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Abstract

Zero-shot (ZS) 3D anomaly detection is a crucial yet unexplored field that ad-
dresses scenarios where target 3D training samples are unavailable due to practical
concerns like privacy protection. This paper introduces PointAD, a novel approach
that transfers the strong generalization capabilities of CLIP for recognizing 3D
anomalies on unseen objects. PointAD provides a unified framework to compre-
hend 3D anomalies from both points and pixels. In this framework, PointAD
renders 3D anomalies into multiple 2D renderings and projects them back into
3D space. To capture the generic anomaly semantics into PointAD, we propose
hybrid representation learning that optimizes the learnable text prompts from 3D
and 2D through auxiliary point clouds. The collaboration optimization between
point and pixel representations jointly facilitates our model to grasp underlying 3D
anomaly patterns, contributing to detecting and segmenting anomalies of unseen
diverse 3D objects. Through the alignment of 3D and 2D space, our model can
directly integrate RGB information, further enhancing the understanding of 3D
anomalies in a plug-and-play manner. Extensive experiments show the superiority
of PointAD in ZS 3D anomaly detection across diverse unseen objects. Code is
available at https://github.com/zqhang/PointAD

1 Introduction
Anomaly detection, a significant field within deep learning, has been widely applied to diverse
domains, including industrial inspection [2, 3, 32, 36, 37, 44, 15, 24, 55, 6, 19, 63]. While 2D
anomaly detection has been extensively studied by exploring RGB information [23, 56, 50, 51, 8, 29],
real-world anomalies typically present themselves with abnormal spatial characteristics. Relying
solely on RGB information poses challenges in detecting some anomalies in many cases, e.g., when
the defect mimics the appearance of the object’s background or foreground, as shown in Figure 1(a).
The emerging field of 3D anomaly detection aims to unveil these spatial relations indicative of
abnormal patterns [22, 4, 45, 9, 54, 13].

However, current 3D anomaly detection methods typically store normal point features during training
and identify anomalies by measuring the distance between the test feature and these stored features [22,
54, 13]. They all depend on the assumption that target point clouds are available and entirely normal.
This assumption does not hold in various situations when the training samples in the target dataset
are inaccessible due to privacy protection (e.g., involvement of trade secrets) or the absence of target
training data (e.g., a new product never seen before) [63]. Figure 1(b) depicts the setting discrepancy
between ZS 3D and unsupervised anomaly detection. These methods mentioned above, which detect
anomalies by memorizing or reconstructing normal point features, have limitations in generalizing
to unseen objects in Figure 1(c). While zero-shot (ZS) anomaly detection has been explored in 2D
images [35, 63], ZS 3D anomaly detection remains a research blank. It is a challenging task as ZS
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Figure 1: Motivation of zero-shot 3D anomaly detection. (a): Top: The hole on the cookies presents
a similar appearance to the background. Bottom: Surface damage on the potato is unapparent to the
object foreground. In these cases, leveraging RGB information makes it difficult to detect anomalies
that imitate the color patterns of the background or foreground. However, effective recognition can
be achieved by modeling the point relations within corresponding point clouds. (b) and (c) depicts
the setting difference of ZS and unsupervised manner.

3D anomaly detection necessitates the model to detect 3D anomalies across unseen point clouds with
diverse class semantics, requiring a robust generalization capacity in the detection model. Recently,
Vision-Language Models (VLMs) with their strong generalization capabilities have been applied to
various downstream tasks [40, 61, 41, 49, 25, 26]. Particularly, CLIP has demonstrated its strong ZS
performance to detect 2D anomalies [35, 24, 63]. Integrating CLIP into the detection model presents
a potential solution to the challenging yet unexplored ZS 3D anomaly detection.

In this paper, we propose a unified framework, namely PointAD, to transfer the knowledge of CLIP
to detect 3D anomalies in a ZS manner. PointAD comprehends point clouds from both 3D and 2D:
(1) deriving 2D representations of point clouds via CLIP by rendering them from multiple views, (2)
understanding 3D representations by projecting 2D representations back to 3D, and (3) enhancing
3D comprehension by additional regularization on 2D representations. After grasping point clouds
from points and pixels, we propose hybrid representation learning to capture generic normality and
abnormality w.r.t. point and pixel information into learnable text prompts [63]. Specifically, since 3D
representation manifests its 2D renderings from different views, we treat each representation as one
instance and achieve 3D representation aggregation via multiple instance learning (MIL). On this
basis, PointAD explicitly aligns the 2D anomalies, rendered from 3D anomalies, to further enhance
3D understanding. We formulate these 2D anomaly recognition tasks from the multi-task learning
(MTL) perspective. PointAD collaboratively learns point and pixel representations, promoting the
in-depth understanding of underlying abnormal patterns and thus achieving superior ZS normality and
abnormality point recognition. Furthermore, benefiting from collaboration optimization, PointAD
can directly integrate additional RGB information and perform ZS multimodal 3D (M3D) detection
without extra modules and retraining. The main contributions of this paper are summarized as follows:

• To the best of our knowledge, we are the first to investigate the challenging yet valuable ZS
3D anomaly detection domain. We propose to transfer the strong recognition generalization
of CLIP to detect and segment 3D anomalies over diverse objects.

• We introduce a novel ZS 3D anomaly detection approach called PointAD, which provides a
unified framework to understand 3D anomalies from points and pixels. Hybrid representation
learning is proposed to incorporate the generic normality and abnormality semantics into
PointAD, enabling a thorough understanding of 3D anomalies.

• PointAD can incorporate 2D RGB information in a plug-and-play manner for testing. In
contrast to other methods that require storing RGB information separately, PointAD offers a
unified framework to perform ZS M3D anomaly detection directly.

• Extensive experiments are conducted to demonstrate the superiority of our model in detecting
and segmenting 3D anomalies, even outperforming some unsupervised SOTA methods that
memorize normal features of target objects in certain metrics. We hope that our model will
serve as a springboard for future research on ZS 3D and M3D anomaly detection.

2 Related Work
3D Anomaly Detection MVTec3D-AD [4], Eyecandies [5], and Real3D-AD [31] provide the point
cloud anomalies and the corresponding 2D-RGB information. MVTec3D-AD bridges the connection
between 3D and 2D anomaly detection. 3D-ST [4] uses a teacher net to extract dense local geometric
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descriptors and design a student net to match such descriptors. AST [45] introduces asymmetric
teacher and student net to further improve 3D anomaly detection. IMRNet [28] and 3DSR [58] detect
3D anomalies by reconstruction errors. Instead of only using point clouds, BTF [22], M3DM [54, 53],
CPFM [7], and SDM [13] integrate point features and RGB pixel features to detect 3D anomalies.
While these approaches exhibit commendable performance by storing object-specific normal point
and pixel features within the unsupervised learning framework, such paradigms simultaneously
limit their generalization capacity to point clouds from unseen objects, which is crucial to detecting
anomalies when the target object is unavailable. To the best of our knowledge, no solution addresses
this valuable yet challenging problem. To fill this gap, we introduce PointAD, designed to identify
unseen anomalies across diverse objects. PointAD extends CLIP to the realm of ZS 3D anomaly
detection and shows robust generalization in capturing generic normality and abnormality within
point clouds. Furthermore, PointAD serves as a unified framework, allowing seamless integration of
point cloud and RGB modality without additional training.

3D Feature Extraction Conventional methods of 3D feature extraction typically employ a point-
based network like PointNet [38] or PointNet++[39] to extract 3D features from point clouds.
Alternative approaches convert 3D data into a 2D format [48, 18], enabling 2D image backbones to
process 3D information. PointCLIP [59] directly projects raw points onto image planes for efficiency,
but this approach causes the produced depth map to lack geometric details. Instead, rendering-based
methods [48, 21] generate 2D renderings by rendering point clouds, allowing for better preservation
of local semantics. CPFM [7] stores normal features of these 2D renderings for unsupervised 3D
anomaly detection. In this paper, we apply this rendering strategy to the source samples to capture
generic anomaly semantics for recognizing abnormalities in unseen objects.

Prompt Learning Instead of fine-tuning the whole network, prompt learning just optimizes the
model to adapt the network to downstream tasks. CoOp [61, 60] introduces global context opti-
mization to update learnable text prompts for few-shot recognition. DenseCLIP [41] extends it
to the dense classifications. More recently, AnomalyCLIP [63] proposes object-agnostic prompt
learning to capture the generic normality and abnormality for images. Our model first introduces
hybrid representation learning for ZS 3D anomaly detection, enabling the detection of anomalies and
abnormal regions.

3 PointAD
3.1 A Review of CLIP
CLIP, a representative VLM, aligns visual representations to the corresponding textual representations,
where an image is classified by comparing the cosine similarity between its visual representation
and textual representations of given class-specific text prompts. Specifically, given an image xi and
target class set C, visual encoders output the global visual representation fi ∈ Rd and local visual
representations fm

i ∈ Rh×w×d, where h, w, and d are the height, width, and dimension, respectively.
Textual representations gc are encoded by textual encoder T with the commonly used text prompt
template A photo of a [c], where c ∈ C. The probability of xi belongs to c can be computed as:

P (gc, fi) =
exp(cos(gc, fi)/τ)∑

c∈C exp(cos(gc, fi))/τ)
, (1)

where cos(·, ·) and τ represent the cosine similarity and temperature used in CLIP, respectively. The
segmentation Si(c) ∈ Rh×w for class c can be computed as Seg(gc, fm

i ), where each entry (u,v) is
calculated as P (gc, f

m
i,u,v).

3.2 Overview of PointAD
ZS 3D anomaly detection requires a strong generalization capacity to anomalies on unseen objects
with diverse object semantics. In this paper, we propose a unified framework, namely PointAD,
to detect and segment 3D anomalies in a ZS manner. In Figure 2, PointAD understands point
clouds from both pixel and point perspectives. To make CLIP understand 3D point clouds, we first
render point clouds from multiple views and extract the pixel representations of these generated 2D
renderings via the visual encoder of CLIP. And then, we derive point representations by projecting
these pixel representations back to 3D. Learning generic normality and abnormality is significant in
recognizing across-object anomalies. We propose hybrid representative learning, which focuses on
glocal point and pixel abnormality, to optimize normality and abnormality text prompts, enabling
PointAD with strong generalization to identify 3D anomalies on diverse objects. Benefiting from the
hybrid representation learning, PointAD can directly incorporate 2D RGB information during testing
to achieve ZS M3D detection.
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Figure 2: Framework of PointAD. To transfer the strong generalization of CLIP from 2D to 3D,
point clouds and corresponding ground truths are respectively rendered into 2D renderings from
multi-view. Then, vision encoder of CLIP extracts the renderings to derive 2D global and local
representations. These representations are transformed into glocal 3D point representations to learn
3D anomaly semantics within point clouds. Finally, we align the normality and abnormality from
both point perspectives (multiple instance learning) and pixel perspectives (multiple task learning)
and propose a hybrid loss to jointly optimize the text embeddings from the learnable normality and
abnormality text prompts, capturing the underlying generic anomaly patterns.

3.3 Multi-View Rendering

Multi-view projection is a crucial technology for understanding point clouds from 2D perspectives.
Some multi-view projection approaches project point clouds into various depth maps, providing
adequate shape information for class recognition [59]. However, in this paper, our objective is
to learn both generic global and local anomaly semantics. Depth-map projection lacks sufficient
resolution to represent fine-grained anomaly semantics accurately. Hence, we adopt high-precision
rendering to preserve the original 3D information offline. Specifically, given an auxiliary dataset
of point clouds D3d = {(x3d

i , y3di )}Ni=1, we define the rendering matrix as R(k) for the k-th view,
with a total of K views. We simultaneously render point clouds and point-level ground truths from
different views to obtain their corresponding 2D renderings, which is given by x

(k)
i = R(k)(x3d

i )

and y
(k)
i = R(k)(y3di ), where x

(k)
i ∈ RH×W and y

(k)
i ∈ RH×W respectively represent the k-th 2D

renderings and corresponding pixel-level ground truth in the i-th point cloud. Note that anomaly
pixels are marked as 1, and normal pixels are marked as 0.

3.4 Representations for 3D and 2D information

PointAD aims to learn generic anomaly semantics from both 3D and 2D representations, enabling
a comprehensive understanding of point and pixel anomaly patterns. For a point cloud x3d

i , we
first obtain the 2D renderings Xi = {x(k)

i }Kk=1. Then, these renderings are encoded via the vision
encoder of CLIP to obtain global 2D representations Fi={f (k)

i }Kk=1, and local 2D representations
Fm

i = {fm(k)
i }Kk=1. As for point cloud representations, we consider that one point cloud will

be projected into multiple 2D renderings. Consequently, global 3D representation pi and local
3D representations pmi are expected to include their corresponding 2D representations in each
view. Formally, pi = {p(k)i |p(k)i = f

(k)
i }Kk=1 and pmi = {pm(k)

i |pm(k)
i = {pm(k)

i,j }nj=1}Kk=1, where

p
m(k)
i,j = {pm(k)

i,j = f
m(k)
i,u,v , (u, v) = R′(k)(ai,j |bi,j , ci,j)} represents the j-th point representation of

i-th point cloud in the k-th view, whose 3D coordinate is (ai,j , bi,j , ci,j). R′(k) is the rendering
transformation between the point and pixel representation, derived as R′(k) = h

HR(k).

4

84869https://doi.org/10.52202/079017-2695



Points at different positions may yield a different number of 2D representations as they are hidden
by other points from a specific viewpoint. In this case, we introduce a view-wise visibility mask M ,
where Mk

i,j indicates whether the j-th point of the i-th point cloud is visible in the k-th view. We
compare the depth of points projected into the same pixel in the same view and set the corresponding
visibility mask to 1 for the point with the minimum depth, and to 0 for the other points. Let Q(k)

i,u,v

denote the depths set of all points that are projected into the same pixel indexed by (u, v) in the
i-th point cloud in the k-th view. Q(k)

i,u,v and Mk
i,j are respectively given as Q(k)

i,u,v = {ci,j |
R′(k)(ai,j , bi,j , ci,j) = (u, v)}nj=1 and M

(k)
i,j = I(i, j, k = argmini,j,k{ci,j | ci,j ∈ Q(k)

i,u,v}), where
I(·) is an indicator function. Local 3D representations of the i-th point cloud for the k-th view are
reformulated as: pm(k)

i = {pm(k)
i,j ∗M (k)

i,j }nj=1.

3.5 Hybrid representation learning
The key of ZS 3D anomaly detection requires the model to capture generic anomaly semantics,
rather than relying on specific object semantics. Since CLIP was originally pre-trained to align
object semantics, such alignment harms the generalization capacity of CLIP to recognize anomalies
on various objects. To adapt CLIP to 3D anomaly detection, we propose a hybrid representation
learning, from both 3D and 2D perspectives, to globally and locally optimize textual representations.
This enables PointAD to learn more representative text embedding for glocal anomaly semantics
alignment. Following previous work [63, 61], we randomly initialize two learnable text templates tn
and ta, in AnomalyCLIP [63] or CoOp manner [61], to obtain more overall text embeddings gn and
ga to recognize normality and abnormality, respectively.

tn = [V1] . . . [VE ][object], tn = [V1] . . . [VE ][class],

ta = [W1] . . . [WE ][damaged][object]︸ ︷︷ ︸
PointAD

, ta = [W1] . . . [WE ][damaged][class]︸ ︷︷ ︸
PointAD-CoOp

,

where V and W are learnable word embeddings, respectively.

MIL-based 3D representation learning To fully incorporate 3D glocal anomaly semantics into
PointAD from point information, we respectively devised two losses to capture 3D global anomalies
and local anomaly regionals. First, we compute the cosine similarity between the textual represen-
tation and its rendering global representations in each view. As point clouds are projected from
different views, the resulting renderings in each view reflect certain parts of point clouds. We use
view-wise MIL to integrate 2D global representations and then align global labels to capture the
global semantics. Formally, the global 3D loss is defined as:

Lglobal
3d = 1

N

∑
i CrossEntropy( 1

K

∑
f
(k)
i ∈pi

P (gc, f
(k)
i ),max (y3d

i )).

As for local point anomaly semantics, we quantify the cosine similarity between textual representa-
tions and local representations of 2D renderings. Since points within point clouds are projected from
different views, their projections in each view present part characteristics of themselves. We adopt
the pixel-wise MIL to achieve the aggregation of point local representation. The point segmentation
can be formulated mathematically as follows:

S3d
i(a) =

1
K

∑
k Seg(ga, p

m(k)
i ), S3d

i(n) =
1
K

∑
k Seg(gn, p

m(k)
i ).

However, deriving such 3D segmentation requires similarity computation for each point. It brings a
significant memory burden, with a huge computational complexity of O(Knd), which is unaffordable
for one NVIDIA RTX 3090 24GB GPU. To address this computational challenge, we resort to the
rendering correspondence between points (3D space) and their corresponding pixels within each view
(2D space). We first can rewrite 3D segmentation from the view perspective as S3d

i(a) =
1
K

∑
k S

3d(k)
i(a) .

Then, the k-th division of 3D segmentation can be transformed into the 2D counterpart through the
rendering projection S

3d(k)
i(a) = (R(k))(−1)S

2d(k)
i(a) ⊗M

(k)
i , where ⊗ is the Hamiltonian product. The

k-th 2D counterpart can be computed as S2d(k)
i(a) = Up(Seg(ga, f

m(k)
i )), where the operator Up(·)

represents bilinear interpolation from feature space to 2D space. Finally, we can reformulate the 3D
segmentation as follows:

S3d
i(a) =

1
K

∑
k

(
(R(k))(−1)Up(Seg(ga, f

m(k)
i ))⊗M

(k)
i

)
. (2)

From the equation, we can observe that the primary computation can be conducted in the feature
space, with a computational complexity of O(Khwd). This is a substantial overhead reduction
compared to O(Knd) since feature space is much smaller than 3D space, i.e., h× w ≪ n. In our
experiment, h×w = 24× 24 = 576, while n = 336× 336 = 112896. With this transformation, the
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Table 1: Performance comparison on ZS 3D
anomaly detection in "one-vs-rest" setting.
Detec.
level

Dataset MVTec3D-AD(10) Eyecandies(10) Real3D-AD(12)
Metric I-AUROC AP I-AUROC AP I-AUROC AP

G.

CLIP + R. 61.2 85.8 66.7 69.2 68.8 72.3
Cheraghian 53.6 81.7 49.5 48.1 50.3 54.4

PoinCLIP V2 51.2 80.1 46.1 48.1 53.1 58.1
PointCLIP V2a 51.1 80.6 44.4 47.0 57.5 58.3
AnomalyCLIP 56.4 83.5 57.6 59.0 55.2 57.1
PointAD-CoOp 80.9 93.9 67.7 71.8 73.9 75.9

PointAD 82.0 94.2 69.1 73.8 74.8 76.9

Metric P-AUROC AUPRO P-AUROC AUPRO P-AUROC AUPRO

L.

CLIP + R. - 54.4 81.2 37.9 45.9 -
Cheraghian 88.2 57.0 - - - -

PoinCLIP V2 87.4 52.3 43.7 - 52.9 -
PointCLIP V2a 87.3 52.3 44.2 - 52.2 -
AnomalyCLIP 88.9 60.9 77.7 43.4 50.3 -
PointAD-CoOp 94.8 82.0 91.5 71.3 72.6 -

PointAD 95.5 84.4 92.1 71.3 73.5 -

Table 2: Performance comparison on ZS M3D
anomaly detection in "one-vs-rest" setting.

Detec.
level

Dataset MVTec3D-AD(10) Eyecandies(10)
Metric I-AUROC AP I-AUROC AP

MG.

CLIP + R. 60.4 86.4 73.0 73.9
Cheraghian - - - -

PoinCLIP V2 49.8 79.3 46.9 49.9
PointCLIP V2a 49.4 79.8 48.5 50.5
AnomalyCLIP 66.2 87.6 65.0 67.5
PointAD-CoOp 83.4 94.9 73.7 76.0

PointAD 86.9 96.1 77.7 80.4

Metric P-AUROC AUPRO P-AUROC AUPRO

ML.

CLIP + R. - 56.0 78.0 31.8
Cheraghian - - - -

PoinCLIP V2 78.3 49.4 46.0 -
PointCLIP V2a 79.5 51.6 46.2 -
AnomalyCLIP 91.6 70.9 85.0 56.2
PointAD-CoOp 96.5 88.8 94.9 83.6

PointAD 97.2 90.2 95.3 84.3

entire experiment can be conducted using only a single NVIDIA RTX 3090 24GB GPU. After that,
Dice Loss is employed to precisely model the decision boundary of anomaly regions. Let I represent
a full-one matrix of the same size as y3di . Formally, we define 3D local loss Llocal

3d :

Llocal
3d = 1

N

∑
i

(
Dice(S3d

i(n), I − y3d
i ) + Dice(S3d

i(a), y
3d
i )

)
.

MTL-based 2D representation learning We further improve PointAD point understanding by
capturing 2D glocal anomaly semantics into the object-agnostic text prompt template. We treat
the anomaly recognition for one rendering from the point cloud as a task. Hence, we formulate
the anomaly semantics learning for multiple 2D renderings as MTL. MTL-based 2D representation
learning is divided into two parts for respective alignment to 2D global and local anomaly semantics.
For 2D global semantics, we use CrossEntropy to quantify the discrepancy between the textual
representations and each global 2D representation. Global MTL-based 2D representation learning
Lglobal
2d is defined as:

Lglobal
2d = 1

NK

∑
i,k CrossEntropy(P (gc, f

(k)
i ),max (y

(k)
i )).

Also, we focus on 2D abnormal regions to understand pixel-level anomalies. As the anomaly regions
are typically smaller than normal regions, we employ Focal Loss to mitigate the class imbalance
besides Dice Loss. Let ⊕ denote the concatenation operation. Local MTL-based 2D representation
learningLlocal

2d is given as follows:

Llocal
2d = 1

NK

∑
i,k Focal(S2d(k)

i(n) ⊕ S
2d(k)

i(a) , y
(k)
i ) + Dice(S2d(k)

i(n) , I − y
(k)
i ) + Dice(S2d(k)

i(a) , y
(k)
i ).

3.6 Training and Inference
PointAD detects 3D anomalies from both 3D and 2D perspectives and thus combing these above
losses to derive hybrid loss Lhybrid. We minimize Lhybrid to incorporate generic anomaly semantics
into the text prompt from point and pixel spaces:

Lhybrid = Lglobal
3d + Llocal

3d + Lglobal
2d + Llocal

2d .

During training, we minimize the hybrid loss Lhybrid, where the original parameters of CLIP are
frozen to maintain its strong generalization. Since our model provides a unified framework to
understand anomaly semantics from point and pixel, it can not only perform ZS 3D anomaly
detection but also M3D anomaly detection in a plug-and-play way. Next, we will introduce the
inference process in detail:

ZS 3D/M3D inference Given a point cloud x3d
i , we regard the 3D segmentation (See Equ. 2) as the

anomaly score map: Am
i =Gσ(S

3d
i(a)), where Gσ(·) represents the Gaussian filter. The global anomaly

score incorporates glocal anomaly semantics and is computed as As
i =

1
2 (

1
K

∑
f
(k)
i ∈Fi

P (gc, f
(k)
i )+

max (Am
i )). When the RGB counterpart is available for testing, PointAD could directly integrate

RGB information by feeding RGB images to 2D branch to derive 2D representations. We project
these 2D representations back to 3D branch to respectively compute RGB anomaly score map and
anomaly score as A

m(rgb)
i = P (gc, f

(rgb)
i ) and A

s(rgb)
i = Gσ(S

3d(rgb)
i(a) ). The final multimodal

anomaly score map and anomaly score are defined as A
m(mod)
i = 1

2Gσ

(
Am

i + A
m(rgb)
i

)
and

A
s(mod)
i = 1

2

[
1
2 (A

s(rgb)
i +As

i ) + max (A
m(mod)
i )

]
, respectively.
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4 Experiment
4.1 Experiment Setup
Dataset We evaluate the performance of ZS 3D anomaly detection on three public datasets including,
MVTec3D-AD, Eyecandies and Real3D-AD. MVTec3D-AD, Eyecandies, and Real3D-AD are multi-
class datasets and respectively contain 10 classes, 10 classes, and 12 classes. Since these training
datasets only contain all normal samples, we use the common zero-shot setting one-vs-rest, where
an object test dataset is used to fine-tune PointAD and assess the ZS anomaly detection for the
remaining objects. We also explore a more challenging setting: cross-dataset ZS generalization,
which requires the detection model to generalize to anomalies on other datasets. For point cloud
anomaly detection, we only use point clouds to detect and localize 3D anomalies. In M3D anomaly
detection, the 2D RGB information is utilized only for testing. To comprehensively analyze PointAD,
we utilize four metrics to assess its performance in both anomaly detection and segmentation.

Input View 1
score map

View 2
score map

View 3
score map

View 4
score map

View 5
score map

View 6
score map

View 7
score map

View 8
score map

View 9
score map

Point 
score map

Ground 
truth

Figure 3: Visualization on anomaly score maps in ZS 3D anomaly detection. Point clouds of diverse
objects are input into PointAD to generate 2D and 3D representations. Each row visualizes the
anomaly score maps of 2D renderings from different views, and the final point score maps are also
presented. More visualizations are provided in Appendix J.

4.2 Implementation Details & Baselines
Both point clouds and 2D renderings are resized to 336 × 336. We use Open3d
library to generate 9 views by rotating point clouds along the X-axis at angles of
{− 4

5π,−
3
5π,−

2
5π,−

1
5π, 0,

1
5π,

2
5π,

3
5π,

4
5π} for most categories. We circularly set the rendering

angles, evenly distributing the angles between −π to π. The backbone of PointAD is the pre-trained
CLIP model (VIT-L/14@336px in open_clip). Following [63], we improve the local visual se-
mantics of vision encoder of CLIP without modifying its parameters. During training, we keep all
parameters of CLIP frozen and set the learnable word embeddings in object-agnostic text templates to
12. All experiments were conducted on a single NVIDIA RTX 3090 24GB GPU using PyTorch-2.0.0.
As there is no work to explore the field of ZS 3D anomaly detection, we make a great effort to provide
these comparisons. We apply the original CLIP to our framework for 3D detection, called CLIP
+ Rendering. Also, we reproduce SOTA 3D recognition works including PointCLIP V2 [64] and
Cheraghian [12], and adapt them for ZS 3D anomaly detection. We compare the SOTA 2D anomaly
detection approach AnomalyCLIP [63] by fine-tuning it on depth maps. PointAD by default uses
object-agnostic text prompts, whereas PointAD-CoOp employs object-aware prompts. Appendix B
and C provide more details on implementation and baselines.
4.3 Main Results
We fine-tuned PointAD on three objects on MVTec3D-AD, Eyecandies, and Real3D-AD. Over three
runs, the averaged results on one-vs-rest and cross-dataset settings are reported. We use the metric
pairs (I-AUROC% % ↑ and AP% % ↑) and (P-AUROC% % ↑ and AUPRO% % ↑) to evaluate the
glocal detection performance, respectively. Details of experimental settings see Appendix A. The
best and second-best results in ZS are highlighted in Red and Blue. G. and L. represent 3D global and
local anomaly detection. M3D global and local anomaly detection are abbreviated as MG. and ML.
ZS 3D anomaly detection Table 1 presents the comparison of ZS 3D performance. Compared
to the point-based method Cheraghian and the projection-based method PointCLIP V2, PointAD
achieves superior performance on ZS 3D anomaly detection over all three datasets. Especially, it
outperforms CLIP + Rendering from 61.2% to 82.0% I-AUROC and from 85.8% to 94.2% AP
on MVTec3D-AD. In addition, PointAD achieves superior segmentation performance on ZS 3D
anomaly detection, improving MVTec3D-AD by a large margin compared to Cheraghian from 88.2%
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(a) Multimodal visualization with hybrid loss.
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(b) Multimodal visualization without 2D glocal loss.
Figure 4: Visualization comparison between PointAD with hybrid loss and without.

to 95.5% P-AUROC and from 57.0% to 84.4% AUPRO. This improvement in overall performance is
attributed to PointAD adapting CLIP’s strong generalization to glocal anomaly semantics through
hybrid representation learning. In addition, PointAD advances PointAD-CoOp across all datasets by
blocking the class semantics in text prompts [63].
ZS M3D anomaly detection We also compare the ZS M3D anomaly detection when RGB infor-
mation is available for testing. As shown in Table 2, the results indicate that PointAD can integrate
additional RGB information and further boost its performance from 82.0% to 86.9% AUROC and
from 94.2% to 96.1% AP for global semantics on MVTec3D-AD. Additionally, as for local semantics,
the performance improves from 95.5% to 97.2% P-AUROC and from 84.4% to 90.2% AUPRO. A
large performance gain is also obtained on Eyecandies and Real3D-AD. While other methods improve
their performance in some metrics, they still suffer from performance degradation in other metrics
due to inefficient integration of the two modalities. Instead, PointAD achieves overall improvement
across all metrics by incorporating explicit joint constraints on both point and pixel information.

Table 3: Performance compari-
son on ZS 3D anomaly detection
in cross-dataset setting.
Detec.
level

Dataset Eyecandies(10) Real3D-AD(12)
Metric I-AUROC AP I-AUROC AP

G.
PointCLIP V2a 45.2 48.0 57.4 58.8
AnomalyCLIP 56.3 57.1 52.7 55.7
PointAD-CoOp 69.1 73.8 74.8 76.9

PointAD 69.5 74.3 75.9 77.9

Metric P-AUROC AUPRO P-AUROC AUPRO

L.
PointCLIP V2a 43.9 - 51.9 -
AnomalyCLIP 79.6 45.4 50.3 -
PointAD-CoOp 91.8 70.5 70.1 -

PointAD 91.8 71.4 71.6 -

Table 4: Performance compari-
son on ZS M3D anomaly detec-
tion in cross-dataset setting.

Detec.
level

Dataset Eyecandies(10)
Metric I-AUROC AP

MG.
PointCLIP V2a 48.5 50.9
AnomalyCLIP 65.7 68.1
PointAD-CoOp 76.3 78.9

PointAD 78.6 80.8

Metric P-AUROC AUPRO

ML.
PointCLIP V2a 46.3 -
AnomalyCLIP 86.2 61.3
PointAD-CoOp 94.4 80.3

PointAD 94.0 80.7

Cross-dataset ZS anomaly
detection We perform
the cross-dataset anomaly
recognition to further eval-
uate the zero-shot capacity
of PointAD, where we use
one object as the auxiliary
and test objects with totally
different semantics and
scenes in another dataset.
We compare all baselines
that need fine-tuning. From
Table 3 and M3D from
Table 4, PointAD demonstrates strong cross-dataset generalization performance on Eyecandies and
Real3D-AD, with nearly no obvious performance decay compared to the one-vs-rest setting. The
strong transfer ability highlights its robust generalization capabilities in detecting anomalies in
objects with unseen semantics and backgrounds.

4.4 Result Analysis
Visualization analysis. To intuitively present the strong generalization capacity of our model to
unseen anomalies, we visualize the anomaly score maps of the 3D and corresponding 2D counterparts
of PointAD on MVTec3D-AD. As shown in Figure 3, PointAD reveals abnormal spatial relationships
of points and further captures the generic point anomaly patterns across diverse objects. And, we also
visualize the anomaly score map of corresponding 2D counterparts, where 3D point anomalies are
transformed into 2D pixel anomalies. It can be observed that PointAD also has a strong detection
ability on such 2D anomalies. The strong representative pixel representations from multiple views
facilitate more precise 3D anomaly detection. Quantitative results are provided in Section 5. The
strong 3D and 2D detection capabilities of PointAD are from hybrid representation learning, which not
only enables PointAD to capture the 3D anomalies but also explicitly constrains 2D representations.
How multimodality makes PointAD accurate. PointAD is a unified framework that can not only
capture point anomalies but also handle 2D information in a plug-and-play manner. As shown in
Figure 4(a), we visualize M3D results of PointAD on MVTec3D-AD. The surface damage on the
potato presents a similar appearance to the object foreground, which makes it difficult to detect this
anomaly with RGB information. On the contrary, the point relations for the color stain on foam are
the same as those of normal, but they have a clear distinction in the RGB information. PointAD
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can integrate these two modalities, thereby complementing their respective advantages. We further
investigate the reason why PointAD can directly leverage both modalities. For this purpose, we
experiment without 2D glocal loss. As shown in Figure 4(b), without 2D glocal loss, significant noise
disrupts and even covers the RGB score maps, resulting in unpromising multimodal fusions. This
illustrates the importance of explicit constraints on the 2D space. Hence, we conclude that the robust
multimodal detection capability of our model stems from the collaboration optimization in both 3D
and 2D spaces during training. We provide more analysis about failure cases and the computation
overhead in Appendix G and H.

5 Ablation Study
Module Ablation. Here, we investigate the effectiveness of the proposed main technologies by
progressively adding the proposed modules. Table 6 illustrates that vanilla, which represents the
aforementioned CLIP + rendering, performs poor results on both 3D and M3D anomaly detection
because CLIP focuses on alignment for 2D object semantics instead of anomaly semantics. With the
3D global branch, we incorporate the global anomaly semantics into PointAD, improving overall
performance in local and global detection. After adding the 3D local branch, the performance is
further improved, while the pixel-level performance on M3D detection suffers from performance
degradation. This is attributed to the absence of 2D constraints, leading to inefficient multimodality
fusion as we integrate 2D RGB information in a plug-and-play way. The inclusion of 2D global branch
explicitly incorporates 2D anomaly information, which makes PointAD obtain overall performance
gain. Finally, by further focusing on 2D anomaly regions, PointAD has a deeper understanding of
point clouds from 2D representations and promotes multimodality fusion. Therefore, our model
notably boosts the multimodal segmentation performance from 92.9% to 97.2% P-AUROC and from
84.4% to 90.2% AUPRO.

Table 5: Ablation on rendering number.

View number Point detection Multimodal detection
Local Global Local Global

1 (94.1, 79.1) (72.6, 90.1) (96.0, 87.6) (80.4, 93.9)
3 (95.2, 82.5) (76.8, 92.1) (96.9, 89.5) (83.7, 95.1)
5 (95.3, 84.3) (80.8, 93.8) (97.1, 89.8) (85.9, 95.7)
7 (95.3, 84.9) (81.3, 93.9) (97.3, 90.0) (86.5, 95.9)
9 (95.5, 84.4) (82.0, 94.2) (97.2, 90.2) (86.9, 96.1)

11 (95.4, 83.8) (81.7, 94.2) (97.1, 90.1) (85.4, 95.5)

Table 6: Ablation on the proposed modules.
Module Point detection Multimodal detection

L
global
3d

Llocal
3d L

global
2d

Llocal
2d Local Global Local Global

(-, 54.4) (61.2, 85.8) (-, 56.0) (60.4, 86.4)
✓ (91.9, 71.7) (75.5, 91.9) (92.6, 81.6) (80.4, 93.9)
✓ ✓ (95.2, 82.7) (81.3, 94.1) (92.0, 81.4) (83.9, 95.0)

✓ ✓ (93.9, 82.8) (79.3, 91.6) (91.0, 82.2) (82.6, 94.1)
✓ ✓ ✓ (95.5, 84.7) (81.8, 92.3) (96.1, 90.6) (83.7, 95.1)

✓ ✓ ✓ (95.6, 82.5) (82.4, 94.5) (92.9, 84.4) (85.5, 95.6)
✓ ✓ ✓ ✓ (95.5, 84.4) (82.0, 94.2) (97.2, 90.2) (86.9, 96.1)

View Number Ablation. PointAD interprets point clouds from 2D renderings, and the quantity of
rendering views directly affects the 3D original information acquired by PointAD. Table 5 depicts
that the appropriate number of views benefits point understanding from informative views while
alleviating negative effects of subpar views. More ablations about the length of learnable prompts,
layers of intermediate vision features, and the number of training sets are provided in Appendix F.

6 Conclusion
This paper takes the first attempt to study the challenging yet underexplored tasks of ZS 3D and
M3D anomaly detection. We propose a unified framework, namely PointAD, to transfer the strong
generalization of CLIP to 3D point clouds. PointAD understands 3D anomalies from 3D and 2D
spaces. Benefiting from hybrid representation learning, PointAD can recognize generic 3D normality
and abnormality across diverse objects and directly integrate RGB information for ZS M3D. Extensive
experiments demonstrate the superior ZS detection capacity of our model, whether single modality or
multimodality. Code will be made available once the paper is accepted.
Limitations PointAD utilizes fixed rendering angles to generate 2D renderings across diverse
objects. While experimental results demonstrate its superiority, the development of a fine-grained
filtering mechanism to select high-quality 2D renderings, particularly for revealing anomalies, remains
an avenue for future research.

Broader Impact Our paper aims to enhance automated detection and decision-making in smart
manufacturing, which does not involve any potential ethical risks. Since the collection of 3D samples
is more labor-intensive and costly, our research on using vision-language models for zero-shot point
cloud detection can have significant societal impacts, especially in scenarios where target 3D training
samples are unavailable due to privacy concerns or the absence of products. We hope that our first
exploration of the ZS 3D anomaly detection field could pave the way for further research in this
emerging field.
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A Dataset

Dataset We evaluate the performance of ZS 3D anomaly detection on three publicly available 3D
anomaly detection datasets, MVTec3D-AD, Eyecandies, and Real3D-AD. MVTec3D-AD comprises
4147 point clouds across 10 categories. These objects exhibit diverse object semantics, including
bagel, cable gland, carrot, cookie, dowel, foam, peach, potato, rope, and tire. The training dataset
comprises 2656 normal point clouds, and the validation dataset comprises 294 normal point clouds.
The test dataset includes 948 normal and 249 anomaly point clouds, covering several anomaly types.
Point-wise annotations are available for the point clouds. MVTec3D-AD also provides corresponding
2D-RGB image counterparts for the point clouds. We remove the background plane of point clouds in
the whole dataset like [22]. Eyecandies also has 10 different classes and provides the corresponding
2D RGB information. Real3D-AD is a recently available dataset, which contains 12 objects. However,
it does not provide the RGB information.

Evaluation Setting and Metric Since the training dataset of MVTec3D-AD only contains all
normal samples, we use an object test dataset as the auxiliary dataset to fine-tune PointAD
and assess the ZS anomaly detection for the remaining objects. In particular, we report the
average results using different objects as the auxiliary, i.e., carrot, cookie, and dowel for MVTec3D-
AD; confetto, LicoriceSandwich, and PeppermintCandy for Eyecandie; seahorse, shell, and starfish
for Real3D-AD. Moreover, we explore more challenging cross-dataset generalization settings,
where we use auxiliary data to test all objects of another dataset. For point cloud anomaly
detection, we only use point clouds to detect and localize 3D anomalies in Figure 5(a). In M3D
anomaly detection, both point clouds and their 2D-RGB counterparts are utilized, as shown in
Figure 5(b). To comprehensively analyze PointAD, we utilize four metrics to assess its anomaly
classification and segmentation performance. For anomaly detection, we use the Area Under the
Receiver Operating Characteristic Curve (I-AUROC% ↑) and average precision (AP% ↑). Regarding
anomaly segmentation, we use point-level AUROC (P-AUROC% ↑) and a restricted metric called
AUPRO%(↑) [3] to provide a detailed evaluation of subtle anomaly regions.

Zero-shot 3D anomaly detection

R
2D branch

R’-1
3D branch

Anomaly score

Anomaly map

Text 
prompts

Point clouds

(a) Inference for ZS 3D anomaly detection

R
2D branch

R’-1

3D branch
Anomaly score

Anomaly map

Zero-shot multimodal anomaly detection

RGB counterpart
Text 

prompts

Point clouds

(b) Inference for ZS M3D anomaly detection

Figure 5: Inference schematic for ZS 3D and M3D anomaly detection.

B Implementation Details

Table 7: Ablation study on the number of rendering views.

View number Rendering angles

1 0

3 − 1
2π, 0,

1
2π

5 − 2
3π,−

1
3π, 0,

1
3π,

2
3π

7 − 3
4π,−

1
2π,−

1
4π, 0,

1
4π,

1
2π,

3
4π

9 − 4
5π,−

3
5π,−

2
5π,−

1
5π, 0,

1
5π,

2
5π,

3
5π,

4
5π

11 − 5
6π,−

2
3π,−

1
2π,−

1
2π,

1
6π, 0,

1
6π,

1
3π,

1
2π,

2
3π,

5
6π

Both point clouds and 2D renderings are resized to 336 × 336. We use Open3d li-
brary2 to generate 9 views by rotating point clouds along the X-axis at angles of

2https://github.com/isl-org/Open3D
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{− 4
5π,−

3
5π,−

2
5π,−

1
5π, 0,

1
5π,

2
5π,

3
5π,

4
5π} for most categories. Some categories lose their surface

completely because they are not stereo point clouds. Table 7 also gives the specific rendering an-
gles of different view number settings. We set the rendering angles in a circular manner, evenly
distributing the angles between −π to π. The backbone of PointAD is the pre-trained CLIP model3
(VIT-L/14@336px). Following [63], we improve the local visual semantics of the vision encoder of
CLIP without modifying its parameters and introduce learnable tokens in the text encoder. During
training, we keep all CLIP parameters frozen and set the learnable word embeddings in object-
agnostic text templates to 12. We use the Adam optimizer with a learning rate of 0.001 to optimize
the learnable parameters. The experiment runs for 15 epochs with a batch size of 4. All experiments
were conducted on a single NVIDIA RTX 3090 24GB GPU using PyTorch-2.0.0.

C Baselines

ZS 3D anomaly detection and M3D anomaly detection have not yet been explored. We first make
an adaption for the original CLIP for 3D anomaly detection. Then, we reproduce SOTA ZS 3D
classification methods (i.e., PointCLIP V2 [64] and Cheraghian [12]) and adapt them to our settings.
SOTA unsupervised 3D anomaly detection approaches are reported as the performance upper bound.
All hyperparameters in these baselines are kept the same. We will present the detailed reproduction
as follows:

• CLIP + Rendering is a method, where we apply the original CLIP into our framework
for ZS 3D anomaly detection. It uses the same rendering procedure as PointAD. Follow-
ing [24, 63], we integrate anomaly semantics into CLIP by two class text prompt templates:
A photo of a normal [cls] and A photo of an anomalous [cls], where cls de-
notes the target class name.

• PointCLIP V2 (CVPR 2023) is a SOTA ZS 3D classification method based on CLIP, they
project point clouds into depth maps from different views. To adapt PointCLIP V2 into
ZS anomaly detection, we replace its original text prompts point cloud of a big [c]
with normal text prompts point cloud of a big [c] and abnormal text prompts point
cloud of a big damaged [c].

• AnomalyCLIP (ICLR 2024) is a SOTA zero-shot 2D anomaly detection method. Anomaly-
CLIP introduces object-agnostic learning to capture generic anomaly semantics of images.
We adapt AnomalyCLIP in 3D detection by fine-tuning AnomalyCLIP on depth images of
corresponding point clouds.

• Cheraghian (IJCV 2022) is an approach for ZS 3D classification without foundation models.
They directly extract the point presentations by PointNet and use word2vector [34] to
generate the textual embedding of an object. To incorporate the anomaly semantics into
Cheraghian, we average the textual embeddings of [c] and damaged. We replace the
global representation with dense representations to provide the segmentation to provide the
segmentation results.

D Related Work

D.1 2D Anomaly Detection

2D anomaly detection has been studied extensively by leveraging RGB information [47, 46, 14,
52, 42, 11, 62, 43]. Related works can be categorized into two branches: end-to-end and memory-
based methods. Representative end-to-end methods exploit knowledge distillation [3, 62, 45] and
normalizing flow [20, 57] to model the normal distribution. Instead, memory-based methods [44, 55]
store normal features to construct normal prototypes. ZS 2D anomaly detection is proposed to target
a challenging problem where training samples are inaccesible [17, 27, 33, 1, 16, 10]. WinCLIP [24]
attempts to explore ZS 2D anomaly detection using CLIP. AnomalyCLIP [63] first introduces object-
agnostic prompt learning to capture generic normality and abnormality, detecting anomalies across
datasets. PromptAD [30] focuses on effectively fusing these embeddings to enhance zero-shot
detection performance.

3https://github.com/mlfoundations/open_clip
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Sigma 1 Sigma 5Original Sigma 9

Ground Truth

Figure 6: Viusalization with different
rendering quality. A larger σ represents
poorer rendering quality.

20% Original30% 50% 70% 

Ground Truth

Figure 7: Visualization with different resolutions.
We downsample entire point clouds with different
ratios to obtain diverse resolutions.

Table 8: Analysis on the rendering quality. The
original setting is highlighted in gray.

Blur Point detection Multimodal detection
sigma Global Local Global Local

0 (82.0, 94.2) (95.5, 84.4) (86.9, 96.1) (97.2, 90.2)
1 (80.1, 93.5) (95.2, 83.2) (85.5, 95.6) (97.0, 90.0)
5 (78.2, 92.5) (95.1, 82.3) (83.6, 95.1) (96.8, 89.7)
9 (77.6, 92.2) (95.1, 82.3) (83.2, 95.0) (96.5, 89.3)

Table 9: Analysis on the input solution.
Downsample Point detection Multimodal detection

ratio Global Local Global Local
100% (82.0, 94.2) (95.5, 84.4) (86.9, 96.1) (97.2, 90.2)
70% (80.6, 93.3) (95.2, 82.6) (86.2, 95.1) (97.0, 90.0)
50% (77.9, 92.6) (95.0, 82.0) (83.6, 94.9) (96.8, 89.2)
30% (74.6, 91.1) (94.9, 81.4) (81.9, 94.6) (96.2, 88.7)
20% (73.9, 90.9) (94.3, 78.7) (80.3, 93.4) (95.3, 87.5)

E Analysis on Rendering Conditions

Rendering quality PointAD interprets point clouds through their corresponding 2D renderings,
and the quality of these renderings impacts the information that PointAD can extract from the original
point clouds. In our manuscript, we used the Open3D Library to render the point clouds, but it
does not provide an API for controlling rendering quality. To simulate varying rendering quality,
we applied Gaussian blur with different extents σ to the 2D renderings. Sample visualizations are
included in Figure 6. Specifically, we conducted experiments on MVTec3D-AD using different blur
σ values (i.e., ). Table 8 shows that the detection performance of PointAD diminishes as rendering
quality decreases (with increasing sigma). However, the degradation is acceptable even when the
renderings are heavily blurred (σ equals 9). In such cases, PointAD still outperforms baselines that
use high-quality renderings.

Input Resolution Here, we study the effect of resolutions of input point clouds. To create low-
resolution point clouds, we downsample the entire high-resolution point clouds using Farthest Point
Sampling (FPS) with various sampling ratios. This strategy allows us to generate corresponding
low-resolution datasets for training and evaluating PointAD. Visualizations of these datasets are
provided in Figure 7. We train PointAD using the resulting low-resolution samples and test PointAD
on the same resolution. Table 9 demonstrates that PointAD maintains a strong detection capacity for
low-resolution point clouds when the downsampling ratios are 20%, 30%, 50%, and 70%. Even at
20% resolution, PointAD still achieves state-of-the-art performance. This indicates that PointAD is
generally applicable to point clouds with various resolutions.

Rendering angles and different numbers of views PointAD interprets point clouds from their 2D
renderings, where rendering angles and numbers collectively determine the amount of information
derived. They have different emphases. For rendering angles, the importance lies in the discrepancy
between adjacent angles, as this affects the information granularity that PointAD obtains from
adjacent views. When the angle discrepancy is fixed, the number of renderings determines the
coverage of 3D information in the resulting 2D renderings. To capture all point cloud information,
especially abnormal points, it is crucial to ensure comprehensive coverage. Therefore, our approach
in selecting rendering angles and the number of renderings is to guarantee that all points in point
clouds are adequately represented.

Based on this principle, we conducted experiments to assess the impact of the number of renderings
on PointAD’s detection performance, circularly rendering point clouds to ensure even coverage of
all points. As shown in Table 5, increasing the number of views allows PointAD to gather more
detailed information from the 2D renderings, benefiting from smaller angle discrepancies, which
improves detection and localization results. However, when the number of views increased from 9
to 11, we observed a performance decline in PointAD, with the I-AUROC for global multimodal
detection dropping from 87.4% to 86.4%. This suggests that incorporating too many views could
introduce redundant information, resulting in 2D renderings with extensive overlap and excessive
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Table 12: Analysis on the point occlusions.

Method Point detection Multimodal detection
Global Local Global Local

original (82.0, 94.2) (95.5, 84.4) (86.9, 96.1) (97.2, 90.2)
occlusions (73.3, 90.6) (94.3, 80.8) (83.0, 94.8) (96.7, 89.5)

local detail. This overemphasis on local information can impede global recognition. Hence, the
appropriate number of views benefits point understanding from informative views while mitigating
the adverse effects of redundant local information. To further explore the impact of the absolute
angle, we shift the rendering angles while keeping the angle discrepancy unchanged. The original
adjacent angle discrepancy in our paper is 1

5π. We divide this discrepancy into four parts and perform
angle shifts of 1

20π, 2
20π, and 3

20π to test the impact of varying rendering angles. Table 10 shows
that PointAD maintains consistent performance across different rendering angles, demonstrating its
robustness to variations in angles different from those used during training.

Table 10: Analysis on the rendering angle.
Angle Point detection Multimodal detection
shift Global Local Global Local

0 (82.0, 94.2) (95.5, 84.4) (86.9, 96.1) (97.2, 90.2)
1
15

π (82.6, 94.6) (95.4, 83.9) (86.7, 96.0) (97.1, 90.7)
2
15

π (82.1, 94.4) (95.4, 84.1) (86.4, 95.9) (97.1, 90.7)
3
15

π (82.6, 94.6) (95.4, 84.3) (86.4, 95.9) (97.1, 90.7)

Table 11: Analysis on the rendering lighting.

Lighting Point detection Multimodal detection
Global Local Global Local

++ (82.0, 94.3) (95.4, 83.7) (85.7, 95.8) (97.2, 90.7)
+ (82.4, 94.6) (95.4, 83.8) (86.1, 95.9) (97.1, 90.5)

original (82.0, 94.2) (95.5, 84.4) (86.9, 96.1) (97.2, 90.2)
- (82.4, 94.5) (95.3, 83.9) (86.4, 95.9) (97.1, 90.6)
– (81.9, 94.3) (95.3, 83.4) (86.1, 95.8) (97.1, 90.5)

Lighting-- Lighting- Original Lighting+ Lighting++

Ground Truth

Figure 8: Visualization with different rendering lighting.

Original Occlusion

Ground Truth

Figure 9: Visualization of oc-
cluded point clouds.

Rendering lighting Further exploring the robustness of PointAD under different conditions could
enhance its generalized detection performance. We conducted ablation studies to test its sensitivity
under different lighting conditions and with occluded point clouds below. To evaluate the impact
of rendering lighting, we adjusted the lighting conditions to render point clouds, generating variant
datasets with different lighting. We used both stronger and weaker lighting to render point clouds
compared to the original dataset, covering a broad lighting range. We denote stronger and the strongest
lighting as "+" and "++", and weaker and the weakest lighting as "-" and "–". Visualizations of the
resulting samples are presented in Figure 8. The experiments were conducted on MVTec3D-AD,
where we tested PointAD, trained on the original dataset, on these lighting variant datasets. Table 11
shows that PointAD can still detect anomalies even with significant discrepancies in rendering
lighting, suggesting that PointAD is not sensitive to variations in rendering lighting.

Point occlusions Next, we evaluated detection performance with occluded point clouds. We
occluded point clouds by removing those invisible from a specific rendering angle and then used
the same rendering parameters to project the remaining points. During this process, we observed
that abnormal regions might be occluded totally. Unlike class classification, where class semantics
remain unchanged by point occlusions, removing these anomaly semantics would transform anomaly
samples into normal points. Therefore, we selected rendering angles that allow visibility of part or
all anomalous regions when the point cloud is an abnormal instance. The occluded point clouds
are shown in Figure 9. We then used PointAD, trained on the original dataset, to test the resulting
occluded dataset. Table 12 shows that PointAD suffers from performance degradation when the
point clouds are occluded. We attribute this to two aspects: 1) Despite this strategy, the occluded
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point clouds could still lose part of the anomaly semantics; 2) Occluded point clouds could create
unexpected sinkholes on the surface, which may cause PointAD to identify these areas as hole
anomalies incorrectly.

F Hyperparameter Ablation

Table 13: Ablation study on the length of the learnable prompt.

Length of
learnable prompt

Point detection Multimodal detection
Pixel level Image level Pixel level Image level

6 (94.6, 83.4) (81.7, 94.2) (96.5, 89.8) (86.6, 96.0)
8 (95.2, 83.6) (82.0, 94.2) (96.8, 90.0) (86.6, 95.8)
10 (95.3, 84.0) (81.8, 94.3) (97.0, 90.1) (86.5, 96.0)
12 (95.5, 84.4) (82.0, 94.2) (97.2, 90.2) (86.9, 96.1)
14 (95.4, 83.7) (81.4, 94.1) (96.9, 89.7) (85.5, 95.6)
16 (95.1, 83.0) (81.5, 94.1) (96.9, 89.8) (84.7, 95.6)

Length of learnable prompts We study the sensitivity of important hyperparameters in PointAD.
First, we explore the length of learnable text prompt templates, as shown in Table. 13. As the length
of word embeddings increases, PointAD can better learn 3D and 2D anomaly semantics to improve
its performance. Nonetheless, with a further increase in length (i.e., from 12 to 16), a decline in
performance becomes noticeable. The excessive or insufficient number of learnable word embeddings
can lead to performance degradation. An appropriate length (i.e., 12) is important for PointAD to
attain comprehensive performance in both 3D and M3D anomaly detection.

Training set We have increased the test data for each category to incorporate more instances on
MVTec3D-AD. Originally, we evaluated the rest of the data using only one category as the test data,
such as carrot, cookie, and dowel. Now, we attempt to incorporate more instances. Here, we utilized
two categories as auxiliary data, including carrot and cookies, carrot and dowel, and cookie and
dowel. To further analyze the effect of the size of auxiliary data, we utilized three categories as
auxiliary data, selecting all possible combinations from the four sets: carrot, cookie, bagel, and dowel.
We present the performance averaged across all groups below. From Table 14 and Table 15, PointAD
can incorporate more knowledge about abnormality and normality, improving point detection and
multimodal detection performance. Specifically, from one category to three categories, PointAD
exhibits improved performance, with P-AUROC increasing from 95.5%, 96.1%, to 96.3%, and
AUPRO increasing from 84.4%, 86.3%, to 86.5%. Moreover, I-AUROC increases from 97.2%,
97.5%, to 97.8%, and AP increases from 90.2%, 91.8%, to 92.0%. This trend is also observed in
global anomaly semantics.

Table 14: Ablation study on training set size for point detection

Training set Bagel Cable gland Carrot Cookie Dowel Foam Peach Potato Rope Tire Mean

G.
one (98.3, 99.6) (53.7, 86.0) (97.9, 99.6) (92.1, 97.9) (72.2, 92.0) (69.5, 91.2) (91.5, 97.6) (98.8, 99.7) (91.5, 96.7) (54.1, 82.1) (82.0, 94.2)
two (99.0, 99.8) (52.5, 85.3) (98.3, 99.7) (91.8, 97.7) (70.2, 91.4) (68.9, 90.8) (91.5, 97.6) (99.2, 99.8) (90.8, 96.5) (56.9, 85.0) (81.9, 94.4)

three (100, 100) (52.2, 84.8) (98.7, 99.7) (94.2, 98.4) (71.2, 91.6) (68.9, 91.1) (92.6, 98.0) (99.6, 99.9) (88.9, 95.8) (54.5, 83.6) (82.1, 94.3)

L.
one (98.4, 96.9) (93.5, 79.5) (99.4, 96.4) (87.5, 75.4) (95.5, 75.2) (86.5, 54.1) (99.5, 98.3) (99.9, 99.1) (99.3, 89.9) (95.3, 79.7) (95.5, 84.4)
two (99.1, 98.0) (93.5, 79.9) (99.6, 97.7) (90.4, 83.8) (95.6, 75.2) (88.3, 57.3) (99.6, 98.6) (99.9, 99.4) (99.5, 91.0) (96.0, 81.7) (96.1, 86.3)

three (99.3, 98.2) (93.5, 79.8) (99.6, 97.8) (92.4, 87.7) (95.7, 75.7) (87.9, 57.1) (99.7, 98.7) (99.9, 99.4) (99.4, 90.6) (95.7, 80.3) (96.3, 86.5)

Table 15: Ablation study on training set size for multimodal detection.

Training set Bagel Cable gland Carrot Cookie Dowel Foam Peach Potato Rope Tire Mean

MG.
one (98.8, 99.7) (79.9, 94.7) (95.5, 98.9) (86.2, 95.5) (98.5, 90.6) (84.4, 96.1) (96.6, 99.1) (90.7, 97.0) (93.6, 97.3) (74.6, 92.0) (86.9, 96.1)
two (98.6, 99.7) (80.8, 94.8) (98.3, 99.6) (85.6, 95.4) (64.7, 88.9) (84.9, 96.3) (95.8, 99.0) (90.6, 96.8) (94.5, 97.8) (77.2, 93.0) (87.1, 96.1)

three (98.6, 99.7) (80.1, 94.5) (97.3, 99.4) (91.7, 97.7) (66.8, 89.5) (87.3, 97.0) (97.4, 99.4) (92.0, 97.4) (95.0, 98.0) (74.0, 92.3) (88.0, 96.5)

ML.
one (99.6, 90.1) (96.7, 97.9) (99.4, 85.5) (92.6, 85.4) (96.1, 74.0) (92.4, 98.3) (99.4, 98.9) (99.8, 92.9) (98.8, 87.9) (97.5, 91.1) (97.2, 90.2)
two (99.6, 98.7) (97.0, 91.6) (99.4, 97.6) (93.8, 88.4) (95.7, 83.5) (93.9, 78.8) (99.5, 98.5) (99.8, 99.3) (98.6, 90.6) (98.1, 90.7) (97.5, 91.8)

three (99.7, 98.8) (97.2, 91.1) (99.5, 98.0) (95.4, 90.0) (95.9, 86.1) (93.8, 77.1) (99.6, 98.6) (99.8, 99.2) (98.6, 91.9) (98.1, 89.0) (97.8, 92.0)
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Figure 10: Failure case in PointAD.

Table 16: Effect on point density gap.
Downsample Point detection Multimodal detection

ratio Global Local Global Local
100% (82.0, 94.2) (95.5, 84.4) (86.9, 96.1) (97.2, 90.2)
70% (81.3, 94.0 (94.9, 82.6) (85.6, 95.7) (96.8, 90.0)
50% (79.6, 93.4) (94.7, 81.8) (84.9, 95.5) (96.8, 89.9)
30% (76.6, 91.8) (94.5, 79.9) (83.5, 95.1) (96.4, 89.5)
20% (72.7, 90.5) (94.2, 78.2) (82.0, 94.6) (95.2, 88.6)

G Failure Cases

In this section, we present the failure cases of PointAD, which we attribute to direct multimodality
fusion. Since our model uses hybrid loss to incorporate the 3D and 2D anomaly semantics, it performs
ZS multimodality 3D anomaly detection in a plug-and-play manner. However, when one modality
prediction deviates severely from the ground truth in rare instances, direct fusion may result in
an unpromising multimodal score map. As shown in Figure 10, the hole in the cookie is visually
similar to the chocolate on cookies, making it challenging to differentiate the hole anomaly via color
information alone. Although PointAD can detect the hole based on its abnormal point relations, the
RGB score map heavily influences the final multimodal score map. Conversely, the tire presents
an inverse situation where RGB can effectively predict the anomalies, but the point score map fails
to recognize it. The false detection could arise from unusual point density and distribution. To
demonstrate the effect of point density, we randomly select normal regions of point clouds and
subsequently increase or decrease the density of these regions through upsampling and downsampling.
We provide a qualitative analysis in 11. The visualization shows that PointAD effectively resists noise
at reasonable levels. However, when noise levels are extremely low or high, the corresponding regions
become excessively sparse or dense. This causes normal regions to appear similar to hole anomalies
or squeezed anomalies, leading PointAD to classify these noisy areas as anomalies. Non-parametric
score alignment and filter methods could be a potential direction, which we leave for further work.

10% 30% 100% (original) 1000% 3000%

Ground Truth

10% 30% 100% (original) 1000% 3000%

Ground Truth

Figure 11: The impact of noise level. We randomly downsample and upsample part of normal regions
to create different point densities.

Robustness to point density To investigate the impact of point density differences between the
training and test datasets, we train PointAD using high-density point clouds (original dataset) and
then test it on the low-density versions of the datasets, downsampled as described in Input resolution.
Table 16 shows that PointAD can still detect anomalies even when retaining 50% of the points from
the original point clouds. However, when more points are removed (30% and 20% sample ratio),
PointAD experiences an obvious performance degradation. We attribute the misdetection to the
overly sparse point clouds forming holes. Nevertheless, PointAD can still detect anomalies even with
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Table 17: Comparison of computation overhead with SOTA approaches on MVTec3D-AD. The
unsupervised method is abbreviated as Un.

Methods Inference time (s) FPS GPU memory
usage (Peak)

Point detection Multimodal detection
Global Local Global Local

BTF (Un.) 0.18 5.56 1934 (76.3, 91.8) (97.6, 92.3) (89.8, 96.7) (99.5, 97.1)
SDM (Un.) 0.14 7.14 2716 (96.7, 90.9) (97.0, 91.8) (92.1, 97.6) (93.3, 98.1)

M3DM (Un) 2.86 0.35 7494 (85.6, 93.4) (92.8, 91.6) (93.2, 92.7) (98.4, 95.1)
CPFM (Un.) 0.22 4.55 1379 (94.9, 98.7) (97.6, 92.5) (-,-) (-,-)
3DSR (Un.) 0.09 11.11 3067 (95.1, 94.3) (93.8, 91.2) (97.3, 98.6) (99.3, 97.4)

PointCLIP V2 (ZS) 1.52 0.66 9747MB (78.3, 49.4) (87.4, 52.3) (49.8, 79.3) (51.2, 80.1)
CLIP + Rendering (ZS) 0.27 3.61 3685MB (-, 54.4) (61.2, 85.8) (-, 56.0) (60.4, 86.4)

Cheraghian (ZS) 0.35 2.86 4847MB (53.6, 81.7) (88.2, 57.0) (-, -) (-, -)
WinCLIP (ZS) 0.29 3.45 3914MB (45.2, 77.9 ) (85.8, 59.4) (38.7, 74.1) (87.5, 64.2)

AnomalyCLIP (ZS) 0.19 5.26 3348MB (56.4, 83.5) ( 88.9, 60.9) ( 66.2, 87.6) ( 91.6 70.9)
Ours (ZS) 0.40 2.52 4275MB (82.0, 94.2) (95.5, 84.4) (86.9, 96.1) (97.2, 90.2)

a significant gap in point density between the training and test domains (e.g., 100% vs. 20%). This
demonstrates PointAD’s ability to generalize across different point densities.

H Complexity analysis

In Table 17, we provide a comparison of computation overhead among unsupervised and zero-shot
manners 4. The evaluation includes inference time per image, frames per second (FPS), and GPU
memory consumption with a batch size of 1. For a fair comparison, we keep NVIDIA RTX 3090
24GB GPU free until we conduct experiments. Compared to PointCLIP V2, our model requires less
time to infer an image, achieving higher FPS (2.52 vs. 0.66) with lower graphic memory usage (as
discussed in Section 3.5). While CLIP + rendering has a slight advantage in computation overhead,
our detection performance significantly outperforms it. Therefore, PointAD achieves a favorable
trade-off between performance and computation overhead.
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Figure 12: Visualization comparison between PointAD and PointCLIP V2.

I Visualization Comparison

To provide intuitive results, we compare the visualization of PointAD with PointCLIP V2. In
Figure 12, our model achieves accurate ZS 3D detection through the point cloud. Moreover, given
RGB counterparts, PointAD further improves its detection capacity in M3D detection. However,
PointCLIP V2 exhibits noisy activations for normal regions. After incorporating RGB information,
PointCLIP V2 appears to struggle to fuse these two modalities in a plug-and-play manner, unlike
PointAD.

J Additional Visualization

We respectively visualize the 2D renderings and corresponding 2D ground truths, which are rendered
from 3D pint clouds and ground truths, as shown in Figure 13. We also supplement more zero-shot
segmentation results of PointAD in Figure 14.

4Since the official code for WinCLIP is not available, we reproduce its results using the implementation
found at https://github.com/zqhang/Accurate-WinCLIP-pytorch
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Figure 13: Visualization about 2D renderings and ground truth from different views (K = 9).

K Detailed results

• We provide the class-level ZS 3D results on MVTec3D-AD in Table 18.
• We provide the class-level ZS M3D results on MVTec3D-AD in Table 19.
• We provide the class-level ZS 3D results on Eyecandies in Table 20.
• We provide the class-level ZS M3D results on Eyecandies in Table 21.
• We provide the class-level ZS 3D results on Real3D-AD in Table 22.
• We provide the class-level ZS cross-dataset 3D results on Eyecandies from MVTec3D-AD

in Table 23.
• We provide the class-level ZS cross-dataset 3D results on Eyecandies from MVTec3D-AD

in Table 24.
• We provide the class-level ZS cross-dataset 3D results on Real3D-AD from MVTec3D-AD

in Table 25.
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Figure 14: Visualization of point and multimodal score maps in PointAD, which is pre-trained on
cookie object.

Table 18: Performance comparison on ZS 3D anomaly detection. The best and second-best results in
ZS are highlighted in red and blue. G. and L. represent the global and local anomaly detection.

Method Bagel Cable gland Carrot Cookie Dowel Foam Peach Potato Rope Tire Mean

G.

CLIP + R. (53.4, 85.2) (49.6, 83.2) (62.9, 89.9) (65.0, 88.0) (65.3, 89.3) (53.0, 78.9) (72.0, 89.2) (58.5, 83.4) (80.0, 90.7) (52.4, 80.1) (61.2, 85.8)
Cheraghian (49.3, 80.5) (47.1, 80.1) (52.7, 83.8) (54.4, 83.0) (43.3, 78.6) (47.4, 80.6) (50.0, 80.5) (59.7, 84.4) (72.8, 85.2) (59.8, 80.5) (53.6, 81.7)

PoinCLIP V2 (71.7, 35.9) (68.6, 39.2) (94.3, 83.6) (69.8, 28.5) (75.5, 47.7) (67.1, 51.4) (69.7, 36.5) (84.6, 57.6) (91.8, 76.1) (89.8, 67.5) (51.2, 80.1)
PointCLIP V2a (47.1, 80.7) (55.1, 84.7) (47.7, 80.8) (50.1, 79.8) (50.9, 82.9) (57.4, 83.7) (52.4, 83.5) (48.2, 78.5) (54.8, 74.4) (47.8, 76.8) (51.1, 80.6)
AnomalyCLIP (62.8, 86.9) (51.2, 82.2) (51.9, 84.4) (64.9, 86.2) (50.0, 80.3) (42.4, 80.1) (69.4, 90.8) (61.5, 85.7) (62.4, 81.5) (47.8, 77.1) (56.4, 83.5)
PointAD-CoOp (98.3, 99.6) (53.8, 85.7) (93.2, 98.5) (89.5, 97.1) (66.3, 89.8) (70.3, 91.3) (89.1, 96.9) (97.8, 99.5) (91.1, 96.5) (59.2, 83.7) (80.9, 93.9)

PointAD (98.3, 99.6) (53.7, 86.0) (97.9, 99.6) (92.1, 97.9) (72.2, 92.0) (69.5, 91.2) (91.5, 97.6) (98.8, 99.7) (91.5, 96.7) (54.1, 82.1) (82.0, 94.2)

L.

CLIP + R. (-, 22.2) (-, 67.5) (-, 77.4) (-, 6.7) (-, 65.6) (-, 37.4) (-, 38.8) (-, 77.2) (-, 72.2) (-, 79.4) (-, 54.4)
Cheraghian (73.2, 13.8) (93.0, 75.6) (83.9, 45.6) (82.0, 39.8) (93.6, 67.0) (84.4, 45.9) (84.5, 40.1) (95.7, 77.1) (96.2, 74.9) (95.9, 89.8) (88.2, 57.0)

PoinCLIP V2 (78.2, 36.0) (90.9, 65.7) (96.4, 76.0) (74.7, 24.4) (93.8, 66.0) (75.1, 18.9) (86.0, 43.4) (92.8, 60.1) (95.6, 71.7) (90.3, 63.3) (87.4, 52.3)
PointCLIP V2a (79.4, 38.0) (91.5, 68.0) (96.3, 75.5) (74.7, 23.2) (93.7, 65.3) (73.0, 16.4) (86.2, 44.4) (92.7, 58.8) (95.3, 69.6) (90.4, 64.1) (87.3, 52.3)
AnomalyCLIP (86.0, 49.0) (89.1, 59.7) (94.4, 73.6) (79.7, 40.2) (93.4, 73.5) (78.3, 31.2) (88.6, 61.2) (93.6, 75.6) (96.7, 84.3) (89.2, 60.7) (88.9, 60.9)
PointAD-CoOp (97.5, 94.7) (93.3, 78.5) (99.2, 95.6) (85.6, 69.2) (95.5, 74.6) (85.8, 51.1) (98.9, 96.6) (99.6, 97.9) (99.0, 86.7) (94.0, 75.2) (94.8, 82.0)

PointAD (98.4, 96.9) (93.5, 79.5) (99.4, 96.4) (87.5, 75.4) (95.5, 75.2) (86.5, 54.1) (99.5, 98.3) (99.9, 99.1) (99.3, 89.9) (95.3, 79.7) (95.5, 84.4)
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Table 19: Performance comparison on ZS M3D anomaly detection.
Method Bagel Cable gland Carrot Cookie Dowel Foam Peach Potato Rope Tire Mean

MG.

CLIP + R. (55.1, 85.9) (55.0, 84.1) (64.5, 90.1) (50.6, 83.1) (59.1, 84.6) (69.0, 90.7) (72.0, 91.3) (56.7, 85.5) (70.8, 86.0) (51.7, 82.9) (60.4, 86.4)
Cheraghian (-, -) (-, -) (-, -) (-, -) (-, -) (-, -) (-, -) (-, -) (-, -) (-, -) (-, -)

PoinCLIP V2 (51.6, 83.7) (63.8, 87.6) (47.7, 83.5) (47.8, 78.0) (51.8, 80.5) (45.2, 78.5) (49.2, 78.7) (55.4, 82.9) (39.1, 62.4) (46.0, 76.9) (49.8, 79.3)
PointCLIP V2a (53.4, 84.4) (64.7, 89.1) (48.0, 83.4) (48.4, 78.4) (47.1, 81.1) (45.9, 79.0) (49.6, 79.2) (55.5, 85.9) (34.9, 60.5) (46.1, 76.9) (49.4, 79.8)
AnomalyCLIP (78.8, 93.5) (58.1, 84.0) (63.2, 88.7) (72.3, 89.1) (53.8, 82.5) (65.1, 89.8) (73.7, 91.1) (64.3, 85.8) (77.5, 89.1) (55.2, 82.5) (66.2, 87.6)
PointAD-CoOp (98.8, 99.7) (74.6, 93.0) (90.0, 97.5) (88.1, 96.3) (66.2, 88.9) (79.8, 94.6) (90.8, 97.7) (83.1, 93.7) (93.8, 97.6) (68.7, 89.6) (83.4, 94.9)

PointAD (98.8, 99.7) (79.9, 94.7) (95.5, 98.9) (86.2, 95.5) (98.5, 90.6) (84.4, 96.1) (96.6, 99.1) (90.7, 97.0) (93.6, 97.3) (74.6, 92.0) (86.9, 96.1)

ML.
CLIP + R. (-, 17.9) (-, 68.5) (-, 89.5) (-, 4.7) (-, 74.3) (-, 22.1) (-, 47.5) (-, 82.7) (-, 73.6) (-, 78.9) (-, 56.0)
Cheraghian (-, -) (-, -) (-, -) (-, -) (-, -) (-, -) (-, -) (-, -) (-, -) (-, -) (-, -)

PoinCLIP V2 (40.6, 78.0) (56.1, 84.4) (53.8, 84.2) (52.7, 81.1) (50.7, 80.4) (40.8, 78.1) (54.9, 82.8) (48.9, 77.9) (54.3, 72.5) (59.3, 81.9) (78.3, 49.4)
PointCLIP V2a (75.9, 40.8) (76.2, 47.4) (92.5, 79.9) (71.7, 30.7) (72.8, 44.9) (62.3, 21.9) (77.1, 46.4) (87.4, 63.7) (87.9, 69.9) (90.8, 70.8) (79.5, 51.6)
AnomalyCLIP (93.7, 71.1) (90.7, 67.7) (95.8, 84.7) (82.0, 45.2) (93.9, 77.1) (84.3, 50.0) (93.5, 79.2) (95.6, 83.1) (95.9, 83.4) (91.2, 67.5) (91.6, 70.9)
PointAD-CoOp (99.4, 97.9) (95.7, 87.3) (99.3, 97.3) (91.0, 82.7) (95.9, 85.0) (91.8, 72.2) (98.7, 96.7) (99.4, 97.9) (98.6, 91.9) (94.8, 79.2) (96.5, 88.8)

PointAD (99.6, 90.1) (96.7, 97.9) (99.4, 85.5) (92.6, 85.4) (96.1, 74.0) (92.4, 98.3) (99.4, 98.9) (99.8, 92.9) (98.8, 87.9) (97.5, 91.1) (97.2, 90.2)

Table 20: Performance comparison on ZS 3D anomaly detection on Eyecandies.

Method Candy
Cane

Chocolate
Cookie

Chocolate
Praline Confetto Gummy

Bear
Hazelnut
Truffle

Licorice
Sandwich Lollipop Marsh-

mallow
Peppermint

Candy Mean

G.

CLIP + Rendering (61.8, 60.9) (48.3, 53.8) (61.8, 72.0) (82.1, 86.9) (81.4, 83.2) (57.3, 54.4) (72.6, 71.9) (66.2, 55.8) (60.6, 68.9) (75.4, 83.9) (66.7, 69.2)
Cheraghian (50.0, 50.0) (50.0, 50.0) (50.0, 50.0) (50.0, 50.0) (50.0, 48.0) (50.0, 50.0) (50.0, 50.0) (46.7, 30.8) (48.0, 52.1) (50.0, 50.0) (49.5, 48.1)

PoinCLIPV2 (45.1, 48.9) (55.5, 54.7) (37.3, 42.1) (30.9, 40.3) (33.5, 42.4) (40.0, 43.0) (67.0, 62.7) (41.2, 28.1) (54.1, 55.6) (56.0, 63.5) (46.1, 48.1)
PointCLIP V2a (45.8, 51.1) (44.3, 54.7) (30.2, 40.4) (35.8, 42.4) (42.5, 46.3) (33.0, 41.0) (59.9, 58.2) (47.1, 30.9) (59.1, 57.5) (46.7, 47.9) (44.4, 47.0)
AnomalyCLIP (44.8, 47.7) (34.9, 42.0) (57.5, 62.0) (74.3, 76.3) (49.3, 52.2) (69.8, 70.7) (52.6, 58.2) (60.1, 46.2) (64.0, 62.4) (68.4, 72.7) (57.6, 59.0)
PointAD-CoOp (45.7, 48.1) (56.1, 61.4) (72.6, 82.8) (82.5, 87.8) (66.2, 71.8) (60.8, 63.9) (80.6, 84.5) (70.5, 62.8) (64.1, 69.7) (77.9, 85.3) (67.7, 71.8)

Point-AD (42.8, 51.0) (51.2, 55.4) (75.1, 84.0) (81.4, 87.2) (70.1, 78.7) (59.9, 61.3) (81.8, 85.5) (80.1, 75.2) (68.3, 73.3) (80.4, 86.4) (69.1, 73.8)

L.

CLIP + Rendering (97.3, 84.0) (77.7, 24.2) (71.0, 19.2) (76.7, 25.6) (84.5, 37.4) (76.5, 33.9) (79.3, 30.9) (94.6, 66.6) (70.9, 17.7) (83.1, 39.4) (81.2, 37.9)
Cheraghian (-, -) (-, -) (-, -) (-, -) (-, -) (-, -) (-, -) (-, -) (-, -) (-, -) (-, -)

PoinCLIPV2 (45.0, -) (38.4, -) (48.9, -) (43.3, -) (45.0, -) (54.3, 19.6) (38.6, -) (43.4, -) (42.3, -) (37.9, -) (43.7, -)
PoinCLIPV2a (45.0, -) (38.4, -) (51.2, 16.1) (43.5, -) (45.2, -) (55.2, 21.2) (38.8, -) (43.4, -) (43.1, 15.7) (37.9, -) (44.2, -)
AnomalyCLIP (95.9, 84.3) (73.4, 32.2) (79.3, 43.0) (74.6, 37.7) (78.7, 39.6) (68.9, 26.1) (76.9, 38.4) (92.0, 71.9) (58.5, 16.2) (79.1, 39.1) (77.7, 43.4)
PointAD-CoOp (98.1, 88.4) (92.9, 75.6) (91.4, 68.2) (93.5, 69.4) (89.0, 69.2) (83.3, 44.8) (91.5, 74.7) (97.3, 83.0) (86.1, 64.0) (92.3, 75.7) (91.5, 71.3)

Point-AD (98.0, 87.8) (92.9, 74.8) (90.9, 65.7) (94.3, 68.2) (88.7, 71.4) (84.6, 45.1) (93.8, 72.6) (97.8, 86.6) (87.8, 64.4) (92.6, 76.6) (92.1, 71.3)

Table 21: Performance comparison on ZS M3D anomaly detection on Eyecandies.

Method Candy
Cane

Chocolate
Cookie

Chocolate
Praline Confetto Gummy

Bear
Hazelnut
Truffle

Licorice
Sandwich Lollipop Marsh-

mallow
Peppermint

Candy Mean

MG.

CLIP + Rendering (64.3, 67.8) (76.6, 77.6) (64.3, 70.8) (88.0, 89.6) (70.4, 72.1) (55.5, 53.8) (78.4, 81.9) (71.5, 64.7) (77.1, 77.8) (83.4, 82.7) (73.0, 73.9)
Cheraghian (-, -) (-, -) (-, -) (-, -) (-, -) (-, -) (-, -) (-, -) (-, -) (-, -) (-, -)

PoinCLIPV2 (43.0, 48.3) (48.0, 55.0) (46.4, 51.6) (49.3, 48.4) (44.7, 49.1) (48.3, 55.4) (61.8, 70.0) (42.1, 30.4) (54.1, 51.5) (31.2, 39.6) (46.9, 49.9)
PoinCLIPV2a (44.1, 51.2) (44.5, 52.4) (48.6, 52.3) (56.7, 54.8) (42.8, 44.6) (55.7, 60.3) (63.5, 68.7) (43.8, 29.3) (54.0, 52.1) (31.3, 39.6) (48.5, 50.5)
AnomalyCLIP (49.7, 50.8) (57.1, 62.9) (66.5, 70.3) (66.7, 68.0) (64.0, 69.5) (61.1, 67.8) (69.2, 73.9) (68.8, 56.5) (77.3, 80.4) (69.5, 74.6) (65.0, 67.5)
PointAD-CoOp (39.4, 45.6) (81.6, 87.2) (84.0, 87.7) (88.6, 91.1) (66.5, 69.2) (64.3, 69.2) (82.7, 84.0) (64.9, 53.0) (80.0, 83.5) (84.7, 89.6) (73.7, 76.0)

Point-AD (42.8, 49.1) (85.3, 89.3) (86.6, 89.8) (89.5, 92.3) (75.3, 77.8) (61.4, 68.5) (87.2, 89.0) (70.4, 63.9) (86.8, 89.5) (91.8, 94.2) (77.7, 80.4)

ML.

CLIP + Rendering (97.3, 89.2) (72.8, 10.3) (65.5, 8.3) (75.0, 17.4) (83.9, 31.8) (72.4, 29.8) (75.6, 17.4) (94.4, 75.8) (66.3, 15.7) (76.7, 22.2) (78.0, 31.8)
Cheraghian (-, -) (-, -) (-, -) (-, -) (-, -) (-, -) (-, -) (-, -) (-, -) (-, -) (-, -)

PoinCLIPV2 (44.8, -) (44.8, -) (48.0, -) (59.6, -) (48.6, -) (53.9, -) (42.2, -) (33.7, -) (43.3, -) (41.4, -) (46.0, -)
PoinCLIPV2a (44.8, -) (44.7, -) (49.0, -) (59.3, -) (48.2, -) (54.2, -) (42.2, -) (33.6, -) (45.0, -) (41.5, -) (46.2, -)
AnomalyCLIP (96.7, 88.5) (89.5, 64.3) (83.9, 55.4) (92.1, 74.8) (77.4, 33.1) (70.2, 27.3) (83.0, 52.9) (94.6, 78.9) (77.9, 38.2) (84.8, 48.8) (85.0, 56.2)
PointAD-CoOp (97.5, 91.1) (96.8, 87.9) (94.8, 85.2) (98.4, 93.7) (85.9, 57.3) (88.1, 61.1) (97.3, 89.0) (96.6, 86.3) (97.0, 87.1) (96.6, 87.2) (94.9, 82.6)

Point-AD (96.4, 87.2) (97.8, 90.3) (93.5, 83.7) (98.7, 94.7) (90.8, 74.4) (87.7, 62.5) (96.8, 88.0) (96.7, 85.4) (97.6, 88.5) (97.1, 88.6) (95.3, 84.3)

Table 22: Performance comparison on ZS 3D anomaly detection on Real3D-AD.
Method airplane car candybar chicken diamond duck fish gemstone seahorse shell starfish toffees Mean

G.

CLIP + Rendering (51.9, 56.9) (50, 58.1) (73.5, 70.8) (59.5, 70.2) (84, 86) (77, 76.2) (61.2, 69.3) (68.3, 69.9) (83.6, 87.9) (60.7, 54.5) (69.5, 78.1) (86.9, 89.6) (68.8, 72.3)
Cheraghian (57.8, 57.8) (53.5, 57.4) (50.7, 51.3) (45.3, 56.2) (41.9, 47.3) (47.8, 56.3) (49.0, 49.9) (50.2, 53.9) (45.6, 53.7) (56.3, 56.7) (51.5, 57.7) (53.7, 54.4) (50.3, 54.4)

PoinCLIPV2 (49.9, 48.9) (41.7, 48.3) (44.8, 49) (46, 55.9) (51.5, 48.9) (68.4, 70.4) (60.9, 68.6) (69.6, 69.3) (53.1, 59.4) (41.9, 52.8) (31.1, 43.3) (78.6, 82.4) (53.1, 58.1)
PoinCLIPV2a (46.5, 46.9) (47.1, 48.1) (51.3, 49.9) (48.7, 57.1) (47.8, 48.9) (60.5, 56.2) (60.6, 67.4) (59.6, 60.8) (74.7, 75.9) (64.5, 58.8) (61.7, 60.2) (67.3, 69.8) (57.5, 58.3)
AnomalyCLIP (61.7, 55.4) (51.2, 52.7) (49.7, 51.7) (57.9, 67.7) (65.0, 65.2) (56.2, 59.1) (56.4, 64.0) (49.1, 50.8) (56.5, 57.4) (53.1, 49.7) (54.8, 58.7) (51.0, 52.3) (55.2, 57.1)
PointAD-CoOp (60.8, 59.5) (68.7, 71.9) (75.1, 78.6) (45.3, 59.1) (98.4, 98.5) (54.4, 47.5) (76.3, 78.9) (86.6, 87.0) (81.4, 78.9) (89.4, 88.8) (83.5, 88.9) (67.1, 73.1) (73.9, 75.9)

Point-AD (60.9, 61.6) (73.9, 72.4) (74.1, 76.8) (52.0, 54.2) (99.2, 99.2) (60.1, 62.3) (74.3, 78.7) (87.3, 87.6) (76.9, 81.1) (89.5, 88.9) (80.9, 87.2) (69.0, 72.3) (74.8, 76.9)

L.

CLIP + Rendering (48.4, -) (48, -) (33.7, -) (47.1, -) (31.6, -) (49.6, -) (56.5, -) (50.3, -) (34.7, -) (47.5, -) (54, -) (49.2, -) (-)
Cheraghian (-, -) (-, -) (-, -) (-, -) (-, -) (-, -) (-, -) (-, -) (-, -) (-, -) (-, -) (-, -) (-, -)

PoinCLIPV2 (45.1, -) (56.3, -) (55.2, -) (46.5, -) (52.6, -) (62.6, -) (63.9, -) (51.5, -) (48.3, -) (58.1, -) (40.6, -) (53.6, -) (52.9, -)
PoinCLIPV2a (49.6, -) (54.3, -) (54.2, -) (47.1, -) (53.2, -) (61.6, -) (59.2, -) (51.6, -) (47.2, -) (59.3, -) (41.2, -) (48.1, -) (52.2, -)
AnomalyCLIP (51.1, -) (48.8, -) (51.7, -) (50.0, -) (55.2, -) (48.9, -) (46.5, -) (48.9, -) (49.2, -) (50.6, -) (51.0, -) (51.1, -) (50.3, -)
PointAD-CoOp (65.5, -) (75.5, -) (67.1, -) (64.2, -) (87.2, -) (50.8, -) (79.1, -) (81.7, -) (77.0, -) (77.3, -) (77.6, -) (68.4, -) (72.6, -)

Point-AD (67.2, -) (72.3, -) (71.3, -) (67.7, -) (87.7, -) (51.0, -) (80.1, -) (80.2, -) (74.8, -) (77.8, -) (81.4, -) (70.0, -) (73.5, -)

24

84889https://doi.org/10.52202/079017-2695



Table 23: Perfromance comparison on ZS 3D cross-dataset anomaly detection transferring from
MVTec3D-AD to Eyecandies.

Method Candy
Cane

Chocolate
Cookie

Chocolate
Praline Confetto Gummy

Bear
Hazelnut
Truffle

Licorice
Sandwich Lollipop Marsh-

mallow
Peppermint

Candy Mean

G. PoinCLIPV2a (47.8, 52.7) (51.9, 55.6) (31.8, 42.4) (38.6, 44.9) (46.0, 49.3) (32.0, 40.3) (54.5, 54.3) (42.7, 30.4) (58.8, 59.8) (47.7, 49.8) (45.2, 48.0)
AnomalyCLIP (49.6, 52.0) (43.1, 48.1) (65.2, 67.3) (69.5, 70.4) (41.2, 44.6) (53.8, 56.6) (51.2, 55.0) (60.4, 45.4) (58.1, 58.3) (70.6, 73.3) (56.3, 57.1)
PointAD-CoOp (54.5, 58.5) (51.6, 59.1) (72.8, 81.1) (79.3, 86.4) (69.1, 76.8) (62.6, 64.3) (78.9, 83.6) (74.4, 67.5) (67.2, 73.7) (81.1, 87.0) (69.1, 73.8)

Point-AD (51.7, 58.9) (57.9, 64.7) (76.8, 84.4) (79.9, 87.2) (66.5, 75.0) (61.3, 61.6) (81.0, 85.3) (77.3, 71.7) (63.3, 68.5) (79.3, 86.0) (69.5, 74.3)

L. PoinCLIPV2a (45.0, -) (38.4, -) (49.2, -) (43.2, -) (45.0, -) (55.2, 21.6) (38.7, -) (43.4, -) (42.9, -) (37.9, -) (43.9, -)
AnomalyCLIP (95.9, 84.0) (76.7, 34.1) (80.1, 46.7) (78.7, 44.2) (80.4, 42.7) (73.5, 33.1) (80.7, 40.8) (90.8, 66.1) (60.0, 17.4) (79.4, 45.0) (79.6, 45.4)
PointAD-CoOp (97.5, 85.7) (92.4, 74.4) (92.1, 70.6) (94.0, 67.3) (89.0, 69.3) (84.4, 46.5) (93.1, 72.7) (97.8, 86.8) (86.1, 59.4) (92.0, 71.8) (91.8, 70.5)

Point-AD (97.5, 85.4) (93.2, 76.8) (91.9, 70.2) (94.5, 72.3) (88.6, 68.3) (82.6, 45.4) (93.3, 74.0) (98.0, 89.0) (85.8, 58.9) (92.1, 73.3) (91.8, 71.4)

Table 24: Perfromance comparison on ZS M3D cross-dataset anomaly detection transferring from
MVTec3D-AD to Eyecandies.

Method Candy
Cane

Chocolate
Cookie

Chocolate
Praline Confetto Gummy

Bear
Hazelnut
Truffle

Licorice
Sandwich Lollipop Marsh-

mallow
Peppermint

Candy Mean

MG. PoinCLIPV2a (42.1, 50.4) (45.5, 54.9) (49.0, 52.5) (57.1, 54.3) (44.9, 45.8) (53.6, 56.6) (59.0, 64.5) (47.4, 36.1) (54.1, 53.3) (32.6, 40.3) (48.5, 50.9)
AnomalyCLIP (44.9, 51.4) (66.1, 68.9) (76.4, 77.7) (79.3, 82.7) (51.0, 56.7) (55.1, 58.3) (75.2, 79.6) (65.4, 57.9) (70.3, 72.5) (72.8, 75.5) (65.7, 68.1)
PointAD-CoOp (53.4, 58.6) (72.8, 80.4) (83.6, 86.6) (89.1, 92.8) (73.9, 76.2) (72.0, 76.2) (84.6, 88.4) (65.7, 54.3) (78.4, 83.3) (89.6, 92.7) (76.3, 78.9)

Point-AD (49.4, 55.1) (87.4, 91.2) (87.5, 88.8) (91.0, 94.1) (71.4, 74.2) (70.2, 75.0) (88.0, 89.5) (73.2, 63.5) (79.4, 84.4) (88.2, 91.9) (78.6, 80.8)

ML. PoinCLIPV2a (45.1, -) (47.2, -) (48.1, -) (63.1, -) (49.7, -) (54.0, 15.6) (45.2, -) (33.8, -) (44.7, -) (41.9, -) (47.3, -)
AnomalyCLIP (95.1, 82.3) (91.6, 71.2) (84.3, 62.0) (94.1, 80.9) (80.6, 44.5) (73.6, 42.7) (89.6, 66.9) (92.6, 68.0) (75.9, 42.8) (84.9, 52.1) (86.2, 61.3)
PointAD-CoOp (92.0, 71.0) (96.8, 86.4) (94.2, 86.2) (97.9, 92.5) (87.9, 64.8) (91.3, 68.6) (96.2, 83.6) (96.5, 82.5) (95.3, 81.3) (96.1, 86.7) (94.4, 80.3)

Point-AD (88.8, 63.9) (97.4, 88.9) (92.5, 85.1) (99.1, 96.6) (89.9, 70.4) (89.9, 70.4) (95.5, 84.4) (95.7, 79.8) (95.8, 82.5) (95.2, 84.8) (94.0, 80.7)

Table 25: Perfromance comparison on ZS cross-dataset anomaly detection transferring from
MVTec3D-AD to Real3D-AD.

Method airplane car candybar chicken diamond duck fish gemstone seahorse shell starfish toffees Mean

G. PoinCLIPV2a (45.9, 46.4) (47.0, 47.2) (49.4, 48.7) (48.3, 57.1) (47.6, 50.1) (64.6, 62.1) (60.3, 67.4) (60.2, 60.8) (72.4, 73.8) (60.8, 58.9) (60.4, 58.5) (72.3, 74.7) (57.4, 58.8)
AnomalyCLIP (48.3, 51.8) (63.3, 67.7) (48.8, 50.1) (51.9, 62.0) (60.2, 59.2) (42.6, 46.8) (57.1, 58.7) (54.6, 58.2) (60.0, 60.1) (51.1, 50.1) (40.3, 45.6) (53.8, 58.0) (52.7, 55.7)
PointAD-CoOp (55.2, 55.7) (64.0, 66.2) (68.3, 68.7) (57.2, 68.6) (99.3, 99.3) (75.0, 73.4) (78.1, 82.4) (85.8, 85.5) (73.5, 78.2) (89.8, 86.8) (76.1, 81.4) (75.6, 76.2) (74.8, 76.9)

Point-AD (64.6, 62.8) (64.0, 65.1) (72.0, 71.5) (61.6, 68.9) (99.5, 99.6) (69.0, 67.2) (74.5, 79.4) (90.4, 90.1) (74.8, 79.3) (89.7, 90.5) (77.9, 82.6) (73.3, 77.9) (75.9, 77.9)

L. PoinCLIPV2a (50.5, -) (53.6, -) (54.2, -) (47.0, -) (54.1, -) (60.7, -) (59.4, -) (51.2, -) (47.1, -) (55.4, 18.2) (41.6, -) (47.5, -) (51.9, -)
AnomalyCLIP (50.9, -) (49.6, -) (49.8, -) (50.1, -) (57.5, -) (47.9, -) (48.6, -) (48.3, -) (50.2, -) (50.5, -) (49.3, -) (51.0, -) (50.3, -)
PointAD-CoOp (61.4, -) (71.2, -) (64.6, -) (67.7, -) (85.0, -) (54.9, -) (76.9, -) (78.0, -) (69.3, -) (77.3, -) (59.7, -) (75.2, -) (70.1, -)

Point-AD (64.8, -) (69.7, -) (70.4, -) (67.3, -) (86.6, -) (50.3, -) (75.6, -) (78.9, -) (74.1, -) (78.1, -) (66.8, -) (76.4, -) (71.6, -)
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction precisely reflect the contribution and scope of
this paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: we have created a separate "Limitations" section in our paper.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: This paper does not include theoretical results
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide a detailed illustration of our proposed algorithm and baselines in
the Appendix C, Appendix B, and Appendix F.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]
Justification: we will make our code and dataset available once the paper is accepted.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide full details in Appendix B and Appendix F
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report the average results across three runs in Section 4.3.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We point out the specific compute resources in Section 4.2
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our paper obeys the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss the broader impacts of our paper.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: our paper poses no such risks
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: we respect the Licenses for existing assets that we use.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]
Justification: we will release new assets proposed in our paper once the paper is accepted.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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