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Abstract

This paper demonstrates that pre-trained language models (PLMs) are strong
foundation models for on-device meteorological variables modeling. We present
LM-WEATHER, a generic approach to taming PLMs, that have learned massive
sequential knowledge from the universe of natural language databases, to acquire
an immediate capability to obtain highly customized models for heterogeneous
meteorological data on devices while keeping high efficiency. Concretely, we
introduce a lightweight personalized adapter into PLMs and endows it with weather
pattern awareness. During communication between clients and the server, low-
rank-based transmission is performed to effectively fuse the global knowledge
among devices while maintaining high communication efficiency and ensuring
privacy. Experiments on real-wold dataset show that LM-WEATHER outperforms
the state-of-the-art results by a large margin across various tasks (e.g., forecasting
and imputation at different scales). We provide extensive and in-depth analyses
experiments, which verify that LM-WEATHER can (1) indeed leverage sequential
knowledge from natural language to accurately handle meteorological sequence, (2)
allows each devices obtain highly customized models under significant heterogene-
ity, and (3) generalize under data-limited and out-of-distribution (OOD) scenarios.
Code available on https://github.com/shengchaochen82/LM-Weather,

1 Introduction

Accurately modeling weather variation pattern from large amount of meteorological variables se-
quences is increasingly vital for providing efficient weather analysis support for disaster warning.
Recently, the promise of learning to understand weather pattern from data via deep learning (DL) has
led to an ongoing paradigm shift apart from the long-established physics-based methods [[1, 2].

Mining potential patterns from meteorological sequences that collected from different regions, includ-
ing forecasting and imputation, is one of the most important problems in meteorology. Significant
progress has been made by several latest time series approaches [[1} 13, /4]. These approaches formulate
meteorological variable modeling as an end-to-end spatio-temporal learning problem. This overlooks
the reality that ground weather devices distributed globally gather vast amounts of data quickly. The
sheer volume of data, coupled with limited network capacity, necessitates local processing on the
devices, making centralised learning challenging [5]. On-device intelligence enables edge devices to
compute independently, offering a primary solution to the problem.

Federated Learning (FL) [7] is a promising on-device intelligence implementation that collaboratively
train a uniform model across devices without exchanging raw data. However, the model often under-
perform due to data heterogeneity among clients. Personalized FL (PFL) provides new insights for
on-device intelligence that allows each device obtains customized models for providing personalized
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Figure 1: Framework Overview. (a) Schematic of LM-WEATHER, each client using personalized
adapter to endow the PLM for local weather awareness, only low-rank matrices are transmitted
to enhance efficiency during communication; (b) Brief structure of PLM on each client, detailed
architecture can be found in Appendix; (c) Task Adapter Generation, the multivariate weather series
input splits into two paths. The first path isolates the trend, seasonal, and residual elements, which
each go through independent generator to produce specific adapters; (d) Architecture of the generator
for each decomposed element; (e) Schematic diagram of Channel-Independent Patching [6]].

insights [8, 9]. Albeit PFL methods showing revolutionized capability in this field, we argue that the
current advancements are not necessarily at their best in on-device meteorological variable modeling
as three major obstacles remain and hinder further progress:

(i) Challenge of Heterogeneity. Weather data’s heterogeneity, unlike that of images or text,
arises mainly from the unique characteristics of data collected by weather devices in various
regions, such as tropical or arid areas. Furthermore, sensor malfunctions or extreme events
can lead to collection disruptions or inconsistent missing data, which significantly increase
the differences in data distribution across devices.

(i) Underperformed Shallow Network Structures. The vast and varied data gathered by
weather devices challenge simpler neural network models to generalize effectively. Further-
more, the frequent updates of weather data (hourly or by the minute) require neural models
on devices to train and infer more often. This demand is hard to meet with deeper models
that, while more performant, are also more resource-intensive.

(iii) Resource-constrained Weather Devices. From a computation perspective, weather devices
cannot afford of training complex neural models from scratch, especially for foundation
models [4]. From a communication perspective, transmitting complete model during the
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aggregation phase in FL/PFL significantly increases communication overhead, which is
impractical for real-time weather modeling.

Therefore, a compact foundational model (FM) is crucial for personalized on-device weather modeling.
Yet, there’s a gap in FMs for observational data. Models trained on large-scale simulation data struggle
in practical applications because of notable differences in data formats and parameter scales [1} 14].

Inspired by the impressive progress of large language models (LLMs) in natural language process-
ing, recent literature in time series analysis research has also demonstrated that pre-trained LMs
provide excellent performance over dedicated models for time series analysis with tuning [[10] or
reprogramming [11]]. This comprehensive and thorough sequence knowledge from language models
can be effortlessly transferred across domains without large-scale parameter tuning. Thus, an exciting
research question naturally arises:

Question: Since PLMs are powerful sequence modelers, can we leverage PLMs as foundation
models to achieve personalized on-device meteorological variable modeling?

In this paper, we show that pre-trained language models (PLMs) can as outstanding foundation models
that tuned on each device with low cost can achieve personalized on-device weather pattern modeling.
We propose LM-WEATHER, a generic approach to taming PLMs to understand heterogeneity on-
device weather data. As shown in Fig.1a, we conduct a local tuning on an uniform PLM (e.g.,
GPT2), where lightweight personalized adapters are implanted to endow PLMs with weather pattern
awareness by decomposing weather sequence to implicit knowledge (e.g., seasonal, trend). During
communication between client and server, fewer parameters are shared globally while locally retained
adapters are enforced to resist heterogeneity and facilitate privacy-assured fusion of global knowledge.

We highlight our contributions and findings as follows:

* We introduce LM-WEATHER, a generic approach that transforms Pre-trained Language
Models as the foundation model to customized on-device meteorological variable model-
ing via personalized adapter. LM-WEATHER yields preferable meteorological variable
sequences modeling, while being parameter-, communication-, and data-efficient.

* We collect and compile four real-world versatile datasets for on-device meteorological
variable modeling across regions. As opposed to simulated datasets such as ERAS [12],
our datasets are all real-time observations. These datasets based on real-world practice and
challenging, provide a pioneer in the field of on-device meteorological variable modeling.

» Experiments show that LM-WEATHER advances the state-of-the-art methods by a large
margin across various setting while keeping 3.7% of parameters communication. LM-
WEATHER also demonstrates superior communication efficiency in the context of meteoro-
logical variable modeling, beating FL baselines tailored to reduce communication overhead.

e In particular, we find that LM-WEATHER can accurately handle structurally non-
deterministic sequences (e.g., differences in time or variable dimensions across devices)
thanks to the learned sequences knowledge from pre-trained LMs. We also find that LM-
WEATHER can indeed be spatio-temporal sequences sensitive, thereby better modeling the
weather pattern specificity of those high distribution similarity.

* We find that LM-WEATHER can work well in data-limited environments across various
few-shot settings. We further evaluate zero-shot generalizability of LM-WEATHER in
modeling complex weather patterns of unseen data, including different group of datasets
and other devices, and observe superb performance.

We highlight that the goal of this study is not to compete but instead to complement current on-device
meteorological variables modeling framework. Today’s climate foundation models are typically
trained from scratch, utilizing exceptionally large datasets (nearly 100TB [4! [13]) and incurring
substantial computational costs [1l]. We hope that LM-WEATHER offers a cost-effective alternative
for modeling meteorological variables on-device, thereby enabling accurate regional weather trend
analysis. In addition, the dataset we complied can be the important resource to provide exploring
chances for this field, facilitating future research.
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2 Preliminaries

2.1 On-device Meteorological Variable (Sequence) Modeling

The on-device meteorological variable (sequence) modeling challenge involves predicting future
sequences from past observations for forecasting or predicting missing values for imputation on each
device. While traditional physics-based approach this as a complex problem of solving multilevel
atmospheric equations [14], recent deep learning techniques have shown significant potential in
uncovering patterns for better weather prediction [4} 2].

Problem Formulation On-device meteorological variable modeling can be formulated as an end-
to-end sequence-to-sequence learning problem for each device without exchange raw data. Formally,
a parameterized local model for i-th device M, is tasked with predicting the weather sequence,

where the X; € REXC and X; € RL' %Y denote the input and output sequences on i-device, L and
L’ is the input length and output length, C and C” is the number of input and output variable. Note
that the L' — L when performing imputation. The local learning objective on each device is to
find the model parameter 6 that minimize the distance between 2\?¢ and &; given sufficient weather
sequence data. The overall optimization objective is based on FedAvg,

N
F(6): = arg minz %Fi(9i|{Di})7 @)
i=1

where n; and n is the number of samples held by the i-th client and all client respectively, F'(0|{D})
denotes the local objective function, { D} is the local data.

2.2 Language Models in Time Series

Language models (LMs) trained on large-scale sequence data have shown extraordinary advances
and led to a significant paradigm shift in NLP, boosting machines in understanding human languages
(BERT/MLM-style) and synthesizing human-like text (GPT/CLM-style [[15]). Analogies between
time series and human languages have long been noted [16]. Recent advancements in time series
analysis have demonstrated the effectiveness of PLMs in modeling time series [17, [L1]. Although
some of those have shown that PLMs can beat time series-specific models in updating a minor fraction
of parameters [18]]. As such, it is exciting to expect cutting-edge techniques of language modeling can
tackle weather variables sequence-related problems rather than considering train climate foundation
models [4 [1]] from scratch that are heavy and expensive, and are trained from simulated data.

3 Taming PLMs for On-device Meteorological Variable (Sequence) Modeling

Overview We proposed a generic framework named LM-WEATHER that encouraging PLMs to
yield accurate prediction while keeping high efficiency for each device. The architecture is illustrated
in Fig.[1] To endow PLMs with weather pattern awareness, we introduce a lightweight personalized
adapter into PLMs (e.g., GPT2 [[15]]) such that the emergent ability of sequence modeling that
transferred from text into weather is activated. To achieve cross-domain knowledge transfer with
minimal effort while maintaining the sequence modeling capabilities of PLMs as intact as possible,
we introduce lightweight operations in it enables both clients and servers to achieve a good trade-off
between performance and efficiency (e.g., computation and communication).

3.1 Local Training on Each Device

Our LM-WEATHER refines PLMs for personalized weather sequence modeling on heterogeneous
devices using a modular, plug-and-play architecture. Specifically, we introduce personalized adapter
consists of (1) Task Adapter from latent weather knowledge and (2) Parameter Adapter that converts
representation from the PLM into into weather forecasts. In addition, we employ lightweight
operations in local training to boost computational efficiency.

'The words ‘client‘ and ‘device* have the same meaning in our paper.
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Task Adapter. To provide PLMs with richer effective information to activate their sequence
modeling capabilities in the target knowledge domain, similar to text-based prompts in language
to LLMs in NLP, we constructed task adapters by decomposing the input weather sequences into
multimodal latent statistical information,

X’Frend + Xskeasonal + Xléfesidual = Decomp(Xk)7 (3)
where X'* € REX1 denote the k-th variable in weather sequence X € RY* ¢ the trend component
Nrrend and the seasonal component Xgeasonar captures the underlying long-term weather pattern
and encapsulates the repeating short-term weather cycles, respectively. Furthermore, the residual
component Aresiqual T€presents the remainder of the sequence after the trend and seasonality have been
extracted. Note that Xrend, Xseasonal, aNd XResidual have the same shape as X'. This decomposition
explicitly enables the identification of unusual observation and shifts in seasonal patterns or trends.
The Xrrends Xseasonal> AResidual 1€ Used to generate Task Adapter via an unified generator as Fig. Ek
& Fig. [T that consisting of Token Embedding, Position Embedding, and Temporal Embedding.
Specially, we use one-dimensional convolution operation to map each each specific sample A'*
while keeping raw shape to generate Token Adapter Pro. Additionally, we use a trainable lookup
table to map each point’s explicit position in the entire sequence, to generate Position Adapter Ppg.
Furthermore, we separately encode different time attributes such as minutes, hours, days, weeks, and
months, via trainable parameters to dynamically model complex temporal shifts, to generate Temporal
Adapter Prg. Finally, for each decomposition components, corresponding generated adapters can be
obtained by aggregating Token Adapter Pro € RY*C, Position Adapter Ppo € RZ*C, and Temporal
Adapter Prg € REXC as Py = P + Py + Pg, where d € {Trend, Seasonal, Residual}, this
means that we can obtain Pryend, Pseasonal, Presidual- Details about the generator in Appendix@

Lightweight Operations. To enhance the PLMs’ ability to represent complex inputs while reducing
the computational burden to adapt to low-resource devices, we introduce lightweight operations,
which includes channel-independent patching (CIP, Fig. [Te) [6] for input and efficient tuning of
parameters for PLMs. Among them, CIP splits the multivariate sequence into separate univariate
sequences, each processed by a single model with length L,,. This approach outperforms the original
method of mixing channels by treating the variables as independent. It enables the model to capture
channel interactions indirectly through shared weights, leading to improved performance without
directly modeling the complexity of multiple data channels. The total number of inputs patches is

P = (T;SL") +2, where S denotes the horizontal sliding stride. Given these patches X}, € RP*L» we

use rearrange operation and a trainable FFN embed them as X'}, € RP>dm where d,, is dimensions
created by the FFN. We also introduce a low-rank adaptation (LoRA) [19] inside PLMs aiming at
language modeling for lightweight fine-tuning of attention layers to achieve cross-modal/-domain
knowledge transfer from text sequences to weather sequences with minimal effort.

Parameter Adapter. To adapt PLM outputs for downstream weather sequence modeling, we
introduceParameter Adapter, a simple FFEN with a single linear layer positioned after the PLM. This
adapter transforms the PLM’s output to match the prediction horizon, formalized as follows:

)e = FFN(MG(Concat[PTrendy PSeasonala PResidual» )E‘])), (4)

where the PTrend, PSeasonal, PResidualy and X are obtained from CIP based on PTrenda PSeasonals PResidual,
and X. The key objectives are twofold: (1) to enrich the PLM’s cross-modal representations by
incorporating task-specific knowledge, and (2) to enhance the PLM’s output accuracy while preserving
its inherent knowledge through the integration of weather data for cross-domain knowledge transfer.

3.2 High-efficiency Communication Between Clients and Server

To avoid data silos and counteract the performance disparities caused by data heterogeneity while
ensuring efficient communication, we update personalized adapters locally and share low-rank
parameters globally in each round. Specifically, the local PLM My can be formulated as below:
My = Mg (Communication) + Mg, ¢(Locally) 5)
where My ; denotes the trainable parameter from the low-rank matrices of query and value in
attention modules, My  is the frozen parameter (mainly the PLM backbone) and other trainable
ones (primarily for the personalized adapter). During client-server communication, only My ; is
transmitted and averaged using FedAvg [[7]]. At the start of the next training round, the updated Mg ;
is broadcast to clients for further updates. Privacy is further protected by sending minimal parameters.
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4 Main Theorems

Theorem 4.1 (Decomposition Rationality from Time Series). Given a weather series X =
Xrvend,t + Xseasonal,t + XResiduat,t» t € [t1,1n]. Let E = {e1, ea, ..., e, } denotes a set of orthogonal
bases. Lets Eseqsonat © E denote the subset of E on which Xseusonar,r has non-zero eigenvalues
and Erypnq C E denote the subset of E on which Xrpyena s has non-zero eigenvalues. If Xpyengy and
Xsem,mlttlare not orthogonal{ e,y i, X;rengl,t.)(geasonal,t # 0, then Eryeng () Eseasonat £ 0, i.e., E
can not disentangle the two signals onto two disjoint set of bases.

Theorem 4.2 (Exchange Low-Rank Matrices Ensures Privacy). Given a on-device weather
modeling framework based on federated learning that gloabl optimization object is F(0) =
Zfl pi f({D;};0), where f(x;0) is the loss function of i-th client, { D;} is dataset of i-th client, and
p; and 0 denote the data distribution weight of client i and the model parameters, respectively. Given
that the parameters 6 of the PLM M broadcasted by the server consist of two parts: a frozen part
Mo, ¢ and a trainable part M +, interacting only the low-rank matrix parameters Mg ; C Mg is
a subset of trainable part Mg ; during each round ensures privacy.

S Experiments

In this section, we first present the real-world datasets that we have collected and compiled for on-
device meteorological variable modeling, and second, we evaluate LM-WEATHER on these datasets,
which involves normal scenario, a data-limited few-shot scenario, and a zero-shot scenario with no
training data (OOD). Please refer to Appendix for more detailed information about proposed datasets
and additional results of all evaluations (e.g., full results, additional findings & experiments).

5.1 Datasets

Despite the proliferation of reanalysis data aimed at building frameworks for global climate analysis,
these datasets often struggle to model regional weather trend due to: (1) they depend on numerous
simulations of atmospheric equations, introducing biases inconsistent with real observations, and (2)
they face challenges in refining their scale to suit specific regional applications. Hence, we collected
real observational data from various weather stations across different regions. We then organized this
data into two series, each comprising two distinct datasets, to underscore the heterogeneity inherent
in real-world settings. For detailed information on these datasets, please see the Appendix [B.1]

On-device Weather Series 1# (ODW1). The dataset gathered from 15 ground weather stations
across China, Japan, and South Korea, encompasses over 20 variables. It has been divided into two
subsets: ODWIT has a heterogeneous time span, meaning the data collection start and end times
vary by location. and ODW1YV extends ODWIT by adding variability in the observed variables;
while one variable remains constant at each station, the others vary.

On-device Weather Series 2# (ODW2). This dataset consists of data from 36 weather observation
stations in the United States, Canada, and Israel, covering 5 different variables with a temporal
resolution of 1 hour. Following the dataset setting of ODW1, the dataset was also subdivided into
two different dataset, including ODW2T and ODW2V.

5.2 Setup

Baseline. Since our framework is based on a language model, we compare with DL-based SOTA
time series models, including Transformer-based methods: Transformer [20], Informer [3], Re-
former [21], Pyraformer [22]], iTransformer [23]], and PatchTST [6], and recent competitive models:
GPTATS [IL7], DLinear [24] and LightTS [25]. Note that our setting is FL-based, so we place them in
FL and rename them FL-(baseline) like FL-Transformer, etc., and all aggregation methods used in
above models is FedAvg [7]]. In addition, we report a variants of LM-WEATHER, LM-WEATHER-AVE
that based on FedAvg without personalization. Detailed information are in Appendix [B.2]

Basic Setup. We focus on on-device meteorological variable forecasting and imputation tasks.
For forecasting, we create scenarios for predicting a single variable (multivariate-univariate) and
for predicting all variables (multivariate-multivariate). The main text only includes multivariate-to-
multivariate forecasting results due to page constraints. For multivariate-to-univariate forecasts, refer
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to the Appendix In imputation, we use sequence lengths of {96,192, 336, 720} and apply three
different masking probabilities {25%, 35%, 50%} to represent missing data. The main manuscript
shows imputation results for a 50% masking ratio. For more details on the setup, please refer to
Appendix[B.3] All our experiments are repeat five times and we report the averaged results.

5.3 Main Results

In this section, we evaluate LM-WEATHER and baseline methods on four on-device meteorological
variable modeling datasets in general experiments to validate its effectiveness.

Setups & Results of Forecasting Tasks. Input length L is fixed to 192, and we use four different
prediction horizons Ly € {96,192,336,720}. Evaluation metrics include mean absolute error
(MAE) and root square mean error (RMSE). The brief results is shown in Tab. [I], where our LM-
WEATHER outperforms all baselines in most cases and significantly so to the majority of them.
Particularly noteworthy is the comparison with GPT4TS that involves fine-tuning PLMs, where
LM-WEATHER has an average 9.8% improvement over FL-GPT4TS (MAE reported), and even
the variant LM-WEATHER-AVE has an average 4% improvement over FL-GPT4TS. In addition,
LM-WEATHER shows significant average performance gains of 11.2% and 19% w.r.t. MAE relative
to other SOTA such as FL-DLinear and FL-PatchTST.

Table 1: Results under on-device meteorological variable forecasting task (multivariate-to-
multivariate). A lower value indicates better performance. Bold: the best, Underline: the second best.
Complete results can be found at Appendix [E] due to page limitation.

Method | LM-WEATHER-AVE | LM-WEATHER | FL-GPTATS | FL-Reformer | FL-Pyraformer | FL-DLinear | FL-PatchTST | FL-iTransformer | FL-LighTS | FL-Transformer | FL-Informer
Dataset | Length [ MAE  RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE
96 4.1 74.8 2.3 711 46.3 78.5 70.7 929 67.2 86.1 49.7 78.6 450 77.0 48.4 80.2 54.8 85.6 50.7 82.1 519 83.2

192 | 463 715 444 736 | 486 813 | 7501 983 | 700 909 | 523 818 | 473 798 | 518 843 | 595 906 | 521 840 | 529 846

opwir | 336 | 479 73 458 752 | 503 832 | 798 1005 | 741 928 | 539 837 | 490 817 | 545 873 | 640 946 | 529 852 | 535 856
720 | 518 83.0 492 785 | 544 872 | 8701 1029 | 805 952 | 572 873 | 533 856 | 601 931 | 724 1027 | 554 876 | 553 874

Avg. | 415 787 454 746 | 499 825 | 782 987 | 730 913 | 533 828 | 486 810 | 537 637 | 627 934 | 528 847 | 534 852

96 | 427 695 423 696 | 440 714 | 429 6718 | 577 672 | 464 733 | 443 696 | 568 768 | 480 751 | 670 894 | 590 803

192 | 255 726 444 717 | 470 758 | 484 754 | 592 694 | 479 751 | 468 721 | 550 750 | 490 792 | 699 930 | 612 828

opwiy | 336 | 412 743 460 724 | 488 777 | 510 770 | 634 733 | 491 769 | 485 748 | 624 837 | 508 779 | 714 948 | 637 858
720 | 512 782 497 740 | 533 817 | 545 823 | 673 761 | 525 803 | 543 7901 | 721 962 | 547 827 | 762 873 | 684 918

Avg. | 466 736 456 719 | 483 767 | 492 756 | 619 715 | 490 764 | 485 739 | 581 850 | 507 787 | 711 9Ll | 631 852

96 | 643 88.2 628 855 | 668 917 | 1003 1263 | 950 1203 | 679 847 | 702 881 | 686 865 | 684 854 | 850 1030 | 847 1027

192 | 671 915 662 891 | 7L1 961 | 1021 1303 | 99 1258 | 714 881 | 722 907 | 711 889 | 719 889 | 850 1030 | 849 1028

opwar | 336 | 695 937 679 9Ll | 729 984 | 1042 1300 | 1020 1285 | 730 895 | 730 919 | 718 896 | 737 905 | 826 1005 | 848 1029
720 | 726 973 707 946 | 762 1012 | 1073 1342 | 1042 1314 | 761 929 | 7501 933 | 729  9L0 | 767 937 | 841 1051 | 854 1038

Avg. | 685 927 669 901 | 718 969 | 1035 1302 [ 1003 1265 | 721 888 | 726 910 | 7L1 890 | 727 896 | 842 1029 | 849 103.1

96 | 768 99.7 651 884 | 785 1027 | 896 1127 | 891 1125 | 748 968 | 763 999 | 135 977 | 922 1177 | 770 1001 | 774 1004

192 | 779 100.8 683 914 | 797 1038 | 905 1142 | 964 1201 | 766 989 | 799 1033 | 788 1036 | 100.5 1281 | 783 101§ | 780 10LI

opway | 336 | 785 1015 699 930 | 803 1045 | 942 1193 | 984 1222 | 776 1002 | 818 1053 | 821 1075 | 1055 1344 | 794 1033 | 787 1020
720 | 799 103.6 729 965 | 820 1067 | 974 1204 | 1005 1250 | 796 1030 | 862 1002 | 862 1127 | 111.0 1413 | 861 1123 | 813 1056

Avg. | 783 101.4 690 923 | 800 1044 | 929 1166 | 961 1200 | 772 997 | 811 1022 | 802 1054 | 1023 1304 | 802 1044 | 788 1022

1 Count | 0 | 2 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0

Setups & Results of Imputation Tasks. Our brief results are in Tab. [2] where LM-WEATHER
consistently surpasses all baselines, outperforming FL-GPT4TS by 5.7%. LM-WEATHER remains
competitive even when compared with the SOTA, FL-PatchTST, FL-LightTS, and FL-DLinear.

Table 2: Results under on-device meteorological variable imputation task, where random masking
ratio is 50%. A lower value indicates better performance. Bold: the best, Underline: the second best.
Complete results can be found at Appendix [E] due to page limitation.

Method | LM-WEATHER-AVE | LM-WEATHER | FL-GPT4TS | FL-Reformer | FL-Pyraformer | FL-DLincar | FL-PatchTST | FL-iTransformer | FL-LightTS | FL-Transformer | FL-Informer
Dataset | Length | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE

9 | 224 435 217 418 | 233 452 | 637 884 | 622 859 | 292 508 | 289 546 | 228 445 | 244 437 | 583 828 | 708 996

192 | 234 137 226 420 | 246 459 | 672 912 | 655 885 | 287 502 | 475 773 | 238 441 | 257 453 | 573 824 | 663 921

opwir | 336 | 241 44.1 232 424 | 253 463 | 704 934 | 685 906 | 283 494 | 486 770 | 272 477 | 269 466 | 584 835 | 369 553

720 | 260 45.1 249 433 | 2713 474 | 779 968 | 758 939 | 280 490 | 566 851 | 365 562 | 272 474 | 566 804 | 717 967

Avg. | 240 241 231 424 | 251 462 | 698 925 | 680 897 | 285 499 | 454 735 | 276 482 | 261 457 | 576 823 | 614 8§59

9 | 42.1 62.0 411 604 | 429 638 | 438 649 | 423 530 | 430 630 | 536 771 | 387 582 | 415 615 | 378 569 | 4L1 592

192 | 439 64.5 428 628 | 456 669 | 458 676 | 447 562 | 493 712 | 575 815 | 493 689 | 4.9 620 | 441 574 | 488 668

opwiy | 336 | 457 66.6 6 649 | 475 692 | 476 698 | 546 657 | 534 766 | 607 850 | 60.0 798 | 473 646 | 485 680 | 502 671

720 | 415 68.7 463 669 | 494 714 | 496 720 | 592 735 | 568 807 | 633 874 | 61.6 804 | 525 729 | 527 0.0 | 603 772

Avg. | 148 65.5 437 638 | 464 678 | 467 686 | 502 621 | 506 729 | 588 827 | 524 718 | 458 653 | 458 631 | 501 676

9 | 380 56.6 369 549 | 390 583 | 503 703 | 954 1208 | 408 600 | 384 586 | 3901 583 | 388 578 | 655 866 | 5.7 720

192 | 383 56.6 372 549 | 398 589 | 521 742 | 962 1223 | 429 627 | 667 878 | 394 583 | 395 584 | 714 928 | 550 757

opwar | 336 | 435 655 422 635 | 48 681 | 566 789 | 978 1255 | 460 677 | 687 901 | 448 675 | 478 653 | 668 888 | 515 728

720 | 419 68.8 465 667 | 498 715 | 643 877 | 9901 1299 | 528 761 | 704 935 | 493 710 | 480 680 | 674 892 | 515 730

Avg. | 419 61.9 388  6L7 | 434 642 | 558 778 | 971 1246 | 456 666 | 611 825 | 432 638 | 435 624 | 678 894 | 524 734

9 | 28.1 453 275 440 | 284 458 | 503 703 | 532 724 | 721 920 | 398 584 | 727 947 | 964 1235 | 527 732 | 548 769

192 | 286 453 280 440 | 292 461 | 510 71 | 460 652 | 757 959 | 449 637 | 791 1020 | 986 1258 | 539 747 | 562 788

opwav | 336 | 337 298 327 484 | 349 SI8 | 542 766 | 742 973 | 773 978 | 509 700 | 826 1061 | 1012 1288 | 544 754 | 568 797

720 | 311 531 360 515 | 393 563 | 594 817 | 824 1009 | 77.1 973 | 592 793 | 830 1060 | 985 1243 | 554 775 | 564 786

Avg. | 319 484 31 470 | 330 500 | 537 749 | 640 840 | 755 958 | 487 679 | 794 1022 | 987 1256 | 541 752 | 560 785

1 Count | 0 | 30 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0

5.4 Few-Shot Learning Experiments

PLMs have demonstrated remarkable few-shot learning capabilities [26]. In this subsection, we
assess whether LM-WEATHER retains this ability in both forecasting and imputation tasks, based on
FL for resource-constrained on-device weather modeling environments.
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Setups and Results of Forecasting & Imputation. For both forecasting and imputation tasks, we
evaluate the few-shot learning capability in scenarios using limited data, specifically, we use training
ratios of 5% and 15% (Our full few-shot learning results (training ratio of 5% and 15%) can be found
at Appendix [E.2 ) The brief 5% few-shot learning results on forecasting and imputation tasks are
depicted in Tab. |3 and Tab. d] respectively. LM-WEATHER remarkably excels over all baseline
methods, and we attribute this to the successful cross-domain knowledge activation in our local dual
fine-tuning for the PLM. In addition, our LM-WEATHER’s communication mechanism also reduces
the impact of data heterogeneity on performance, which is reflected in the fact that LM-WEATHER
has an average 14.7% and 20% improvement relative to LM-WEATHER-AVE, in the forecasting and
imputation, respectively. In relation to recent SOTA methods such as FL-PatchTST, FL-LightTS, and
FL-DLinear, our LM-WEATHER enhancements surpass 78 %, 14.3%, and 72.8% for forecasting,
and 102.1%, 122.1%, and 96.35% for imputation. This means that heterogeneity poses challenge to
baseline and they struggle to understand weather patterns with limited data. Moreover, it implies that
LM-WEATHER can effectively achieve cross-domain knowledge transfer to PLMs. This benfits from
the personalized adapter we integrated into the PLM, coupled with lightweight operations.

Table 3: Few-Shot learning results on forecasting task (5% training data). A lower value indicates
better performance. Bold: the best, Underline: the second best, *-‘ denotes insufficient data. Com-
plete results can be found at Appendix[E.2]

Method | LM-WEATHER-AVE | LM-WEATHER | FL-GPT4TS | FL-Reformer | FL-Pyraformer | FL-Dlincar | FL-PatchTST | FL-iTransformer | ~FL-Lights | FL-Transformer | FL-Informer
Metrics | Length | MAE  RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE
96 88.1 95.1 873 939 | 916 1009 | 1669 2960 | 1736 2992 | 924 1875 | 851 1827 | 1033 2048 | 1858 3283 | 937 1935 | 9L1 1900
192 902 934 89.6 965 | 958 1046 | 1669 2973 | 1760 3030 | 944 1924 | 907 1916 | 1067 2107 | 1881 3360 | 968 2001 | 935 1959
ODWIT 336 942 1017 922 997 | 1000 1082 | 1689 2975 | 1776 3030 | 959 1932 | 965 1974 | 1087 2118 | 1884 3346 | 1002 2033 | 993 2010
720 - - - - - - - - - - - - - - - - - - - - -
Avg 908 984 897 967 | 958 1046 | 1677 2969 | 1757 3017 | 942 1910 | 90.7 1906 | 1063  209.1 | 1875 3330 | 969 1990 | 946 1956
9 79.6 104.3 757 981 | 820 1085 | 1015 1302 | 816 1075 | 988  127.4 | 3276 3924 | 1350 1683 | 1110 1416 | 1166 1558 | 1115 1449
192 878 1155 825 1084 | 908 1203 | 1070 1367 | 902 1189 | 1104 1416 |3344 4034 | 1454 1802 | 1175 1492 | 1234 1641 [ 1160 1524
ODWIV 336 1039 1334 987 1254 | 1070 1387 | 1132 1424 | 1061 1375 | 1200 1532 | 3416 4137 | 1221 1535 | 1263 1597 | 1336 1613 | 1232 1674
720 - - - - - - - - - - - - - - - - - - - -
Avg 904 117.7 856 1106 | 933 1225 | 1072 1364 | 926 1213 | 1097 1407 | 3345 4032 | 1342 1673 | 1183 1502 | 1245 1604 | 1169 1549
110 1594 990 1355 | 1279 1782 | 1583 2412 | 1733 2470 [ 107.1 1528 1012 1479 | 1159 1663 | 1836 2733 | 1423 1996 | 1588 2013
obw2r | 192/336/720 - - - - - - - - - - - - - - - - - - - - -
Avg. 10 1594 990 1355 | 1279 1782 | 1583 2412 | 1733 247.1 | 107.1 1528 | 1012 1479 | 1159 1663 | 1836 2733 | 1423 1996 | 1588 2013
96 1053 135.7 968 1221 | 1102 1554 | ISL5 1907 | 1505 1893 | 1122 1412 | 1155 1458 | 1102 1434 | 1621 2125 | 1064 1368 | 1496 1882
opway | 192/336/720 - - - - - - - - . : - , , . , . , " ” 7 °
Avg 1053 135.7 968 1221 | 1102 1554 | 1515 1907 | 1505 1893 | 1122 1412 | 1155 1458 | 1102 1434 | 1621 2125 | 1064 1368 | 1496 1882
1° Count 1 16 0 0 0 0 2 0 0 0 0

Table 4: Few-Shot learning results on imputation task (5% training data), where random masking
ratio is 50%. A lower value indicates better performance. Bold: the best, Underline: the second best,
“-* denotes insufficient data. Appendix [E.2]shows our full results.

Method | LM-WEATHER-AVE | LM-WEATHER | FL-GPT4TS | FL-Reformer | FL-Pyraformer | FL-DLinear | FL-PatchTST | FL-iTransformer | FL-LightTS | FL-Transformer | FL-Informer
Ratio ‘ Length ‘ MAE RMSE ‘ MAE RMSE ‘ MAE RMSE ‘ MAE RMSE ‘ MAE RMSE ‘ MAE RMSE ‘ MAE RMSE ‘ MAE  RMSE ‘ MAE RMSE ‘ MAE RMSE ‘ MAE RMSE
96 61.2 121.2 59.9 120.8 62.4 1386 | 1474 2613 1495 2564 1100 209.1 64.2 147.0 119.0 228.5 1730 3108 140.8 260.0 1439 264.7
192 69.1 1302 647 1277 | 673 1452 | 1513 2678 | 1520 2580 | 110.1 2034 | 740 1550 | 1209 2230 | 1722 3014 | 1490 2624 | 1503 2642
ODWIT | 336/720 - - - - - - - - - - - - - - - - - - - - -
Avg. 652 1257 623 1244 | 649 1419 | 1494 2646 | 1508 2573 | 1100 2062 | 692 1510 | 1200 2257 | 1726 3061 | 1450 2612 | 147.1 2644
96 622 134.1 62.8 135.5 67.3 131.2 103.9 189.8 61.5 132.6 1122 2084 161.1 281.5 117.6 219.5 1196 2235 98.0 198.5 942 188.1
192 714 140.5 722 1421 | 746 1527 | 1033 1824 | 70.6 1388 | 1133 2006 | 1605 2724 | 1245 2189 |1227 2178 | 1018 1913 | 967 1815
ODWIV | 336/720 _ _ . . . . . . . - - : . - . . - - - -
Ave. 66.8 1373 675 1388 | 710 1420 | 1036 1861 | 661 1357 | 1127 2045 | 1608 2769 | 1210 2192 | 1212 2207 | 1018 1949 | 955 1848
96 102.5 156.3 99.4 151.6 112.0 157.2 116.2 161.3 1249 165.6 123.7 178.3 1730  256.7 127.3 190.6 133.8 2003 124.3 187.5 1057 161.1
ODW2T | 192/336/720 | - - - N . - - . , . . , . ! , , . A ! " "
Ave. 1025 1563 994 15L6 | 1120 1572 | 1162 1613 | 1249 1656 | 1237 1783 | 173 2567 | 127.3 1906 | 1338 200 | 1243 188 | 1057 1610
96 24 629 357 1121 | 564 773 | 1068 1355 | 708 955 | 1133 1480 | 1538 1995 | 1018 1364 | 1061 1422 | 100.1 1346 | 89.8 1190
opway | 192/336/720 - - - - - - - - - - . - - - - , - . . ;
Avg. 424 629 357 112.1 56.4 713 106.8 135.5 70.8 955 1133 148.0 153.8 199.5 101.8 136.4 106.1 1422 100.1 1346 89.8 119.0
1** Count 0 12 1 0 6 0 0 0 0 0 0

5.5 Zero-Shot Learning (Out of Distribution Modeling) Experiments

Beyond few-shot learning, PLMs hold  Table 5: Results on Zero-Shot Learning (ave. MAE on forecast-
potential as effective zero-shot reason- ing/imputation tasks report). Bold: the best, Underline: the second

ers. We evaluate the zero-shot learn- €St <+ domain transferring between datasets.

ing capabilities of LM-WEATHER Setting | LM-WEATHER-AVE | FL-GPT4TS | FL-DLinear | FL-PatchTST
within the framework of cross-domain 1T < 1V 54.2/48.9 59.4/48.4 50.2/54.9 67.4/69.5
: : : 1T <2V 92.1/33.2 89.9/34.2 99.4/80.4 96.7/56.4
?ldapnonl.] Specﬁllcaclllly, :Fe cxamine 1T < 2T 80.4/48.4 87.4/53.5 | 94.8/67.2 86.5/71.1
m rms on
ow well a method pertorms on a =7 5y 84.9/33.3 88.2/36.4 | 106.5/99.1 92.1/55.5
dataset when it is optimized on an- 2t =1V 57.7/49.6 58.3/47.5 69.1/75.3 74.2/71.1
other dataset, where the model has not 2T < 1T 59.5/25.5 63.1/27.1 78.3/57.1 61.2/38.6
encountered any data Samples from 1V &2V 90.1/36.9 96.7/27.2 114.2/101.2 104.7/59.2
th ioinal dataset. Wi f 1V & 2T 79.3/46.1 84.5/47.5 | 96.9/71.2 89.7/77.4
¢ origmal dataset.  We us€ Tore- gy . g 51.2/25.8 53.80212 | 67.7/540 | 56.4/32.7
casting/imputation protocol and evalu- v~y 56.0/51.8 58.5/542 | 704742 | 727/69.9
ate on various cross-domain scenarios. 2V < 1T 59.5/29.6 63.1/30.9 | 72.9/59.8 60.4/39.9
Note that we choose LM-WEATHER- 2V 2T 72.1/44.3 76.9/41.2 87.4/66.7 80.5/65.7
st
AVE rather than LM-WEATHER for L Count 18 \ 5 | 1 \ 0
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comparison due to it can obtain an unified model for zero-shot experiments whereas LM-WEATHER
is obtain multiple personalized models. The results are in Tab.[5| LM-WEATHER-AVE consistently
outperforms the most competitive baselines by a large margin, over 14.2% and 14.2% w.r.t the
second-best in MAE reduction, in forecasting and imputation, respectively. We attribute this to our
personalized adapter that we implant in PLMs being better at activating the PLM’s knowledge transfer
and domain-adaption capabilities in a resource-efficient manner when modeling weather variables.

5.6 Framework Analysis Experiments

We demonstrate the effectiveness of LM-WEATHER through experiments focused on ablation studies,
computational/communication comparison, and robustness evaluation. For detailed results and further
analysis, please refer to the Appendix [D]and Appendix[E]

Ablation Study. Follow the setting of main experiments, we report our brief ablation results
in Tab. [6] please refer to Appendix [E.3| for full results. The results indicate a notable drop in
performance when we omit the weather decomposition components (LM-WEATHER-A/B/C/D).
Additionally, keeping the decomposition term but removing the associated generator leads to a 14.5%
average performance decline. This suggests that our personalized adapter effectively leverages the
PLM’s modeling of weather data. Conversely, when we alter the personalized approach by changing
the shared low-rank matrix to other trainable parameters (LM-WEATHER-F), we observe a significant
performance drop and increased communication costs. Furthermore, moving from LoRA to fully
fine-tuning the attention parameters results in a slight performance gain but incurs over four times
the parameter count and a massive increase in communication overhead, which is inefficient for us.
These outcomes highlight the benefits of the personalized adapter.

Table 6: Ablation results on forecasting (multivariate to multivariate) and imputation (50% masking
ratio, OWDIT dataset). A lower value indicates better performance. Bold: the best, Underline: the
second best, | and 1 denote performance degradation and performance improvement, respectively.

| Task | Ablation Perspective | Ave. Variations | Params.#

Method  "Forecasting Imputation | Model Component Personalized Method | Forecasting Imputation | Train# Comm.#
LM-WEATHER ‘ 45.4/74.6 23.1/40.0 ‘ Original Original ‘ - - ‘ 10.38M 038 M
LM-WEATHER-A 50.8/87.6 26.0/47.7 wo Decomposition 11.8% 12.6% 10.38M  0.38M
LM-WEATHER-B 50.9/85.6 25.4/47.1 wo Trend Component 12.1% 10.0% 10.37M  038M
LM-WEATHER-C 50.1/83.6 25.0/46.1 wo Seasonal Component 10.3% 8.2% 1037M  038M
LM-WEATHER-D 49.3/81.7 24.4/45.6 | wo Residual Component 2 8.6% 5.6% 1037M  038M
LM-WEATHER-E 53.8/95.6 25.5/47.0 wo Prompt Generator Original 18.5% 10.4% 1036 M 038M
LM-WEATHER-F 49.4/82.3 Original w LoRA, Local: Low-Rank Matrix, Global: the rest of trainable param. 8.8% 21.6% 10.38M  10.00 M
LM-WEATHER-G 43.2/71.4 Original wo LoRA, Local: Attention Param. Global: Attention Param 151% 13.1% 5201M  41.99M
LM-WEATHER-H 42.7/711.2 22.2/39.3 Original wo LoRA, Local: Attention Param. Global: the rest of trainable param. 16.3% 14.1% 5201M  10.00 M

Parameter'Comparison. The results Table 7: Experiment results on parameter comparison
are shown in Tab. [l LM-WEATHER (ave. MAE/RMSE report), Bold: the best.

ensures top while only communicate \ Task \ Params.#

about 3.7% of the trainable parame- Method | Forecasting Imputation |  Train. Comm.  Ratio
ters, compared to the baseline that com- ~Lm-weatuer | 4547746 231422 | 1038M  038M  3.70%
municates the full model parameters. FL-GPT4TS | 49.9/82.5  25.1/462 | 1242M 1242M  100%
When compared with competive meth-  flistner | it o | i o
ods, FL-DLinear and FL-LightTS, LM-  FLDLincar | 633/82.8 285499 | 106M  106M  100%

2 3 ] 3 FL-PatchTST 48.6/81.0 454/73.5 | 7474M 7474 M  100%
WEATHER’s communication overhead is FL-Itransformer | 53.7/63.7 27.6/482 | 26.74M  26.74M  100%

just 35.9% and 22.6% of theirs, respec- FL-LighTS | 62.7/93.4  26.1/457 | 168M  168M  100%
tively highlighting LM-WEATHER’S Su- FL-Transformer | 52.8/84.7 57.6/82.3 | 4555M  4555M  100%
2

. S . FL-Informer | 53.4/852  61.4/85.9 | 5231M  5231M  100%
perior communication efficiency.

Communication Efficiency. To further validate the excellent communication efficiency of LM-
WEATHER, we introduce quantitative comparisons by including FL. methods tailored to improve
communication efficiency (FedKD [27], FedPAQ [28]], FedBF [29], FedAP [29], PromptFL [30]])
as baselinesﬂ The results is shown in Table |8} which demonstrate our LM-WEATHER achieves
a significant improvement in communication efficiency while maintaining excellent performance.
Additionally, LM-WEATHER significantly outperforms baseline in terms of both communication
efficiency and performance across different tasks. Even when compared to lightweight baselines

Due to scenario and model differences, we modified these baselines for LM-WEATHER by applying solely
their strategies to improve communication efficiency, as detailed in Appendix@
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(i.e., FL-LightTS/DLinear), LM-WEATHER continues to outperform them. This underscores LM-
WEATHER’s superiority in both communication efficiency and performance.

Table 8: Comparison of LM-WEATHER and baseline that tailored to improve communication effi-
ciency in terms of forecasting (multivariate-multivariate)/imputation (50% masking rate) performance
as well as communication efficiency, with x denotes the improvement in communication efficiency
relative to the standard line (LM-WEATHER-Ave), MAE/RMSE report. Bold: the best.

Method \ Forecasting  Imputation Train. Comm. Params. \ Comm.
FL-Pyraformer 73.091.3 68.0/89.7 15332 M 153.32M 0.07x
FL-PatchTST 48.6/81.0 45.4/73.5 7474 M 747714 M 0.14x
FL-LightTS 62.7/93.4 26.1/45.7 1.68 M 1.68 M 6.2x
FL-DLinear 63.3/82.8 28.5/49.9 1.06 M 1.06 M 9.8%
LM-WEATHER-Ave \ 47.5/78.7 24.0/44.1 10.38 M 10.38 M \ 1x
LM-WEATHER (Ours) 45.4/74.6 23.1/42.4 10.38 M 0.38 M 27.3x
LM-WEATHER (w FedKD) 49.6/76.2 27.5/43.6 10.38 M 1.68 M 6.2x
LM-WEATHER (w FedPer) 52.1/79.0 25.1/44.3 10.38 M 8.46 M 1.2x
LM-WEATHER (w FedBF) 46.2/78.1 23.7/44.0 1049 M 1049 M 0.9x
LM-WEATHER (w FedAP) 47.4/79.2 24.3/44.7 10.38 M 9.6 M 1.1x
LM-WEATHER (w PromptFL) | 46.0/78.4 23.8/45.1 10.38 M 84M 1.2x

Robustness to Number of Devices. To evaluate LM-WEATHER’s robustness against device count
variations, we assessed the percentage change in performance relative to the default device num-
ber. Our results (Tab.[9) reveals that LM-WEATHER maintains robustness across different device
counts due to several factors: (1) Increasing device numbers during training typically yields slight
performance improvements within a stable range, applicable in both regular and few-shot scenarios.
(2) Additional devices can sometimes impair performance due to imbalances in data distribution,
highlighting non-proportional gains. (3) Adding more devices increases communication overhead,
which may not justify minor improvements, especially in resource-limited settings. These findings
underscore LM-WEATHER’s relative resilience to device count variations and its ability to strike an
optimal balance between performance enhancement and communication overhead.

Table 9: Results of LM-WEATHER under forecasting (multivariate-multivariate) and imputation
(50% masking rate) at different device participation rates [0.1,0.3,0.5,0.7,0.9], 1/} implies an
increase/decrease in performance relative to the original setting (0.1), MAE/RMSE report, where
15% represents the proportion of data on each client involved in training.

. Normal Few-Shot (15%)
Dataset  Rate / Devices Forecasting Imputation Forecasting Imputation
0.1 (2/round) 44.4/73.6 22.6/42.0 64.7/100.4 40.2/68.2
03 (Sfround)  43.7/72.5 (1 1.55) 24.2/43.7 (1 5.55) 63.4/99.7 (1 1.40)  41.4/68.7 (| 1.85)
opwiT 0.5 (8/round)  42.9/72.0 (12.85) 21.0/42.1 (13.90) 63.7/99.2 (1 1.40) 42.3/68.5 (1 2.8)
0.7 (11/round) 43.9/74.1 (1 0.25) 21.8/41.2 (12.80) 64.5/101.0 (1 0.10)  39.5/66.7 (T 2.00)
1.0 (16/round) 44.2/74.0 (0 -) 21.3/41.6 (1 3.10)  63.6/100.2 (1 0.95) 40.4/68.0 (4 0.1)
0.1 (4/round) 66.2/89.1 37.2/54.9 89.7/131.8 77.2/112.6
0.3 (11/round) 68.2/89.7 (| 1.85) 36.5/53.1 (12.65) 90.2/132.5 (] 0.55) 75.4/110.3 (1 2.25)
obpwa2r 0.5 (I8/round) 65.4/89.2 (1 0.55) 36.7/53.4 (+2.05) 89.1/131.4 (1 0.50) 76.5/111.2 (+ 1.10)
0.7 (25/round)  65.7/88.8 (1 0.90) 36.1/53.9 (1 2.45) 88.9/130.9 (1 0.80) 76.9/112.3 (1 0.35)
1.0 36/round)  65.9/89.0 (10.25) 36.9/55.0 (1 0.30) 89.1/130.7 (+ 0.75) 76.7/112.1 (1 0.50)

6 Conclusion and Future Works

This paper demonstrate that pre-trained language models (PLMs) are strong foundation models for
personalized on-device meteorological variable modeling. We propose LM-WEATHER, a generic
framework to taming PLMs to acquire highly customized models for heterogeneous meteorological
data on devices while keeping high efficiency. Concretely, we introduce a lightweight personalize
adapter into PLMs and endow it with weather pattern awareness. Experiments on real-world datasets
demonstrate that LM-WEATHER outperforms the SOTA results by a large margin across various
tasks. In addition, extensive analyses indicate that LM-WEATHER can (1) effectively achieve cross-
domain knowledge transfers, (2) render device with highly customized model while keeping high
efficiency, and (3) generalize under few-shot and zero-shot scenario. In future work, we plan to
extend LM-WEATHER to multimodal weather data (text/image/time-series) and to finer scales.
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APPENDIX: Personalized Adapter for Large Meteorology Model on Devices:
Towards Weather Foundation Models

The appendix includes missing information from our main text, including: Appendix [A|More Related Work;
Appendix [B] Experimental Details; Appendix [C| Theorems and Proof; Appendix [D] Additional Finding &
Experiment & Discussion; Appendix [E]Full Experimental Results and Appendix [ Additional Statements.

Appendix A More Related Work

In this section, we will discuss in detail advances relevant to our work, which include weather variable modeling,
personalized federated learning, universal time series learning, and large language models (LLMs) in time series.

From Meteorological Variable Modeling to Weather Forecasting. Weather conditions play a crucial
role in sectors such as transportation, tourism, and agriculture. Meteorological factors, including temperature,
humidity, and precipitation, provide essential support and historical insights that enable researchers to analyze
weather trends. For decades, Numerical Weather Prediction (NWP) [[14] has been the prevalent method,
employing physical models to simulate and forecast atmospheric dynamics. However, the accuracy of NWP
can be compromised by the uncertainty of initial conditions in differential equations [31}32], particularly in
complex atmospheric processes, and it requires significant computational resources [} 33/134].

The recent exponential growth in weather data has prompted a shift from traditional physics-based methods to
data-driven approaches using machine learning (ML) and deep learning (DL), which bypass physical constraints
in meteorological variables [S]]. DL strategies, with their deeper representational capabilities, generally surpass
ML methods. Various deep network architectures have been employed to perform extensive weather modeling
using large-scale reanalysis data [1} 4} 135,136, 137]. Yet, these methods tend to focus on global weather patterns,
often overlooking the specifics of regional weather variables, and thus fail to offer detailed regional analyses.
Moreover, these models require extensive datasets and substantial computational resources—for example, some
need to train on 192 NVIDIA Tesla V100 GPUs for 16 days [4]. Additionally, prevailing models assume
centralized data storage, which contrasts with the decentralized data collection from diverse ground weather
stations. Our research addresses these challenges by focusing on regional meteorological variables in low-
resource settings, aiming to provide reliable analytical support for weather pattern modeling and understanding.

Personalized Federated Learning. Federated learning (FL) [[7] is a distributed learning paradigm that
facilitates the collaborative training of models without exposing data from each participant. Personalized FL
(PFL) aims to train a personalized model for each client. Existing PFLs are based on various techniques.
Refs. 381139, 140]] add a regularization term that benefits decomposing the personalized model optimization from
global model learning. Refs. [8| 41]] share part of the model and keep personalized layers private to achieve
personalization. Ref. [42]] enables a more flexible personalization by adaptive weighted aggregation. Ref. [43]]
study PFL from a Model-Agnostic Meta-Learning where a meta-model is learned to generate the initialized local
model for each client. This paper tackles on-device meteorological variable modeling from PFL perspective.

Universal Time Series Learning. On-device meteorological variable modeling addresses time series
analysis of complex weather patterns on diverse, low-resource devices. We have expanded this to include task-
specific time series learning. Recent advancements have enhanced Transformer [44] for time series forecasting by
integrating signal processing techniques such as patching [6]], exponential smoothing [45]], decomposition [24],
and frequency analysis [46]. Among them, PatchTST [6]] improves the accuracy of long-term forecasting
compared to other Transformer models. ETSFormer [47] applies principles of power series smoothing within the
Transformer framework to boost efficiency. Similarly, FEDformer [46] merges the Transformer with seasonal
& trend decomposition, offering improved performance and efficiency. Autoformer [45] leverages sequence
periodicity for better dependency discovery and representation, excelling in both efficiency and accuracy.

While these methods excel in efficiency and accuracy, they are typically tailored for narrow-range forecasting on
select classical time series datasets. Real-world weather data, however, often displays more complex patterns
and interconnected variable relationships. Furthermore, weather modeling extends beyond forecasting, rendering
these methods less effective for weather sequences. To improve modeling for intricate weather sequences,
models need the flexibility to adjust to complex distributions and various tasks with minimal training. The ideal
weather models would capture weather patterns accurately, facilitating knowledge transfer, such as between
regions. However, creating versatile weather models remains a challenging endeavor. Recent studies have started
to examine the potential of large-scale climate models [11 4], utilizing simulated datasets advances. Yet, their
generalizability is hindered by data differences, complex architectures, and the vast number of model parameters.

LLMs in Time Series. Large language models (LLMs) have spurred advances in natural language processing
(NLP). Although time series modeling hasn’t seen similar leaps, the impressive capabilities of LLMs have
led to their use in this field. In general, pre-trained LLMs are often fine-tuned or reprogrammed to model
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time series [[18} (11} 10 [17]. Among them, PROMPTCAST [16] and HEALTHLEARNER [20] treat time series
as "text sequences,” inputting them directly into LLMs and using prompts for forecasting. [[17] dencodes time
series as embeddings for LLM output, showing LLMs’ strength in time series analysis. LLM4TS [18] uses
a two-stage fine-tuning approach to adapt LLMs to time series data. TEMPO [10] breaks down time series
features to leverage LLMs in prediction tasks, while TIME-LLM [11] fine-tunes LLMs with multimodal data,
integrating relevant text prompts for efficient analysis. However, these approaches focus on centralized time
series modeling and overlook the complexities of real-world distributed settings. Weather data, in particular,
has unique challenges like heterogeneity from geographic factors and privacy concerns, making central training
methods both risky and difficult.

Appendix B Experimental Details

B.1 Datasets

Despite the proliferation of reanalysis data aimed at building frameworks for global climate analysis, these
datasets often struggle to model regional weather trend due to: (1) they depend on numerous simulations of
atmospheric equations, introducing biases inconsistent with real observations, and (2) they face challenges
in refining their scale to suit specific regional applications. Hence, we collected real observational data from
various weather stations across different regions. We then organized this data into two series, each comprising
two distinct datasets, to underscore the heterogeneity inherent in real-world settings.

On-device Weather Series 1# (ODW1). The dataset gathered from 15 ground weather stations across
China, Japan, and South Korea, encompasses over 20 variableq’} It has been divided into two subsets: ODWI1T
has a heterogeneous time span, meaning the data collection start and end times vary by location. and ODW1V
extends ODWIT by adding variability in the observed variables; while one variable remains constant at each
station, the others vary. The temporal resolution of the dataset is 1h. Details are presented in Tab.[10]and Tab.[T1]

Table 10: Details about ODWIT dataset, where Start and End indicate the respective beginning
and ending timestamps of data collected at a specific weather station, Samples denotes the count
of weather sequence samples gathered at that station, and Variables refers to the weather variables
included in the data from each station (For the full names of these variables, please refer to Tab. @

Weather Station | Start (UTC+0) | End (UTC+0) | Num. of Samples # | Variables

Hua-Nan 06/11/2018 16:00 | 03/19/2020 00:00 230,280
E-Min 01/23/2019 16:00 | 06/07/2024 04:00 240,280
Huhehaote 09/02/1028 01:00 | 06/01/2020 07:00 306,400
Yin-Chuan 10/31/2018 20:00 | 05/06/2020 07:00 265,220
Shen-Yang 04/09/2018 01:00 | 08/30/2019 06:00 243,980
Hai-Dian 05/29/2017 16:00 | 12/05/2018 11:00 266,340
Xin-Du 01/29/2020 08:00 | 06/29/2021 00:00 248,040

Lin-Zhi 10/13/2019 08:00 | 03/30/2021 09:00 256,380 ap, &, mxt, mnt, dt, th, wyp, pl, p2, p3, pd, pS, wdl, ws, mwd, mws, st, hvl, hv2, vv
Kun-Ming 08/28/2018 07:00 | 06/13/2020 22:00 314,740
‘Wu-Han 05/20/2019 01:00 | 02/17/2021 21:00 247,160
Tokyo 07/17/2017 23:00 | 01/27/2019 14:00 248,180
Nagoya 05/10/2017 15:00 | 02/14/2019 17:00 309,680
Hiroshima 05/27/2019 10:00 | 11/01/2020 03:00 251,420
Seoul 04/28/2017 04:00 | 11/20/2018 00:00 274,040
Busan 02/24/1029 18:00 | 07/17/2020 17:00 244,340

On-device Weather Series 2# (ODW2). This dataset consists of data from 36 weather observation stations
in the United States, Canada, and Israel, covering 5 different variables with a temporal resolution of 1 hour.
Following the dataset setting of ODW1, the dataset was also subdivided into two different dataset, including
ODW?2T and ODW2V. Detailed information are presented in Tab.[12]and Tab. T3]

Remark. Four standard steps were performed during the collection and compilation of these dataset, as
shown below:

[1] Collection of Raw Meteorological Data. Raw data collection represents the foundational and
initial step in constructing our dataset. We procure open-source raw data from various national
meteorological centers and data repositories, including the National Meteorological Science Data
Center of Chinﬂ Korea Meteorological Administratior’} Global Surface Meteorological Observations

3We treat the value of each meteorological variable at each timestamp as an independent sample uniformly.
*https://data.cma.cn/
>https://www.kma.go.kr/
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Table 11: Details about ODW1V dataset, where Start and End indicate the respective beginning and
ending timestamps of data collected at a specific weather station, Num. of Samples # denotes the
count of weather sequence samples gathered at that station, and Fixed Variables refers to the shared
variables among different weather stations, and Other Variables is the remain weather variables in
each weather station (For the full names of these variables, please refer to Tab.@).

Weather Station | Start (UTC+0) |

End (UTC+0)

| Num. of Samples # | Fixed Variable |

Other Variables

Hua-Nan 06/11/2018 16:00
E-Min 01/23/2019 16:00
Huhehaote 09/02/1028 01:00
Yin-Chuan 10/31/2018 20:00
Shen-Yang 04/09/2018 01:00
Hai-Dian 05/29/2017 16:00
Xin-Du 01/29/2020 08:00
Lin-Zhi 10/13/2019 08:00
Kun-Ming 08/28/2018 07:00
Wu-Han 05/20/2019 01:00
Tokyo 07/17/2017 23:00
Nagoya 05/10/2017 15:00
Hiroshima 05/27/2019 10:00
Seoul 04/28/2017 04:00
Busan 02/24/1029 18:00

03/19/2020 00:00
06/07/2024 04:00
06/01/2020 07:00
05/06/2020 07:00
08/30/2019 06:00
12/05/2018 11:00
06/29/2021 00:00
03/30/2021 09:00
06/13/2020 22:00
02/17/2021 21:00
01/27/2019 14:00
02/14/2019 17:00
11/01/2020 03:00
11/20/2018 00:00
07/17/2020 17:00

69,084
72,072
91,920
79,566
73,194
79,902
74,412
76,914
94,422
92,148
80,454
92,904
75,426
82,212
73,302

Temperature

ws, p4, pl, p5, p2
pl, mwd, p2, wvp, ws
vv, p3, dt, mwd, p4
ws, dt, mnt, p3, p2
wd, st, hvl, mwd, vv
p5, th, ap, mxt, mwd
pl, hvl, wvp, mxt, p5
ws, vv, pl, hvl, p5
hv2, mws, mnt, p2, mwd
st, ws, p3, p5, th
PS5, st, hvl, ws, hv2
mwd, pl, mws, mnt, st
p4, mwd, wd, hvl, dt
hvl, mwd, vv, rh, p4
p4, p3, wvp, pl, vv

Table 12: Details about ODW2T dataset, where Start and End indicate the respective beginning
and ending timestamps of data collected at a specific weather station, Num. of Samples # denotes
the count of weather sequence samples gathered at that station, and Variables refers to the weather
variables included in the data from each station (For meaning of variables, please refer to Tab.[14).

Weather Station | Start (UTC+0) | End (UTC+0) | Num. of Samples# | Variables

Albuquerque 02/26/2016 01:00 | 11/16/2016 19:00 31,780
Atlanta 03/24/2013 21:00 | 12/05/2013 18:00 30,715
Beersheba 05/06/2014 06:00 | 03/26/2015 18:00 35,350
Boston 04/06/2015 10:00 | 03/23/2016 00:00 35,120
Charlotte 08/10/2013 09:00 | 04/24/2014 14:00 30,875
Chicago 06/09/2015 17:00 | 03/22/2016 10:00 34,415
Dallas 04/11/2013 00:00 | 08/26/2014 11:00 35,463
Denver 06/23/2015 22:00 | 05/18/2016 02:00 39,510
Detroit 10/30/2012 06:00 | 08/22/2013 22:00 35,610
Eilat 11/24/2012 19:00 | 08/02/2013 05:00 30,060
Haifa 05/18/2013 21:00 | 04/16/2014 14:00 39,915
Houston 12/19/2013 02:00 | 11/13/2014 02:00 39,490
Indianapoils 01/10/2016 23:00 | 10/07/2016 04:00 32,435
Jacksonvile 11/11/2012 16:00 | 09/28/2013 01:00 38,455
Jerusalem 04/22/2015 03:00 | 02/28/2016 01:00 37,440
Kansas City 06/03/2015 12:00 | 03/08/2016 21:00 33,535
Las Veges 11/25/2014 09:00 | 10/19/2015 15:00 39,400
Los Angeles 07/04/2013 08:00 | 04/28/2014 18:00 35,820

Miami 02/10/2014 10:00 | 12/05/2014 10:00 35,770 h, p, t, wd, ws
Minneapolis 10/17/2013 03:00 | 08/31/2014 15:00 38,230
Montreal 08/14/2015 07:00 | 04/26/2016 06:00 30,725
Nahariyya 12/03/2013 02:00 | 09/18/2014 01:00 34,685
Nashville 02/08/2017 03:00 | 11/13/2017 15:00 33,430
New York 09/27/2013 20:00 | 06/14/2014 15:00 31,185
Philadelphia 12/08/2012 05:00 | 09/13/2013 20:00 33,565
Phoenix 07/25/2013 15:00 | 06/05/2014 09:00 37,780
Pittsburgh 10/16/2015 06:00 | 07/19/2016 16:00 33,300
Portland 10/12/2013 12:00 | 06/27/2014 18:00 31,000
Saint Louis 09/16/2014 13:00 | 07/21/2015 06:00 36,935
San Antonio 03/15/2014 01:00 | 12/03/2014 20:00 31,665
San Diego 07/02/2015 11:00 | 03/18/2016 00:00 31,155
San Francisco 05/10/2013 06:00 | 01/21/2014 12:00 30,760
Seattle 08/06/2014 22:00 | 06/28/2015 05:00 39,045
Tel Aviv District | 09/23/2013 06:00 | 06/27/2014 18:00 33,310
Toronto 12/06/2016 16:00 | 10/19/2017 15:00 38,045
Vancouver 08/26/2015 10:00 | 06/02/2016 20:00 33,780

Historical Datasetﬂ Canadian Meteorological Data Center and World Weather Data Repository
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Table 13: Details about ODW2YV dataset, where Start and End indicate the respective beginning and
ending timestamps of data collected at a specific weather station, Num. of Samples # denotes the
count of weather sequence samples gathered at that station, and Fixed Variables refers to the shared
variables among different weather stations, and Other Variables is the remain weather variables in
each weather station (For the full names of these variables, please refer to Tab.@).

Weather Station | Start (UTC+0) | End (UTC+0) | Num. of Samples # | Fixed Variable | Other Variables

Albuquerque 02/26/2016 01:00 | 11/16/2016 19:00 19,068 ws, wd
Atlanta 03/24/2013 21:00 | 12/05/2013 18:00 18,429 wd,p
Beersheba 05/06/2014 06:00 | 03/26/2015 18:00 21,210 t, ws
Boston 04/06/2015 10:00 | 03/23/2016 00:00 21,072 ws, wd
Charlotte 08/10/2013 09:00 | 04/24/2014 14:00 18,525 t,p
Chicago 06/09/2015 17:00 | 03/22/2016 10:00 20,649 t,p
Dallas 04/11/2013 00:00 | 08/26/2014 11:00 21,279 p, wd
Denver 06/23/2015 22:00 | 05/18/2016 02:00 23,706 t,p
Detroit 10/30/2012 06:00 | 08/22/2013 22:00 21,366 p, t
Eilat 11/24/2012 19:00 | 08/02/2013 05:00 18,036 ws, p
Haifa 05/18/2013 21:00 | 04/16/2014 14:00 23,949 ws, t
Houston 12/19/2013 02:00 | 11/13/2014 02:00 23,694 p, wd
Indianapoils 01/10/2016 23:00 | 10/07/2016 04:00 19,461 t,p
Jacksonvile 11/11/2012 16:00 | 09/28/2013 01:00 23,073 ws, t
Jerusalem 04/22/2015 03:00 | 02/28/2016 01:00 22,464 ws, p
Kansas City 06/03/2015 12:00 | 03/08/2016 21:00 20,121 wd, ws
Las Veges 11/25/2014 09:00 | 10/19/2015 15:00 23,640 p. t
Los Angeles 07/04/2013 08:00 | 04/28/2014 18:00 21,492 o ws, t
Miami 02/10/2014 10:00 | 12/05/2014 10:00 21,462 Humidity wd, ws
Minneapolis 10/17/2013 03:00 | 08/31/2014 15:00 22,938 t,p
Montreal 08/14/2015 07:00 | 04/26/2016 06:00 18,435 wd, p
Nahariyya 12/03/2013 02:00 | 09/18/2014 01:00 20,811 p, Ws
Nashville 02/08/2017 03:00 | 11/13/2017 15:00 20,058 wd, ws
New York 09/27/2013 20:00 | 06/14/2014 15:00 18,711 t,p
Philadelphia 12/08/2012 05:00 | 09/13/2013 20:00 20,139 ws, wd, h
Phoenix 07/25/2013 15:00 | 06/05/2014 09:00 22,668 ws, wd
Pittsburgh 10/16/2015 06:00 | 07/19/2016 16:00 19,980 wd, ws
Portland 10/12/2013 12:00 | 06/27/2014 18:00 18,600 ws, p
Saint Louis 09/16/2014 13:00 | 07/21/2015 06:00 22,161 t, wd
San Antonio 03/15/2014 01:00 | 12/03/2014 20:00 18,999 t, wd
San Diego 07/02/2015 11:00 | 03/18/2016 00:00 18,693 t,p
San Francisco 05/10/2013 06:00 | 01/21/2014 12:00 18,456 p.t
Seattle 08/06/2014 22:00 | 06/28/2015 05:00 23,427 t, wd
Tel Aviv District | 09/23/2013 06:00 | 06/27/2014 18:00 19,986 t,p
Toronto 12/06/2016 16:00 | 10/19/2017 15:00 22,827 wd, p
Vancouver 08/26/2015 10:00 | 06/02/2016 20:00 20,268 wd, ws

from Kaggleﬂ This process ensures that the collected weather data from these sources are consistent
in terms of temporal resolution and variable dimensions. All raw data are open-source and can be
freely utilized or modified.

[2] Selection of Critical Meteorological Variables. To support personalized on-device meteorological
variable modeling and enhance regional weather forecasting reliability, we selected twenty representa-
tive meteorological variables. These variables, including temperature, barometric pressure, relative
humidity, and precipitation, were chosen based on their significant impact on weather conditions.
Detailed definitions, physical descriptions, and units of these selected variables are provided in
Table

[3] Ensuring Completion of Meteorological Time Series. In this step, we primarily focus on ensuring
the completeness of weather time series data collected from ground weather stations. Incomplete
weather time series can generate unreliable predictions, potentially leading to significant unforeseen
losses. Most ground weather stations are susceptible to unpredictable events such as power outages and
equipment damage, which may result in data gaps. To enhance dataset completeness, we meticulously
examined the raw data for missing values across various timestamps and employed a linear interpolation
strategy to fill these gaps.

[4] Handling of Outliers. Outliers are common in weather time series data. We distinguish between
factual outliers, typically caused by extreme weather events (e.g., heavy rainfall, typhoons, thunder-
storms), and non-factual outliers, often due to observational device anomalies or sensor malfunctions

"https://weather.gc.ca/
$https://www.kaggle.com/datasets
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Table 14:

datasets.

Abbreviations, full names and corresponding units of the different variables in our proposed

Abbreviation Full name Unit
ap Air Pressure hpa
t Air Temperature °C
mxt Maximum Temperature °C
mnt Minimum Temperature °C
dt Dewpoint Temperature °C
rh Relative Humidity %
wvp Water Vapor Pressure hpa
pl Precipitation in 1h mm
p2 Precipitation in 3h mm
p3 Precipitation in 6h mm
p4 Precipitation in 12h mm
p5 Precipitation in 24h mm
wd Wind Direction °C
ws Wind Speed ms~1
mwd Maximum Wind Direction °
st Land Surface Temperature °C
hvl Horizontal Visibility in 1 min m
hv2 Horizontal Visibility in 10 min m
vV Vertical Visibility m

at weather stations. We identify significant deviations in a weather variable—for instance, a sudden
increase from an average rainfall of 2 mm to 200 mm—as outliers. These are manually corrected;
initially, the values are set to zero and then replaced using linear interpolation, reflecting the gradual
nature of weather phenomena.

Visualisation. We hope to deepen the reader’s understanding of the datasets we have collected and compiled
by providing standard visualizations. Considering the overall size of the datasets and the large number of
meteorological variables, we have provided visualisations of representative variables here for reference. The
visualisation of OWDI is shown in Fig.[2} Due to the number of devices involved in the OWD2 dataset, we have
divided it into two consecutive images for presentation, as shown in Fig[3]and Fig.

B.2 Baselines

We compare with state-of-the-art time series analysis models and put them into Federated Learning environments,
including Transformer-based methods like Transformer [44], Informer [3]], Reformer [21]], Pyraformer [22],
iTransformer [23]], and PatchTST [6]], and recent competitive models including GPT4TS [17], DLinear [24]] and
LightTS [48], detailed information about baselines is below:

Transformer. [44] This model uses a self-attention mechanism, popular for time series prediction
tasks, to efficiently and accurately learn relationships within a sequence and contextual information.

Informer. [3] An optimized Transformer-based model for long-range time series prediction. It uses
ProbSparse self-attention for efficiency, processes long inputs effectively, and employs a fast prediction
decoder.

Reformer. [21] This model improves Transformer efficiency by using locality-sensitive hashing for
attention and reversible residual layers. It offers better memory efficiency and speed for lengthy
sequences without sacrificing performance.

Pyraformer. [22] It features hierarchical pyramidal attention modules with binary trees to capture
temporal dependencies across different ranges efficiently, both in time and memory complexity.

iTransformer. [23]] The iTransformer adds attention and feedforward networks to the inverse dimen-
sion. It embeds time points as variable tokens, using attention to capture multivariate correlations and
feedforward networks for nonlinear representation of each token.

PatchTST. [6] This method divides the time series into patches at the subseries level for input to the
Transformer. Each channel holds a univariate time series, sharing the same embedding and Transformer
weights across all series.
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Figure 2: Visualisation of partial variables in ODW1 dataset, where we have selected the first
1,000 time points for presentation. The data distribution from different ground weather stations
exhibit significant heterogeneity, and even though the trends of some variables may be similar, there
are serious differences in magnitudes. The selected variables are, from left to right, temperature,
precipitation in 1-hour/12-hour, humidity, and wind direction.

 DLinear. [24] DLinear integrates decomposition schemes from Autoformer and FEDformer with
linear layers to model time series data tables. It effectively summarizes trend and seasonal components,
enhancing performance on datasets rich in trends.

* LightTS. [48]] A lightweight structure based on a simple MLP. It utilizes two downsampling strate-
gies—spaced and sequential sampling—on the MLP structure, capitalizing on the fact that downsam-
pled time series generally maintain most of their original information.

e GPT4TS. [17]] This model is designed for time series analysis across various scenarios, achieved
by fine-tuning a pre-trained language model, specifically GPT2, for the time series domain. It’s
important to note that for a fair comparison, our baseline setup differs from the original publication’s
configuration. Instead of using the first six layers of GPT2 as the backbone, we align with our approach
and utilize only the first five layers.

In addition, pre-trained language models (PLMs) are the key component of our LM-Weather, we use different
PLMs as the backbone to demonstrate the PLM can as the strong weather foundation model for on-device
weather modeling. We use GPT-2 as the default setting, and BERT [49], LLaMA [50] as the alternatives.

« BERT. [49]] BERT, short for Bidirectional Encoder Representations from Transformers, is a deep
learning model that uses the Transformer architecture. It understands the context of words by analyzing
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Figure 3: Visualisation of partial variables in ODW?2 dataset, where we have selected the first
1,000 time points for presentation. The data distribution from different ground weather stations
exhibit significant heterogeneity, and even though the trends of some variables may be similar,
there are serious differences in magnitudes. The selected variables are, from left to right, humidity,
precipitation, temperature, wind direction, and wind speed.

text in both directions. When used as a baseline for evaluation, we only employ the first 5 layers of the
pre-trained BERT.

e GPT-2. Developed by OpenAl, GPT-2 is a language model that can generate coherent and diverse
text based on a given prompt. In our research, we utilize the first 5 layers of the pre-trained GPT-2-base.

« LLaMa. [50] LLaMa stands for Large Language Model Meta Al and is a series of cutting-edge
language models with sizes ranging from 7B to 65B parameters. They offer top-notch performance
with less computational power and resources. In our research, we utilize the first 4 layers of the 3B
LLaMa model.

A brief description of these FL. methods tailored to improve communication efficiency is as follows.
* FedKD: This parameter-efficient PFL method integrates knowledge distillation within a single client
and employs a parameter aggregation strategy using Singular Value Decomposition (SVD). For the

purposes of this section, which focuses solely on comparing communication efficiency, we incorporate
only the SVD-based client-server communication strategies into LM-WEATHER as a baseline.
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Figure 4: (Figure 3|continued) Visualisation of partial variables in ODW?2 dataset, where we have
selected the first 1,000 time points for presentation. The selected variables are, from left to right,
humidity, precipitation, temperature, wind direction, and wind speed.

¢ FedPer: This PFL approach maintains a personalized layer while sharing the remaining base layers
during communication. This enhances communication efficiency by transmitting only a portion of the
parameters.

* FedBF: This fine-tuning method enhances parameter efficiency by sharing only the biases of the local
model during global aggregation, thereby reducing communication overhead. To integrate this method
into LM-WEATHER as a baseline, we adjusted all biases in LM-WEATHER to be unfrozen.

* FedAP: A parameter-efficient fine-tuning method in FL, which involves sharing only adapters during
global aggregation.

* PromptFL: This parameter-efficient FL. method enables participants to cooperatively train lightweight
prompts without sharing the entire model, significantly accelerating both local training and global
aggregation. In our experiments, we treat the adapter generated on clients as the prompt to facilitate
the incorporation of this baseline.

B.3 Task Setups

We evaluate our proposed LM-WEATHER using four distinct on-device weather modeling datasets, each
with tailored settings for various tasks. The specific task settings for these datasets are detailed in Tab. [T5]
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Additionally, the specific tasks and scenarios for the on-device weather forecasting/imputation vary by dataset,
as outlined in Tab. 16l

Table 15: Task setup for different datasets during the evaluation. Note that for the imputation task
there are actually no historical observations, but rather they are performed on a single long sequence.

Dataset | Task | Historical Observation Horizon | Prediction Horizon | Random Masking Ratio
| Forecasting | 192 ‘ | N
ODWIT | Imputation | Consistent with the prediction horizon | | {25%, 35%, 50%}
| Forecasting | 192 | | N
ODW1V | Imputation | Consistent with the prediction horizon | \ {25%, 35%, 50%}
| Forecasting | 192 ‘ {96,192, 336, 720} ‘ N
obw2T | Imputation | Consistent with the prediction horizon | | {25%, 35%, 50%}
Forecastin; 192 N
g
ODbW2vV ‘

| Imputation | Consistent with the prediction horizon |

{25%, 35%, 50%}

Table 16: Summary of framework evaluation scenarios for various datasets. Scenario 1/2/3/4 (in
forecasting) refers to multivariate to univariate forecasting, where all historical variables are used
to predict a single future variable. All represents multivariate to multivariate forecasting, meaning
all variables predict all others. The symbol "-" indicates a non-existent scenario for that dataset.
Scenario 1/2/3 (in imputation) indicates different masking ratios for the original weather sequences.

Forecasting \ Imputation
Dataset | Scenario 1 | Scenario2 | Scenario3 | Scenario 4 | Scenario 5 | Scenario 1 | Scenario 2 | Scenario 3
ODWIT | Temperature | Humidity | Wind Speed | Surface Temperature All
ODW1V | Temperature - - - All
ODW2T | Temperature | Humidity - - All 25% 35% 50%
ObW2vV Humidity - - - All

B.4 Implementation

‘We mainly follow the experimental configurations across all baselines within a unified evaluation pipeline in
https://github.com/thuml/Time-Series-Library|for fair comparison. Specially, we use GPT-2-base
as the default backbone model unless state otherwise. All our experiments are repeat five times and we report
the averaged results. Our detailed model configurations are in Appendix [B-8] All the algorithm implementations
and designs in this study are based on Py torch and the algorithms are run on two RTX3090 GPUs 24GB.

B.5 Technical Details

Reversible Normalization. In time series analysis, statistical properties like mean and variance often
shift over time, indicating distributional changes in the data. To address this, we’ve incorporated Reversible
Normalization (RevIn) [51] into our LM-WEATHER. Specifically, we’ve integrated RevIn into our Task Adapter
Generation. This introduces two dynamic factors that adaptively normalize segments of the meteorological
variable sequence X, or their decomposed components (Trend Xrrend, Seasonal Xseasona, Residual Xgresiduat),
enhancing the accuracy of meteorological variable modeling. Specifically, for the trend component of X, i.e.,,
XTrend, its transformed value XT'rend can be given by:

E X ren
X’l/'rend =T <XTrend - [Td]) + BT (6)

vV Var [XTrend] +e€r

where E[Xrend] and Var [Xrend] are the instance-specific mean and variance, respectively. yr and Sr are the
trainable parameters for this component. This transformation is also applied to both the seasonal and residual
components.

Pre-trained Language Model (PLM). In LM-WEATHER, we do not change the main architecture of
the PLM, but use the parameter-efficient fine-tuning (PEFT) strategy to avoid large-scale parameter variations
to ensure high efficiency on resource-constrained weather devices, and in this way, to achieve more reliable
cross-domain knowledge transfer. Specifically, we introduce LoRA in the local PLM, which allows only 1.5%
of the PLM parameters to be trained while the rest remain frozen, as shown in Fig. Note that LoRA is only
applied to the query and value of each Attention in the PLM, and the resulting low-rank matrices are used for
global sharing between the client and the server.
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Figure 5: Schematic diagram of the PLM in LM-WEATHER, where we introduced LoRA to the PLM,
to achieve more reliable cross-domain knowledge transfer while at the same time ensuring greater
efficiency in adapting to low-resource weather devices.

Low-Rank Adaption (LoRA). To achieve more reliable cross-domain knowledge transfer (i.e., from
natural language to complex weather sequences) while guaranteeing higher efficiency, we introduce LoRA [19],
a parameter-efficient fine-tuning method for large language models, into PLM. Specifically, LoRA is applied to
the Query and Value of each Attention layer by creating low-rank matrices for two pre-trained parameters W,
and Wy:

QUERY = W X + A;B;, VALUE = W, X + A,B,, @)
where X denote the latent rec]zaresentation from input weather sequences through PLM’s word embedding layer,
A, € R¥™" and B, € R™*? are low-rank matrices created from W, € R**¢ A, € R™" and B, € R"*¢
are low-rank matrices created from W,, € ]RdXd, d is the number of dimensions, r is the rank, and r < d. It’s
important to note that only the low-rank matrices A4, By, A+, By are trainable; the others remain fixed during
training. Initially, A, and A, are set with random Gaussian values, and B, and B, start as zero at the beginning
of training.

Task Adapter Generation. The Xrrend, Xscasonal, XResidual Obtained from decomposition are used to generate
Task Adapter via an unified generator as Fig.[IB that consisting of Token Embedding, Position Embedding,
and Temporal Embedding. Specially, we use one-dimensional convolution operation to m%p each each specific
sample X* € RT*! while keeping raw shape to generate TOKEN ADAPTER Pro € RT*C as

Pl = ConvID(X*), Py = ConvID(X) (8)

Additionally, we use a trainable lookup table to map each point’s explicit position in the entire sequence, to
generate POSITION ADAPTER Ppo € RTXC | as:

Pro = E(INDEX(X)), )

where E(-) is the trainable lookup table, and INDEX(-) is a function that achieve the indices of each point’s
locations of weather sequence X'. Furthermore, we separately encode different time attributes such as minutes,
hours, days, weeks, and months, using trainable parameters to dynamically model complex temporal shifts, to
generate TEMPORAL ADAPTER Prg, as

>

PTE =
a € {mins,hours,days, weeks, months }

E.(X) (10)

where « represents different temporal attributes, F, denotes the trainable lookup table for each temporal
attributes. Finally, for each decomposition components, corresponding %enerated adapters can be obtained
by agcgregating Token Adapter Pro € R¥*C, Position Adapter Pro € R¥*, and Temporal Adapter Prg €
REXC as Py = PR + P + P&, where d € {Trend, Seasonal, Residual }, this means that we can obtain
PTrendy PSeas()nah PResidual-
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B.6 Theoretical Insights on Personalized Adapter

The effectiveness and superiority of our proposed Personalized Adapter have been demonstrated in sufficient
ablation studies (please refer to Table[6in the main text). Here, we will discuss theoretical insights that further
supports the effectiveness of Personalized Adapter. Personalized Adapter can effectively capture potential pattern
in meteorological variable time series, which comprises both the Task Adapter and the FFN-based Parameter
Adapter. Specifically, our focus primarily revolves around the Task Adapter active in extracting representations,
which including Token/Positional/Temporal Embedding for transforming meteorological variable time series.

Let the weather sequence be X = (x1,X2,- - ,Xr), Where x; € R? Is the observed value with d variables
at t moment. Let X’ represent the function space to which x; of a weather sequence belongs, and Z denote
the function space to which the implicit representation z; belongs. Token Embedding can be interpreted as
a mapping fo : X — Z. According to the Kolmogorov-Arnold representation theorem, for any continuous
function f € C(]0, 1]%), there exist 2d + 1 continuous functions ¢, € C([0,1]) and 1, € C([0, 1]) such:

2d d
f(x) = Z¢q(z Yq(Tp)),

which means Token Embedding can construct a high-dimensional nonlinear mapping from multiple one-
dimensional functions, capturing complex patterns within weather sequences. Positional Embedding introduces
a vector p; for each step, enabling the model to differentiate between observations at different time steps. For
any two steps ¢1 and ¢, their position vectors p;, and py, satisfy:

27T(t1 —tz)
IPe; = Peall2 = \/Zk(l = €08 oS hgik )

The growing distance between ¢1 and t2 with an increasing time gap mirrors the relative positioning of time
steps, aiding the model in grasping temporal dependencies. Additionally, the sine-cosine function’s periodicity
resonates with weather data’s cyclical behavior, helping the model to learn from these recurrent patterns.

Finally, consider the role of Temporal Embedding from the view of matrix decomposition. Suppose the temporal
matrix T has a rank of r, it can be decomposed as z; @T = >7_ (z: ® u;)v?. Temporal Embedding
transforms the original sequence by scaling and rotating it to represent different interaction patterns. Using
singular value decomposition, the top 7 singular vectors distill the core structure of the time-based matrix. This
allows Temporal Embedding to intuitively learn a compact representation of weather sequences, highlighting
the primary interactions between variables. In optimizing Personalized Adapter within LM-WEATHER, the
focus lies solely on Personalized Adapter and the attention layer influenced by LoRA during local updates. As
Personalized Adapter undergoes solely local updates while sharing low-rank matrices globally, akin to layer-wise
optimization in PLM, the efficacy of its optimization process can be theoretically substantiated by the theoretical
analysis provided in [52]].

B.7 Evaluation Metrics
For evaluation metrics, as [34]], we utilize the mean absolute error (MAE) and root mean square error (RMSE)

for both forecasting and imputation. The calculation of these metrics are as follows:

T
1 ~
MAE = — Y |Y; - i, 11
Ti:1| | ( )

where 7" denotes the number of data points (i.e., prediction horizon in our cases), Y; and Y; are the i-th ground
truth and prediction where ¢ € {1,...,T}.

B.8 Model Configurations

The configurations of our LM-WEATHER for different tasks and datasets are summarized in Tab. We
consistently use the AdamW [53]] optimizer in all experiments.

Appendix C Theorems and Proofs

Theorem C.1 (Decomposition Rationality from Time Series). Given a weather time series X = Xpyena,t +
Xseasonal,t + XResiduatts, t € [t1,tn]. Let E = {e1,ea,...,en} denotes a set of orthogonal bases. Lets
Eseosonat C E denote the subset of E on which Xseasonai,t has non-zero eigenvalues and Eriena C E de-
note the subset of EE on which Xrpyenaw has non-zero eigenvalues. If Xriena,t and Xseasonal,t are not orthogonal,
i€, 30y Xvend,t Xseasonat,t Z 0 then Ervena () Eseasonat 7 0, i.e., E can not disentangle the two signals onto
two disjoint set of bases.
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Table 17: An overview of the experimental configuration for LM-WEATHER. LR is the initial
learning rate, (FS) denotes the few-shot learning setting.

‘ Model Hyperparameter ‘ Traning Process
Task-Dataset / Configuration |"gcihone (PLM) Layers | Input Length | Patch Dim | Heads | LR | Loss | Baich Size | Local Epochs | C ication Round | participation rate
Forecasting - ODWIT | 5 | 192 | 16 | 8 [0005|MSE| 128 | 20 | 50 | 0.1
Forccasting - ODWIV | 5 | 192 [ 16 | 8 |0005|MSE| 128 | 20 | 50 | 0.1
Forecasting - ODW2T | 5 [ 192 | 16 | 8 |0005|MSE| 256 | 20 | 50 [ 0.1
Forecasting - ODW2V | 5 | 192 | 16 | 8 [0005|MSE| 256 | 20 | 50 | 0.1
Imputation - ODWIT | 5 [96,192,336,720 | 16 | 8 |0005|MSE| 128 | 20 | 50 | 0.1
Imputation - ODWIV | 5 [96.192,336,720 | 16 | 8 [0005|MSE| 128 | 20 | 50 [ 0.1
Imputation - ODW2T | 5 [96,192,336,720 | 16 | 8 |0005|MSE| 256 | 20 | 50 | 0.1
Imputation - ODW2V | 5 [96,192,336,720 | 16 | 8 |0005| MSE| 256 | 20 | 50 | 0.1
Forecasting - ODWIT (FS) | 5 [ 192 | 16 | 8 |0005|MSE| 128 | 20 | 50 [ 0.1
Forccasting - ODWIV (FS) | 5 | 192 | 16 | 8 [0005|MSE| 128 | 20 | 50 | 0.1
Forccasting - ODW2T (FS) | 5 [ 192 [ 16 | 8 |0005|MSE| 256 | 20 | 50 [ 0.1
Forccasting - ODW2V (ES) | 5 [ 192 | 16 | 8 |0005|MSE| 48 | 20 | 50 [ 0.1
Imputation - ODWIT (FS) | 5 [96,192,336,720 | 16 | 8 |0005|MSE| 128 | 20 | 50 | 0.1
Imputation - ODW1V (FS) | 5 [96,192,336,720 | 16 | 8 |0005|MSE| 128 | 20 | 50 [ 0.1
Imputation - ODW2T (ES) | 5 [96,192,336,720 | 16 | 8 |0005|MSE| 256 | 20 | 50 [ 0.1
Imputation - ODW2V (FS) | 5 [96,192,336,720 | 16 | 8 |0005|MSE| 48 | 20 | 50 \ 0.1

Proof. We decompose Xscasonal,t and Xrrend,+ onto E and acquire that Xscasona,t = _ @i€; and Xrend,e =
>~ bse;. Then it is obvious that e; € Xseasonal < a; # 0 and €; € Xrrena < b; # 0. Now, let us consider the
inner product of Xseasonat,z and Xrrend,

n
i T
E XTrend,tXSeasonal,t = XTrend,tXSeasonal,t
i=1
= ( E aiei) ( E biei) = E aibjeiej
%7

Note that 3.7 | X%mnd’t/'\fsiemnalyt = 0. Thus, there must be at least one ¢ such that a; # 0 and b; # 0. Thus.
€i € Escasonal and €; € Erpeng, in other words, Frrend N Escasonal 7 0. The theorem demonstrates that if Xrena, ¢
and AXseasonal,¢ are not orthogonal, orthogonal bases that separate Xryend,; and Xseasonal,+ into two distinct sets
cannot exist. Typically, periodic and non-periodic signals are not orthogonal because the periodic signal has a
discrete spectrum, while the non-periodic signal has a continuous one, leading to potential overlaps at non-zero
frequencies. Principal Component Analysis (PCA) seeks to find orthogonal bases in data, but it cannot split these
two signals into separate bases. Citing Theorem 1 from [17], we understand that self-attentive mechanisms
in pre-trained large models function similarly to PCA. Thus, without manual intervention, the self-attentive
mechanism is unable to automatically divide a time series into trend and seasonal components. O

12)

Theorem C.2 (Exchange Low-Rank Matrices Ensures Privacy: Parameter Interaction Perspective).
Given a on-device weather modeling framework based on federated learning that global optimization object
is F(0) = """ p; f({D:}; 0), where f(x;0) is the loss function of i-th client, { D;} is dataset of i-th client,
and p; and 0 denote the data distribution weight of client i and the model parameters, respectively. Given that
the parameters 6 of the PLM My broadcasted by the server consist of two parts: a frozen part Mg,y and a
trainable part My +, interacting only the low-rank matrix parameters Mg C Mo ¢+ is a subset of trainable
part Mo ¢ during each round ensures privacy.

Proof. We assume that f(x; 0) is a convex function with respect to 6, i.e., for any 61 and 62 and A € [0, 1], we
have

(@ M1+ (1= X)B2) < Af(@;61) + (1 - A)f (a3 62). (13)
Since only low-rank matrices parameter My ; parameterized by 6; is exchanged, we can convert § to 8’ = [0, 0],
where 0; is the embedding parameter after the server update. Since we only update on 6;, 6, remains unchanged.
Thus, data privacy can be ensured, as 6, contains parameters that reveal user-specific information. Furthermore,
the low-rank matrices applied to the PLM My using LoRA are initialized with a random Gaussian distribution
and all-zero values, respectively, before training. This global information sharing approach also helps to enhance
privacy. O

Theorem C.3 (Exchange Low-Rank Matrices Ensures Privacy: Model Indistinguishability Perspective).
Our LM-Weather can hide key features of local model when sharing low-rank parameters, even external attacker
gains access to a shared low-rank update, it is difficult to reconstruct or differentiate between the original models
of different participants. Support client i and client j get two different local model due to updated on heterogeneity
weather time series, as M; and M parametered by 0; and 0, L(M) denotes the low-rank matrix generated
by model M, where B € R and A € R"™*%, and r < d, and define Adv as the adversary. Conditions exist
such that for any polynomial-time attacker 4dv,|Pr[4dv(L(M;)) = 1] — Pr[4dv(L(M;)) = 1]| < € holds,
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where € is a small positive number, which implies that even if the attacker acquires a shared low-rank update, it
is difficult to reconstruct or distinguish between the original models of the different participants.

Proof. The goal of LoRA is to find the low-rank approximation: min||@ — 6o — BA||r, where 6y is the
initial weight, || - || 7 is the Frobenius paradigm. Consider two models M; and M ;, whose weights differ by
A = 6; — 0;. The corresponding LoRA matrix is:

Li = BZAZ ~ Aez = 01’ - 00,

14
Lj:BjAj%AGj:ijGO. ( )

According to matrix approximation theory, for the best approximation with rank r, the upper bound on the error
is:

where o,41(A0;) is the r+1-st singular value of Ad;. By Johnson-Lindenstrauss Lemma [54], for any ¢ > 0,
there exists a mapping f : R — R*, where k = O(log(n)/e?), such that for any =,y € R%. In our case, LORA
can be regarded as such a degenerate mapping. Assume ||Af; — Af;||r < § and according to the trigonometric
inequality:

1Li = Ljllr < ||Li — Abil|r + [|A0; — A0 ||F + [|A0; — Lj||F < 0741 (A0:) + 6 + 041 (A0;), (16)
Lete = 0,41(A0;) + or41(A0;), we get:
[|L: — Ljl|lr <6 +¢. 17)

For any polynomial-time attacker Adv.its ability to distinguish between L; and L is restricted to the difference
in their Frobenius paradigms. We can define a function f such that:

|PriAdv(L(M;)) = 1] — Pr{Adv(L(M;)) = 1]| < f(||L: — L;||F) (18)

where f is a monotonically increasing function that represents the attacker’s capability with respect to the matrix
difference. Combining Eq. [I6]and Eq.

|Pr[Adv(L(M;)) = 1] — Pr[Adv(L(M;)) =1]| < e (19)

when § and € are small enough, we can make sure that the right-hand side is smaller than the intended €. This
means that an attacker cannot reverse-engineer personalised local parameters and data to ensure privacy through
the low-rank matrix of communication across clients.

Appendix D Additional Finding & Experiment & Discussion

In this section, we explore and discuss potential research findings and questions for our LM-WEATHER via
conducting additional experiments. These potential research questions are as follows:

* RQ1. How does LM-WEATHER compare to Personalized Federated Learning (PFL) baselines in
terms of trade-offs in personalization and global model performance?

* RQ2. How does LM-WEATHER perform compared to centralized and local-only training modes?
* RQ3. How does the pre-trained language model contribute in LM-WEATHER?
* RQ4. What is the resource utilization and training & inference cost of LM-WEATHER?

¢ RQS. Can LM-WEATHER be used for other tasks?

D.1 Trade-offs in Personalization and Global Model Performance (RQ1)

Our LM-WEATHER builds on the assumption that the foundation model already exists, treating pre-trained
language models (PLMs) as such and broadcasting it to each client to achieve local updates. Our aim is to
employ device information-specific (e.g., geographic/atmospheric patterns) adapter, to promote the local PLM in
achieving cross-domain knowledge transfer from language to meteorological sequences. This approach yields
highly customized models for individual devices while achieving global knowledge to avoid data silo, thereby
supporting diverse analyses of heterogeneous weather data. Alternative PFL methods do not match the efficiency
and flexibility of our personalized adapter in this context, making them less suitable. By incorporating PFL
baselines (Per-FedAvg [43], APPLE [55]], FedPer [56], and FedALA [57]), we provide quantitative results that
substantiate our claims, experiment setting is consistent with the manuscript on ODWIT.
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PFL Baseline. A brief description of PFL baselines used in this section of the experiment is as follows.

* Per-FedAvg: Allowing for personalized model updates for each client by adding client-specific
parameters to the global model and optimizing them during FL training.

¢ APPLE: Tackling statistical heterogeneity in FL by automatically capturing information required by
clients from global models using adaptive local aggregation methods.

¢ FedPer: Dividing the model into a base layer and a personalization layer, only the base layer is
uploaded during aggregation while keeping the personalization layer to combat statistical heterogeneity.

¢ FedALA: Tackling statistical heterogeneity in FL by automatically capturing information required by
clients from global models using adaptive local aggregation methods.

Table 18: Comparison on personalized performance between our LM-WEATHER and PFL baselines
under forecasting (multivariate-multivariate) and imputation (50% masking rate), where Avg. denotes
the average performance of four periods [96, 192, 336, 720], Bold means the best.

Task / Method LM-WEATHER (Ours) Per-FedAvg APPLE FedALA FedPer
Forecasting (Avg.) 45.4/74.6 48.6/76.7 51.7/79.0 50.4/80.0 52.1/79.0
Imputation (Avg.) 23.1/42.4 27.7/50.1 26.5/49.6 34.4/57.2 30.2/54.0

Forecasting (Avg., 5% Few-Shot) 89.7/96.7 101.4/197.3  99.6/186.2 117.3/214.0 104.9/202.8
Imputation (Avg., 5% Few-Shot) 62.3/124.4 89.2/177.8  92.1/199.2  82.4/153.7 84.9/159.7

Personalized Performance Comparison. The performance quantification of our LM-WEATHER and
PFL baselines under personalized performance for different tasks and scenarios is shown in Table Our
LM-WEATHER outperform other PFL baselines across different tasks (forecasting/imputation) and scenarios
(regular/few-shot learning) by a wide margin. This supports our finding that in the scenario of on-device weather
variable modeling, PFL methods is not appropriate.

Global Model Performance Comparison. The comparison on global model performance across client
between our LM-WEATHER and PFL baselines are shown in Table[I8] Our LM-WEATHER outperforms PFL
baselines in terms of global model performance, as demonstrated by the fact that its global model performs more
stable across client with heterogeneous data.

Table 19: Comparison on global model performance across client between LM-Weather and PFL
baselines on multivariate-multivariate forecasting tasks (OWDIT dataset, MAE/RMSE report),
Red denotes the original LM-WEATHER’s performance, and Bold means the best among global
performance.

Client ID LM-WEATHER (Ours) LM-WEATHER (Global) Per-FedAvg (Global) APPLE (Global) FedALA (Global) FedPer (Global)

1 44.8/73.9 42.5/69.4 50.3/78.2 53.4/77.1 51.7/76.3 52.8/82.5
2 46.1/75.4 56.8/84.7 61.8/90.1 64.7/88.6 63.2/88.1 68.3/99.8
3 45.2/74.3 49.3/75.2 54.2/82.6 57.2/81.4 55.9/80.7 57.1/87.2
4 47.1/79.0 61.2/89.6 64.9/93.4 67.8/92.1 66.5/91.6 73.6/105.3
5 43.1/70.6 45.7/72.1 52.1/80.3 55.1/78.9 53.6/78.2 54.9/84.6
6 43.3/73.7 59.1/87.3 63.4/91.7 66.3/90.3 64.8/89.5 70.2/102.1
7 44.8/74.1 47.6/73.8 55.9/84.5 58.9/83.2 57.3/82.4 59.5/89.9
8 48.1/77.2 53.4/80.5 59.6/88.5 62.6/87.4 61.1//86.6 65.7/96.4
9 42.6/71.7 44.1/70.7 50.9/78.8 53.8/77.6 52.3/76.9 53.6/83.3
10 46.0/75.3 57.9/86.2 64.2/92.6 67.1/91.5 65.7/90.6 71.9/103.7
11 45.3/74.4 50.2/76.3 54.7/83.2 58.0/82.3 56.6/81.3 60.8/91.6
12 45.6/74.9 55.7/82.9 60.8/89.4 63.9/88.5 62.5/87.7 67.4/98.2
13 48.7/77.8 43.3/68.5 49.6/77.5 56.3/76.3 50.9/75.5 51.7/81.1
14 49.2/75.5 60.5/88.4 65.7/94.2 68.7/92.8 67.4/92.4 72.5/104.5
15 41.1/73.2 48.7/74.4 53.4/81.9 56.3//80.2 54.5/79.4 58.2/88.5
Total (Avg.) 45.4/74.6 51.2/78.7 57.0/84.9 59.9/83.2 58.4/82.8 61.4/92.7

Personalization and Global Model Performance Trade-offs. We consider the trade-off between
personalization performance and global model performance for our LM-WEATHER and PFL baselines, the
results are shown in Table[20} Compared with PFL baselines, our LM-WEATHER maintains the best trade-off
between personalization performance and global model performance, i.e., the personalization performance does
not significantly exceed the global model performance while the performance far exceeds PFL methods, which
means that the LM-WEATHER can be flexibly applied to different practical scenarios, including personalised
analysis of regional weather trends as well as comprehensive analysis of weather trends over large-scale regions.
This means that LM-WEATHER can be flexibly applied to different practice scenarios, including the personalised
analysis of regional weather trends and the comprehensive analysis of weather trends over large scale areas.
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Table 20: Comparison of LM-Weather between personalized performance and global model perfor-
mance, results are obtained on the multivariate-multivariate forecasting task on OWDI1T (MAE/RMSE
report), Bold means the best, 1 represents the improvement (gap) in the personalization performance
of the method relative to the global model performance.

Method Personalized Performance  Global Model Performance  Ave. Variation (Personalized vs. Global)
Per-FedAvg 48.6/76.7 57.0/84.9 1 13.99%
APPLE 51.7/79.0 59.9/83.2 1 10.58%
FedALA 50.4/80.0 58.4/82.8 19.68%
FedPer 52.1/79.0 61.4/92.7 117.59%
LM-WEATHER (Ours) 45.4/74.6 51.2/78.7 19.16%

Performance and Adapter Updating Trade-offs. Furthermore, we investigated the effect of varying
the number of local update rounds in adapters across clients on the performance of LM-WEATHER regrading
personalization. The results are presented in Table[21] We observed that increasing the local update rounds from
the default five to fifteen leads to smoother and enhanced personalization performance across heterogeneous
clients. However, this increase in local update rounds also incurs additional computational and communication
costs, which, in our assessment, do not justify the modest performance improvements.

Table 21: Performance of each client under the multivariate-multivariate forecasting task on ODWT1
with different adapter local update epoch (MAE/RMSE report), where E = 5/10/15 represent the 53,
10, and 15 local training rounds, respectively.

Client ID LM-WEATHER (F =5) LM-WEATHER (F = 10) LM-WEATHER (E = 15)

1 44.8/73.9 41.3/70.5 41.6/69.7
2 46.1/75.4 47.9/75.8 46.3/74.5
3 45.2/74.3 43.5/72.1 43.1/71.1
4 47.1/79.0 46.2/74.6 45.7/73.6
5 43.1/70.6 42.7/71.3 42.4/70.4
6 43.3/73.7 45.5/74.2 44.9/73.0
7 44.8/74.1 44.1/73.0 43.5/71.7
8 48.1/77.2 48.6/76.3 47.2/75.2
9 42.6/71.7 40.9/70.1 41.2/69.3
10 46.0/75.3 46.8/75.4 45.3/74.1
11 45.3/74.4 43.2/71.8 42.8/70.8
12 45.6/74.9 45.7/74.5 44.5/72.7
13 48.7/71.8 42.1/70.9 41.9/70.1
14 49.2/75.5 47.3/75.1 46.8/74.9
15 41.1/73.2 44.8/73.4 43.8/72.3
Total (Avg.) 45.4/74.6 44.6/73.2 44.0/72.2

D.2 Centralised and Local-only Training (RQ2)

The ordinary centralised training strategy (all data were aggregated into a single server) exhibits learning
efficiency that an ordinary distributed learning strategy. The ultimate goal of FL is to achieve performance
close to that of centralised training and to ensure privacy across data sources. Table [22]illustrates that our
LM-WEATHER achieves comparable effectiveness to Non-FL (centralised) training, with only a 2.04% disparity.
Compared to LM-WEATHER-Local, which lacks interaction between devices, LM-WEATHER performs better
due to overcoming data silos.

D.3 Contributions of Pre-trained Language Model in LM-WEATHER (RQ3)

Our LM-WEATHER significantly outperforms time series-specific models trained from scratch under centralised
setup. Centralised training aims to acquire an excellent pre-trained model, where PLMs possess inherent
advantages due to their prior sequence modeling capabilities. Moreover, various parameter-efficient fine-tuning
(PEFT) strategies enable PLMs to adapt to new domain knowledge cost-effectively. FL-based aggregation
facilitates a stable on-device fine-tuning process, with LM-Weather enabling highly customized on-device
fine-tuning of PLMs with greater efficiency. This highlights the substantial contribution of PLMs in this task.
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Table 22: Comparison of LM-WEATHER’s multivariate-multivariate performance in the FL and the
Non-FL (centralised) setups, LM-WEATHER-Local is the setting in which LM-WEATHER is trained
locally at each device without communication, and disparity is the difference in performance relative
to Non-FL.

Dataset | Length | Non-FL (centralised) | LM-WEATHER (Ours) | LM-WEATHER-Ave | LM-WEATHER-Local
96 41.7/70.3 42.3/71.1 44.1/74.8 45.9/72.9
192 43.5/71.6 44.4/73.6 46.3/77.5 46.7/74.3
ODWIT 336 45.2/72.9 45.8/75.2 47.9/79.3 48.2/77.0
720 46.8/73.6 49.2/78.5 51.8/83.0 50.5/80.5
Avg. 44.3/72.1 45.4/74.6 47.5178.7 47.8/76.2
96 42.3/68.7 42.3/69.6 42.7/69.5 44.5/68.6
192 43.9/69.9 44.4/71.7 45.5/72.6 46.1/70.4
ODWIV 336 4547712 46.0/72.4 4727743 48.8/73.2
720 46.8/72.6 49.7/74.0 51.2/78.2 53.2/79.4
Avg. 44.6/70.6 45.6/71.9 46.6/73.6 48.2/72.9

Communication Param. # | None | 0.338M | 10.38 M | Not applicable

Disparity \ 0 \ 12.04% \ 1437% \ 15.67%

Table 23: Comparison between fine-tuning PLM with Adapter (LM-WEATHER) and training from
scratch using non-PLM architecture (Pyraformer, Reformer, PatchTST, DLinear, and LightTS) on
multivariate-multivariate forecasting tasks (MAE/RMSE report), Bold means the best.

Dataset | Length | LM-WEATHER (Ours) | Pyraformer | Reformer | PatchTST

Dlinear | LightTS

96 43.0/75.2 66.0/84.2 68.2/89.6 | 44.7/76.1 | 48.6/77.6 | 52.1/83.3

192 44.7/78.4 68.7/87.4 69.3/89.9 | 46.5/78.4 | 51.0/79.8 | 57.5/87.0

ODWIT 336 47.2/80.9 71.3/90.9 71.4/91.7 | 48.2/80.3 | 52.3/84.1 | 62.3/94.2
720 50.4/83.8 76.8/92.3 74.5/93.9 | 54.2/84.5 | 55.4/86.3 | 69.5/98.4

Avg. 46.3/79.6 70.7/88.7 70.9/91.3 | 48.4/79.8 | 51.8/82.0 | 60.4/90.7

96 45.4/71.3 60.4/69.1 45.7/71.8 | 47.2/73.4 | 48.5/74.7 | 50.1/75.3

192 46.9/72.9 61.9/73.2 51.9/75.5 | 48.4/74.2 | 49.4/76.6 | 52.7/78.8

ODW1V 336 49.0/75.5 64.4/76.9 53.4/76.9 | 48.9/76.7 | 53.7/78.3 | 54.0/80.4
720 53.7/79.1 68.2/82.7 56.5/84.9 | 54.1/77.4 | 57.2/82.2 | 57.7/84.8

Avg. 48.8/74.9 63.7/75.5 51.9/77.3 | 49.7/75.4 | 52.2/78.0 | 53.6/79.8

1%t Count | 16 | 1 | 0 | 3 | 0 | 0

D.4 No Free Lunch in Performance Improvement (RQ4)

The remarkable capabilities of cutting-edge DL models across various domains and tasks, such as LLMs, and
VLMs, can be attributed to their extensive parameters and training on large datasets. Currently, a perfect balance
among performance, model size, and cost does not exist. Despite numerous studies focusing on reducing training
and inference costs while maintaining superior performance, there is no one-size-fits-all solution. This is also
true for our LM-WEATHER, which demonstrates exceptional performance across diverse tasks and scales on
real-world datasets with significant heterogeneity, significantly outperforming comparable DL methods. In
this context, we analyze the costs associated with training and inference for LM-WEATHER and its baselines,
exploring and discussing the trade-offs between cost-effectiveness and performance in practical applications.

Table 24: Comparison of training/inference costs based on ODW1T with N = 192 under multivariate-
multivariate forecasting tasks (MAE/RMSE report), where Bold denotes the best, ‘Comm.* and ‘Perf.
denote communication and performance, respectively.

Method Ave. Training Time (per round) Inference Time (per client) ~Training Memory (per client) Inference Memory (per client) Comm. Time Perf.
FL-DLinear 4s 1s 7.93 MB 4.21 MB 144s 52.3/81.8
FL-LightTS 4s 2s 30.94 MB 17.24 MB 993 s 59.5/90.6

FL-PatchTST 1245 10s 1260.01 MB 660.02 MB 59.62s 47.3/79.8
FL-Transformer 121s 11.0s 1700.95MB 841.09 MB 36.44s 52.1/84.0
FL-iTransformer 9s 1.6s 705.36 MB 372.28 MB 2240s 51.8/84.3

FL-Informer 110s 10s 1890.00 MB 897.21 MB 42.81's 52.9/84.6

FL-Reformer 1455 17.7s 786.98 MB 421.23 MB 16.72's 75.1/98.3

FL-Pyraformer 80s 8.1s 1880.41 MB 950.77 MB 119.66 s 70.0/90.9

FL-GPT4TS 108 s 21.2s 3640.11 MB 1900.98 MB 10.03 s 48.6/81.3

LM-WEATHER 91s 14s 3014.82 MB 1500.81 MB 0.29s 44.4/73.6

The quantification and comparison of computational costs against LM-WEATHER and baseline are shown in
Table[24] We discuss this results from two perspectives as follow.
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Communication and Performance. LM-WEATHER outperforms baseline in these two key metrics, which
is critical for practical meteorological variable modeling and analysis, a bandwidth-sensitive and high accuracy
demanding application.

Trade-offs between Resource Consumption and Performance. In terms of training and inference
time and memory usage, LM-WEATHER is less efficient than lightweight baselines such as FL-DLinear, LightTS,
and iTransformer, due to its use of a Pretrained Language Model (PLM) as a backbone. Although LM-WEATHER
demands more resources, the trade-off is justified by its cost-effective performance gains. Its slightly increased
memory requirements for training and inference are manageable on most devices. In the context of weather
analysis, where precision is critical, prioritizing performance improvements over minimal resource consumption
is essential. Additionally, LM-WEATHER capitalizes on the knowledge-rich PLM and requires only minimal,
low-cost fine-tuning on devices to achieve superior performance. This strategy not only enhances performance
but also reduces the frequency of future model updates, thereby lowering long-term costs compared to developing
a baseline model from scratch.

Table 25: Comparison between LM-Weather and baseline in terms of model size on the device and
performance of forecasting (multivariate-to-multivariate), and imputation (50% masking rate) on
ODWIT (MAE/RMSE report), where Bold and Underline denote the best and the second best.

Method Size Forecasting Imputation

FL-DLinear 0.28 M 53.3/82.8 28.5/49.9
FL-LightTS 1.10M 62.7/93.4 26.1/45.7
FL-PatchTST 3761 M 48.6/81.0 45.4/73.5
FL-Transformer 45.55M 52.8/84.7 57.6/82.3
FL-iTransformer 25.19 M 53.7/63.7 27.6/48.2
FL-Informer 5231 M 53.4/85.2 61.4/85.9
FL-Reformer 4559 M  78.2/98.7 69.8/92.5
FL-GPT4TS 321.7M  49.9/82.5 25.1/46.2

LM-WEATHER 304.1M  45.4/74.6 23.1/42.4

In addition, we further provide a comparison of model sizes and performance between LM-WEATHER and
baseline, as shown in Table[25] The difference in model size between our LM-WEATHER and baseline can be
deemed acceptable for the following reasons.

Trade-offs between Performance and Size. While LM-WEATHER may not be as compact in terms of
model size or resource efficiency as lightweight baselines, it offers significant advantages in various analysis
tasks. Its high performance is particularly valuable in practical applications. Moreover, with a model size of
304.19 M, LM-WEATHER is still accessible for devices with limited resources. This contrasts sharply with many
large foundation models, which typically comprise several hundred million parameters. The trade-off between
performance and size is justified, especially considering the critical nature of accurate weather data analysis.

Efficient Parameter Update and Communication. LM-WEATHER implements efficient on-device
fine-tuning of the pretrained language model. Unlike baselines that require training from scratch, LM-WEATHER
only needs fine-tuning of a relatively small number of parameters (10.38 M) on each device, with minimal
device-to-server communication overhead (0.38 M). This approach facilitates highly personalized cross-domain
knowledge transfer, significantly reducing the ongoing costs associated with processing the ever-changing
streams of weather data. These aspects highlight the pragmatic considerations that have shaped the design
of LM-WEATHER. The model’s capabilities to deliver exceptional performance, combined with its efficient
parameter tuning and communication strategies, offer a cost-effective solution for advanced weather data analysis
in resource-constrained environments.

D.5 Additional Tasks for Potential Applications (RQ5)

Given datasets we proposed in this paper focus on forecasting and imputation tasks, we broaden its scope briefly
to explore its potential application by integrating anomaly weather detection tasks. This involves relabeling the
dataset to identify intervals with anomalous meteorological variables as instances of abnormal weather processes.
Specifically, we label original datasets via Isolation Forecast [58]], the main process as follows: (1) We set the
cut length to 100, using this metric to segment each channel (variable) and construct several random trees that
collectively form a forest. (2) The “isolation degree of each data point is quantified by the average path length
from the root node to the terminal node. (3) Data points with shorter path lengths are more easily isolated and
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thus more likely to be outliers. (4) We establish a threshold based on the average path length; data points falling
below this threshold are classified as anomalies.

Evaluation Metrics. We used Precision (P), Recall (R), and F1-Score (F1) to simply quantify the per-
formance of LM-WEATHER and baselines on the weather anomaly detection task, these can be formulated

as:
P TP 7 R — TP ’ Fl:2><P><R,

TP + FP TP + FN P+R

where TP (True Positives), FP (False Positives), and FN (False Negatives) represent the number of samples
correctly labeled as anomalous, the number of samples incorrectly labeled as anomalous, and the number of

samples that were not labeled as anomalous by the model but were actually anomalous, respectively.

(20)

Experiments and Results. We set the input time series length to 100, and other settings (e.g., baselines,
hyper-parameters, local updating steps and federated communication rounds, etc.) are consistent with those in
the main text, and we conduct experiments on OWDI1T and OWD2T to briefly show the results. The performance
quantification of our proposed LM-WEATHER and baseline on weather anomaly detection tasks is shown in
Table[2_3] (ODWIT results) and Table[2'_7](ODW2T results).The findings underscore LM-WEATHER’s robust
applicability and its Moreover, LM-WEATHER’s superior performance over baselines in both regular and few-
shot tasks reaffirms its effectiveness and overall superiority. Moreover, LM-WEATHER’s superior performance
over baselines in both normal and few-shot tasks reaffirms its effectiveness and overall superiority.

Table 26: Results of LM-WEATHER and baseline for weather anomaly detection tasks on ODW 1T,
including regular and few-shot scenarios, where 5% means that 5% of the data is used in training,
Bold and Underline denote the best and the second best.

Scenario \ Regular \ Few-Shot
Method/Metrics | P R F1 | P R F1
FL-DLinear 82.33 7854 80.34 | 69.72 71.22 70.48
FL-LightTS 86.11 72.89 78.76 | 70.46 70.86 70.54
FL-PatchTST 88.94 82.57 85.55 | 73.47 7152 7241

FL-Transformer 7423  76.61 7536 | 64.27 66.89 65.65
FL-iTransformer 83.68 8296 83.17 | 67.8 7487 71.21

FL-Informer 76.87 7832 7732 | 69.24 7123 70.2
FL-Reformer 7821 79.76 78.87 | 70.22 6743 68.55
FL-Pyraformer 80.28 83.66 81.71 | 67.46 69.05 68.06
FL-GPT4TS 89.72 8543 8744 | 76.34 7131 76.76

LM-WEATHER-Ave | 90.21 88.14 89.18 | 80.41 82.68 81.46
LM-WEATHER (Ours) | 92.00 90.45 91.15 | 84.25 86.23 85.09

Table 27: Results of LM-WEATHER and baseline for weather anomaly detection tasks on ODW2T,
including regular and few-shot scenarios, where 5% means that 5% of the data is used in training,
Bold and Underline denote the best and the second best.

Scenario \ Regular \ Few-Shot
Method/Metrics | P R F1 | P R F1
FL-DLinear 80.21 75.88 78.32 | 72.56 73.75 72.98
FL-LightTS 84.30 81.74 82.70 | 68.68 70.24 69.56
FL-PatchTST 80.65 81.36 80.91 | 74.23 70.06 72.29

FL-Transformer 7645 78.11 77.18 | 6897 6534 67.02
FL-iTransformer 81.76 69.53 75.07 | 67.32 70.74 69.02

FL-Informer 78.07 78.38 78.04 | 68.09 68.84 68.15
FL-Reformer 74.47 8426 79.04 | 72.36 77.46 74.61
FL-Pyraformer 77.48 80.23 78.86 | 66.78 70.90 68.83
FL-GPT4TS 87.37 83.85 85.32 | 7848 80.22 79.32

LM-WEATHER-Ave | 89.99 89.20 89.55 | 86.24 84.33 85.10
LM-WEATHER (Ours) | 90.49 9545 9298 | 88.37 87.47 87.64
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Appendix E Full Experiment Results

In this section, we provide the full experimental results not included in the main manuscript. This includes
the main experiments (Appendix [EE), few-shot learning experiments (Appendix @, and ablation studies
(Appendix[E.3), as well as extra analysis of our framework, covering hyperparameter sensitivity (Appendix [E.4)
and its performance with different PLMs.

E.1 Full Main Results
In this section, we show detailed and full experimental results including:

* Forecasting (Tab.[28) and imputation (Tab.[29) across different scenes and settings on the ODWI1T
dataset.

* Forecasting (Tab.[30) and imputation (Tab.[31) across different scenes and settings on the ODW1V
dataset.

« Forecasting (Tab.[32) and imputation (Tab.[33) across different scenes and settings on the ODW2T
dataset.

« Forecasting (Tab.[34) and imputation (Tab.[35) across different scenarios and settings on the ODW2V
dataset.

Note that we only show the comparison between the proposed LM-WEATHER and the time series-specific
baseline in the full experimental results. Our LM-WEATHER outperforms specialized time-series analysis
models on on-device weather datasets across various environments. Unlike these models, our method doesn’t
require training from scratch but only minor adjustments to a small number of parameters. This validates the
effectiveness and superiority of our proposed framework in on-device weather modeling practice.

Table 28: Comparison of the performance of LM-WEATHER and baselines on the ODWI1T under
forecasting tasks. Bold: the best, Underline: the second best.

Method LM-WEATHER-AVE | LM-WEATHER | FL-Reformer | FL-Pyraformer | FL-DLinear | FL-PatchTST | FL-iTransformer | FL-LightTS | FL-Transformer | FL-Informer
Variable Length | MAE  RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE
9 | 218 366 266 347 | 588 723 | SLI 628 | 279 369 | 302 394 | 327 423 | 282 372 | 381 502 | 412 519
192 | 3L9 384 304 365 | 735 895 | 598 727 | 318 416 | 340 441 | 348 449 | 321 419 | 397 505 | 430 54l
Temperature 336 | 333 40.1 36 380 | 837 1015 | 66.1 797 | 348 450 | 365 466 | 371 474 | 352 454 | 407 515 | 447 559
720 | 392 3.0 372 454 | 899 1142 | 67.1 809 | 429 538 | 460 575 | 470 586 | 431 541 | 515 641 | SIS 640
Avg. | 330 8 L5 387 | 765 944 | 610 740 | 343 443 | 367 469 | 379 483 | 346 446 | 425 541 | 451 565
96 499 640 | 758 920 | 707 852 | 533 695 | 579 754 | 593 772 | 536 698 | 694 8.1 | 736 917
192 530 678 | 801 966 | 748 895 | 575 739 | 604 790 | 619 803 | 576 743 | 684 867 | 757 941
Humidity 336 556 701 | 850 1022 | 792 946 | 604 764 | 751 933 | 63.6 818 | 603 77.0 | 686 868 | 772 954
720 590 731 | 881 1051 | 819 972 | 641 795 | 727 899 | 666 845 | 652 802 | 795 974 | 795 974
Avg. 544 688 | 830 990 | 767 916 | 588 749 | 665 845 | 628 809 | 592 753 | 715 895 | 765 946
96 657 840 | 803 1050 | 748 971 | 698 9L1 | 725 951 | 738 961 | 696 910 | 805 1026 | 798 1025
192 667 850 | 830 1080 | 773 997 | 710 924 | 730 967 | 744 970 | 708 923 | 804 1034 | 805 1034
Wind speed 336 672 857 | 845 1098 | 787 1013 | 716 932 | 749 980 | 753 982 | 715 932 | 8L1 1040 | 810 1042
720 680 865 | 857 2323 | 798 2150 | 726 943 | 764 999 | 760 994 | 725 942 | 818 1055 | 818 1055
Avg. 669 853 | 834 1388 | 77.6 1283 | 712 928 | 742 974 | 749 977 | 7L1 927 | 809 1039 | 808 1039
96 270 374 | 557 729 | 520 676 | 281 399 | 314 430 | 330 449 | 283 400 | 569 720 | 564 720
192 200 399 | 630 8LI | 587 750 | 313 438 | 339 462 | 342 466 | 315 439 | 413 554 | 578 730
Surface Temperature | 336 30 424 | 696 889 | 647 821 | 339 467 | 574 759 | 363 491 | 343 470 | 440 589 | 588 744
720 368 479 | 732 933 | 680 862 | 403 535 | 433 574 | 424 558 | 407 539 | 622 789 | 617 789
Avg. 30 419 | 654 841 | 609 777 | 334 460 | 415 556 | 365 491 | 337 462 | SL1 663 | 587 746
96 423 711 | 707 929 | 672 861 | 497 786 | 450 770 | 484 802 | 548 856 | 507 821 | 519 832
192 444 736 | 751 983 | 700 909 | 523 818 | 473 798 | 518 843 | 595 906 | 521 840 | 529 846
Al 336 458 752 | 798 1005 | 741 928 | 539 837 | 490 817 | 545 873 | 640 946 | 529 852 | 535 856
720 492 785 | 871 1029 | 805 952 | 572 873 | 533 856 | 601 931 | 724 1027 | 554 876 | 553 874
Avg. 454 746 | 782 987 | 730 913 | 533 828 | 486 810 | 537 637 | 627 934 | 528 847 | 534 852
1°* Count | 0 | 50 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0

Table 29: Comparison of the performance of the proposed method and the baseline method on the
ODWIT under the imputation task, where bold indicates the optimal results and underline indicates
the sub-optimal results.

Method | LM-WEATHER-AVE | LM-WEATHER | FL-Reformer | FL-Pyraformer | FL-DLinear | FL-PatchTST | FL-iTransformer | FL-LightTS | FL-Transformer | FL-Informer
Ratio | Length | MAE ~ RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE
96 | 208 39.8 202 386 | 390 577 | 382 560 | 236 438 | 251 489 | 210 403 | 205 389 | 563 826 | 402 601
192 | 203 385 207 370 | 392 565 | 383 549 | 234 437 | 419 694 | 226 391 | 220 410 | 574 822 | 405 589
2595 | 336 | 214 399 210 384 | 545 770 | 530 748 | 232 433 | 607 963 | 245 457 | 226 418 | 580 807 | 566 802
720 | 223 409 215 393 | 6901 931 | 671 903 | 232 432 | 671 1073 | 277 478 | 227 421 | 616 840 | 717 970
Avg. | 212 3938 211 383 | 505 7L1 | 492 690 | 234 435 | 487 805 | 239 432 | 220 409 | 583 824 | 523 740
96 412 211 398 | 692 952 | 675 925 | 259 466 | 289 536 | 222 421 | 219 406 | 573 817 | 718 992
192 399 213 383 | 703 945 | 685 917 | 256 463 | 255 494 | 266 437 | 236 428 | 584 827 | 424  6l4
359 | 336 a2 221 395 | 713 962 | 694 932 | 253 457 | 379 640 | 296 442 | 245 437 | 561 804 | 367 538
720 45 232 398 | 778 995 | 756 966 | 252 454 | 492 702 | 332 452 | 246 442 | 642 884 | 733 985
Avg. 110 219 394 | 722 964 | 703 935 | 255 460 | 354 593 | 279 438 | 236 428 | 590 833 | 560 782
96 435 217 418 | 637 884 | 622 859 | 292 508 | 289 546 | 228 445 | 244 437 | 583 828 | 708 996
192 37 226 420 | 672 912 | 655 885 | 287 502 | 475 773 | 238 441 | 257 453 | 573 824 | 663 921
s00% | 336 1 232 424 | 704 934 | 685 906 | 283 494 | 486 770 | 272 477 | 269 466 | 584 835 | 369 553
720 451 249 433 | 779 968 | 758 939 | 280 490 | 566 851 | 365 562 | 272 474 | 566 804 | 717 967
Avg. | 24, 4.1 231 424 | 698 925 | 680 897 | 285 499 | 454 735 | 276 482 | 261 457 | 576 823 | 614 859
1% Count | 1 . » | 0 [ 0 [ 0 [ 0 [ 0 [ 0 [ 0 [ 0
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Table 30: Comparison of the performance of LM-WEATHER and baselines on the ODW1V under
the long-term forecasting task. Bold: the best, Underline: the second best.

Method | LM-WEATHER-AVE | LM-WEATHER | FL-DLinear | FL-PatchTST | FL-iTransformer | FL-LightTS | FL-Transformer | FL-Informer | FL-Reformer | FL-Pyraformer
Variable | Length | RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE
96 389 280 370 326 422 | 322 392 | 406 512 | 875 1011 | 874 1011 | 844 983
192 444 318 414 347 448 | 370 449 | 393 500 | 872 1008 | 873 1009 | 873 1008
Temperature | 336 480 346 447 369 472 | 397 489 | 446 558 | 87.1 1005 | 87.1 1005 | 878 1011
720 588 431 542 454 567 | 494 603 | 515 641 | 870 1000 | 888 1041 | 867 997
Avg. 415 343 443 374 477 | 396 483 | 440 553 | 872 1006 | 87.6 1016 | 86.6  100.0
96 695 23 696 464 733 | 443 696 | 568 768 | 480 751 | 670 894 | 590 803
192 726 4“4 717 479 750 | 468 721 | 550 750 | 491 792 | 699 930 | 612 828
All 336 743 460 724 491 769 | 485 748 | 624 837 | 508 779 | 714 948 | 637 858
720 782 497 740 525 803 | 543 790 | 721 962 | 547 827 | 762 873 | 684 918
Avg. 73.6 456 719 490 764 | 485 739 | 581 850 | 507 787 | 711 9LI | 631 852

1°! Count | 0 | 17 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0

Table 31: Comparison of the performance of LM-WEATHER and baselines on the ODW1YV dataset
under the imputation task. Bold: the best, Underline: the second best.

Method | LM-WEATHER-AVE | LM-WEATHER | FL-DLinear | FL-PatchTST | FL-iTransformer | FL-LightTS | FL-Transformer | FL-Informer | FL-Reformer | FL-Pyraformer
Ratio ‘ Length ‘ MAE RMSE ‘ MAE RMSE ‘ MAE RMSE ‘ MAE RMSE ‘ MAE RMSE ‘ MAE RMSE ‘ MAE RMSE ‘ MAE RMSE ‘ MAE RMSE ‘ MAE RMSE
96 36.7 56.8 359 554 37.9 59.4 292 48.6 31.8 50.7 452 68.6 345 53.1 36.7 55.8 345 52.8 336 50.3
192 38.8 59.8 379 582 40.3 62.6 314 511 39.2 60.3 50.4 743 34.8 534 389 59.8 34.7 532 41.7 585
25% 336 63.8 41.3 622 44.0 66.8 351 56.8 45.6 68.6 54.4 78.6 45.2 58.0 41.1 61.1 45.0 63.7 46.6 61.3
720 66.1 434 64.4 463 69.3 422 65.5 51.8 76.0 582 82.2 45.5 64.3 48.3 66.3 484 659 56.4 72.5
Avg. 60.1 402 60.1 42.1 64.5 345 55.5 42.1 63.9 52.1 759 40.0 512 41.3 60.8 40.6 589 44.6 60.7
96 58.5 373 571 39.7 61.2 403 50.2 359 55.1 482 71.6 384 552 38.8 582 359 54.6 36.6 53.8
192 61.2 393 59.8 41.9 64.2 42.5 52.6 43.1 64.5 53.0 76.9 46.8 65.7 39.1 59.4 36.1 54.9 44.4 61.6
35% 336 624 399 60.9 425 65.4 51.7 64.1 48.6 717 56.8 81.0 473 66.4 44.3 60.9 46.5 65.4 48.1 65.2
720 65.1 4.1 63.5 44.9 68.2 56.9 70.4 537 779 60.1 84.2 60.7 76.9 49.5 69.0 50.4 69.0 56.5 74.2
Avg. 62.9 39.7 614 42.3 64.7 47.9 59.3 453 67.3 545 78.4 48.3 66.1 429 61.9 422 61.0 46.4 63.7
96 42.1 62.0 41.1 60.4 438 64.9 423 43.0 63.0 53.6 77.1 38.7 582 415 61.5 37.8 56.9 41.1 59.2
192 439 64.5 42.8 62.8 45.8 67.6 44.7 49.3 71.2 575 81.5 49.3 68.9 419 62.0 44.1 574 48.8 66.8
50% 336 457 66.6 44.6 64.9 47.6 69.8 54.6 534 76.6 60.7 85.0 60.0 79.8 473 64.6 48.5 68.0 50.2 67.1
720 47.5 68.7 46.3 66.9 49.6 720 59.2 56.8 80.7 63.3 87.4 61.6 80.4 52.5 72.9 52.7 70.1 60.3 71.2
Avg. 44.8 65.5 43.7 63.8 46.7 68.6 50.2 5 50.6 729 58.8 82.7 524 71.8 458 65.3 45.8 63.1 50.1 67.6
1% Count ‘ 0 ‘ 10 ‘ 0 ‘ 9 ‘ 1 ‘ 0 ‘ 1 ‘ 1 ‘ 4 ‘ 1

Table 32: Comparison of the performance of LM-WEATHER and baselines on the ODW2T under
the long-term forecasting task. Bold: the best, Underline: the second best.

Method | LM-WEATHER-AVE | LM-WEATHER | FL-Reformer | FL-Pyraformer | FL-DLinear | FL-PatchTST | FL-iTransformer | FL-LightTS | FL-Transformer | FL-Informer
Metrics | Ratio | MAE ~ RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE
96 402 518 | 908 1070 | 905 1073 | 411 535 | 522 656 | 412 532 | 418 541 | 587 727 | 591 734
192 446 569 | 973 1193 | 969 1143 | 462 590 | 480 608 | 462 588 | 466 594 | 605 752 | 609 755
Temperature | 336 477 602 | 1003 1212 | 998 1172 | 50.1 633 | 492 622 | 492 621 | 497 628 | 6L1 760 | 622 772
720 546 680 | 1303 1503 | 1277 1441 | 614 751 | 582 730 | 562 704 | 5901 729 | 679 782 | 663 827
Avg. 468 593 | 1047 1244 | 1037 1207 | 497 627 [ 519 654 | 482 6Ll | 493 623 | 620 755 | 621 772
96 662  83.1 | 884 1060 | 851 1031 | 67.9 702 881 | 686 865 | 684 854 | 850 1030 | 847 1027
192 60 859 | 913 1103 | 897 1078 | 714 722907 | 711 889 | 719 889 | 850 1030 | 849 1028
Humidity | 336 70 866 | 943 1112 | 922 1102 | 73.0 730 919 | 718 896 | 737 905 | 826 100.5 | 848 1029
© | 720 713 882 | 961 1141 | 940 1122 | 76.1 750 933 | 729 910 | 767 937 | 841 1051 | 854 1038
Avg. 69.1 860 | 925 1104 | 902 1083 | 72.1 726 910 | 711 890 | 727 896 | 842 1029 | 849 1031
96 628 855 | 1003 1263 | 950 1203 | 67.9 702 881 | 686 865 | 684 854 | 850 1030 | 847 1027
192 662 89.01 | 1021 1303 | 999 1258 | 714 722907 | 711 889 | 719 889 | 850 1030 | 849 10238
All 336 679 9LI | 1042 1300 | 1020 1285 | 73.0 730 919 | 718 896 | 737 905 | 826  100.5 | 848 1029
720 707 946 | 1073 1342 | 1042 1314 | 761 7501 933 | 729 910 | 767 937 | 841 1051 | 854 1038
Avg. | 68. 669 901 | 1035 1302 | 1003 1265 | 721 726 910 | 711 890 | 727 896 | 842 1029 | 849 1031
1° Count | 0 | 14 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0

Table 33: Comparison of the performance of the proposed method and the baseline method on the
ODW?2T under the imputation task. Bold: the best, Underline: the second best.

Method | FLAME-ave |  FLAME | FL-Reformer | FL-Pyraformer | FL-DLinear | FL-PatchTST | FL-iTransformer | FL-LightTS | FL-Transformer | FL-Informer
Ratio | Length | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE

96 | 329 503 | 321 489 | 489 688 | 954 1208 | 340 524 | 413 619 | 336 519 | 334 517 | 520 719 | 424 622
192 | 362 549 | 351 532 | 512 967 1220 | 346 465 664 | 373 335 518 | 627 838 | 439 640
250 | 336 | 416 404 582 | 544 99.1 1274 | 37.0 688 902 | 429 589 | 543 751 | 420 623
720 | 46.1 49 635 | 592 1012 1281 | 422 751 981 | 475 620 | 578 772 | 408  60.6
Avg. | 412 401 609 | 534 98.1 1246 | 369 579 791 | 403 561 | 567 770 | 423 622
96 | 349 338 487 953 1172 | 367 408 610 | 359 542 | 541 737 | 454 655
192 | 365 353 514 962 1194 | 37.1 506 718 | 376 543 | 556 759 67.6
350 | 336 | 419 40.6 53.9 989 1245 | 394 687 900 | 432 634 | 561 765 66.9
720 | 472 458 615 1005 1273 | 444 761 985 | 486 654 | 579 778 6538
Avg. | 395 36.6 53.9 977 1221 | 394 591 803 | 413 593 | 559 760 66.4
96 | 380 36.9 503 954 1208 | 408 384 586 | 391 578 | 655 866 720
192 | 383 372 521 962 1223 | 429 667 878 | 39.4 584 | 714 928 757
s0% | 336 | 435 422 56.6 978 1255 | 46.0 687 901 | 448 653 | 668 888 728
720 | 47.9 46.5 643 99.1 1299 | 528 704 935 | 493 680 | 674 892 730
Avg. | 419 9 | 388 6.7 | 558 778 | 9701 1246 | 456 666 | 611 825 | 432 624 | 678 894 734
1° Count | 0 | 20 | 0 | 0 | 3 | 0 | 0 | 5 | 0 | 2

E.2 Full Few-Shot Learning Experiments

In this section, we show detailed and full few-shot learning experimental results including:
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Table 34: Comparison of the performance of LM-WEATHER and the baseline method on the ODW2V
under the forecasting task. Bold: the best, Underline: the second best.

Metho | FLAME-ave |  FLAME | FL-Reformer | FL-Pyraformer | FL-DLinear | FL-PatchTST | FL-iTransformer | FL-LightTS | FL-Transformer | FL-Informer
Variable | Length | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE

96 79.7 97.5 66.7 84.6 88.5 106.0 85.7 103.5 78.2 94.8 87.7 92.8 84.3 93.2 90.3 110.2 83.7 101.5 97.8 116.4
192 1022 | 714 903 | 897 1095 | 892 1071 | 876 988 | 914 1061 | 901 995 | 977 1193 | 848 1027 | 965 1146
Humidity 336 102.6 70.6 88.5 933 1113 91.6 109.3 93.0 106.5 93.9 108.2 94.4 104.4 100.7 1229 859 104.0 98.9 117.4
720 1035 | 721 903 | 979 1142 | 935 1115 | 946 1086 | 985 1032 | 997 1127 | 1045 1275 | 89.4 1093 | 993  119.4
Avg. 101.4 70.2 88.4 92.4 110.2 90.0 107.9 88.3 102.2 92.9 102.6 | 92.1 102.4 98.3 120.0 86.0 104.4 98.1 117.0
96 997 | 651 884 | 89.6 1127 | 890 1125 | 748 968 | 763 999 | 135 977 | 922 1177 | 770 1001 | 774 1004
192 100.8 68.3 91.4 90.5 114.2 96.4 120.1 98.9 79.9 103.3 78.8 103.6 100.5  128.1 783 101.8 78.0 101.1
All 336 1015 | 699 930 | 942 1193 | 984 1222 102 | 818 1053 | 821 1075 | 1055 1344 | 794 1033 | 787 1020
720 103.6 729 96.5 97.4 1204 | 100.5 125.0 103.0 86.2 100.2 86.2 112.7 1.0 1413 86.1 112.3 81.3 105.6
Avg. 1014 | 690 923 | 929 1166 | 961 1200 997 | 811 1022 | 802 1054 | 1023 1304 | 802 1044 | 788 1022
1 Count | 0 | 20 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0

Table 35: Comparison of the performance of LM-WEATHER and the baseline method on the ODW2V
under the imputation task. Bold: the best, Underline: the second best.

Method | LM-WEATHER-AVE | LM-WEATHER | FL-Reformer | FL-Pyraformer | FL-DLinear | FL-PatchTST | FL-iTransformer | FL-LightTS | FL-Transformer | FL-Informer
Ratio | Length | RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE
96 275 4.1 439 63.2 42.1 59.4 63.4 82.8 351 52.8 58.6 78.9 91.2 117.8 452 64.9 46.2 66.8
192 28.0 44.0 443 63.4 39.7 56.8 68.0 87.9 39.7 57.8 69.3 91.1 95.6  123.0 | 459 65.7 46.8 67.6
25% 336 293 452 47.6 68.7 38.3 559 70.5 90.8 44.5 63.2 76.2 99.3 1002 1284 | 46.1 66.0 470 67.6
720 332 51.4 76.2 443 65.4 71.4 91.7 53.5 732 79.5 102.7 99.3 126.0 494 67.5 46.2 65.9
Avg. 295 46.8 67.9 41.1 59.4 68.3 88.3 432 61.7 709 93.0 96.6 123.8 46.6 66.0 46.5 67.0
96 275 464 66.0 4.5 62.0 66.3 85.8 36.7 547 64.2 85.2 93.5 1204 | 482 68.2 49.5 70.8
192 28.1 46.9 66.3 41.0 59.1 70.6 90.5 41.4 59.8 73.2 95.5 97.0 1245 49.1 69.4 50.4 71.9
35% 336 38.6 499 72.4 40.4 58.4 72.8 93.2 46.6 65.5 78.7 102.0 100.8  128.8 494 69.8 50.7 722
720 40.0 54.5 78.6 478 69.0 734 93.6 555 754 80.8 103.9 99.1 1255 | 514 1.5 50.0 70.7
Avg. 33.6 49.4 70.8 434 62.1 70.8 90.8 45.1 63.8 742 96.6 97.6 124.8 49.5 69.7 50.1 71.4
96 275 50.3 70.3 532 724 72.1 92.0 39.8 58.4 727 94.7 96.4 1235 52.7 732 54.8 76.9
192 28.0 51.0 71.1 46.1 65.2 75.7 95.9 449 63.7 79.1 102.0 98.6 1258 | 53.9 74.7 56.2 78.8
50% 336 327 54.2 76.6 74.2 97.3 71.3 97.8 50.9 70.1 82.6 106.1 101.2 128.8 | 54.4 75.4 56.8 79.7
720 36.0 59.4 81.7 82.4 100.9 77.1 97.3 59.2 79.3 83.0 106.0 98.5 1243 554 715 56.4 78.6
Avg. 3 3.1 53.7 74.9 64.0 84.0 75.5 95.8 48.7 67.9 79.4 102.2 98.7 125.6 54.1 75.2 56.0 78.5
1 Count | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0

* Forecasting (Table.[36|for 5% training data, Table.[37]for 15% training data) and imputation (Table.[38]
for 5% training data, Table. [39|for 15% training data) across different scenes and settings on the
ODWIT dataset.

* Forecasting (Table.[d0|for 5% training data, Table.[d1]for 15% training data) and imputation (Table.[d2]
for 5% training data, Table. @ for 15% training data) across different scenes and settings on the
ODW1YV dataset.

« Forecasting (Table.[dd|for 5% training data, Table.[d5|for 15% training data) and imputation (Table.[d6]
for 5% training data, Table. @7 for 15% training data) across different scenes and settings on the
ODW2T dataset.

L]

Forecasting (Table.@for 5% training data, Table.l@lfor 15% training data) and imputation (Table.lg_Ul
for 5% training data, Table.[51]for 15% training data) across different scenarios and settings on the
ODW?2YV dataset.

Table 36: Comparison of the performance of LM-WEATHER with the baseline method on the
ODWIT dataset under the long-term forecasting task in a scenario where the proportion of training
data is set to be 5% in the few-shot learning. Bold: the best, Underline: the second best, “-“ denotes
insufficient training data.

Method | LM-WEATHER-AVE | LM-WEATHER | FL-Reformer | FL-Pyraformer | FL-Dlinear | FL-PachTST | FL-iTransformer | FL-Lights | FL-Transformer | FL-Informer

Metrics | Length | MAE  RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE

96 | 9.6 102.1 846 939 |2985 3282 2959 3273 | 940 1189 | 856 1038 | 916 1170 | 3042 3624 | 1478 1794 | 1036 1304

192 | 927 108.9 851 992 |3004 3300 [301.0 3322 | 990 1252 | 935 1121 | 1023 1300 | 311.6 3767 | 1289 1597 | 107.8 1358

Temperature 336 . 886 10L0 | 3026 3318 |3044 3357 | 1039 1302 | 1083 1300 | 1IL1 1400 | 3150 379.0 | 1147 1439 | 1140 1430
720 - - - - - - - - - - - - - - - - - -

Avg. 861 980 |300.5 3300 |3005 3317 | 990 1248 | 958 1153 | 1017 1290 | 3103 3727 | 130.5 1610 | 1084 1364

96 781 994 | 1110 1301 | 1056 1249 | 90.7 998 | 788 950 | 810 1028 | 1153 1402 | 1115 1370 | 878 1095

192 833 1055 1 109.1 1292 | 939 1039 | 823 984 | 879 1109 | 1179 1439 | 887 1094 | 876 1083

Humidity 336 88.1 1067 1 1125 1342 | 962 1063 | 920 1082 | 927 1162 | 1184 1443 | 880 1120 | 903 1118
720 - - - - - - - - - - - - - - - - -

Avg. 83.2 1077 1263 | 109.1 1294 | 93.6 1033 | 844 1005 | 872 1099 | 1172 1428 | 961 1195 | 885 109.9

96 83.1 931 1203 | 962 1258 | 90.0 1159 | 8901 1136 | 989 1275 | 1072 1386 | 1183 1507 | 932 1208

192 87.0 929 1205 | 974 1271 | 913 1174 | 90.8 1169 | 105 1306 | 1087 1402 | 927 1206 | 925 1189

Wind speed 336 88.3 946 1230 | 100.7 1312 | 922 1185 | 949 1230 | 1032 1327 | 1090 140.6 | 951 1226 | 956 1225
720 - - - - - - - - - - - - - - - - -

Avg. 86.1 936 1212 | 981 1281 | 912 1172 | 916 1178 | 1012 1303 | 1083 1398 | 1020 1313 | 938 1208

96 802 1769 2045 | 179.6 2088 | 829 1070 | 836 1022 | 741 975 | 1882 2295 | 980 1266 | 918 1159

192 9.7 180.1 207.5 | 1834 2127 | 882 1129 | 896 1094 | 87.8 1140 | 1948 2393 | 983 1281 | 931 1194

Surface Temperawre | 336 96.1 1827 2102 | 1856 2156 | 920 1172 | 1031 1180 | 99.1  127.6 | 1969 2409 | 986 1294 | 948 1222
720 - - - - - - - - - - - - - - - - -

Avg. 89.7 1799 2074 | 1829 2124 | 877 1123 | 921 1099 | 870 1130 | 1933 2366 | 983 1281 | 932 119.1

96 873 1669 2960 | 173.6 2992 | 924 1875 | 851 1827 | 1033 2048 | 1858 3283 | 937 1935 | 9L1  190.0

192 89.6 1669 2973 | 1760 3030 | 944 1924 | 907 1916 | 1067 210.7 | 188.1 968 2001 | 935 1959

Al 336 922 1689 2975 | 177.6 3030 | 959 1932 | 965 1974 | 1087 2118 | 1884 1002 2033 | 993 2010
720 - - - - - - - - - - - - - - - -

Avg. 89.7 167.7 2969 | 1757 3017 | 942 1910 | 907 1906 | 1063 209.1 | 1875 969 1990 | 946 1956

1% Count 5 21 0 0 3 7 3 0 1 0
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Experimental results indicate that our LM-WEATHER significantly outperforms the baseline in resource-
constrained situations, such as few-shot learning environments with limited training data. This suggests that
LM-WEATHER effectively leverages PLMs for sequential data modeling and achieves commendable performance
without requiring extensive data for training.

Table 37: Comparison of the performance of LM-WEATHER with baselines on the ODWI1T under
the forecasting task in a scenario where the proportion of training data is set to be 15% in the few-shot
learning. Bold: the best, Underline: the second best, “-“ denotes insufficient training data.

Method | LM-WEATHER-AVE | LM-WEATHER | FL-Reformer | FL-Pyraformer | FL-DLincar | FL-PatchTST | FL-iTransformer | FL-Lights | FL-Transformer | FL-Informer
Variable Length | MAE  RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE
96 | 539 706 523 666 | ISL8 2054 | 1684 1917 | 744 932 | 527 696 | 599 776 | 1431 1702 | 1022 808 102.1
192 | 602 574 739 | 1927 2167 | 1847 2087 | 773 975 | 603 787 | 692 890 | 1856 2229 | 1060 90.5 1142
Temperature 36 | 662 624 794 |2004 2239 | 2029 2266 | 80.6 10LI | 664 1081 | 77.6 985 |2104 2520 | 995 8 | 955
720 657 809 | 2202 2409 | 2207 2436 | 942 1167 | 837 1047 | 956 1197 | 2361 2778 | 1036 127.0 | 108.7
Ave. 595 752 | 1988 2217 | 1942 2176 | 816 1021 | 658 903 | 756 962 | 1938 2307 | 1028 1262 | 939
96 63.7 962 1142 | 898 1079 | 747  93.0 835 | 697 907 | 913 1124 | 871 1080 | 86.0
192 66.6 950 1134 | 937 1123 | 81O 100.7 773 993 | 995 1228 | 903 1112 | 885
Humidity 336 9.7 946 1129 | 957 1147 | 851 1050 843 1066 | 1028 1267 | 887 1088 | 89.9
g 720 716 975 1152 | 976 1174 | 897  109.7 939 1172 | 1071 1316 | 899 1097 | 913
Ave. 61.9 958 1139 | 942 1130 | 826 1021 813 1034 | 1002 1234 | 890 1094 | 889
96 774 863 1130 | 867 1131 | 841 1086 873 1133 | 972 1257 | 880 1159 | 873
192 813 868 1133 | 883 1148 | 866 1115 921 1189 | 1002 1292 | 875 1155 | 879
Wind speed 336 83.1 871 1136 | 895 1164 | 88.1 1132 956 1231 | 1012 1305 | 872 1147 | 88.1
720 85.6 902 1155 | 910 1182 | 89.6 1151 993 1275 | 1025 1318 | 881 1158 | 892
Ave. 819 1138 | 889 1156 | 87.1  1i21 936 1207 | 1003 1293 | 87.7 1155 | 88.1
96 427 1626 | 1226 1489 | 604  80.6 589 | 510 680 | 1283 1575 | 839 1086 | 80.9
192 3 167.6 | 1365 1646 | 696 909 649 | 582 772 | 1503 1859 | 839 1093 | 83.6
Surface Temperature | 336 50.0 1710 | 1476 1755 | 760 979 7001 | 676 887 | 1610 1983 | 827 1078 | 853
720 519 1816 | 1564 1839 | 849  109.0 842 | 864 115 | 1727 2102 | 858  11L1 | 902
Avg. 480 1707 | 1408 1682 | 727 946 695 | 658 863 | 1531 1880 | 841 1092 | 850
96 57.7 1750 | 1233 1803 | 702 109.5 1002 | 684 1099 1716 | 698 1119 | 68.1 1092
192 647 1775 | 1275 1848 | 710 1113 1055 | 737 1168 1908 | 710 1141 | 698 1121
All 336 6.5 179.1 | 1306 1873 | 722 1123 108.1 [ 770 1201 1987 | 721 1147 | 713 1134
720 69.2 1842 | 1336 1890 | 77.1 1178 1165 | 834 1270 2060 | 767 1188 | 762 118.1
Ave. . 643 1790 | 1288 1854 | 726 1127 1076 | 756 1184 1918 | 724 1149 | 713 1132
1* Count | 0 | 4 | 0 | 0 | 0 | 7 | 0 | 0 | 0 | 0

Table 38: Comparison of the performance of LM-WEATHER with the baseline on the ODW1T under
the imputation task in a scenario where the proportion of training data is set to be 5% in the few-shot
learning. Bold: the best, Underline: the second best, “-“ denotes insufficient training data.

Method | LM-WEATHER-AVE | LM-WEATHER
Ratio | Length | MAE ~ RMSE | MAE RMSE

FL-Reformer | FL-Pyraformer
MAE RMSE | MAE RMSE

FL-DLincar | FL-PatchTST | FL-iTransformer | FL-LightTS | FL-Transformer | FL-Informer
MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE

9% | s6.1 1114 526 1092 | 1374 2422 | 1336 2279 | 875 1767 | 568 1349 | 988 1981 | 1752 317.1 | 1308 2480 | 1338 253.5
192 | 60.1 576 1120 | 1420 2487 | 1456 2451 | 894 1734 | 69.5 1484 | 1045 1979 | 1763 3106 | 140.1 2517 | 1411 2545
250 | 336 - E - - - - - - E - . - - - - - - - - -
Avg. | 581 112.9 551 1106 | 1397 2455 | 1396 2365 | 885 1750 | 63.1 1417 | 1017 1980 | 1758 3139 | 1355 2499 | 1375 254.0
9% | 61.7 120.4 582 1197 | 1412 2452 | 139.6 2313 | 958 1883 | 597 1398 | 1067 2101 | 1744 3150 | 1344 2524 | 1375 257.5
192 | 64.5 126.5 609 1223 | 142.6 2471 | 1413 2348 | 970 1843 | 724 1568 | 110.7 2077 | 1747 307.1 | 1435 2556 | 1446 257.9
350 | 336 - - - - - - - - - - - - - - - - - - - -
Avg. 123.5 59.6 1210 | 1419 2462 | 140.5 233.1 | 964 1863 | 66.1 1483 | 1087 2089 | 1746 3110 | 1389 2540 257.7
96 1224 62.1 1194 | 1474 2613 | 1495 2564 | 1100 209.1 | 642 1470 | 1190 2285 | 1730 3108 | 1408  260.0 264.7
192 129.7 625 1294 | 1513 2678 | 152 2581 | 1101 2034 | 741 1551 | 1209 2230 | 1722 3014 | 1491 2624 264.2
so% | 336 - - - - - - - - - - - - - - - . - - - -
720 - - - - - . - . - - - . - - - - . - - .
Avg. | 652 1257 623 1244 | 1494 2646 | 1508 2573 | 1100 2062 | 692 1510 | 1200 2257 | 1726 3061 | 1450 2612 | 147.1 2644
1 Count | 0 | 18 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0

Table 39: Comparison of the performance of the LM-WEATHER with the baseline on the ODWI1T
under the imputation task in a scenario where the proportion of training data is set to be 15% in the
few-shot learning. Bold: the best, Underline: the second best, “-* denotes insufficient training data.

Method | LM-WEATHER-AVE | LM-WEATHER | FL-Reformer | FL-Pyraformer | FL-DLinear | FL-PatchTST | FL-iTransformer | FL-LightTS | FL-Transformer | FL-Informer
Ratio | Length | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE
96 30.8 30.1 54.2 76.3 1219 | 741 1203 | 62.6 96.6 316 60.0 63.5 101.6 1133 1737 | 724 1153 | 733 1170
192 36. 35.0 61.2 714 1249 | 754 122.1 65.3 99.2 374 66.9 71.5 110.6 1175 1792 | 72.6 114.0 732 115.6
25% 336 410 68.6 80.2 1302 | 79.9 126.0 | 67.3 100.5 73.8 76.3 115.0 121.1  181.8 | 72.5 112.0 72.8 113.4
720 52.6 80.2 84.1 136.6 | 82.1 1322 | 68.6 99.9 86.3 79.0 1148 1150 169.3 76.1 2.1 76.0 113.1
Avg. 39.7 66.1 79.5 1284 | 779 1252 | 660  99.1 71.8 72.6 110.5 1167 176.0 | 73.4 1134 | 738 1148
96 313 582 78.1 123.8 | 77.0 1204 | 95.8 188.3 62.5 71.0 112.1 1158 177.0 | 73.9 117.1 75.1 119.2
192 36.8 62.5 79.4 1259 | 78.1 1224 | 70.7 106.2 69.4 77.1 1187 118.6  180.3 74.2 1159 75.1 117.9
35% 336 2.9 70.4 82.1 1294 | 803 1263 | 722 1069 76.4 80.6 121.2 121.0  181.3 | 743 114.1 75.1 116.0
720 54.0 82.5 85.0 1346 | 83.2 1304 | 72.3 104.8 B 88.1 815 118.8 1139 1674 | 788 1153 79.1 116.7
Avg. 41.3 68.4 81.2 1284 | 79.7 1249 | 778 126.6 | 44.0 74.1 71.6 117.7 117.3  176.5 | 75.3 115.6 76.1 117.4
96 343 62.5 81.4 1283 | 809 1232 | 79.0 1181 | 36.7 67.2 82.4 128.0 118.8 1804 | 76.3 1199 | 783 1233
192 40.2 68.2 83.0 130.7 82.1 127.8 | 80.3 1193 | 43.0 74.2 86.0 131.2 1197 180.8 | 76.8 119.1 78.7 122.3
50% 336 46.5 75.9 86.2 1342 84.9 130.2 | 80.8 118.7 | 49.7 81.0 87.5 131.1 1204 179.6 | 77.5 117.9 79.2 121.0
720 56.0 84.8 90.1 139.4 | 89.9 1344 | 789 1138 | 59.8 90.7 85.9 125.4 1123 1644 | 839 121.6 84.8 123.5
Avg. . 443 72.9 852 1332 | 845 1289 | 797 1175 | 473 78.3 854 128.9 1178 1763 | 78.6 119.6 | 80.3 1225
1*" Count | 0 | 30 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0
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Table 40: Comparison of the performance of LM-WEATHER with the baseline method on the
ODW1YV under the long-term forecasting task in a scenario where the proportion of training data
is set to be 5% in the few-shot learning. Bold: the best, Underline: the second best, “-*“ denotes
insufficient training data.

Method | LM-WEATHER-AVE | LM-WEATHER | FL-DLinear | FL-PatchTST | FL-iTransformer | FL-LightTS | FL-Transformer | FL-Informer | FL-Reformer | FL-Pyraformer
Metrics | Length | MAE  RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE
96 L1900 [ 940 1189 | 756 988 | 915 1170 |3033 3633 | 1250 1554 | 1028 1300 | 1080 1430 | 1036 1330
192 713 986 | 9901 1252 | 835 1081 | 1022 1300 | 3006 3727 | 1343 1655 | 1088 1372 | 1143 1509 | 1072 1403
Temperature | 336 90.6 1138 | 1039 1302 | 983 1250 | 11L1 1400 | 3161 3813 | 1129 1410 | 1168 1466 | 128.1 1613 | 1192 150.0
720 - - - - - - - - - - - - - - - - - -
Avg. 797 1008 | 990 1248 | 858 1106 | 1016 1200 | 3097 3724 | 1240 1540 [109.5 1380 | 1168 1517 | 1100 1411
96 757 981 [ 1015 1302 | 816 1075 | 988 1274 | 3276 3924 | 1350 1683 | 1110 1416 | 1166 1558 | 1115 1449
192 825 1084 | 1070 1367 | 902 1189 | 1104 1416 | 3344 4034 | 1454 1802 | 1175 1492 | 1234 1641 | 1160 1524
All 336 987 1254 | 1132 1424 | 1061 1375 | 1200 1532 | 3416 4137 | 1221 1535 | 1263 1597 | 1336 1613 | 1232 1674
720 - - - - - - - - - - - - - - - - - -
Avg. . 856 1106 | 1072 1364 | 926 1213 | 1097 1407 | 3345 4032 | 1342 1673 | 1183 1502 | 1245 1604 | 1169 1549
1+ Count | 0 | 16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0

Table 41: Comparison of the performance of LM-WEATHER with baselines on the ODW1V under
the forecasting task in a scenario where the proportion of training data is set to be 15% in the few-shot
learning. Bold: the best, Underline: the second best, “-“ denotes insufficient training data.

Method | LM-WEATHER-AVE | LM-WEATHER | FL-DLinear | FL-PatchTST | FL-iTransformer | FL-LightTS | FL-Transformer | FL-Informer | FL-Reformer | FL-Pyraformer
Metrics | MAE  RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE
9% | 522 511 655 | 744 932 | 527 696 | 599 776 | 1432 1707 1051 | 756 958 | 787 1020 | 803 1051
192 577 741 | 773 975 | 603 787 | 692 889 | 1843 2205 1184 | 838 1062 | 872 1133 | 890 1167
Temperawre | 336 628 801 | 80.6 101 | 661 849 | 775 984 | 2110 2530 1146 | 882 1108 | 921 1179 | 940 1214
720 792 986 | 942 1167 | 837 1047 | 955 1196 | 2363 2783 1235 | 1040 1288 | 1082 1379 | 1104 1420
Avg. 627 796 | 816 1021 | 657 845 | 755 961 | 1937 2307 1154 | 879 1104 | 91.6 1178 | 934 1213
96 547 713 | 797 1017 | 569 758 | 641 845 | 1534 1855 1145 | 816 1045 | 850 1097 | 867 1130
192 617 807 | 83.01 1062 | 65.01 858 | 742 97.0 | 1974 2401 120.1 | 905 1159 | 943 1241 | 962 1278
All 336 67.6 872 | 868 1102 | 714 927 | 830 1074 | 2262 2757 1351 | 953 1210 | 99.5 1295 | 1019 1334
720 859 1074 | 1013 1272 | 904 1141 | 1022 1304 | 2539 3035 1346 | 1123 1405 | 1169 1503 | 1195 1548
Avg. | 69. 675 867 | 877 1113 | 7.0 921 | 809 1048 | 2077 2512 1283 | 949 1205 | 989 1284 | 1011 1323

1* Count 0 20 0 0 0 0 0 0 0 0

Table 42: Comparison of the performance of LM-WEATHER with baselines on the ODW1V under
the imputation task in a scenario where the proportion of training data is set to be 5% in the few-shot
learning. Bold: the best, Underline: the second best, “-“ denotes insufficient training data.

Method | LM-WEATHER-AVE | LM-WEATHER FL-Informer | FL-Reformer | FL-Pyraformer

Ratio ‘ Length ‘ MAE RMSE ‘ MAE RMSE

FL-DLinear ‘ FL-PatchTST ‘FL—iTransformer FL-LightTS ‘FL—Tmnstonner
MAE RMSE ‘ MAE RMSE | MAE RMSE ‘ MAE RMSE ‘ MAE RMSE ‘ MAE RMSE ‘ MAE RMSE ‘ MAE RMSE

96 | 547 1222 553 1236 | 834 1593 | 542 1206 | 936 1796 | 1630 2880 | 107.6 2073 | 109.9 2099 | 885 187.7 | 85.1 178.1
192 | 6LI 678 1363 | 845 1553 | 664 1329 | 984 1775 | 1643 280.1 | 1143 2051 | 1129 2052 | 916 1802 | 872 1710
250 | 336 E - - - - - - - - - - - - - - - - - -
720 - - - - - - - - - - - - - - - - - - -
Avg. | 609 1300 | 840 1573 | 60.3 1268 | 960 1785 | 1636 2840 | 1110 2062 | 1114 207.5 | 90.1 1840 | 862 1746
9% | 60.9 1298 | 909 1710 | 5720 1253 | 1008 1909 | 1623 2853 | 111 2115 | 1134 913 1898 | 87.6 1803
192 | 616 1280 | 914 1650 | 68.1 1354 | 1039 1863 | 1628 277.1 | 1180 2104 | 1165 946 1834 | 90.1 1740
350 | 336 - - B - - - - - - - - - - - - - - - -
Avg. | 613 619 1289 | 912 1680 | 626 1304 | 1024 1886 | 1625 2812 | 1146 2110 | 1149 2124 | 930 1866 | 889 1772
9% | 622 628 1355 | 1039 1898 | 615 1326 | 1122 2084 | 1611 2815 | 117.6 2195 | 1196 2235 | 980 1985 | 942 1881
192 | 714 722 1421 | 1033 1824 | 70.6 1388 | 1133 2006 | 1605 2724 | 1245 2189 | 1227 2178 | 1018 1913 | 967 1815
so% | 336 - - - - - - - - - - - B - - - - - - -
Avg. | 668 . 67.5 1388 | 1036 1861 | 661 1357 | 1127 2045 | 1608 2769 | 121.0 2192 | 1212 2207 | 1018 1949 | 955 1848
1* Count | 4 | 0 | 0 | 14 | 0 | 0 | 0 | 0 | 0 | 0

Table 43: Comparison of the performance of LM-WEATHER with baselines on the ODW1YV under
the imputation task in a scenario where the proportion of training data is set to be 15% in the few-shot
learning. Bold: the best, Underline: the second best.

Method | LM-WEATHER-AVE | LM-WEATHER | FL-DLinear | FL-PatchTST | FL-iTransformer | FL-LightTS | FL-Transformer | FL-Informer | FL-Reformer | FL-Pyraformer
RMSE ‘ MAE RMSE ‘ MAE RMSE ‘ MAE RMSE ‘ MAE RMSE ‘ MAE RMSE ‘ MAE RMSE ‘ MAE RMSE ‘ MAE RMSE ‘ MAE RMSE

Ratio | Length |

96 207 554 | 602 912 | 304 574 | 604 959 | 1071 1641 | 663 1084 | 697 1132 | 726 1177 | 543 903

192 34.8 61.0 62.3 93.3 359 63.1 67.7 103.8 1113 1693 65.4 106.1 68.2 110.1 71.0 1145 | 52.8 87.0

25% 336 40.6 67.8 64.2 95.5 42.1 70.3 74.8 110.2 115.1 174.4 64.7 104.9 66.5 107.8 69.3 1122 | 513 84.5
720 520 804 | 653 961 | 537 833 | 748 1102 | 1081 1617 | 621 985 | 619 989 | 645 1029 | 552  90.l

Avg. 393 66.2 63.0 94.0 405 68.5 69.4 105.0 1104 1674 64.6 104.5 66.6 107.5 71.0 111.8 | 53.4 88.0

96 314 57.6 65.7 98.2 321 59.5 67.5 105.9 1093 1672 68.9 1117 73.0 117.6 75.9 1225 57.3 93.8

192 366 630 | 673 999 | 376 653 | 730 1116 | 1123 1704 | 682 1096 | 715 1145 | 744 1193 | 554 899

35% 336 42.8 70.0 68.7 101.6 44.1 72.6 76.3 115.0 1149 173.7 67.6 108.6 69.8 112.2 727 117.0 53.8 872
720 53.3 82.0 68.7 101.6 55.1 85.0 76.9 113.8 107.1 159.9 65.3 102.8 65.2 103.5 67.9 107.8 57.4 92.1

Avg. 41.0 68.2 67.6 100.3 422 70.6 734 111.6 1109 167.8 67.5 108.2 69.9 111.9 73.6 1147 | 56.0 90.8
96 341 614 | 756 1116 | 352 637 | 783 1210 | 1121 1703 | 729 1162 | 783 1245 | 814 1297 | 628  100.6
192 399 67.1 76.3 1124 41.0 69.7 81.4 1235 1134 1710 72.6 114.8 76.8 121.6 80.0 126.7 61.3 101.2

50% 336 46.0 74.1 76.7 112.8 47.7 76.9 80.7 119.9 1143 172.0 724 114.6 75.3 119.5 78.4 124.6 58.4 925
720 550 842 | 742 1089 | ST.1 874 | 807 1199 | 1055 1569 | 7.0 1099 | 710 1109 | 738 1155 | 642 1024

Avg. 3 . 43.8 71.7 75.7 111.4 453 74.4 80.3 121.1 1113 1675 722 113.9 754 119.1 78.4 124.1 61.7 99.2

1 Count | 0 | 30 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0
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Table 44: Comparison of the performance of LM-WEATHER with baselines on the ODW2T under
the forecasting task in a scenario where the proportion of training data is set to be 5% in the few-shot
learning. Bold: the best, Underline: the second best, “-“ denotes insufficient training data.

Method | LM-WEATHER-AVE | LM-WEATHER | FL-Reformer | FL-Pyraformer | FL-DLinear | FL-PatchTST | FL-iTransformer | FL-LightTS | FL-Transformer | FL-Informer
Variable | Length | MAE  RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE
96 | 1036 1291 922 1162 2545 2785 | 2542 2796 | 988 1229 | 834 1059 | 1035 1297 [263.0 3115 | 1017 1252 | 2508 2750
192 - - - - - - - - - - - - - - - - - - - -
Temperature | 336 | - - - - - - - - - - - - - - - - - -
Avg. | 1036 1291 922 1162 | 2545 2785 | 2542 2796 | 988 1229 | 834 1059 | 1035 1297 |263.0 3115 | 1017 1252 | 2508 2750
96 | 1102 1341 972 1220 | 1286 1530 | 1325 1589 | 1066 1287 | 967 1200 | 1133 1396 | 1437 1753 | 1190 1454 | 1314 1575
Humidity | 336 - - - - - - - - - - - - - - - - - -
Avg | 1102 1340 912 1286 1530 | 1325 1589 [ 1066 1287 | 967 1200 | 1133 1396 | 1437 1753 | 1190 1454 | 1314 1575
96 | 1110 1594 99.0 1583 2412 | 1733 2470 | 1071 1528 [ 1012 1479 | 1159 1663 | 1836 2733 | 1423 1996 | 1588 2013
192 - - - - - - - - - - - - - - - - - - -
All 336 - - - - - - - - - - - - - - - - - -
720 - - - - - - - - - - - - - - - - - - - -
Avg. | 1110 1594 990 1355 | 1583 2412 | 1733 2470 [ 1071 1528 | 1012 1479 | 1159 1663 | 1836 2733 | 1423 1996 | 1588 2013
1° Count | 0 | 4 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0

Table 45: Comparison of the performance of LM-WEATHER with baselines on the ODW2T under
the forecasting task in a scenario where the proportion of training data is set to be 15% in the few-shot
learning. Bold: the best, Underline: the second best, “-*“ denotes insufficient training data.

Method | LM-WEATHER-AVE | LM-WEATHER | FL-Reformer | FL-Pyraformer | FL-DLinear | FL-PatchTST | FL-iTransformer | FL-LightTS | FL-Transformer | FL-Informer
Variable | Length | MAE ~ RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE

96 666 845 [2400 2603 2334 | 882 1081 | 662 882 | 702  89.4 |2215 2543 | 1002 1232 | 2365 258.1

192 717 907 | 2349 2552 2478 | 861 1067 | 785 948 | 792 1000 | 2392 281.8 | 1203 1443 |2419 2634

Temperature | 336 867 1097 | 2353 2555 2557 | 8901 1107 | 895 1092 | 889 1117 |2502 2958 | 1332 160.7 |249.1 2703
720 - - - - - - - - - - - - - - - - - -

Avg. 767 971 | 2367 2570 | 2236 2456 | 878 1085 | 781 974 | 795 1003 |237.0 2773 | 1179 1427 | 2425 2639

96 789 985 | 1104 1316 | 1026 1239 | 894 1095 | 882 109.6 | 829 1041 | 1095 1331 | 981 117.7 | 1128 1344

192 1004 1140 | 1091 1300 | 1080 129.7 | 984 1114 | 992 1189 | 89.6 1114 | 1183 1442 | 1052 1284 |113.0 1346

Humidiy | 336 1024 1164 | 1093 1302 | 1110 1327 | 1098 1195 | 1043 1290 | 966 1193 | 1228 1498 | 1029 1252 | 1127 1341
720 - - - - - - - - - - - - - - - - - -

Ave. 939 1096 | 109.6 1306 | 1072 1288 | 992 1135 | 972 1192 | 897 1116 | 1169 1424 | 1021 1237 | 1128 1344

96 $23 1210 | 1422 1679 | 1467 2097 | 97.1 1360 | 855 1237 | 913 1329 | 1531 2235 | 1125 1438 | 1744 2004

192 897 1318 | 1588 177.3 | 1506 2148 | 984 1401 | 895 1331 | 100.5 1461 | 1614 2388 | 1231 150.0 | 1763 205.7

All 336 929 1371 | 1825 1902 | 1538 2186 | 101.0 1464 | 987 1468 | 107.4 1569 | 1667 2469 | 130.4 1585 | 1882 2111
720 - - - - - - - - - - - - - - - - - - -

Avg. | 90.6 1340 860 1291 | 1612 1785 | 1504 2144 | 988 1408 | 912 1345 | 997 1453 | 1604 2364 | 1220 1508 | 179.6 2057

1°* Count | 2 | 14 | 1 | 0 | 1 | 2 | 4 | 0 | 0 | 0

Table 46: Comparison of the performance of LM-WEATHER with the baseline on the ODW2T under
the imputation task in a scenario where the proportion of training data is set to be 5% in the few-shot
learning. Bold: the best, Underline: the second best, “-*“ denotes insufficient training data.

Method | LM-WEATHER-AVE | LM-WEATHER | FL-DLinear | FL-PatchTST | FL-iTransformer | FL-LightTS | FL-Transformer | FL-Informer | FL-Reformer | FL-Pyraformer
Ratio | Length | MAE  RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE
96 143.4 913 1392 | 957 1312 | 1132 1476 | 1046 1490 | 1736 2605 | 1157 1752 | 1215 1833 | 1113 170.1 | 948 1478
192 - - - - - -
25% | 336 - - - - - - - - - - - - - - - - - - -
Avg. | 927 143.4 913 1392 | 957 1312 | 1132 1476 | 1046 1490 | 1736 2605 | 1157 1752 | 1215 1833 | 1113 1701 | 948 1478

9% | 95. 1472 94.1 1442 | 1032 1418 | 1163 1512 | 1120 160.5 | 1734 259.1 | 1199 1808 | 1260 1895 | 1159 1763 | 980 1517
192 - - - - - - - - - - -
350 | 336 - - - - - - - - - - - - - - - - - - - -
720 - - - - - - - - - - - - - - - - - - - -
Avg. | 956 1472 941 1442 | 1032 1418 | 1163 1512 | 112 1605 | 1734 259.1 | 1199 1808 | 1260 1895 | 1159 1763 | 980 1517
96 | 102.5 1563 994 1516 | 1162 1613 | 1249 1656 | 1237 1783 | 173.0 2567 | 1273 1906 | 1338 2003 | 1243 187.5 | 1057 1611
s0% | 336 - - - - - - - - - - - - - - - - - - - -
720 - - - - - - - - - - - - - - - - - -
Avg. | 1025 1563 994 1516 | 1162 1613 | 1249 1656 | 1237 1783 | 173 2567 | 1273 1906 | 1338 200 | 1243 188 | 1057 161.0

1* Count | 0 | 8 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0

Table 47: Comparison of the performance of LM-WEATHER with the baselines on the ODW2T
under the imputation task in a scenario where the proportion of training data is set to be 15% in the
few-shot learning. Bold: the best, Underline: the second best, “-*“ denotes insufficient training data.

Method | LM-WEATHER-AVE | LM-WEATHER | FL-DLinear | FL-PatchTST | FL-iTransformer | FL-LightTS | FL-Transformer | FL-Informer | FL-Reformer | FL-Pyraformer

96 | 125 1053 717 1037 | 8L1 1111 | 851 1187 | 767 1118 | 1377 2045 | 899 1403 | 944 1467 | 856 1349 | 768 1228

192 | 746 108.5 737 1068 | 883 1206 | 944 1290 | 922 130.1 | 1507 2235 | 932 1434 | 97.0 1488 | 874 1361 | 770 1222

259 | 336 | 75.1 117.5 742 1156 | 917 1251 | 97.8 1337 | 1020 1423 | 160.1 2365 | 957 1454 | 984 1495|882 1360 | 773 1211
Avg. | 74.1 1104 732 1087 | 870 1190 | 944 1314 | 903 1281 | 1495 2215 | 929 1430 | 966 1483 | 87.1 1357 | 770 1220

9 | 743 736 1020 | 87.8 1202 | 940 1217 | 862 1256 | 1412 2095 | 922 1432 | 985 1523 | 880 1379 | 798 1268

192 | 77. 766 1094 | 946 1293 | 100.8 1384 | 99.5 1410 | 1516 2243 | 962 1475 | 1012 1549 | 90.4 1400 | 793 1253
350 | 336 | 802 792 1143 | 976 1330 | 1044 1424 | 1072 1502 | 1592 2343 | 996 1510 | 1026 8922 1415|792 1238
Avg. | 774 765 1086 | 933 127.5| 940 1342 | 976 1389 | 1507 2227 | 960 1472 | 1008 1543 | 902 139.8 | 794 1253
96 | 74.9 741 1037 | 1000 1380 | 1055 1477 | 1012 1470 | 1454 2149 | 961 1477 | 1054 1617 | 922 1431 [ 850 1337
192 8.1 77.2 112.6 105.8 1455 | 1127 155.7 | 110.7 157.8 152.6 2242 | 101.6 154.4 108.5 1652 | 959 147.3 | 834 130.9
500 | 336 | 841 831 1173 | 1080 148.1 | 1156 1585 | 1156 1632 | 157.6 230.5 | 1066 1606 | 109.9 1662 | 995 1516 | 827 1287
720 | - - - - - - - - - - - - - - - - - - -
Avg. | 190 786 1112 | 1046 1438 | 1113 1540 | 1092 1560 | 1518 2232 | 1015 1542 | 107.9 1643 | 959 147.3 | 837 1311
1° Count_ | 0 | 17 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1
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Table 48: Comparison of the performance of LM-WEATHER with the baseline on the ODW2V under
forecasting tasks in a scenario where the proportion of training data is set to be 5% in the few-shot
learning. Bold: the best, Underline: the second best, “-*“ denotes insufficient training data.

Method | LM-WEATHER-AVE | LM-WEATHER | FL-Reformer | FL-Pyraformer | FL-Dlinear | FL-PatchTST | FL-iTransformer | FL-LightTS | FL-Transformer | FL-Informer
Variable ‘ Length ‘ MAE RMSE ‘ MAE RMSE ‘ MAE RMSE ‘ MAE RMSE ‘ MAE RMSE ‘ MAE RMSE ‘ MAE RMSE ‘ MAE RMSE ‘ MAE RMSE ‘ MAE RMSE
96 109.6 1335 99.7 1243 | 1307 1552 | 130.1 1558 | 109.6 1387 | 116.7 140.0 | 113.3 139.7 1462 178.9 | 1183 1440 | 1284 1533

192 - - - - - - - - - - - - - - - - - - - -

Humidity | 336 - - - - - - - - - - - - - - - - - - - -
Avg. | 109.6 1335 997 1243 | 1307 1552 | 130.1 1558 | 109.6 1387 | 1167 1400 | 113.3 1397 | 1462 1789 | 1183 1440 | 1284 1533
96 1053 135.7 96.8 122.1 151.5  190.7 | 150.5 189.3 | 1122 141.2 | 1155 1458 | 110.2 1434 162.1  212.5 | 1064  136.8 149.6  188.2

192 - - - - - - - - - - - - - - - - - - - -

All 336 - - - - - - - - - - - - - - - - - - - -

720 - - - - - - - - - - - - - - - - - - -
Avg. 1357 96.8 122.1 1515 190.7 | 150.5 189.3 | 1122 1412 | 1155 1458 | 110.2 143.4 162.1 2125 | 1064  136.8 149.6  188.2

1" Count | 0 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0

Table 49: Comparison of the performance of LM-WEATHER with baselines on the ODW2YV under
the long-term forecasting task in a scenario where proportion of training data is set to be 15% in the
few-shot learning. Bold: the best, Underline: the second best, “-* denotes insufficient training data.

Method | LM-WEATHER-AVE | LM-WEATHER | FL-Reformer | FL-Pyraformer | FLDLinear | FLPaichTST | FL-iTransformer | FL-LightTS | FL-Transformer | FL-Informer
Variable | Length | MAE  RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE
9% | 19.1 99.9 757 949 | 1111 1325 | 1007 1210 | 874 1024 | 962 966 | 830 1042 | 1103 1341 | 1005 1241 | 1121 1333

192 7 111.8 853 106.2 1094 1303 | 105.8 126.7 91.4 1144 | 1002 1109 89.7 1115 118.1 144.1 109.0 1328 1132 1346

Humidity | 336 1208 | 1004 1148 | 1093 1300 | 1098 1310 | 97.8 1185 | 1023 1130 | 1066 1194 | 1223 1492 | 1065 1298 | 1135 1353
Avg. | 9Ls 1108 871 1053 | 1099 1309 | 1054 1262 | 922 1118 | 995 1068 | 931 1117 | 1169 1425 | 1053 1289 | 1129 1344

96 | 790 1064 | 756 1011 | 1354 1723 | 1269 1623 | 896 1159 | 785 1061 | 857 1141 | 1358 1781 | 1087 1431 | 1344 1711

192 | 878 1166 | 836 1108 | 1337 1699 | 1319 1676 | 908 1174 | 826 1105 | 927 1221 | 1419 1872 | 1074 1415 | 1344 1708

All 336 | 896 1190 | 851 T30 [ 1339 17001 | 1336 1696 | 924 1198 | 856 1140 | 983 1290 | 1463 1932 | 1057 1395 | 1348 1711
Avg. | 855 1140 | 814 1083 | 1343 1708 | 1308 1665 | 909 1177 | 822 1102 | 922 1217 | 1413 1862 | 1073 1414 | 1346 1710

19 Count | 0 | 12 | 0 | 0 | 0 | 0 | | 0 | 0 | 0

Table 50: Comparison of the performance of LM-WEATHER with baselines on the ODW2YV under
the imputation task in a scenario where the proportion of training data is set to be 5% in the few-shot
learning. Bold: the best, Underline: the second best, “-“ denotes insufficient training data.

Method | LM-WEATHER-AVE | LM-WEATHER | FL-DLinear | FL-PatchTST | FL-iTransformer | FL-LightTS | FL-Transformer | FL-Informer | FL-Reformer | FL-Pyraformer
Ratio | Length | MAE ~ RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE
96 42.2 62.9 39.7 60.5 91.3 117.0 | 61.5 84.9 98.3 129.6 155.1  203.0 | 92.5 125.2 94.9 128.2 90.4 122.4 87.0 115.9
192 - - - - - - - - - - - - - - - - - - - -
2s% | 336 - - - - - - - - - - - - - - - - - - -
Avg. 42.2 62.9 39.7 60.5 91.3 117.0 | 61.5 84.9 98.3 129.6 155.1  203.0 | 92.5 125.2 94.9 128.2 90.4 122.4 87.0 115.9
96 1.5 63.0 385 61.2 968 1235 | 650 88.9 | 1042 1367 1547 201.8 | 957 129.1 98.9 1333 | 937 1266 | 88.1 117.1
350, | 336 - - - - - - - - - - - - - - - - - - - -
Avg. 385 61.2 968 1235 | 650 88.9 | 1042 1367 1547  201.8 | 957 129.1 98.9 1333 | 937 1266 | 88.1 117.1
96 35.7 112.1 106.8  135.5 70.8 95.5 113.3 148.0 153.8  199.5 | 101.8 136.4 106.1 1422 | 100.1  134.6 89.8 119.0
s0% | 336 - - - - - - - - - - - - - - - - - - -
720 - - - - - - - - - - - - - - - - - - - -
Avg. 42.4 62.9 35.7 112.1 106.8  135.5 70.8 95.5 113.3 148.0 153.8  199.5 | 101.8 136.4 106.1 1422 | 100.1  134.6 89.8 119.0
1 Count | 0 | 10 | 0 2 | 0 0 0 0 0 0

Table 51: Comparison of the performance of LM-WEATHER with baselines on the ODW2V under
the imputation task in a scenario where the proportion of training data is set to be 15% in the few-shot
learning. Bold: the best, Underline: the second best, “-“ denotes insufficient training data.

Method | LM-WEATHER-AVE | LM-WEATHER | FL-Dlinear | FL-PatchTST | FL-iTransformer | FL-LightTS | FL-Transformer | FL-Informer | FL-Reformer | FL-Pyraformer
Ratio | Length | MAE  RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE
96 334 773 1010 | 409 609 | 706 960 | 1255 1664 | 747 1040 | 771 1076 | 726 1013 | 637 888
192 343 839 1082 | 475  68.0 | 861 1140 | 1348 1791 | 774 1069 | 805 1446 | 746 1035 | 649 903
25% | 336 400 879 1130 | 595 819 | 968 1268 | 1449 1916 | 827 1135 | 840 1153 | 778 1076 | 719 987
720 - - - - - - - - - - - - - - - - - -
Avg. 359 551 | 830 1074 | 493 703 | 845 1123 | 1351 1790 | 783 1081 | 805 1225 | 750 1041 | 668 926
96 360 550 | 827 1072 | 427 631 | 788 1063 | 1282 1695 | 77.0 1067 | 80.4 1117 | 745 1034 | 1224 157.9
192 354 561 | 889 1141 | 495 705 | 922 1218 | 1356 1795 | 799 1099 | 842 1162 | 766 1060 | 694  96.1
3595 | 336 412 635 | 924 1185 | 623 849 | 1009 1321 | 1441 1899 | 860 1178 | 879 1205 | 807 1112 | 734 1004
720 - - - - - - - - - - - - - - - - - -
Avg. 375 582 | 880 1133 | 515 729 | 906 1200 | 1360 1797 | 81.0 1114 | 842 1161 | 773 1069 | 884 18
96 327 555 | 926 1192 | 460 671 | 918 1223 | 1314 1728 | 80.6 1104 | 863 1188 | 777 1069 | 841 1115
192 367 568 | 977 1249 | 536 754 | 1016 1335 | 1363 1793 | 843 1151 | 908 1247 | 806 1107 | 838 1125
s0% | 336 . 434 644 | 1007 1286 | 674 907 | 107.5 1404 | 1427 187.1 | 922 1255 | 948 1294 | 862 1182 | 808 1092
720 - - - - - - - - - - - - - - - - - - - -
Avg. | 395 600 376 589 | 970 1242 | 557 777 | 1003 1321 | 1368 1797 | 857 1170 | 906 1243 | 815 1120 | 829 1111
1° Count | 0 | 24 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0

https://doi.org/10.52202/079017-2696 84934



E.3 Full Ablation Experiments

In this subsection, we show the results of the complete ablation experiment, both in the forecasting (Table.lS_ZI)
and in imputation (Table. 53).

Table 52: Ablation experimental (forecasting) results for both the model composition level and
the personalization mechanism level are included, where 1 represent the degree of performance
increase relative to the original LM-WEATHER, | represent the degree of performance degradation,
and the Comm. Param# represents the number of parameters transferred between client and server
communication for the different variants. Bold: the best, Underline: the second best.

| Original | Model Composition Perspective | Personalized Perspective

Method | LM-WEATHER | LM-WEATHER-A | LM-WEATHER-B | LM-WEATHER-C | LM-WEATHER-D | LM-WEATHER-E | LM-WEATHER-F | LM-WEATHER-G | LM-WEATHER-H
Variables Length | MAE RMSE | MAE  RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE MAE  RMSE

9% | 266 347 295 39.9 28.8 382 28.5 37.8 27.7 36.5 310 437 288 383 24 30.9

192 | 304 365 341 2 332 402 329 39.6 320 382 359 4538 33 402 27.9 326

Temperature 336 | 316 380 35.6 44 35 423 343 415 333 40.0 385 48.1 435 419 29.2 341

720 372 454 42.1 529 413 50.8 40.7 50.2 393 48.6 442 57.8 40.5 50.2 338 42.6

Avg. | 315 387 353 447 34.6 429 34.1 423 33.1 408 374 489 36.5 427 28.7 351

9% | 499 640 56.2 75.1 54.7 723 54.1 712 527 68.6 59.0 81.9 538 70.5 47.8 614

192 | 530 678 60.5 80 59.3 78 583 758 57.6 739 63.6 874 58.4 75.0 513 64.7

Humidity 336 | 556 701 63.5 827 62.3 811 61.0 78.5 60.0 76.6 66.7 90.4 60.6 774 537 66.3

720 | 590 731 67.3 86.7 66.1 852 64.8 82.0 63.5 80.0 70.7 948 64.3 82.0 56.7 69.4

Avg. | 544 688 61.9 811 60.6 79.2 59.6 76.9 58.5 748 65.0 88.6 59.3 76.2 524 65.5

9 | 657 840 738 99.7 722 96.6 715 94.6 708 92.1 78.1 1089 | 708 926 63.9 814

192 | 667 850 75.5 101.0 742 98.2 732 95.7 732 933 80.0 1103 | 725 93.9 65.1 821

Wind speed 336 67.2 85.7 76.3 101.7 75.1 99 74.0 96.4 74.0 94.0 81.0 9.3 734 94.7 65.6 825

720 | 680 865 772 102.7 76.1 100 74.9 97.3 748 94.9 827 1121 743 95.7 66.3 833

Avg. | 669 853 75.7 101.3 744 98.5 734 96.0 732 93.6 80.5 852 72.8 94.2 65.2 823

9% | 270 374 295 43.0 29.1 414 288 40.7 282 395 316 4438 29.1 41.1 243 342

192 | 290 399 317 46.0 324 436 310 438 313 426 34.1 50.2 314 442 26.1 37

Surface Temperature | 336 | 311 424 34.1 492 35.1 482 334 46.5 337 454 36.3 510 336 46.7 281 389

720 | 368 479 41 553 414 545 39.9 527 39.7 51.0 43.1 57.9 40 527 332 4.8

Avg. | 310 419 34.1 484 345 46.9 333 459 332 44.6 36.3 51.0 33.5 462 279 387

9 | 423 7L1 470 832 46.2 81.2 457 79.4 452 717 50.0 90.5 457 783 39.8 68.3

192 | 444 76 494 86.3 49.7 843 489 82.3 48.1 80.4 52.8 94.1 483 81.0 42 704

All 336 | 458 752 514 88.6 52 86.7 513 845 504 826 545 96.7 50.0 829 432 718

720 | 492 785 55.5 923 55.5 90 54.6 88.2 53.6 86.2 57.9 101.1 53.6 86.8 45.6 74.2

Avg. | 454 746 50.8 87.6 50.9 85.6 50.1 83.6 493 81.7 538 95.6 494 823 3 427 71.2

Average | 458 619 | 516 726 | 510 706 | 50.1 689 | 495 67.1 | 546 739 | 503 684 | 438 | 434 58.6
Change | - - [1270% ) 173% )| 104% L 140% | | 94% | 103% L | 8.1% | 84% L [ 192% | 194% | 98% | 105% | | 6%t 53%1 | 55% 1 56%1

Comm. Param. # | 038M | 0.38 M | 038 M | 038 M | 038 M | 038 M | 10.00 M | 41.99M | 10.00 M

Table 53: Ablation experimental results (imputation) for both the model composition level and
the personalization mechanism level are included, where 1 represent the degree of performance
increase relative to the original LM-WEATHER, | represent the degree of performance degradation,
and the Comm. Param# represents the number of parameters transferred between client and server
communication for the different variants. Bold: the best, Underline: the second best.

| Original | Model Composition Perspective | Personalized Perspective
| LM-WEATHER | LM-WEATHER-A | LM-WEATHER-B | LM-WEATHER-C | LM-WEATHER-D | LM-WEATHER-E | LM-WEATHER-F | LM-WEATHER-G | LM-WEATHER-H

Method

Metrics | Length | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE
9 | 202 386 | 218 434 | 2 428 | 214 418 | 210 415 00 427 231 472 | 194 369 | 192 358
192|207 370 | 228 416 | 225 434 | 219 428 | 215 416 28 29 238 453 | 198 342 | 196 341

250 | 336 | 210 384 | 232 430 | 23 426 | 22 48 | 218 412 232 45 242 468 | 202 3L | 200 356

720 | 215 393 | 238 440 | 235 436 | 229 427 | 224 432 238 434 249 479 | 206 363 | 204 361

Avg. | 211 383 | 29 430 | 228 431 | 21 428 | 217 419 230 429 240 468 | 200 361 198 354

96 | 211 398 | 234 448 | 232 442 | 22.4 434 | 220 430 234 442 245 4901 | 203 353 | 200 368

192 [ 213 383 | 236 452 | 234 426 | 227 416 | 222 441 236 430 247 467 | 204 367 | 203 371

350 | 336 | 221 395 | 246 444 | 247 439 | 237 431 | 230 424 245 438 260 484 | 215 364 | 21 312

720 | 232 398 | 259 448 | 256 454 25 434 | 12 a8 257 442 276 288 | 24 310 | 22 368

Avg. | 219 394 | 244 s | 242 40 | 238 929 | 29 431 243 33 257 43 | 212 364 | 212 370

96 | 217 418 | 243 47 | 237 464 | 232 453 | 228 449 239 463 259 512 | 2.0 386 | 208 388

192 | 26 42 254 472 | 248 466 | 244 456 | 239 450 249 465 274 514 | 219 388 | 218 389

so% | 336 | 232 424 | 262 477 | 256 471 | 253 462 | 246 454 257 470 284 520 | 225 391 | 24 393

720 | 249 433 | 279 488 | 273 482 | 272 472 | 263 472 274 481 30.6 532 | 240 400 | 239 402

Avg. | 230 424 | 260 477 | 254 470 | 250 461 | 244 456 255 410 28.1 520 | 224 391 | 22 393

Average | 221 400 | 244 452 | 241 447 | 236 439 | 230 435 | 243 446 | 261 484 | 212 372 | 211 372

variations | - < [950% 1 13% [ 90% | 118% | 68% | 98% ] |41% | 88%) | 100% ) 115%) | 181% 1 210% 0 | 42%1 75%1 | 47% T 75%1
Comm. Param. # | 038M | 038 M | 038 M | 038 M | 038 M | 038 M | 10.00 M | 419M | 1000M

E.4 Hyper-parameter Sensitivity

The impacts of rank on performance are detailed in Table. @ As the rank goes up, there’s a consistent
improvement, reaching its best at r = 8. However, when r = 12, there’s a drop in performance. This happens
because a higher rank means the local model has more trainable parameters, which can improve performance
empirically. While a higher rank can cause increased communication cost and introduce more uncertainty.

E.5 Pre-trained Language Model Variants
We compare three representative PLM backbones with varying capacities, the result is shown in Table.[55] Under

the proposed LM-WEATHER framework, it’s evident that various PLM backbones maintain strong sequence
modeling capabilities. Moreover, the lightweight personalized adapter in LM-WEATHER enhance the PLM’s
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Table 54: Results on parameter impact study, where Length refers to the length of weather sequences
(that is, predicted horizons in forecasting and input sequence length in imputation). Avg. represents
the average value of predicted horizons, encompassing {96, 192, 336, 720}.

\ | Forecasting | Imputation | Param.#
Rank | Length | \jAE | RMSE | MAE | RMSE | Trainable | Comm.
| Avg. | 476 | 798 | 25.1 | 466 | 10.14M | 0.12M
| Avg. | 465 | 784 | 242 | 451 | 1025M | 0.24M
| Avg. | 465 | 769 | 240 | 446 | 1037M | 035M
12 | Ave | 459 | 761 | 234 | 437 | 1072M | 0.70M
8(Ori.)‘ Avg. | 454 | 746 | 231 | 424 | 1049M | 047M

Table 55: Performance statistics for the proposed LM-WEATHER with various PLM backbones are
presented, recording only the average performance across all lengths for different datasets (namely,
96/192/336/720 prediction horizons). For the imputation task, results are documented solely for a
random masking probability of 50%. Bold: the best, Underline: the second best.

Variant | Dataset | Forecasting | Imputation (50%)
ODWIT | 45.4/74.6 23.1/42.4
o ODWI1V | 45.6/71.9 43.7/63.8
LM-WEATHER (GPT2, Original) | QDW2T | 66.9/90.1 38.8/61.7
ODW2V | 69.0/92.3 31.1/47.0
ODWIT | 49.3/82.9 25.0/47.2
ODWI1V | 49.9/80.0 48.3/71.2
LM-WEATHER (Bert, 5) ODW2T | 73.6/100.4 42.4/68.7
ODW2V | 76.2/102.9 34.5/52.6
ODWIT | 47.2/77.6 24.0/44.5
ODWIV | 47.2/742 45.7/67.2
LM-WEATHER (Llama, 4) ODW2T | 69.5/94.4 40.5/65.0
ODW2V | 72.3/97.6 32.4/49.8

ability to transfer knowledge from natural language sequences to complex weather sequences. This further
validates the superiority and versatility of our LM-WEATHER.

Appendix F  Additional Statements

F.1 Impact Statements

We highlight that the goal of this study to proposed LM-WEATHER is not to compete but instead to complement
current on-device meteorological variable modeling framework. Today’s climate foundation models are typically
trained from scratch, utilizing exceptionally large datasets (nearly 100TB) and incurring substantial computational
costs. We hope that LM-WEATHER offers a cost-effective alternative for modeling meteorological variables
on-device, thereby enabling accurate regional weather trend analysis. In addition, the dataset we complied can
be the important resource to provide exploring chances for this field, facilitating future research.

This research seeks to make on-device meteorological variable modeling more efficient and adaptable. By using
a PLM as a foundation model instead of training large foundation models from scratch, it eliminates the need
for large-scale real weather data and extensive computational resources. Additionally, it supports a variety
of devices, enabling everything from advanced smartphones to basic IoT sensors to perform meteorological
variable modeling. The method is also designed to be stable in environments with limited data and those outside
of typical distribution ranges, providing credible analytical support for further weather trend analyses.
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F.2 Limitations

Although our LM-WEATHER significantly outperforms models trained from scratch for time series analysis
across various tasks and scenarios with minimal parameter tweaks, it still faces two primary limitations:

* Limited Dataset Scale: Due to constraints on computational resources and operational costs, we
evaluated the performance of LM-WEATHER using the real-world datasets that did not approach the
scale of tens of terabytes often required for training large-scale meteorological models. This limitation
does not affect LM-WEATHER to be extended as a general framework for regional weather trend
analysis. This framework supports the analysis of on-device meteorological variables and can be
further developed and adapted for additional applications.

* Dependence on PLMs’ Quality and Performance: Although LM-WEATHER leverages PLMs to
achieve high efficiency and customization on heterogeneous devices, this dependency means that the
quality and the performance of LM-WEATHER are intrinsically tied to the underlying PLMs. Should
there be inherent limitations or biases within the PLMs, these could translate to the meteorological
modeling performance. Conversely, if conditions allow the use of a more powerful LLM, LM-
WEATHER’s performance can be significantly improved. This might give the community more
opportunities to explore the future road-map.

F.3 Future Works

In future work, we aim to broaden the use of LM-WEATHER across more on-device variable modeling appli-
cations. We also plan to incorporate additional types of data, including satellite and radar imagery, as well
as textual weather descriptions, to advance towards a more generalized approach to on-device meteorological
variable modeling.
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Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]

Justification: The main claims made in the main abstract and introduction has accurately reflected the
paper’s contributions and scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims made in the
paper.

¢ The abstract and/or introduction should clearly state the claims made, including the contributions
made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.
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attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
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has limitations, but those are not discussed in the paper.

¢ The authors are encouraged to create a separate "Limitations" section in their paper.

¢ The paper should point out any strong assumptions and how robust the results are to violations of
these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide
closed captions for online lectures because it fails to handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to address problems
of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete
(and correct) proof?

Answer: [Yes]
Justification: This paper provide the full set of assumptions and a complete proof.
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¢ The answer NA means that the paper does not include theoretical results.
* All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
¢ All assumptions should be clearly stated or referenced in the statement of any theorems.
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* The proofs can either appear in the main paper or the supplemental material, but if they appear in
the supplemental material, the authors are encouraged to provide a short proof sketch to provide
intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

¢ Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental
results of the paper to the extent that it affects the main claims and/or conclusions of the paper
(regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: This paper has fully disclosed all the information needed to reproduce the main experi-
mental results.

Guidelines:

* The answer NA means that the paper does not include experiments.

« If the paper includes experiments, a No answer to this question will not be perceived well by the
reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

« If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might suffice,
or if the contribution is a specific model and empirical evaluation, it may be necessary to either
make it possible for others to replicate the model with the same dataset, or provide access to
the model. In general. releasing code and data is often one good way to accomplish this, but
reproducibility can also be provided via detailed instructions for how to replicate the results,
access to a hosted model (e.g., in the case of a large language model), releasing of a model
checkpoint, or other means that are appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe the
architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should either be
a way to access this model for reproducing the results or a way to reproduce the model (e.g.,
with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: This paper has provided access to the code, but due to the size of the dataset, additional
releases are required.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

¢ While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

¢ The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.
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* The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

* Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]
Justification: This paper has specified all the training and test details.
Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail that is
necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-
tion about the statistical significance of the experiments?

Answer:

Justification: The experiments in this paper were conducted under five different random seeds and
averaged to from the final reprot.

Guidelines:

¢ The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

» The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

* The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

¢ The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error of the
mean.

* Itis OK to report 1-sigma error bars, but one should state it. The authors should preferably report
a 2-sigma error bar than state that they have a 96% Cl, if the hypothesis of Normality of errors is
not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]
Justification: This paper has provided sufficient information on the computer resource.
Guidelines:

¢ The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud
provider, including relevant memory and storage.
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* The paper should provide the amount of compute required for each of the individual experimental
runs as well as estimate the total compute.

¢ The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into
the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code
of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This research is conducted in the paper conform, in every respect, with the NeurIPS code
of Ethics.

Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

« If the authors answer No, they should explain the special circumstances that require a deviation
from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consideration due
to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts
of the work performed?

Answer: [Yes]

Justification: This paper has discussed both potential positive societal impacts and negative societal
impacts of the work performed.

Guidelines:

¢ The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal impact or
why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses (e.g.,
disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied to particular
applications, let alone deployments. However, if there is a direct path to any negative applications,
the authors should point it out. For example, it is legitimate to point out that an improvement in
the quality of generative models could be used to generate deepfakes for disinformation. On the
other hand, it is not needed to point out that a generic algorithm for optimizing neural networks
could enable people to train models that generate Deepfakes faster.

¢ The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-
ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the
efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or
scraped datasets)?

Answer: [Yes]
Justification: This paper has described the relevant safegurads adopted.
Guidelines:

* The answer NA means that the paper poses no such risks.

¢ Released models that have a high risk for misuse or dual-use should be released with necessary
safeguards to allow for controlled use of the model, for example by requiring that users adhere to
usage guidelines or restrictions to access the model or implementing safety filters.
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» Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.
12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]
Justification: This paper has noted the original owners of the assets used.
Guidelines:

* The answer NA means that the paper does not use existing assets.

¢ The authors should cite the original paper that produced the code package or dataset.

¢ The authors should state which version of the asset is used and, if possible, include a URL.
¢ The name of the license (e.g., CC-BY 4.0) should be included for each asset.

» For scraped data from a particular source (e.g., website), the copyright and terms of service of
that source should be provided.

« If assets are released, the license, copyright information, and terms of use in the package should
be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

 For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.
13. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer: [Yes]
Justification: This paper introduces new datasets and has been described in detail.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their sub-
missions via structured templates. This includes details about training, license, limitations,
etc.

* The paper should discuss whether and how consent was obtained from people whose asset is
used.

¢ At submission time, remember to anonymize your assets (if applicable). You can either create an
anonymized URL or include an anonymized zip file.
14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
¢ The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.
¢ Including this information in the supplemental material is fine, but if the main contribution of the
paper involves human subjects, then as much detail as possible should be included in the main
paper.
* According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human Subjects

Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?
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Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

¢ The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly state
this in the paper.

¢ We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

* For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.
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