dataset.
Tab. 2 illustrates that PCB-MERGING achieves an average improvement of 1.2% and 1.3% across 11
tasks compared to the top baseline, both with and without validation set. For further details, please
refer to App. Tab. 11.

Table 3: Comparison of the performance of different methods
on 3 datasets after merging LLMs.

Model DARE CMMLU GSM8K Human-Eval Average
Chinese - 38.6 2.3 13.4 18.1

Math - 31.2 65.6 0 32.3
Code - 33.3 0 17.1 16.8

Averaging
[ICML22] [86]

✗ 35.6 48.5 6.7 30.3
✓ 35.6 47.8 8.5 30.7

Task Arithmetic
[ICLR23] [28]

✗ 35.4 46.1 9.8 30.4
✓ 35.5 46.1 10.4 30.7

TIES-Merging
[NeurIPS23] [89]

✗ 36.5 53.4 12.8 34.3
✓ 36.4 53.4 14.0 34.6

PCB-MERGING

(ours)
✗ 36.4 52.3 16.5 35.1
✓ 36.5 52.7 16.5 35.2

PCB-MERGING + ES
(ours)

✗ 36.4 53.1 16.5 35.3
✓ 36.4 53.8 16.5 35.6

Merging LLMs. In our experiment,
we merged three specialized large lan-
guage models based on the Llama-2-7b
architecture [80]—focusing on Chinese
language proficiency3, mathematical
reasoning [93]4, and code generation
[63]5. Each model was assessed using
tailored benchmarks: CMMLU [38]
for Chinese, GSM8K [10] for math,
and HumanEval [6] for code genera-
tion (dataset details in App. D). As
shown in Tab. 3, PCB-MERGING im-
proved overall performance by an av-
erage of 0.8% (no DARE) and 0.6%
(with DARE). The most significant per-
formance gain was in code generation,
with 3.7% improvement without DARE
and 2.5% with DARE [94]. The results indicate that although the DARE preprocessing provided
modest improvements, our proposed methodology notably enhanced the overall performance.

Merging Vision Models. For image classification tasks, we adopt the experimental setup outlined
by Ilharco et al. [27, 28]. We utilize two versions of the CLIP model [58] featuring ViT-B/32 and
ViT-L/14 models [12] as visual encoders. Subsequently, we fine-tune the visual encoder on eight
tasks sourced from Ilharco et al. [28] and Radford et al. [58], while maintaining the text encoder
unchanged. This configuration encompasses diverse classification domains including remote sensing,
traffic classification, and satellite imagery recognition (dataset details in App. D). PCB-MERGING
performs better than the top baseline by 3.5% and 0.9% for ViT-B/32 and ViT-L/14, respectively, when
validation is not utilized. With additional data, these improvements are 2.7% and 1.5%, respectively,
and further increase to 3.4% and 2.1% after incorporating evolutionary search. For more detailed
findings, please refer to App. Tab. 12, 13 and Fig. 9.

3https://huggingface.co/LinkSoul/Chinese-Llama-2-7b
4https://huggingface.co/meta-math/MetaMath-7B-V1.0
5https://huggingface.co/qualis2006/llama-2-7b-int4-python-code-18k

7

84752 https://doi.org/10.52202/079017-2691

https://huggingface.co/LinkSoul/Chinese-Llama-2-7b
https://huggingface.co/meta-math/MetaMath-7B-V1.0
https://huggingface.co/qualis2006/llama-2-7b-int4-python-code-18k

55 60 65 70 75 80
Avg. In-Domain Performance

30

33

36

39

42

Av
g.

 O
OD

 P
er

fo
rm

an
ce

T5-base

T5-large
Cross-Task Merging

Simple Averaging
Fisher Merging
RegMean
TIES-Merging
PCB-Merging (Ours)

Figure 4: Comparison of average performance
on 7 in-domain and 6 held-out datasets after
cross-task merging.

20 24 28 32 36 40
Avg. In-Domain Performance

10

15

20

25

30

35

40

Av
g.

 O
OD

 P
er

fo
rm

an
ce

Robert-base

T5-base

Cross-Domain Merging
Simple Averaging
Fisher Merging
RegMean
TIES-Merging
PCB-Merging (Ours)

Figure 5: Comparison of average performance
on 5 in-domain and 5 distribution shift datasets
after cross-domain merging.

Out of Domain Gegeralization. Following the experimental setup of [89], we also examined the
ability of cross-task merged models to better generalize across different domains. We merged the T5-
base and T5-large models using the same approach as in the previous experiments, combining them on
seven in-domain datasets. Subsequently, we evaluated their performance on six held-out datasets from
the T0 mixture [66] to assess out-of-domain generalization. These out-of-domain datasets encompass
various tasks, including question answering, word sense disambiguation, and sentence completion
(details in App. D). Both in-domain and out-of-domain performance are presented together in Fig. 4.
The results show that PCB-MERGING outperforms the strongest baseline for both T5-base and
T5-Large models by 1.9% and 2.1%, respectively, indicating superior out-of-domain generalization.
For more detailed results, please refer to App. Tab. 14.

5.2 Cross Domain Merging

We conducted further experiments to compare the performance of different methods in merging
five distinct domain-specific models for emotion classification. Following the methodology of Jin
et al. [30], we employed the Roberta-base and T5-base models and utilized a set of preprocessed
datasets from Ober et al. [53]. For training individual models, we selected five high-resource datasets,
while five low-resource datasets were chosen for evaluating out-of-domain generalization ability.
Our analysis reports the average accuracy of in-domain datasets and the average accuracy of out-of-
domain datasets using various model merging techniques. In addition, we conducted the experiment
with different random seeds and reported the average results across five seeds. Fig. 5 provides a
summarized overview of these results. Our findings indicate that PCB-MERGING outperforms the
strongest baseline by 1.1% for Roberta-base and 1.3% for T5-base, while improving generalization
across domain shifts by 0.8% and 0.7%, respectively. Further details regarding the datasets can be
found in App. D and Tab. 16, and additional results are provided in App. C.4 and Tab. 15.

5.3 Cross Training Configurations Merging

Table 4: Comparison of the performance of differ-
ent methods on 4 datasets after merging multiple
checkpoints with various training configurations.

Method MRPC RTE COLA SST-2 4-task Avg.
Avg. Individuals 81.7 65.2 43.1 86.5 69.1

Averaging[ICML22] [86] 79.7 59.4 37.8 87.2 66.0
Fisher[NeurIPS22] [46] 83.3 65.4 53.4 88.6 72.7

RegMean[ICLR23] [30] 81.2 66.8 48.7 88.1 71.2
Task Arithmetic[ICLR23] [28] 81.9 68.7 42.3 87.9 69.7
TIES-Merging[NeurIPS23] [89] 84.2 69.3 55.7 88.9 74.5

PCB-MERGING (ours) 85.3 70.3 58.4 89.2 75.8

In this experiment, our main focus was to com-
pare the ability of methods to merge multiple
checkpoints of the same task. These check-
points were generated by employing different
training configurations during fine-tuning, which
included variations in hyperparameters, augmen-
tation strategies, and dataset partitioning. Follow-
ing the setup of model soups [86], we fine-tuned
RoBERT-base [44] models on four text classi-
fication tasks from the GLUE benchmark [82]:
MRPC [11], RTE [19], CoLA [84] and SST-2 [73].

8

84753https://doi.org/10.52202/079017-2691

We fine-tuned 10 models for each dataset using a random hyperparameter search over learning
rate, batch size, and number of epochs (training details in App. F.2). Additionally, we randomly
selected training subsets with 1000 examples from the entire training datasets, resulting in each subset
having different label distributions. We use the standard metric for each dataset: average of accuracy
and F1 score for MRPC, accuracy for RTE, Matthews correlation [47] for CoLA and accuracy for
SST-2. We repeated this experiment with different random seeds and reported the average results
across five seeds. Tab. 4 presents the corresponding metrics on the validation set, showing consistent
performance improvements with PCB-MERGING across all datasets.

6 Analysis

6.1 Ablation of PCB-MERGING Components

Table 5: Ablation study on individ-
ual components of PCB-MERGING.

Task(→) Vision NLP
Method(↓) ViT-B/32 T5-base

w/o Intra-Balance 74.4 73.7
w/o Inter-Balance 74.8 73.9

w/o Drop 71.2 70.5
w/o Rescale 73.8 72.9

PCB-MERGING 76.3 75.4

We conducted ablation experiments on various components
of our approach to assess their importance. Tab. 5 compares
the performance of our method with different components re-
moved, testing ViT-B/32 and T5-base models on the validation
set. Removing the Rescale step implies using a uniform scale
λ = 1 and computing a disjoint mean as in TIES-Merging [89],
ignoring zero values. The table demonstrates the crucial im-
portance of all components for achieving optimal performance.
Specifically, the Drop component was found to be the most
critical, resulting in performance drops of 5.1% for ViT-B/32
and 4.9% for T5-base, respectively. More ablation study details
are provided in App. B.1 and Tab. 6.

6.2 Effect of Hyper-Parameters on the Performance.

We examined the impact of hyper-parameters λ and r on the performance when merging multiple NLP
tasks, as discussed in Section 5.1. Initially, we illustrate the performance of various models across
different values of λ while keeping r = 0.1. Our method is compared against the state-of-the-art
baseline method, TIES-Merging. From Fig. 6, We can observe that our approach demonstrates a
higher performance ceiling within the suitable range of 1.4 to 1.8. As λ increases, the performance
initially decreases and then saturates. Additionally, we provide a performance analysis for different
ratios r. We conduct a grid search for λ to determine its optimal performance for each ratio. Notably,
for r < 0.3, our method consistently showcases significant improvements. This underscores the
importance of the information filtered out by our parameter competition balancing approach in the
merging process. More analysis about hyper-parameters are shown in App. B.2 and Fig. 7.

0.8 1.0 1.2 1.4 1.6 1.8 2.0
various at r=0.1

64
67
70
73
76

Av
g.

 P
er

fo
rm

an
ce

T5-base

TIES-Merging
PCB-Merging (ours)

1.0 1.2 1.4 1.6 1.8 2.0 2.2
various at r=0.1

68
72
76
80
84

Av
g.

 P
er

fo
rm

an
ce

T5-large

TIES-Merging
PCB-Merging (ours)

0.1 0.2 0.3 0.4 0.5 0.6
various r with the optimal

67

70

73

76

Av
g.

 P
er

fo
rm

an
ce

T5-base
TIES-Merging
PCB-Merging (ours)

Figure 6: Performance with various hyperparameters λ and r.

6.3 Limitation and Future Work

While our approach provides valuable insights into model merging, several limitations should be
noted: (1) PCB-MERGING, like previous methods, relies on identical model architectures and shared
initializations, constraining its applicability across various model types. (2) Limited theoretical
understanding: model merging effectiveness may be influenced by task independence [34] and weight
disentanglement [55, 54], warranting further exploration. (3) Our approach does not effectively
address parameter redundancy, still relying on drop operations to mitigate interference and improve
performance. (4) Task vector magnitudes may not always effectively represent parameter importance,
necessitating further exploration for more efficient methods.

9

84754 https://doi.org/10.52202/079017-2691

7 Conclusions

In summary, we introduce PCB-MERGING to tackle challenges in model merging by incorporating
parameter competition balancing to rescale task vectors at the parameter level. Our method enhances
model merging performance without requiring additional training, leading to improved stability
and effectiveness across various scenarios. We demonstrate significant advancements in cross-task
merging, cross-domain merging, different training configurations, and out-of-domain generalization,
highlighting its potential impact in practical applications.

Acknowledgements

We thank all the reviewers for their valuable feedback on this paper. This work
was supported in part by National Science Foundation of China (62476070, 62376074,
12204130), Shenzhen College Stability Support Plan (GXWD20231128103232001) and Depart-
ment of Science and Technology of Guangdong (2024A1515011540), the Shenzhen Science
and Technology Program (Grants:JSGGKQTD20221101115655027, RKX20231110090859012,
SGDX20230116091244004), Shenzhen Start-Up Research Funds (Grant No.HA11409065), and the
Fundamental Research Funds for the Central Universities (Grant No. HIT.OCEF.2024047).

References
[1] S. K. Ainsworth, J. Hayase, and S. Srinivasa. Git re-basin: Merging models modulo permutation

symmetries. In Proceedings of the International Conference on Learning Representations
(ICLR), 2023.

[2] C. O. Alm, D. Roth, and R. Sproat. Emotions from text: machine learning for text-based
emotion prediction. In Proceedings of the Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 579–586, 2005.

[3] D. Arpit, H. Wang, Y. Zhou, and C. Xiong. Ensemble of averages: Improving model selection
and boosting performance in domain generalization. Advances in Neural Information Processing
Systems (NeurIPS), 35:8265–8277, 2022.

[4] S. H. Bach, V. Sanh, Z.-X. Yong, A. Webson, C. Raffel, N. V. Nayak, A. Sharma, T. Kim, M. S.
Bari, T. Fevry, et al. Promptsource: An integrated development environment and repository
for natural language prompts. In Proceedings of the Annual Meeting of the Association for
Computational Linguistics (ACL), 2022.

[5] R. Bommasani, D. A. Hudson, E. Adeli, R. Altman, S. Arora, S. von Arx, M. S. Bernstein,
J. Bohg, A. Bosselut, E. Brunskill, et al. On the opportunities and risks of foundation models.
arXiv preprint arXiv:2108.07258, 2021.

[6] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. d. O. Pinto, J. Kaplan, H. Edwards, Y. Burda,
N. Joseph, G. Brockman, et al. Evaluating large language models trained on code. arXiv
preprint arXiv:2107.03374, 2021.

[7] G. Cheng, J. Han, and X. Lu. Remote sensing image scene classification: Benchmark and state
of the art. Proceedings of the IEEE, 105(10):1865–1883, 2017.

[8] L. Choshen, E. Venezian, N. Slonim, and Y. Katz. Fusing finetuned models for better pretraining.
arXiv preprint arXiv:2204.03044, 2022.

[9] M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, and A. Vedaldi. Describing textures in the
wild. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2014.

[10] K. Cobbe, V. Kosaraju, M. Bavarian, M. Chen, H. Jun, L. Kaiser, M. Plappert, J. Tworek,
J. Hilton, R. Nakano, C. Hesse, and J. Schulman. Training verifiers to solve math word
problems. arXiv preprint arXiv:2110.14168, 2021.

[11] B. Dolan and C. Brockett. Automatically constructing a corpus of sentential paraphrases. In
International Workshop on Paraphrasing (IWP), 2005.

10

84755https://doi.org/10.52202/079017-2691

[12] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani,
M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby. An image is worth 16x16
words: Transformers for image recognition at scale. In Proceedings of the International
Conference on Learning Representations (ICLR), 2021.

[13] G. Du, R. Jiang, S. Yang, H. Li, W. Chen, K. Li, S. K. Goh, and H.-K. Tang. Impacts of
darwinian evolution on pre-trained deep neural networks. arXiv preprint arXiv:2408.05563,
2024.

[14] G. Du, J. Li, H. Liu, R. Jiang, S. Yu, Y. Guo, S. K. Goh, and H.-K. Tang. Knowledge fusion by
evolving weights of language models. arXiv preprint arXiv:2406.12208, 2024.

[15] D. Ferbach, B. Goujaud, G. Gidel, and A. Dieuleveut. Proving linear mode connectivity of
neural networks via optimal transport. In Proceedings of the International Conference on
Artificial Intelligence and Statistics (AISTATS), pages 3853–3861, 2024.

[16] C. Fifty, E. Amid, Z. Zhao, T. Yu, R. Anil, and C. Finn. Efficiently identifying task groupings
for multi-task learning. Advances in Neural Information Processing Systems (NeurIPS), 34:
27503–27516, 2021.

[17] R. A. Fisher. On the mathematical foundations of theoretical statistics. Philosophical transac-
tions of the Royal Society of London. Series A, containing papers of a mathematical or physical
character, 222(594-604):309–368, 1922.

[18] T. Garipov, P. Izmailov, D. Podoprikhin, D. P. Vetrov, and A. G. Wilson. Loss surfaces, mode
connectivity, and fast ensembling of dnns. Advances in Neural Information Processing Systems
(NeurIPS), 31, 2018.

[19] D. Giampiccolo, B. Magnini, I. Dagan, and W. B. Dolan. The third pascal recognizing textual
entailment challenge. In Proceedings of the ACL-PASCAL workshop on textual entailment and
paraphrasing, pages 1–9, 2007.

[20] V. Gupta, S. A. Serrano, and D. DeCoste. Stochastic weight averaging in parallel: Large-batch
training that generalizes well. arXiv preprint arXiv:2001.02312, 2020.

[21] N. Hansen and A. Ostermeier. Adapting arbitrary normal mutation distributions in evolution
strategies: The covariance matrix adaptation. In Proceedings of IEEE International Conference
on Evolutionary Computation (ICEC), pages 312–317, 1996.

[22] P. Helber, B. Bischke, A. Dengel, and D. Borth. Eurosat: A novel dataset and deep learning
benchmark for land use and land cover classification. Journal of Selected Topics in Applied
Earth Observations and Remote Sensing, 12(7):2217–2226, 2019.

[23] G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015.

[24] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and W. Chen. Lora:
Low-rank adaptation of large language models. In Proceedings of the International Conference
on Learning Representations (ICLR), 2022.

[25] C. Huang, Q. Liu, B. Y. Lin, T. Pang, C. Du, and M. Lin. Lorahub: Efficient cross-task
generalization via dynamic lora composition. arXiv preprint arXiv:2307.13269, 2023.

[26] L. Huang, R. Le Bras, C. Bhagavatula, and Y. Choi. Cosmos qa: Machine reading comprehen-
sion with contextual commonsense reasoning. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing and the International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), pages 2391–2401, 2019.

[27] G. Ilharco, M. Wortsman, S. Y. Gadre, S. Song, H. Hajishirzi, S. Kornblith, A. Farhadi, and
L. Schmidt. Patching open-vocabulary models by interpolating weights. Advances in Neural
Information Processing Systems (NeurIPS), 35:29262–29277, 2022.

[28] G. Ilharco, M. T. Ribeiro, M. Wortsman, S. Gururangan, L. Schmidt, H. Hajishirzi, and
A. Farhadi. Editing models with task arithmetic. In Proceedings of the International Conference
on Learning Representations (ICLR), 2023.

11

84756 https://doi.org/10.52202/079017-2691

[29] R. Jiang, G. Du, S. Yu, Y. Guo, S. K. Goh, and H.-K. Tang. Cade: Cosine annealing differential
evolution for spiking neural network. arXiv preprint arXiv:2406.02349, 2024.

[30] X. Jin, X. Ren, D. Preotiuc-Pietro, and P. Cheng. Dataless knowledge fusion by merging
weights of language models. In Proceedings of the International Conference on Learning
Representations (ICLR), 2023.

[31] J. D. M.-W. C. Kenton and L. K. Toutanova. BERT: Pre-training of deep bidirectional trans-
formers for language understanding. In Proceedings of the Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies
(NAACL-HLT), pages 4171–4186, 2019.

[32] T. Khot, P. Clark, M. Guerquin, P. Jansen, and A. Sabharwal. Qasc: A dataset for question
answering via sentence composition. In Proceedings of the AAAI Conference on Artificial
Intelligence (AAAI), volume 34, pages 8082–8090, 2020.

[33] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In Proceedings of the
International Conference on Learning Representations (ICLR), 2015.

[34] M. Klimaszewski, P. Andruszkiewicz, and A. Birch. No train but gain: Language arithmetic for
training-free language adapters enhancement. arXiv preprint arXiv:2404.15737, 2024.

[35] J. Krause, M. Stark, J. Deng, and L. Fei-Fei. 3d object representations for fine-grained
categorization. In Proceedings of the IEEE International Conference on Computer Vision
Workshops (ICCVW), pages 554–561, 2013.

[36] Y. LeCun. The mnist database of handwritten digits, 1998. http://yann.lecun.com/
exdb/mnist/.

[37] H. Levesque, E. Davis, and L. Morgenstern. The winograd schema challenge. In Proceedings
of the International Conference on the Principles of Knowledge Representation and Reasoning
(KR), 2012.

[38] H. Li, Y. Zhang, F. Koto, Y. Yang, H. Zhao, Y. Gong, N. Duan, and T. Baldwin. Cmmlu: Mea-
suring massive multitask language understanding in chinese. arXiv preprint arXiv:2306.09212,
2023.

[39] W. Li, Y. Peng, M. Zhang, L. Ding, H. Hu, and L. Shen. Deep model fusion: A survey. arXiv
preprint arXiv:2309.15698, 2023.

[40] Y. Li, J. Yosinski, J. Clune, H. Lipson, and J. Hopcroft. Convergent learning: Do different
neural networks learn the same representations? arXiv preprint arXiv:1511.07543, 2015.

[41] Y. Li, H. Su, X. Shen, W. Li, Z. Cao, and S. Niu. Dailydialog: A manually labelled multi-turn
dialogue dataset. arXiv preprint arXiv:1710.03957, 2017.

[42] H. Liu, D. Tam, M. Muqeeth, J. Mohta, T. Huang, M. Bansal, and C. A. Raffel. Few-shot
parameter-efficient fine-tuning is better and cheaper than in-context learning. Advances in
Neural Information Processing Systems (NeurIPS), 35:1950–1965, 2022.

[43] V. Liu, C. Banea, and R. Mihalcea. Grounded emotions. In Proceedings of the International
Conference on Affective Computing and Intelligent Interaction (ACII), pages 477–483, 2017.

[44] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer,
and V. Stoyanov. Roberta: A robustly optimized bert pretraining approach. arXiv preprint
arXiv:1907.11692, 2019.

[45] M.-C. d. Marneffe, M. Simons, and J. Tonhauser. The CommitmentBank: Investigating
projection in naturally occurring discourse. In proceedings of Sinn und Bedeutung, volume 23,
pages 107–124, 2019.

[46] M. S. Matena and C. A. Raffel. Merging models with fisher-weighted averaging. Advances in
Neural Information Processing Systems (NeurIPS), 35:17703–17716, 2022.

12

84757https://doi.org/10.52202/079017-2691

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

[47] B. W. Matthews. Comparison of the predicted and observed secondary structure of t4 phage
lysozyme. Biochimica et Biophysica Acta (BBA)-Protein Structure, 1975.

[48] S. Mohammad and F. Bravo-Marquez. Wassa-2017 shared task on emotion intensity. In
Proceedings of the Workshop on Computational Approaches to Subjectivity, Sentiment and
Social Media Analysis (WASSA), pages 34–49, 2017.

[49] S. M. Mohammad. #emotional tweets. In Proceedings of the First Joint Conference on Lexical
and Computational Semantics (SEM), pages 246–255, 2012.

[50] S. M. Mohammad, X. Zhu, S. Kiritchenko, and J. Martin. Sentiment, emotion, purpose, and
style in electoral tweets. Information Processing & Management, 51(4):480–499, 2015.

[51] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, A. Y. Ng, et al. Reading digits in
natural images with unsupervised feature learning. In NIPS workshop on deep learning and
unsupervised feature learning, volume 2011, page 7, 2011.

[52] Y. Nie, A. Williams, E. Dinan, M. Bansal, J. Weston, and D. Kiela. Adversarial NLI: A new
benchmark for natural language understanding. In Proceedings of the Annual Meeting of the
Association for Computational Linguistics (ACL), 2020.

[53] L. A. M. Oberländer and R. Klinger. An analysis of annotated corpora for emotion classification
in text. In Proceedings of the International Conference on Computational Linguistics (COLING),
pages 2104–2119, 2018.

[54] H. Orgad, B. Kawar, and Y. Belinkov. Editing implicit assumptions in text-to-image diffusion
models. In Proceedings of the IEEE/CVF International Conference on Computer Vision (CVPR),
pages 7053–7061, 2023.

[55] G. Ortiz-Jimenez, A. Favero, and P. Frossard. Task arithmetic in the tangent space: Improved
editing of pre-trained models. Advances in Neural Information Processing Systems (NeurIPS),
36, 2024.

[56] M. T. Pilehvar and J. Camacho-Collados. WiC: The word-in-context dataset for evaluating
context-sensitive meaning representations. In Proceedings of the Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics: Human Language Technologies
(NAACL-HLT), 2019.

[57] C. Poth, J. Pfeiffer, A. Rücklé, and I. Gurevych. What to pre-train on? efficient intermediate
task selection. In Proceedings of the Conference on Empirical Methods in Natural Language
Processing (EMNLP), 2021.

[58] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,
P. Mishkin, J. Clark, et al. Learning transferable visual models from natural language supervision.
In Proceedings of the International Conference on Machine Learning (ICML), pages 8748–8763,
2021.

[59] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J.
Liu. Exploring the limits of transfer learning with a unified text-to-text transformer. Journal of
Machine Learning Research (JMLR), 21(140):1–67, 2020.

[60] A. Rame, M. Kirchmeyer, T. Rahier, A. Rakotomamonjy, P. Gallinari, and M. Cord. Di-
verse weight averaging for out-of-distribution generalization. Advances in Neural Information
Processing Systems (NeurIPS), 35:10821–10836, 2022.

[61] M. Roemmele, C. A. Bejan, and A. S. Gordon. Choice of plausible alternatives: An evaluation
of commonsense causal reasoning. In 2011 AAAI Spring Symposium Series, 2011.

[62] A. Rogers, O. Kovaleva, M. Downey, and A. Rumshisky. Getting closer to AI complete question
answering: A set of prerequisite real tasks. In Proceedings of the AAAI Conference on Artificial
Intelligence (AAAI), volume 34, pages 8722–8731, 2020.

13

84758 https://doi.org/10.52202/079017-2691

[63] B. Rozière, J. Gehring, F. Gloeckle, S. Sootla, I. Gat, X. E. Tan, Y. Adi, J. Liu, R. Sauvestre,
T. Remez, J. Rapin, A. Kozhevnikov, I. Evtimov, J. Bitton, M. Bhatt, C. C. Ferrer, A. Grattafiori,
W. Xiong, A. Défossez, J. Copet, F. Azhar, H. Touvron, L. Martin, N. Usunier, T. Scialom, and
G. Synnaeve. Code llama: Open foundation models for code. arXiv preprint arXiv:2308.12950,
2023.

[64] O. Sagi and L. Rokach. Ensemble learning: A survey. Wiley interdisciplinary reviews: data
mining and knowledge discovery, 8(4):e1249, 2018.

[65] K. Sakaguchi, R. L. Bras, C. Bhagavatula, and Y. Choi. Winogrande: An adversarial winograd
schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.

[66] V. Sanh, A. Webson, C. Raffel, S. H. Bach, L. Sutawika, Z. Alyafeai, A. Chaffin, A. Stiegler,
T. L. Scao, A. Raja, et al. Multitask prompted training enables zero-shot task generalization. In
Proceedings of the International Conference on Learning Representations (ICLR), 2022.

[67] M. Sap, H. Rashkin, D. Chen, R. Le Bras, and Y. Choi. Social iqa: Commonsense reasoning
about social interactions. In Proceedings of the Conference on Empirical Methods in Natural
Language Processing and the International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 4463–4473, 2019.

[68] K. R. Scherer and H. G. Wallbott. Evidence for universality and cultural variation of differential
emotion response patterning. Journal of personality and social psychology, 66(2):310, 1994.

[69] H. Schuff, J. Barnes, J. Mohme, S. Padó, and R. Klinger. Annotation, modelling and analysis
of fine-grained emotions on a stance and sentiment detection corpus. In Proceedings of the
Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis
(WASSA), pages 13–23, 2017.

[70] R. Sharma, J. Allen, O. Bakhshandeh, and N. Mostafazadeh. Tackling the story ending biases in
the story cloze test. In Proceedings of the Annual Meeting of the Association for Computational
Linguistics (ACL), pages 752–757, 2018.

[71] E. Shnarch, A. Halfon, A. Gera, M. Danilevsky, Y. Katsis, L. Choshen, M. S. Cooper, D. Epel-
boim, Z. Zhang, D. Wang, et al. Label sleuth: From unlabeled text to a classifier in a few
hours. In Proceedings of the Conference on Empirical Methods in Natural Language Processing
(EMNLP), 2022.

[72] S. P. Singh and M. Jaggi. Model fusion via optimal transport. Advances in Neural Information
Processing Systems (NeurIPS), 33:22045–22055, 2020.

[73] R. Socher, A. Perelygin, J. Wu, J. Chuang, C. D. Manning, A. Y. Ng, and C. Potts. Recursive
deep models for semantic compositionality over a sentiment treebank. In Proceedings of the
Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 1631–1642,
2013.

[74] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel. The german traffic sign recognition
benchmark: a multi-class classification competition. In Proceedings of the International Joint
Conference on Neural Networks (IJCNN), 2011.

[75] G. Stoica, D. Bolya, J. Bjorner, P. Ramesh, T. Hearn, and J. Hoffman. Zipit! merging models
from different tasks without training. In Proceedings of the International Conference on
Learning Representations (ICLR), 2024.

[76] C. Strapparava and R. Mihalcea. Semeval-2007 task 14: Affective text. In Proceedings of the
International Workshop on Semantic Evaluations (SemEval), pages 70–74, 2007.

[77] T. Sun, Y. Shao, H. Qian, X. Huang, and X. Qiu. Black-box tuning for language-model-as-a-
service. In Proceedings of the International Conference on Machine Learning (ICML), pages
20841–20855, 2022.

[78] O. Tafjord, M. Gardner, K. Lin, and P. Clark. Quartz: An open-domain dataset of qualitative
relationship questions. In Proceedings of the Conference on Empirical Methods in Natural
Language Processing and the International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 5940–5945, 2019.

14

84759https://doi.org/10.52202/079017-2691

[79] N. Tatro, P.-Y. Chen, P. Das, I. Melnyk, P. Sattigeri, and R. Lai. Optimizing mode connectivity
via neuron alignment. Advances in Neural Information Processing Systems (NeurIPS), 33:
15300–15311, 2020.

[80] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov, S. Batra,
P. Bhargava, S. Bhosale, et al. Llama 2: Open foundation and fine-tuned chat models. arXiv
preprint arXiv:2307.09288, 2023.

[81] F. Wan, X. Huang, D. Cai, X. Quan, W. Bi, and S. Shi. Knowledge fusion of large language
models. arXiv preprint arXiv:2401.10491, 2024.

[82] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. R. Bowman. Glue: A multi-task
benchmark and analysis platform for natural language understanding. In Proceedings of the
International Conference on Learning Representations (ICLR), 2019.

[83] H. Wang, M. Yurochkin, Y. Sun, D. Papailiopoulos, and Y. Khazaeni. Federated learning with
matched averaging. In Proceedings of the International Conference on Learning Representations
(ICLR), 2020.

[84] A. Warstadt, A. Singh, and S. Bowman. Neural network acceptability judgments. Transactions
of the Association for Computational Linguistics, 7:625–641, 2019.

[85] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T. Rault, R. Louf,
M. Funtowicz, et al. Huggingface’s transformers: State-of-the-art natural language processing.
arXiv preprint arXiv:1910.03771, 2019.

[86] M. Wortsman, G. Ilharco, S. Y. Gadre, R. Roelofs, R. Gontijo-Lopes, A. S. Morcos,
H. Namkoong, A. Farhadi, Y. Carmon, S. Kornblith, et al. Model soups: averaging weights
of multiple fine-tuned models improves accuracy without increasing inference time. In Pro-
ceedings of the International Conference on Machine Learning (ICML), pages 23965–23998,
2022.

[87] J. Xiao, K. A. Ehinger, J. Hays, A. Torralba, and A. Oliva. Sun database: Exploring a large
collection of scene categories. International Journal of Computer Vision (IJCV), 119:3–22,
2016.

[88] Z. Xu, K. Yuan, H. Wang, Y. Wang, M. Song, and J. Song. Training-free pretrained model
merging. arXiv preprint arXiv:2403.01753, 2024.

[89] P. Yadav, D. Tam, L. Choshen, C. A. Raffel, and M. Bansal. Ties-merging: Resolving interfer-
ence when merging models. Advances in Neural Information Processing Systems (NeurIPS),
36, 2024.

[90] E. Yang, Z. Wang, L. Shen, S. Liu, G. Guo, X. Wang, and D. Tao. Adamerging: Adaptive model
merging for multi-task learning. In Proceedings of the International Conference on Learning
Representations (ICLR), 2024.

[91] Y. Yang, W.-t. Yih, and C. Meek. Wikiqa: A challenge dataset for open-domain question
answering. In Proceedings of the Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 2013–2018, 2015.

[92] Y. Yang, G. Du, C. K. Toa, H.-K. Tang, and S. K. Goh. Evolutionary neural architecture search
for 3d point cloud analysis. arXiv preprint arXiv:2408.05556, 2024.

[93] L. Yu, W. Jiang, H. Shi, J. Yu, Z. Liu, Y. Zhang, J. T. Kwok, Z. Li, A. Weller, and W. Liu.
Metamath: Bootstrap your own mathematical questions for large language models. arXiv
preprint arXiv:2309.12284, 2023.

[94] L. Yu, B. Yu, H. Yu, F. Huang, and Y. Li. Language models are super mario: Absorbing abilities
from homologous models as a free lunch. arXiv preprint arXiv:2311.03099, 2023.

[95] R. Zellers, A. Holtzman, Y. Bisk, A. Farhadi, and Y. Choi. HellaSwag: Can a machine
really finish your sentence? In Proceedings of the Annual Meeting of the Association for
Computational Linguistics (ACL), 2019.

15

84760 https://doi.org/10.52202/079017-2691

[96] J. Zhang, J. Liu, J. He, et al. Composing parameter-efficient modules with arithmetic operation.
Advances in Neural Information Processing Systems (NeurIPS), 36:12589–12610, 2023.

[97] Y. Zhang, J. Baldridge, and L. He. Paws: Paraphrase adversaries from word scrambling. In Pro-
ceedings of the Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies (NAACL-HLT), 2019.

[98] Z. Zhou, Y. Yang, X. Yang, J. Yan, and W. Hu. Going beyond linear mode connectivity: The
layerwise linear feature connectivity. Advances in Neural Information Processing Systems
(NeurIPS), 36, 2024.

[99] F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, and Q. He. A comprehensive
survey on transfer learning. Proceedings of the IEEE, 2020.

16

84761https://doi.org/10.52202/079017-2691

Appendix for PCB-Merging

A Novelty and Contribution

Our research aims to unlock the full potential of task vector-based approaches by adjusting coefficients
at the parameter level through a balancing mechanism that addresses parameter competition across
different tasks. We re-examine existing model merging methods and highlight the critical role of
parameter competition awareness. To clearly demonstrate the innovation of our method, we conduct
a comparative analysis with existing state-of-the-art baseline methods.

Comparison with TIES-Merging Both the TIES-Merging [89] and our approach address parameter
competition or interference through self-awareness and cross-awareness. However, there are several
key differences:

1. When performing Drop / Trim to reduce redundancy, we consider both intra-competition
and inter-competition, whereas TIES-Merging primarily considers parameter magnitude.

2. In terms of cross-awareness, TIES-Merging only considers the direction of parameters
across different tasks, neglecting parameter weights. Our method more accurately measures
the similarity of task vectors to assess conflict levels. We conducted ablation experiments to
demonstrate the effectiveness of inter-balancing, as shown in App. B.1 and Tab. 6.

3. Our approach modulates the coefficient of each parameter, while TIES-Merging uses a
uniform scale for all tasks and parameters. Ablation experiments in the Analysis section
validate the superiority of our method, as shown in Section 6.1 and Tab. 5.

Comparison with AdaMerging Although AdaMerging [90] has achieved significant performance
improvements in image classification, it has several drawbacks:

1. This method requires unsupervised test samples, which is often impractical.
2. The use of Shannon entropy to train the adaptive weights limits the method to classification

tasks.
3. AdaMerging requires unsupervised training with the availability of (unlabeled) test samples,

which is a different setup than generalizing to an entirely unseen test set.

In contrast, our proposed PCB-Merging retains the efficiency and lightwight nature as most previous
merging methods. Additionally, we conducted experiments on image classification tasks to compare
the two methods, as shown in App. C.2 and Tab. 7.

Comparison with Fisher Merging and RegMean The same as Fisher Merging [46] and Reg-
Mean [30], our PCB-Merging method also introduces additional matrices to adjust parameter coeffi-
cients, but there are two key differences:

1. Fisher Merging and RegMean consider only self-awareness or cross-awareness, respectively.
In contrast, our method accounts for various scenarios of parameter competition.

2. Both Fisher Merging and RegMean require additional gradient-based computations to obtain
the Fisher Information Matrix or Inner Product Matrix, which demand more GPU resources.
Our method, however, is based on task vectors, making it easier and lightwight to implement.

Comparison with DARE Both DARE [94] and PCB-Merging drop and rescale task vectors for
model merging, but there are significant differences:

1. DARE randomly drops parameters according to a drop rate p, while we consider parameter
competition.

2. DARE rescales the remaining parameters by a uniform factor of 1/(1 − p), whereas we
compute a specific coefficient for each task and each parameter.

3. DARE is mainly used in LLM model merging to maintain the original fine-tuned perfor-
mance. In contrast, we find that dropping parameters can further enhance performance
beyond the fine-tuned model with a suitable scale and intra-balancing.

17

84762 https://doi.org/10.52202/079017-2691

Algorithm 1 PCB-Merging Procedure.
Input: Fine-tuned models {θi}ni=1, Initializa-

tion θpre, mask ratio r and coefficient λ.
Output: Merged Model θm
▷ Create task vectors.

{τi}ni=1 = {θi}ni=1 − θpre
for i in1, ..., n do

▷ Step 1: Intra-Balancing.

βintra,i = Softmax(N ∗ Norm(τi ⊙ τi))
▷ Step 2: Inter-Balancing.

βinter,i =
∑n

j=1 Softmax(τi ⊙ τj)

▷ Step 3: Drop low-scoring parameters.

βi = βintra,i ⊙ βinter,i

mi = βi ≥ sorted(βi)[(1− r)×D]

β̂i = mi ⊙ βi

end
▷ Step 4: Rescale task vectors.

τm =
∑n

i=1(β̂i ⊙ τi)/
∑n

i=1 β̂i

▷ Obtain merged checkpoint

θm ← θinit + λ ∗ τm
return θm

Comparison with Lorahub Lorahub [25] aims
to establish a strategic framework for composing
LoRA modules trained on diverse tasks to achieve
adaptable performance on new tasks. This frame-
work utilizes an evolution algorithm (CMA-ES
[21]) to search for the coefficients of each LoRA
module, as introduced in Section 3.3. However,
this search-based approach is time-consuming and
can only be applied at the task level, leading
to limited performance. Moreover, LoRA lacks
self-awareness and considers only competition
between different tasks.

Comparison with Task Arithmetic and PEM
Compositon Both Task Arithmetic [28] and
PEM Composition [96] methods primarily focus
on exploring potential applications of task vectors,
including distribution generalization, unlearning,
and domain transfer. However, they do not ad-
dress parameter competition or balance the coef-
ficients of different tasks or parameters, which
limits their performance.

B Additional Analysis

B.1 Additional Ablation Studies

We present additional ablation experiments on PCB-MERGING, as shown in Tab. 6. In addition to the
four main steps discussed in Section 6.1 (Intra-Balancing, Inter-Balancing, Drop, and Rescale), we
also tested other influencing factors:

1. Activation functions: We replaced the softmax activation function with common alternatives
like sigmoid, ReLU, and tanh. The results show minimal performance loss with different
activation functions, except for ReLU in intra-balancing. This is because these activation
functions can represent complex nonlinear relationships to balance the values of parameters.

2. Without regulator N: We removed the regulator N in intra-balancing, which controls intra-
competition according to the number of models being merged.

3. Inter-balancing with only sign: We computed inter-balancing using only the sign (−1, 1)
instead of the actual values, where the sign represents a direction in the D-dimensional
parameter space relative to initialization. This experiment aims to compare with TIES-
Merging, which addresses sign conflicts.

4. Element-wise multiplication vs. Addition: We combined intra-balancing and inter-balancing
using addition instead of multiplication. This resulted in a performance loss of 4.1% and
3.9% on the ViT-B/32 and T5-base models, respectively.

In summary, these ablation experiments demonstrate the functionality and impact of each component
in our method.

Table 6: More extensive ablation studies on PCB-MERGING

Ablation (→) activation in intra-balancing activation in inter-balancing
Model (↓) sigmoid relu tanh sigmoid relu tanh

without
regulator N

inter-balancing
with only sign

replace multiplication
by adding

PCB
Merging

ViT-B/32 76.1 74.9 76.1 76.2 76.1 76.4 74.7 75.7 72.2 76.3
T5-base 75.3 72.8 75.2 75.3 75.2 75.4 74.1 74.5 71.5 75.4

B.2 Additional Hyper-parameters Analysis

In this section, we present additional experimental results regarding hyper-parameters, observing
similar phenomena and conclusions as those in Section 6.2. We explored the effects of λ and r on

18

84763https://doi.org/10.52202/079017-2691

the performance of merging multiple NLP tasks, as discussed in Section 5.1. First, we show the
performance of various models for different values of λ, keeping r = 0.2. Our method is compared
to the state-of-the-art baseline, TIES-Merging. As shown in Fig. 7, our approach achieves a higher
performance ceiling within the optimal range of 0.8 to 1.6. As λ increases, the performance initially
decreases and then levels off.

Furthermore, we provide a performance analysis for different values of r with T5-large. We conducted
a grid search for λ to find its optimal performance for each ratio. Significantly, for r < 0.4, our method
consistently shows substantial improvements. This highlights the importance of the information
filtered by our parameter competition balancing approach in the merging process.

0.8 1.0 1.2 1.4 1.6
various at r=0.2

66
68
70
72
74

Av
g.

 P
er

fo
rm

an
ce

T5-base

TIES-Merging
PCB-Merging (ours)

0.8 1.0 1.2 1.4 1.6 1.8 2.0
various at r=0.2

66
70
74
78
82

Av
g.

 P
er

fo
rm

an
ce

T5-large

TIES-Merging
PCB-Merging (ours)

0.1 0.2 0.3 0.4 0.5 0.6
various r with the optimal

74
76
78
80
82

Av
g.

 P
er

fo
rm

an
ce

T5-large
TIES-Merging
PCB-Merging (ours)

Figure 7: Performance with various hyperparameters λ and r.

C Additional Results

C.1 Merging Different Number of Tasks

2 3 4 5 6 7
Number of Tasks

0.7
0.8
0.9
1.0
1.1

Av
g.

 P
er

fo
rm

an
ce Weight Averaging TIES-Merging PCB-Merging (ours)

Figure 8: Average normalized performance when
merging a different number of tasks.

We evaluated the performance of the merged
model on in-domain tasks and analyzed how it
varies with the number of tasks being merged.
In Fig. 8, we normalized each task’s accuracy to
its fine-tuned model’s performance and reported
the average normalized accuracy for in-domain
tasks with T5-base model. We compared our
method against the strongest baseline, TIES-
Merging [89], and simple averaging [86]. Each
data point represents the merging of a subset
of tasks, with the solid line indicating the aver-
age performance across multiple subsets. We
observed that as the number of merged tasks
increases, the performance of all methods de-
clines, suggesting that more tasks lead to increased parameter competition. Additionally, TIES-
Merging’s performance drops faster than PCB-Merging, indicating that our PCB-Merging method is
more effective in balancing parameter competition.

C.2 Compare with Adamerging

Table 7: Compare the performance of different
merging methods after applying unsupervised train-
ing with AdaMerging.

Model Coefficient AdaMerge Ada + TIES Ada + PCB

ViT-B/32
Task-wise 71.8 74.9 77.1
Layer-wise 80.1 81.1 81.7

ViT-L/14
Task-wise 85.6 86.8 88.2
Layer-wise 90.8 91.0 91.3

We conducted cross-task merging experiments
on image classification tasks to compare our
method with AdaMerging [90]. AdaMerging
employs unsupervised training to learn merging
coefficients for each task vector in Task Arith-
metic using unlabeled test datasets. Addition-
ally, Layer-wise AdaMerging learns coefficients
for each layer of each task vector.

AdaMerging can be further improved by apply-
ing strategies from TIES-Merging to modify task vectors or using PCB-Matrix to adjust the task
vectors. As shown in Tab. 7, our method enhances AdaMerging, resulting in performance improve-
ments of 2.2% and 1.4% on the ViT-B/32 and ViT-L/14 models, respectively.

19

84764 https://doi.org/10.52202/079017-2691

C.3 Compare with TIES-Merging using Evolutionary Strategy

To validate the effectiveness of the evolutionary strategy (ES) proposed in Section 3.3, we applied ES
to intelligently search for coefficients of different tasks in other baseline methods. The results are
shown in Tab. 8. Notably, after applying ES, TIES-Merging showed significant improvement. We
also compared TIES-Merging with ES against our approach with ES. The results demonstrate the
effectiveness of PCB-MERGING, particularly with a 2.2% performance gain on the T5-large model.
Table 8: Comparing the performance of different methods with evolutionary strategies (ES) after
cross-task merging.

Task (→) 7 NLP Tasks 11 PEFT Tasks 3 LLM Tasks 8 Vision Tasks

Method (↓) T5-Base T5-Large (IA)3 LLaMa2 ViT-B/32 ViT-L/14
Ties-Merging 73.6 80.3 66.8 34.2 73.6 86.0

PCB-MERGING (ours) 75.4 (+1.8) 82.1 (+1.8) 68.1 (+1.3) 35.1 (+0.9) 76.4 (+2.8) 87.5 (+1.5)
Ties-Merging + ES 74.8 81.0 67.6 34.3 74.9 86.8

PCB-MERGING + ES (ours) 76.7 (+1.9) 83.2 (+2.2) 68.8 (+1.2) 35.3 (+1.0) 77.0 (+2.1) 88.1 (+1.6)

C.4 Comprehensive Task-Level Results

We provide the task level for all the cross-task merging experiments in the main Tab. 2.
Tab. 9, 10, 11, 12, and 13 provide the task level results T5-Base, T5-Large [59], IA3 [42], ViT-
B/32, and ViT-L/14 [12] respectively. The task level results of the out-of-domain experiments for
T5-Base and T5-Large can be found in Tab. 14.
Table 9: Test set performance when merging T5-base models on seven NLP tasks. Please refer to
Section 5.1 for experimental details.

Task(→) Test Set Performance
Method(↓)

Validation Average
paws qasc quartz story_cloze wiki_qa winogrande wsc

Zeroshot - 53.5 49.9 35.8 53.3 48.1 76.2 50 61.1
Fine-tuned - 83.1 94.6 98.4 81.1 84.9 95.8 64.5 62.5
Multitask - 83.6 94 97.9 82.5 86.7 95 64.1 65.3

Averaging[ICML22] [86] ✗ 65.3 67.4 83.4 60.8 50.3 93.2 51.7 50.0
Task Arithmetic[ICLR23] [28] ✗ 53.5 50.6 22.4 55.0 63.6 79.2 53.9 50.0
Ties-Merging[NeurIPS23] [89] ✗ 69.5 76.1 79.5 68.5 65.6 86.3 56.2 54.2

PCB-MERGING (ours) ✗ 73.8 77.1 91.5 68.5 75.8 88.2 61.1 54.2
Fisher Merging[NeurIPS22] [46] ✓ 68.3 66.7 85.6 63.5 57.1 90.1 54.2 60.8

RegMean[ICLR23] [30] ✓ 72.7 77.2 93.8 63.6 64.6 90.4 58.4 60.7
Task Arithmetic[ICLR23] [28] ✓ 73.0 69.6 91.5 67.3 76.1 91.3 58.3 56.9
Ties-Merging[NeurIPS23] [89] ✓ 73.6 82.2 84.8 66.1 73.5 87.0 60.2 61.1

PCB-MERGING (ours) ✓ 75.4 79.0 93.2 65.8 76.1 89.9 59.8 63.9

Table 10: Test set performance when merging T5-large models on seven NLP tasks. Please refer to
Section 5.1 for experimental details.

Task(→) Test Set Performance
Method(↓)

Validation Average
paws qasc quartz story_cloze wiki_qa winogrande wsc

Zeroshot - 53.1 58.2 54.2 54.1 54.3 70.9 49.2 63.9
Fine-tuned - 88.9 94.5 98.3 88.5 91.4 96.2 74.5 79.2
Multitask - 88.1 94.2 98.5 89.3 92 95.4 73.5 73.6

Averaging[ICML22] [86] ✗ 54.7 57.2 26.4 71.4 54.8 86.6 50.2 36.1
Task Arithmetic[ICLR23] [28] ✗ 73.6 69.7 83.6 58.3 77.4 94.4 59.3 72.2
Ties-Merging[NeurIPS23] [89] ✗ 71.7 71.2 97.1 74.2 74.9 73.3 62.9 48.6

PCB-MERGING (ours) ✗ 77.1 78.1 98 75.4 77.7 89.1 64.6 56.9
Fisher Merging[NeurIPS22] [46] ✓ 68.7 68.4 83 65.5 62.4 94.1 58.2 49.2

RegMean[ICLR23] [30] ✓ 79.8 83.9 97.2 73.2 82.6 94.1 63.2 64.4
Task Arithmetic[ICLR23] [28] ✓ 80.2 77.6 96.6 75.1 85.6 93.8 61.8 70.8
Ties-Merging[NeurIPS23] [89] ✓ 80.3 78.2 97.5 72.8 83.7 94.5 64.5 70.8

PCB-MERGING (ours) ✓ 82.1 82.0 98.4 72.2 85.6 94.0 67.5 75.0

20

84765https://doi.org/10.52202/079017-2691

Table 11: Test set performance when merging (IA)3 models on eleven tasks. Please refer to Section
5.1 for experimental details.

Task(→) Natural Language Inference Sentence Completion Co-reference WSD
Method(↓)

Validation Average
RTE CB ANLI1 ANLI2 ANLI3 COPA Hella. Story. WSC Wino. WiC

Zeroshot - 53.1 58.2 54.2 35.5 34.4 34.4 75.0 39.2 86.5 63.9 51.2 51.9
Fine-Tuned - 71.4 82.7 95.8 70.4 46.5 53.0 85.3 44.4 95.0 65.3 75.1 71.7

Averaging[ICML22] [86] - 57.9 81.2 58.3 43.3 39.1 40.0 80.9 40.1 92.4 52.8 53.8 55.0
Task Arithmetic[ICLR23] [28] ✗ 59.2 76.5 79.2 59.8 47.5 48.2 66.2 31.4 81.5 51.4 57.7 51.6
TIES-Merging[NeurIPS23] [89] ✗ 64.9 81.2 87.5 58.1 46.5 47.4 80.2 42.6 91.1 58.3 60.8 59.9

PCB-MERGING (ours) ✗ 66.1 85.9 83.3 64.2 47.8 45.9 82.4 42.7 91.2 63.9 61.9 57.1
Fisher Merging[NeurIPS22] [46] ✓ 62.2 83.3 83.3 45.9 41.0 42.2 83.1 42.2 94.1 58.3 56.7 54.2

RegMean[ICLR23] [30] ✓ 58 81.2 58.3 43.3 39.2 40.2 80.9 40.1 92.5 53.5 53.8 55
Task Arithmetic[ICLR23] [28] ✓ 63.9 74.1 83.3 60.8 49.4 50.0 87.5 41.5 95.3 49.3 62.8 49.1
TIES-Merging[NeurIPS23] [89] ✓ 66.8 78.6 87.5 66.6 51.3 51.5 81.7 43.2 90.9 57.6 67.0 58.4

PCB-MERGING (ours) ✓ 68.1 80.0 83.3 67.1 51.1 49.6 88.3 42.7 92.8 61.8 67.6 64.7

Table 12: Test set performance when merging ViT-B/32 models on 8 vision tasks. Please refer to
Section 5.1 for experimental details.

Task(→) Test Set Performance
Method(↓)

Validation Average
SUN397 Cars RESISC45 EuroSAT SVHN GTSRB MNIST DTD

Individual - 90.5 75.3 77.7 96.1 99.7 97.5 98.7 99.7 79.4
Multitask - 88.9 74.4 77.9 98.2 98.9 99.5 93.9 72.9 95.8

Averaging[ICML22] [86] ✗ 65.8 65.3 63.4 71.4 71.7 64.2 52.8 87.5 50.1
Task Arithmetic[ICLR23] [28] ✗ 60.4 36.7 41 53.8 64.4 80.6 66 98.1 42.5
Ties-Merging[NeurIPS23] [89] ✗ 72.4 59.8 58.6 70.7 79.7 86.2 72.1 98.3 54.2

PCB-MERGING (ours) ✗ 75.9 65.8 64.4 78.1 81.1 84.9 77.1 98.0 58.4
Fisher Merging[NeurIPS22] [46] ✓ 68.3 68.6 69.2 70.7 66.4 72.9 51.1 87.9 59.9

RegMean[ICLR23] [30] ✓ 71.8 65.3 63.5 75.6 78.6 78.1 67.4 93.7 52
Task Arithmetic[ICLR23] [28] ✓ 70.1 63.8 62.1 72 77.6 74.4 65.1 94 52.2
Ties-Merging[NeurIPS23] [89] ✓ 73.6 64.8 62.9 74.3 78.9 83.1 71.4 97.6 56.2

PCB-MERGING (ours) ✓ 76.3 66.7 65.5 78.5 79.3 86.4 77.1 98.2 59.1

Table 13: Test set performance when merging ViT-L/14 models on 8 vision tasks. Please refer to
Section 5.1 for experimental details.

Task(→) Test Set Performance
Method(↓)

Validation Average
SUN397 Cars RESISC45 EuroSAT SVHN GTSRB MNIST DTD

Fine-tuned - 94.2 82.3 92.4 97.4 100 98.1 99.2 99.7 84.1
Multitask - 93.5 90.6 84.4 99.2 99.1 99.6 96.3 80.8 97.6

Averaging[ICML22] [86] ✗ 79.6 72.1 81.6 82.6 91.9 78.2 70.7 97.1 62.8
Task Arithmetic[ICLR23] [28] ✗ 83.3 72.5 79.2 84.5 90.6 89.2 86.5 99.1 64.3
Ties-Merging[NeurIPS23] [89] ✗ 86 76.5 85 89.3 95.7 90.3 83.3 99 68.8

PCB-MERGING (ours) ✗ 86.9 75.8 86 89.2 96 88 90.9 99.1 70
Fisher Merging[NeurIPS22] [46] ✓ 82.2 69.2 88.6 87.5 93.5 80.6 74.8 93.3 70

RegMean[ICLR23] [30] ✓ 83.7 73.3 81.8 86.1 97 88 84.2 98.5 60.8
Task Arithmetic[ICLR23] [28] ✓ 84.5 74.1 82.1 86.7 93.8 87.9 86.8 98.9 65.6
Ties-Merging[NeurIPS23] [89] ✓ 86 76.5 85 89.4 95.9 90.3 83.3 99 68.8

PCB-MERGING (ours) ✓ 87.5 76.8 86.2 89.4 96.5 88.3 91 98.6 73.6

Additionally, we present the results of merging vision tasks using radar charts for a more intuitive
comparison of performance across each task, as shown in Fig. 9. The previous baseline methods
show unstable performance, with poor results in some tasks. In contrast, our method is more robust,
achieving near-best performance across all tasks.

We also present task-level results of cross-domain merging experiments, as introduced in Section 5.2.
Firstly, we fine-tuned five distinct domain-specific models for Emotion Classification and then
employed different model merging methods to obtain a single model. For models with an encoder-
only architecture, we used the same shared classification head initialization during merging. We
tested the performance of the merged model on the original five domains and its generalization on

21

84766 https://doi.org/10.52202/079017-2691

SUN397

Cars

RESISC45

EuroSAT

SVHN

GTSRB

MNIST

DTD

0.2

0.4

0.6

0.8

1.0

VIT- B/32

SUN397

Cars

RESISC45

EuroSAT

SVHN

GTSRB

MNIST

DTD

0.2

0.4

0.6

0.8

1.0

ViT- L/14

Averaging
RegMean

Task Arithmetic
TIES-Merging

Fisher Merging
PCB Merging (ours)

Figure 9: Test set performance when merging ViT-B/32 and ViT-L/14 models on eight image
classification tasks.

Table 14: Out-of-distribution performance across six held-out tasks after merging the checkpoints of
T5-base and T5-large models from seven NLP tasks. Please refer to Section 5.1 for experimental
details.

Task(→) Question Answering WSD Sentence Completion
Method(↓)

model Average
cosmos_qa social_iqa quail wic copa h-swag

Pretrained

T5-base

31.1 21.9 18.8 24.1 65.6 43.8 12.5
Averaging[ICML22] [86] 31.7 21.9 21.9 24.6 68.8 37.5 15.6

Fisher Merging[NeurIPS22] [46] 33.8 15.6 21.9 24.9 65.6 53.1 21.9
Task Arithmetic[ICLR23] [28] 31.9 15.6 31.2 25.7 28.1 68.8 21.9

RegMean[ICLR23] [30] 34.3 23.1 28.1 24.9 48.4 62.5 18.8
TIES-Merging[NeurIPS23] [89] 35.3 21.9 25 25.7 50 65.6 23.8

PCB-MERGING (ours) 37.2 23.6 29.2 26.6 51.9 67.1 24.8
Pretrained

T5-large

27.6 21.9 21.9 24.9 28.1 56.2 12.5
Averaging[ICML22] [86] 30.4 31.2 25 26.3 31.2 59.4 9.4

Fisher Merging[NeurIPS22] [46] 32 34.4 25 26.1 40.6 56.2 9.4
Task Arithmetic[ICLR23] [28] 33.3 21.9 34.4 24.6 40.6 59.4 18.8

RegMean[ICLR23] [30] 36 34.4 28.1 25.3 62.5 50 15.6
TIES-Merging[NeurIPS23] [89] 40.4 31.2 43.8 26.6 59.4 59.4 21.9

PCB-MERGING (ours) 42.5 33.6 45.8 29.6 62.2 59.2 24.6

unseen datasets from five other domains. For more dataset details, please refer to App. D. To ensure
the reliability of the results, we fine-tuned the models five times with different random seeds and
reported the average performance for these runs, as shown in Tab. 15.
Table 15: In domain and Out of domain performance when merging Roberta-base models on 5
emotion datasets. Please refer to Section 5.2 for experimental details.

Dataset(→) In Domain Out of Domain
Method(↓) Average Dialy. Crowd. TEC Tales ISEAR Average Emoint SSEC Elect. Ground. Affec.

Fine-Tuned 51.38 49.3 28.9 56.4 49.2 73.1 -
Averaging[ICML22] [86] 23.2 29.9 16.6 17.0 25.2 27.1 11.6 27.8 5.2 6.5 14.0 4.3

Fisher Merging[NeurIPS22] [46] 26.1 29.8 25.9 19.5 26.2 29.0 16.2 32.7 10.7 12.0 14.8 10.9
RegMean[ICLR23] [30] 34.2 33.1 20.7 34.1 35.0 48.3 21.3 43. 15.4 13.7 20. 0 14.6

TIES-Merging[NeurIPS23] [89] 34.5 32.2 20.6 35.5 35.1 49.3 21.5 43.4 16.1 13.3 19.7 15.0
PCB-MERGING (ours) 35.6 32.1 21.2 37.4 36.0 51.2 22.2 44.2 17.5 13.5 19.7 16.1

22

84767https://doi.org/10.52202/079017-2691

D Dataset details

This section provides a detailed dataset description.

Merging NLP Tasks Following TIES-Merging [89], we choose seven datasets for merging NLP
models: question answering (QASC [32], WikiQA [91], and QuaRTz [78]), paraphrase identification
(PAWS [97]), sentence completion (Story Cloze [70]), and coreference resolution (Winogrande [65]
and WSC [37]).

Merging PEFT Models Following TIES-Merging [89], we use eleven datasets including sentence
completion (COPA [61], H-SWAG [95], and Story Cloze [70] datasets), natural language inference
(ANLI [52], CB [45], and RTE [19]), coreference resolution (WSC [37] and Winogrande [65]), and
word sense disambiguation (WiC [56]).

Merging Vision Tasks Following Task Arithmetic [28], we study multi-task model merging on
eight image classification datasets below. Stanford Cars [35] is a car classification dataset consisting
of 196 classes of cars. DTD [9] is a texture classification dataset comprising 47 classes. EuroSAT [22]
comprises 10 classes of geo-referenced satellite images. GTSRB [74] includes 43 classes of traffic
signs. MNIST [36] features grayscale images of handwritten digits across 10 classes. RESISC45 [7]
encompasses 45 classes of remote sensing image scenes. SUN397 [87] consists of 397 classes of
scene images. Lastly, SVHN [51] encompasses 10 classes of real-world digital classification images.

Table 16: Statistics of in domain and out-of-
domain emotion classification datasets.

Train Dev Test

In-domain
DialyDialog 72,085 10,298 20,596
CrowdFlower 27,818 3,974 7,948
TEC 14,735 2,105 4,211
Tales-Emotion 10,339 1,477 2,955
ISEAR 5,366 766 1,534

Out-of-domain
Emoint 7,102
SSEC 4,868
ElectoralTweets 4,056
GroundedEmotions 2,585
AffectiveText 1,250

Merging LLMs

• CMMLU [38] is a comprehensive Chinese evalu-
ation benchmark specifically designed to assess
language models’ knowledge and reasoning abil-
ities in a Chinese context. It covers 67 topics
ranging from basic subjects to advanced profes-
sional levels.

• GSM8K [10] is a collection of 8.5K high-quality,
linguistically varied math word problems from
grade school, crafted by skilled human authors.
The solutions predominantly require executing
a series of basic arithmetic operations (+, −, ×,
÷) to derive the final answer.

• HumanEval [6] is a dataset for evaluating code gen-
eration ability, containing 164 manually crafted
programming problems covering aspects such as
language understanding, reasoning, algorithms,
and simple mathematics.

Out of Domain Generalilzation The average performance is reported over the following tasks and
datasets: Cosmos QA [26], Social IQA [67], and QuAIL [62] for question answering; WiC [56] for
word sense disambiguation; and COPA [61], and H-SWAG [95] for sentence completion.

Cross-Domain Merging In order to investigate the performance of the sentiment classification
task, following RegMean [30], we selected a diverse and challenging set of datasets. Among them,
DailyDialogs [41], CrowdFlower, TEC [49], Tales-Emotion [2], and ISEAR [68] is utilized to
train domain-specific model. For acessing OOD generalization performance, we use Emoint [48],
SSEC [69], ElectoralTweets [50], GroundedEmotions [43], and AffectiveText [76]. For OOD
evaluation, we focus exclusively on the fundamental emotions: anger, disgust, fear, joy, sadness, and
surprise. A detailed overview of the datasets and statistics is provided in Tab. 16.

Cross-Training Configurations Merging We study four GLUE benchmark text classification
datasets [82]. (1) MRPC [11]: Sentence pairs labeled for semantic equivalence; (2) RTE [19]:
Sentence pairs for entailment prediction; (3) CoLA [84]: Sentences labeled for grammaticality; (4)
SST-2 [73]: Sentences labeled for sentiment.

23

84768 https://doi.org/10.52202/079017-2691

E Baseline details

This section provides a detailed baseline description. Our experiments encompass seven comparison
methods:

• Individual means that each task uses an independent fine-tuned model, which has no
interference between tasks, but cannot perform multiple tasks simultaneously.

• Traditional MTL collects the original training data of all tasks together to train a multi-task
model. It can be used as a reference upper bound for model merging work.

• Weight Averaging is the simplest method of model merging, which directly averages the
parameters of multiple models using θm =

∑n
t=1 θt/n, calculating the element-wise mean

of all individual models. It can be used as a lower bound for model merging. [8, 86].
• Fisher Merging [46] calculates the Fisher information matrix [17] F̂t =
Ex∼Dt

Ey∼pθt (y|x)∇θt(log pθt(y|xt))
2 to measure the importance of each parameter when

merging models for task t, where and model merging is performed according to the guidance
of this importance.

• RegMean [30] imposes a constraint when merging models, that is, the L2 distance between
the merged model’s and the individual models’ activations. It computes a least-squares
solution as θm = (

∑n
t=1 X

T
t Xt)

−1
∑n

t=1(X
T
t Xtθt), where Xt is the input activation of

the corresponding layer.
• Task Arithmetic [28] first defines the concept of “task vectors” and merges these vectors

into a pre-trained model to execute multi-task learning. The model is produced by scaling
and adding the task vectors to the initial model as θm = θinit + λ ∗

∑n
t=1 τt.

• Ties-Merging [89] further solves the task conflict problem in Task Arithmetic [28]. It
eliminates redundant parameters and resolves symbol conflicts through three steps: Trim,
Elect Sign, and Disjoint Merge.

• AdaMerging automatically learns a merging coefficient for each layer of each task vector
in Task Arithmetic [28].

• LoraHub [25] employs Low-rank Adaptations to dynamically combine task-specific mod-
ules for cross-task generalization, and adapts to new tasks by configuring θ′ =

∑K
k=1 wk ·θk.

• DARE [94] sets the majority of delta parameters to zero and rescale the rest by θ′ =
θ · (1/(1− p)) where p is the proportion of delta parameters dropped, therefore efficiently
reduces parameter redundancy.

F Implementation details

F.1 Computational Resources and Runtimes

Our experiments were conducted on Nvidia A6000 GPUs with 48GB of RAM. Depending on the
dataset size, fine-tuning the T5-Base and T5-Large models for single tasks took between 15 minutes
and 2 hours, while fine-tuning the multitask checkpoint took around eight hours. The fine-tuned (IA)3
models were provided by Yadav et al. [89].6. We also used vision models ViT-B/32 and ViT-L/14 as
provided by Ilharco et al. [28].7.

Merge experiments were highly efficient, with evaluations for RoBerta-base, T5-Base, T5-Large,
ViT-B/32, and ViT-L/14 models taking less than 2 minutes. However, two specific experiments
required more time: (1) Evaluating (IA)3 models took about one hour for 11 datasets due to the
need to use multiple templates from prompt sources and compute median results across them. (2)
Validation on LLMs (LLaMa2) was also slow, usually requiring about 40 minutes for evaluating 3
datasets.

F.2 Training details

Cross-Task Merging We trained the T5-base and T5-large models for up to 75,000 steps, using
an effective training batch size of 1024 and a learning rate of 0.0001. To prevent overfitting, we
implemented an early stopping mechanism with a patience of 5. Training was conducted in bfloat16 to

6https://github.com/prateeky2806/ties-merging
7https://github.com/mlfoundations/task_vectors#checkpoints

24

84769https://doi.org/10.52202/079017-2691

https://github.com/prateeky2806/ties-merging
https://github.com/mlfoundations/task_vectors#checkpoints

conserve GPU memory, with a maximum sequence length of 128 tokens. For the PEFT configuration
of the (IA)3 approach on the T0-3B model, we adjusted the parameters accordingly. The training
batch size was set at 16, and the evaluation batch size was 32, while keeping the learning rate at
0.0001. Given the increased complexity, we extended the early stopping patience to 10. No learning
rate scheduler or weight decay was used in any of our training processes. For large language models,
we directly utilized the fine-tuned checkpoints provided by Huggingface8.

Cross-Domain Merging We performed fine-tuning of the RoBERTa-base model starting with an
initial learning rate of 1e-5, and for the T5-base model, we used an initial learning rate of 1e-4.
We applied the AdamW optimizer consistently across all experiments. The learning rate was set
to gradually increase during the first 6% of training steps and then linearly decreased to zero. The
models were trained with a batch size of 16 over 30 epochs for the task of emotion classification. We
assessed model performance at the end of each epoch and, upon completing the training, resumed
from the best-performing checkpoint.

Cross-Training Configurations Merging When merging multiple checkpoints of the same task,
each model is fine-tuned 10 times on each dataset using a random hyperparameter search. The
learning rate is randomly selected in log space from [10−6, 10−3], the batch size from {8, 16, 32, 64},
and the number of epochs from {2, 3, 5}. Evaluation occurs once at the end of training without early
stopping. We use a maximum sequence length of 128 tokens and train the models using the Adam
optimizer [33], with β1 = 0.9, β2 = 0.999 and ϵ = 10−8. Training includes gradient clipping at 1.0,
no weight decay, and a learning rate that linearly decays to zero by the end of the process.

F.3 Hyper-parameter settings

Given the sensitivity of task vector-based model merging methods to hyperparameters, we present the
optimal values of λ and r as determined in our experiments, as shown in Tab. 17. For Task Arithmetic,
we conduct a search over λ ranging from 0.2 to 1.5 with a step size of 0.1. For TIES-Merging and
PCB-MERGING, we search over mask ratios r in {0.05, 0.1, 0.2}, and λ ranging from 0.8 to 2.5 with
a step size of 0.1.

Table 17: Optimal λ and mask ratio r for cross-task merging

Task (→) 7 NLP Tasks 11 PEFT Tasks 3 LLM Tasks 8 Vision Tasks

Method (↓) T5-Base T5-Large (IA)3 LLaMa2 ViT-B/32 ViT-L/14
Task Arithmetic[ICLR23] [28] [λ] 0.4 0.5 0.5 0.3 0.3 0.3

Ties-Merging[NeurIPS23] [89] [λ, r] [1.7, 0.1] [2.4, 0.05] [1.7, 0.1] [1.0, 0.1] [1.0, 0.1] [1.1, 0.05]
PCB-MERGING (ours) [λ, r] [1.9, 0.05] [2.2, 0.05] [1.8, 0.1] [0.9, 0.1] [1.2, 0.05] [1.2, 0.05]

8https://huggingface.co/

25

84770 https://doi.org/10.52202/079017-2691

https://huggingface.co/

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: As shown in Section 1.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The limitations of the work are shown in Section 6.3.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

26

84771https://doi.org/10.52202/079017-2691

Justification: As shown in Section 3.1 and Appendix E.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide the dataset details in Appendix D and implementation details in F
to reproduce the main experimental results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

27

84772 https://doi.org/10.52202/079017-2691

Answer: [Yes]
Justification: we have released the code and experiment setting details in our supplemental
material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide the dataset details in Appendix D, implementation details in F and
hyperparameter details in Section 4 and Appendix F.3.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report the average performance of 5 different random seeds for finetuning
procedures, as shown in Section 5.2, 5.3, Figure 5 and Table 4. Besides, we report the
average performance when merging different numbers of tasks, as shown in Appendix C.1
and Table 8.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

28

84773https://doi.org/10.52202/079017-2691

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: As shown in Appendix F.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This research is conducted in the paper conform, with the NeurIPS Code of
Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: As shown in Section 1 and Appendix A.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

29

84774 https://doi.org/10.52202/079017-2691

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification: As shown in Appendix D.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: As shown in Section 5.1 and Appendix D.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

30

84775https://doi.org/10.52202/079017-2691

paperswithcode.com/datasets

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: As shown in Section 5.1 and Appendix F.2.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [No]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [No]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

31

84776 https://doi.org/10.52202/079017-2691

