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Abstract

This paper demonstrates that pre-trained language models (PLMs) are strong
foundation models for on-device meteorological variables modeling. We present
LM-WEATHER, a generic approach to taming PLMs, that have learned massive
sequential knowledge from the universe of natural language databases, to acquire
an immediate capability to obtain highly customized models for heterogeneous
meteorological data on devices while keeping high efficiency. Concretely, we
introduce a lightweight personalized adapter into PLMs and endows it with weather
pattern awareness. During communication between clients and the server, low-
rank-based transmission is performed to effectively fuse the global knowledge
among devices while maintaining high communication efficiency and ensuring
privacy. Experiments on real-wold dataset show that LM-WEATHER outperforms
the state-of-the-art results by a large margin across various tasks (e.g., forecasting
and imputation at different scales). We provide extensive and in-depth analyses
experiments, which verify that LM-WEATHER can (1) indeed leverage sequential
knowledge from natural language to accurately handle meteorological sequence, (2)
allows each devices obtain highly customized models under significant heterogene-
ity, and (3) generalize under data-limited and out-of-distribution (OOD) scenarios.
Code available on https://github.com/shengchaochen82/LM-Weather.

1 Introduction

Accurately modeling weather variation pattern from large amount of meteorological variables se-
quences is increasingly vital for providing efficient weather analysis support for disaster warning.
Recently, the promise of learning to understand weather pattern from data via deep learning (DL) has
led to an ongoing paradigm shift apart from the long-established physics-based methods [1, 2].

Mining potential patterns from meteorological sequences that collected from different regions, includ-
ing forecasting and imputation, is one of the most important problems in meteorology. Significant
progress has been made by several latest time series approaches [1, 3, 4]. These approaches formulate
meteorological variable modeling as an end-to-end spatio-temporal learning problem. This overlooks
the reality that ground weather devices distributed globally gather vast amounts of data quickly. The
sheer volume of data, coupled with limited network capacity, necessitates local processing on the
devices, making centralised learning challenging [5]. On-device intelligence enables edge devices to
compute independently, offering a primary solution to the problem.

Federated Learning (FL) [7] is a promising on-device intelligence implementation that collaboratively
train a uniform model across devices without exchanging raw data. However, the model often under-
perform due to data heterogeneity among clients. Personalized FL (PFL) provides new insights for
on-device intelligence that allows each device obtains customized models for providing personalized
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Figure 1: Framework Overview. (a) Schematic of LM-WEATHER, each client using personalized
adapter to endow the PLM for local weather awareness, only low-rank matrices are transmitted
to enhance efficiency during communication; (b) Brief structure of PLM on each client, detailed
architecture can be found in Appendix; (c) Task Adapter Generation, the multivariate weather series
input splits into two paths. The first path isolates the trend, seasonal, and residual elements, which
each go through independent generator to produce specific adapters; (d) Architecture of the generator
for each decomposed element; (e) Schematic diagram of Channel-Independent Patching [6].

insights [8, 9]. Albeit PFL methods showing revolutionized capability in this field, we argue that the
current advancements are not necessarily at their best in on-device meteorological variable modeling
as three major obstacles remain and hinder further progress:

(i) Challenge of Heterogeneity. Weather data’s heterogeneity, unlike that of images or text,
arises mainly from the unique characteristics of data collected by weather devices in various
regions, such as tropical or arid areas. Furthermore, sensor malfunctions or extreme events
can lead to collection disruptions or inconsistent missing data, which significantly increase
the differences in data distribution across devices.

(ii) Underperformed Shallow Network Structures. The vast and varied data gathered by
weather devices challenge simpler neural network models to generalize effectively. Further-
more, the frequent updates of weather data (hourly or by the minute) require neural models
on devices to train and infer more often. This demand is hard to meet with deeper models
that, while more performant, are also more resource-intensive.

(iii) Resource-constrained Weather Devices. From a computation perspective, weather devices
cannot afford of training complex neural models from scratch, especially for foundation
models [4]. From a communication perspective, transmitting complete model during the
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aggregation phase in FL/PFL significantly increases communication overhead, which is
impractical for real-time weather modeling.

Therefore, a compact foundational model (FM) is crucial for personalized on-device weather modeling.
Yet, there’s a gap in FMs for observational data. Models trained on large-scale simulation data struggle
in practical applications because of notable differences in data formats and parameter scales [1, 4].

Inspired by the impressive progress of large language models (LLMs) in natural language process-
ing, recent literature in time series analysis research has also demonstrated that pre-trained LMs
provide excellent performance over dedicated models for time series analysis with tuning [10] or
reprogramming [11]. This comprehensive and thorough sequence knowledge from language models
can be effortlessly transferred across domains without large-scale parameter tuning. Thus, an exciting
research question naturally arises:

Question: Since PLMs are powerful sequence modelers, can we leverage PLMs as foundation
models to achieve personalized on-device meteorological variable modeling?

In this paper, we show that pre-trained language models (PLMs) can as outstanding foundation models
that tuned on each device with low cost can achieve personalized on-device weather pattern modeling.
We propose LM-WEATHER, a generic approach to taming PLMs to understand heterogeneity on-
device weather data. As shown in Fig.1a, we conduct a local tuning on an uniform PLM (e.g.,
GPT2), where lightweight personalized adapters are implanted to endow PLMs with weather pattern
awareness by decomposing weather sequence to implicit knowledge (e.g., seasonal, trend). During
communication between client and server, fewer parameters are shared globally while locally retained
adapters are enforced to resist heterogeneity and facilitate privacy-assured fusion of global knowledge.

We highlight our contributions and findings as follows:

• We introduce LM-WEATHER, a generic approach that transforms Pre-trained Language
Models as the foundation model to customized on-device meteorological variable model-
ing via personalized adapter. LM-WEATHER yields preferable meteorological variable
sequences modeling, while being parameter-, communication-, and data-efficient.

• We collect and compile four real-world versatile datasets for on-device meteorological
variable modeling across regions. As opposed to simulated datasets such as ERA5 [12],
our datasets are all real-time observations. These datasets based on real-world practice and
challenging, provide a pioneer in the field of on-device meteorological variable modeling.

• Experiments show that LM-WEATHER advances the state-of-the-art methods by a large
margin across various setting while keeping 3.7% of parameters communication. LM-
WEATHER also demonstrates superior communication efficiency in the context of meteoro-
logical variable modeling, beating FL baselines tailored to reduce communication overhead.

• In particular, we find that LM-WEATHER can accurately handle structurally non-
deterministic sequences (e.g., differences in time or variable dimensions across devices)
thanks to the learned sequences knowledge from pre-trained LMs. We also find that LM-
WEATHER can indeed be spatio-temporal sequences sensitive, thereby better modeling the
weather pattern specificity of those high distribution similarity.

• We find that LM-WEATHER can work well in data-limited environments across various
few-shot settings. We further evaluate zero-shot generalizability of LM-WEATHER in
modeling complex weather patterns of unseen data, including different group of datasets
and other devices, and observe superb performance.

We highlight that the goal of this study is not to compete but instead to complement current on-device
meteorological variables modeling framework. Today’s climate foundation models are typically
trained from scratch, utilizing exceptionally large datasets (nearly 100TB [4, 13]) and incurring
substantial computational costs [1]. We hope that LM-WEATHER offers a cost-effective alternative
for modeling meteorological variables on-device, thereby enabling accurate regional weather trend
analysis. In addition, the dataset we complied can be the important resource to provide exploring
chances for this field, facilitating future research.
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2 Preliminaries

2.1 On-device Meteorological Variable (Sequence) Modeling

The on-device meteorological variable (sequence) modeling challenge involves predicting future
sequences from past observations for forecasting or predicting missing values for imputation on each
device. While traditional physics-based approach this as a complex problem of solving multilevel
atmospheric equations [14], recent deep learning techniques have shown significant potential in
uncovering patterns for better weather prediction [4, 2].

Problem Formulation On-device meteorological variable modeling can be formulated as an end-
to-end sequence-to-sequence learning problem for each device without exchange raw data. Formally,
a parameterized local model for i-th device Mi

θ is tasked with predicting the weather sequence,

Mi
θ : Xi → X̂i (1)

where the Xi ∈ RL×C and X̂i ∈ RL′×C′
denote the input and output sequences on i-device, L and

L′ is the input length and output length, C and C ′ is the number of input and output variable. Note
that the L′ → L when performing imputation. The local learning objective on each device is to
find the model parameter θ that minimize the distance between X̂i and Xi given sufficient weather
sequence data. The overall optimization objective is based on FedAvg,

F (θ): = argmin

N∑
i=1

ni

n
Fi(θi|{Di}), (2)

where ni and n is the number of samples held by the i-th client and all clients1, respectively, F (θ|{D})
denotes the local objective function, {D} is the local data.

2.2 Language Models in Time Series

Language models (LMs) trained on large-scale sequence data have shown extraordinary advances
and led to a significant paradigm shift in NLP, boosting machines in understanding human languages
(BERT/MLM-style) and synthesizing human-like text (GPT/CLM-style [15]). Analogies between
time series and human languages have long been noted [16]. Recent advancements in time series
analysis have demonstrated the effectiveness of PLMs in modeling time series [17, 11]. Although
some of those have shown that PLMs can beat time series-specific models in updating a minor fraction
of parameters [18]. As such, it is exciting to expect cutting-edge techniques of language modeling can
tackle weather variables sequence-related problems rather than considering train climate foundation
models [4, 1] from scratch that are heavy and expensive, and are trained from simulated data.

3 Taming PLMs for On-device Meteorological Variable (Sequence) Modeling

Overview We proposed a generic framework named LM-WEATHER that encouraging PLMs to
yield accurate prediction while keeping high efficiency for each device. The architecture is illustrated
in Fig. 1. To endow PLMs with weather pattern awareness, we introduce a lightweight personalized
adapter into PLMs (e.g., GPT2 [15]) such that the emergent ability of sequence modeling that
transferred from text into weather is activated. To achieve cross-domain knowledge transfer with
minimal effort while maintaining the sequence modeling capabilities of PLMs as intact as possible,
we introduce lightweight operations in it enables both clients and servers to achieve a good trade-off
between performance and efficiency (e.g., computation and communication).

3.1 Local Training on Each Device

Our LM-WEATHER refines PLMs for personalized weather sequence modeling on heterogeneous
devices using a modular, plug-and-play architecture. Specifically, we introduce personalized adapter
consists of (1) Task Adapter from latent weather knowledge and (2) Parameter Adapter that converts
representation from the PLM into into weather forecasts. In addition, we employ lightweight
operations in local training to boost computational efficiency.

1The words ‘client‘ and ‘device‘ have the same meaning in our paper.
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Task Adapter. To provide PLMs with richer effective information to activate their sequence
modeling capabilities in the target knowledge domain, similar to text-based prompts in language
to LLMs in NLP, we constructed task adapters by decomposing the input weather sequences into
multimodal latent statistical information,

X k
Trend + X k

Seasonal + X k
Residual = Decomp(X k), (3)

where X k ∈ RL×1 denote the k-th variable in weather sequence X ∈ RL×C , the trend component
XTrend and the seasonal component XSeasonal captures the underlying long-term weather pattern
and encapsulates the repeating short-term weather cycles, respectively. Furthermore, the residual
component XResidual represents the remainder of the sequence after the trend and seasonality have been
extracted. Note that XTrend, XSeasonal, and XResidual have the same shape as X . This decomposition
explicitly enables the identification of unusual observation and shifts in seasonal patterns or trends.
The XTrend, XSeasonal, XResidual are used to generate Task Adapter via an unified generator as Fig. 1c
& Fig. 1d that consisting of Token Embedding, Position Embedding, and Temporal Embedding.
Specially, we use one-dimensional convolution operation to map each each specific sample X k

while keeping raw shape to generate Token Adapter PTO. Additionally, we use a trainable lookup
table to map each point’s explicit position in the entire sequence, to generate Position Adapter PPO.
Furthermore, we separately encode different time attributes such as minutes, hours, days, weeks, and
months, via trainable parameters to dynamically model complex temporal shifts, to generate Temporal
Adapter PTE. Finally, for each decomposition components, corresponding generated adapters can be
obtained by aggregating Token Adapter PTO ∈ RL×C , Position Adapter PPO ∈ RL×C , and Temporal
Adapter PTE ∈ RL×C as Pd = P d

TO + P d
PO + P d

TE, where d ∈ {Trend,Seasonal,Residual}, this
means that we can obtain PTrend,PSeasonal,PResidual. Details about the generator in Appendix B.5.

Lightweight Operations. To enhance the PLMs’ ability to represent complex inputs while reducing
the computational burden to adapt to low-resource devices, we introduce lightweight operations,
which includes channel-independent patching (CIP, Fig. 1e) [6] for input and efficient tuning of
parameters for PLMs. Among them, CIP splits the multivariate sequence into separate univariate
sequences, each processed by a single model with length Lp. This approach outperforms the original
method of mixing channels by treating the variables as independent. It enables the model to capture
channel interactions indirectly through shared weights, leading to improved performance without
directly modeling the complexity of multiple data channels. The total number of inputs patches is
P =

(T−Lp)
S +2, where S denotes the horizontal sliding stride. Given these patches X i

P ∈ RP×Lp , we

use rearrange operation and a trainable FFN embed them as X̂ i
P ∈ RP×dm , where dm is dimensions

created by the FFN. We also introduce a low-rank adaptation (LoRA) [19] inside PLMs aiming at
language modeling for lightweight fine-tuning of attention layers to achieve cross-modal/-domain
knowledge transfer from text sequences to weather sequences with minimal effort.

Parameter Adapter. To adapt PLM outputs for downstream weather sequence modeling, we
introduceParameter Adapter, a simple FFN with a single linear layer positioned after the PLM. This
adapter transforms the PLM’s output to match the prediction horizon, formalized as follows:

X̂ = FFN(Mθ(Concat[P̂Trend, P̂Seasonal, P̂Residual, X̂ ])), (4)

where the P̂Trend, P̂Seasonal, P̂Residual, and X̂ are obtained from CIP based on PTrend, PSeasonal, PResidual,
and X . The key objectives are twofold: (1) to enrich the PLM’s cross-modal representations by
incorporating task-specific knowledge, and (2) to enhance the PLM’s output accuracy while preserving
its inherent knowledge through the integration of weather data for cross-domain knowledge transfer.

3.2 High-efficiency Communication Between Clients and Server

To avoid data silos and counteract the performance disparities caused by data heterogeneity while
ensuring efficient communication, we update personalized adapters locally and share low-rank
parameters globally in each round. Specifically, the local PLM Mθ can be formulated as below:

Mθ → Mθ,t(Communication) +Mθ,f (Locally) (5)
where Mθ,t denotes the trainable parameter from the low-rank matrices of query and value in
attention modules, Mθ,f is the frozen parameter (mainly the PLM backbone) and other trainable
ones (primarily for the personalized adapter). During client-server communication, only Mθ,t is
transmitted and averaged using FedAvg [7]. At the start of the next training round, the updated Mθ,t

is broadcast to clients for further updates. Privacy is further protected by sending minimal parameters.
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4 Main Theorems

Theorem 4.1 (Decomposition Rationality from Time Series). Given a weather series X =
XTrend,t + XSeasonal,t + XResidual,t, t ∈ [t1, tn]. Let E = {e1, e2, ..., en} denotes a set of orthogonal
bases. Lets ESeasonal ⊆ E denote the subset of E on which XSeasonal,t has non-zero eigenvalues
and ETrend ⊆ E denote the subset of E on which XTrend,t has non-zero eigenvalues. If XTrend,t and
XSeasonal,t are not orthogonal, i.e.,

∑n
i=1 X i

Trend,tX i
Seasonal,t ̸= 0, then ETrend

⋂
ESeasonal ̸= 0, i.e., E

can not disentangle the two signals onto two disjoint set of bases.
Theorem 4.2 (Exchange Low-Rank Matrices Ensures Privacy). Given a on-device weather
modeling framework based on federated learning that gloabl optimization object is F (θ) =∑i=1

n pif({Di}; θ), where f(x; θ) is the loss function of i-th client, {Di} is dataset of i-th client, and
pi and θ denote the data distribution weight of client i and the model parameters, respectively. Given
that the parameters θ of the PLM Mθ broadcasted by the server consist of two parts: a frozen part
Mθ,f and a trainable part Mθ,t, interacting only the low-rank matrix parameters Mθ,l ⊂ Mθ,t is
a subset of trainable part Mθ,t during each round ensures privacy.

5 Experiments

In this section, we first present the real-world datasets that we have collected and compiled for on-
device meteorological variable modeling, and second, we evaluate LM-WEATHER on these datasets,
which involves normal scenario, a data-limited few-shot scenario, and a zero-shot scenario with no
training data (OOD). Please refer to Appendix for more detailed information about proposed datasets
and additional results of all evaluations (e.g., full results, additional findings & experiments).

5.1 Datasets

Despite the proliferation of reanalysis data aimed at building frameworks for global climate analysis,
these datasets often struggle to model regional weather trend due to: (1) they depend on numerous
simulations of atmospheric equations, introducing biases inconsistent with real observations, and (2)
they face challenges in refining their scale to suit specific regional applications. Hence, we collected
real observational data from various weather stations across different regions. We then organized this
data into two series, each comprising two distinct datasets, to underscore the heterogeneity inherent
in real-world settings. For detailed information on these datasets, please see the Appendix B.1.

On-device Weather Series 1# (ODW1). The dataset gathered from 15 ground weather stations
across China, Japan, and South Korea, encompasses over 20 variables. It has been divided into two
subsets: ODW1T has a heterogeneous time span, meaning the data collection start and end times
vary by location. and ODW1V extends ODW1T by adding variability in the observed variables;
while one variable remains constant at each station, the others vary.
On-device Weather Series 2# (ODW2). This dataset consists of data from 36 weather observation
stations in the United States, Canada, and Israel, covering 5 different variables with a temporal
resolution of 1 hour. Following the dataset setting of ODW1, the dataset was also subdivided into
two different dataset, including ODW2T and ODW2V.

5.2 Setup

Baseline. Since our framework is based on a language model, we compare with DL-based SOTA
time series models, including Transformer-based methods: Transformer [20], Informer [3], Re-
former [21], Pyraformer [22], iTransformer [23], and PatchTST [6], and recent competitive models:
GPT4TS [17], DLinear [24] and LightTS [25]. Note that our setting is FL-based, so we place them in
FL and rename them FL-(baseline) like FL-Transformer, etc., and all aggregation methods used in
above models is FedAvg [7]. In addition, we report a variants of LM-WEATHER, LM-WEATHER-AVE
that based on FedAvg without personalization. Detailed information are in Appendix B.2.

Basic Setup. We focus on on-device meteorological variable forecasting and imputation tasks.
For forecasting, we create scenarios for predicting a single variable (multivariate-univariate) and
for predicting all variables (multivariate-multivariate). The main text only includes multivariate-to-
multivariate forecasting results due to page constraints. For multivariate-to-univariate forecasts, refer
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to the Appendix E. In imputation, we use sequence lengths of {96, 192, 336, 720} and apply three
different masking probabilities {25%, 35%, 50%} to represent missing data. The main manuscript
shows imputation results for a 50% masking ratio. For more details on the setup, please refer to
Appendix B.3. All our experiments are repeat five times and we report the averaged results.

5.3 Main Results

In this section, we evaluate LM-WEATHER and baseline methods on four on-device meteorological
variable modeling datasets in general experiments to validate its effectiveness.

Setups & Results of Forecasting Tasks. Input length Lb is fixed to 192, and we use four different
prediction horizons Lf ∈ {96, 192, 336, 720}. Evaluation metrics include mean absolute error
(MAE) and root square mean error (RMSE). The brief results is shown in Tab. 1, where our LM-
WEATHER outperforms all baselines in most cases and significantly so to the majority of them.
Particularly noteworthy is the comparison with GPT4TS that involves fine-tuning PLMs, where
LM-WEATHER has an average 9.8% improvement over FL-GPT4TS (MAE reported), and even
the variant LM-WEATHER-AVE has an average 4% improvement over FL-GPT4TS. In addition,
LM-WEATHER shows significant average performance gains of 11.2% and 19% w.r.t. MAE relative
to other SOTA such as FL-DLinear and FL-PatchTST.

Table 1: Results under on-device meteorological variable forecasting task (multivariate-to-
multivariate). A lower value indicates better performance. Bold: the best, Underline: the second best.
Complete results can be found at Appendix E due to page limitation.

Method LM-WEATHER-AVE LM-WEATHER FL-GPT4TS FL-Reformer FL-Pyraformer FL-DLinear FL-PatchTST FL-iTransformer FL-LightTS FL-Transformer FL-Informer

Dataset Length MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

ODW1T

96 44.1 74.8 42.3 71.1 46.3 78.5 70.7 92.9 67.2 86.1 49.7 78.6 45.0 77.0 48.4 80.2 54.8 85.6 50.7 82.1 51.9 83.2
192 46.3 77.5 44.4 73.6 48.6 81.3 75.1 98.3 70.0 90.9 52.3 81.8 47.3 79.8 51.8 84.3 59.5 90.6 52.1 84.0 52.9 84.6
336 47.9 79.3 45.8 75.2 50.3 83.2 79.8 100.5 74.1 92.8 53.9 83.7 49.0 81.7 54.5 87.3 64.0 94.6 52.9 85.2 53.5 85.6
720 51.8 83.0 49.2 78.5 54.4 87.2 87.1 102.9 80.5 95.2 57.2 87.3 53.3 85.6 60.1 93.1 72.4 102.7 55.4 87.6 55.3 87.4
Avg. 47.5 78.7 45.4 74.6 49.9 82.5 78.2 98.7 73.0 91.3 53.3 82.8 48.6 81.0 53.7 63.7 62.7 93.4 52.8 84.7 53.4 85.2

ODW1V

96 42.7 69.5 42.3 69.6 44.0 71.4 42.9 67.8 57.7 67.2 46.4 73.3 44.3 69.6 56.8 76.8 48.0 75.1 67.0 89.4 59.0 80.3
192 45.5 72.6 44.4 71.7 47.0 75.8 48.4 75.4 59.2 69.4 47.9 75.1 46.8 72.1 55.0 75.0 49.1 79.2 69.9 93.0 61.2 82.8
336 47.2 74.3 46.0 72.4 48.8 77.7 51.0 77.0 63.4 73.3 49.1 76.9 48.5 74.8 62.4 83.7 50.8 77.9 71.4 94.8 63.7 85.8
720 51.2 78.2 49.7 74.0 53.3 81.7 54.5 82.3 67.3 76.1 52.5 80.3 54.3 79.1 72.1 96.2 54.7 82.7 76.2 87.3 68.4 91.8
Avg. 46.6 73.6 45.6 71.9 48.3 76.7 49.2 75.6 61.9 71.5 49.0 76.4 48.5 73.9 58.1 85.0 50.7 78.7 71.1 91.1 63.1 85.2

ODW2T

96 64.3 88.2 62.8 85.5 66.8 91.7 100.3 126.3 95.0 120.3 67.9 84.7 70.2 88.1 68.6 86.5 68.4 85.4 85.0 103.0 84.7 102.7
192 67.7 91.5 66.2 89.1 71.1 96.1 102.1 130.3 99.9 125.8 71.4 88.1 72.2 90.7 71.1 88.9 71.9 88.9 85.0 103.0 84.9 102.8
336 69.5 93.7 67.9 91.1 72.9 98.4 104.2 130.0 102.0 128.5 73.0 89.5 73.0 91.9 71.8 89.6 73.7 90.5 82.6 100.5 84.8 102.9
720 72.6 97.3 70.7 94.6 76.2 101.2 107.3 134.2 104.2 131.4 76.1 92.9 75.1 93.3 72.9 91.0 76.7 93.7 84.1 105.1 85.4 103.8
Avg. 68.5 92.7 66.9 90.1 71.8 96.9 103.5 130.2 100.3 126.5 72.1 88.8 72.6 91.0 71.1 89.0 72.7 89.6 84.2 102.9 84.9 103.1

ODW2V

96 76.8 99.7 65.1 88.4 78.5 102.7 89.6 112.7 89.1 112.5 74.8 96.8 76.3 99.9 73.5 97.7 92.2 117.7 77.0 100.1 77.4 100.4
192 77.9 100.8 68.3 91.4 79.7 103.8 90.5 114.2 96.4 120.1 76.6 98.9 79.9 103.3 78.8 103.6 100.5 128.1 78.3 101.8 78.0 101.1
336 78.5 101.5 69.9 93.0 80.3 104.5 94.2 119.3 98.4 122.2 77.6 100.2 81.8 105.3 82.1 107.5 105.5 134.4 79.4 103.3 78.7 102.0
720 79.9 103.6 72.9 96.5 82.0 106.7 97.4 120.4 100.5 125.0 79.6 103.0 86.2 100.2 86.2 112.7 111.0 141.3 86.1 112.3 81.3 105.6
Avg. 78.3 101.4 69.0 92.3 80.1 104.4 92.9 116.6 96.1 120.0 77.2 99.7 81.1 102.2 80.2 105.4 102.3 130.4 80.2 104.4 78.8 102.2

1st Count 0 29 0 0 4 0 0 0 0 0 0

Setups & Results of Imputation Tasks. Our brief results are in Tab. 2, where LM-WEATHER
consistently surpasses all baselines, outperforming FL-GPT4TS by 5.7%. LM-WEATHER remains
competitive even when compared with the SOTA, FL-PatchTST, FL-LightTS, and FL-DLinear.

Table 2: Results under on-device meteorological variable imputation task, where random masking
ratio is 50%. A lower value indicates better performance. Bold: the best, Underline: the second best.
Complete results can be found at Appendix E due to page limitation.

Method LM-WEATHER-AVE LM-WEATHER FL-GPT4TS FL-Reformer FL-Pyraformer FL-DLinear FL-PatchTST FL-iTransformer FL-LightTS FL-Transformer FL-Informer

Dataset Length MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

ODW1T

96 22.4 43.5 21.7 41.8 23.3 45.2 63.7 88.4 62.2 85.9 29.2 50.8 28.9 54.6 22.8 44.5 24.4 43.7 58.3 82.8 70.8 99.6
192 23.4 43.7 22.6 42.0 24.6 45.9 67.2 91.2 65.5 88.5 28.7 50.2 47.5 77.3 23.8 44.1 25.7 45.3 57.3 82.4 66.3 92.1
336 24.1 44.1 23.2 42.4 25.3 46.3 70.4 93.4 68.5 90.6 28.3 49.4 48.6 77.0 27.2 47.7 26.9 46.6 58.4 83.5 36.9 55.3
720 26.0 45.1 24.9 43.3 27.3 47.4 77.9 96.8 75.8 93.9 28.0 49.0 56.6 85.1 36.5 56.2 27.2 47.4 56.6 80.4 71.7 96.7
Avg. 24.0 44.1 23.1 42.4 25.1 46.2 69.8 92.5 68.0 89.7 28.5 49.9 45.4 73.5 27.6 48.2 26.1 45.7 57.6 82.3 61.4 85.9

ODW1V

96 42.1 62.0 41.1 60.4 42.9 63.8 43.8 64.9 42.3 53.0 43.0 63.0 53.6 77.1 38.7 58.2 41.5 61.5 37.8 56.9 41.1 59.2
192 43.9 64.5 42.8 62.8 45.6 66.9 45.8 67.6 44.7 56.2 49.3 71.2 57.5 81.5 49.3 68.9 41.9 62.0 44.1 57.4 48.8 66.8
336 45.7 66.6 44.6 64.9 47.5 69.2 47.6 69.8 54.6 65.7 53.4 76.6 60.7 85.0 60.0 79.8 47.3 64.6 48.5 68.0 50.2 67.1
720 47.5 68.7 46.3 66.9 49.4 71.4 49.6 72.0 59.2 73.5 56.8 80.7 63.3 87.4 61.6 80.4 52.5 72.9 52.7 70.1 60.3 77.2
Avg. 44.8 65.5 43.7 63.8 46.4 67.8 46.7 68.6 50.2 62.1 50.6 72.9 58.8 82.7 52.4 71.8 45.8 65.3 45.8 63.1 50.1 67.6

ODW2T

96 38.0 56.6 36.9 54.9 39.1 58.3 50.3 70.3 95.4 120.8 40.8 60.0 38.4 58.6 39.1 58.3 38.8 57.8 65.5 86.6 51.7 72.0
192 38.3 56.6 37.2 54.9 39.8 58.9 52.1 74.2 96.2 122.3 42.9 62.7 66.7 87.8 39.4 58.3 39.5 58.4 71.4 92.8 55.0 75.7
336 43.5 65.5 42.2 63.5 44.8 68.1 56.6 78.9 97.8 125.5 46.0 67.7 68.7 90.1 44.8 67.5 47.8 65.3 66.8 88.8 51.5 72.8
720 47.9 68.8 46.5 66.7 49.8 71.5 64.3 87.7 99.1 129.9 52.8 76.1 70.4 93.5 49.3 71.0 48.0 68.0 67.4 89.2 51.5 73.0
Avg. 41.9 61.9 38.8 61.7 43.4 64.2 55.8 77.8 97.1 124.6 45.6 66.6 61.1 82.5 43.2 63.8 43.5 62.4 67.8 89.4 52.4 73.4

ODW2V

96 28.1 45.3 27.5 44.0 28.4 45.8 50.3 70.3 53.2 72.4 72.1 92.0 39.8 58.4 72.7 94.7 96.4 123.5 52.7 73.2 54.8 76.9
192 28.6 45.3 28.0 44.0 29.2 46.1 51.0 71.1 46.1 65.2 75.7 95.9 44.9 63.7 79.1 102.0 98.6 125.8 53.9 74.7 56.2 78.8
336 33.7 49.8 32.7 48.4 34.9 51.8 54.2 76.6 74.2 97.3 77.3 97.8 50.9 70.1 82.6 106.1 101.2 128.8 54.4 75.4 56.8 79.7
720 37.1 53.1 36.0 51.5 39.3 56.3 59.4 81.7 82.4 100.9 77.1 97.3 59.2 79.3 83.0 106.0 98.5 124.3 55.4 77.5 56.4 78.6
Avg. 31.9 48.4 31.1 47.0 33.0 50.0 53.7 74.9 64.0 84.0 75.5 95.8 48.7 67.9 79.4 102.2 98.7 125.6 54.1 75.2 56.0 78.5

1st Count 0 30 0 0 0 0 0 0 0 0 0

5.4 Few-Shot Learning Experiments

PLMs have demonstrated remarkable few-shot learning capabilities [26]. In this subsection, we
assess whether LM-WEATHER retains this ability in both forecasting and imputation tasks, based on
FL for resource-constrained on-device weather modeling environments.
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Setups and Results of Forecasting & Imputation. For both forecasting and imputation tasks, we
evaluate the few-shot learning capability in scenarios using limited data, specifically, we use training
ratios of 5% and 15% (Our full few-shot learning results (training ratio of 5% and 15%) can be found
at Appendix E.2). The brief 5% few-shot learning results on forecasting and imputation tasks are
depicted in Tab. 3 and Tab. 4, respectively. LM-WEATHER remarkably excels over all baseline
methods, and we attribute this to the successful cross-domain knowledge activation in our local dual
fine-tuning for the PLM. In addition, our LM-WEATHER’s communication mechanism also reduces
the impact of data heterogeneity on performance, which is reflected in the fact that LM-WEATHER
has an average 14.7% and 20% improvement relative to LM-WEATHER-AVE, in the forecasting and
imputation, respectively. In relation to recent SOTA methods such as FL-PatchTST, FL-LightTS, and
FL-DLinear, our LM-WEATHER enhancements surpass 78%, 14.3%, and 72.8% for forecasting,
and 102.1%, 122.1%, and 96.35% for imputation. This means that heterogeneity poses challenge to
baseline and they struggle to understand weather patterns with limited data. Moreover, it implies that
LM-WEATHER can effectively achieve cross-domain knowledge transfer to PLMs. This benfits from
the personalized adapter we integrated into the PLM, coupled with lightweight operations.

Table 3: Few-Shot learning results on forecasting task (5% training data). A lower value indicates
better performance. Bold: the best, Underline: the second best, ‘-‘ denotes insufficient data. Com-
plete results can be found at Appendix E.2.

Method LM-WEATHER-AVE LM-WEATHER FL-GPT4TS FL-Reformer FL-Pyraformer FL-Dlinear FL-PatchTST FL-iTransformer FL-Lights FL-Transformer FL-Informer

Metrics Length MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

ODW1T

96 88.1 95.1 87.3 93.9 91.6 100.9 166.9 296.0 173.6 299.2 92.4 187.5 85.1 182.7 103.3 204.8 185.8 328.3 93.7 193.5 91.1 190.0
192 90.2 98.4 89.6 96.5 95.8 104.6 166.9 297.3 176.0 303.0 94.4 192.4 90.7 191.6 106.7 210.7 188.1 336.0 96.8 200.1 93.5 195.9
336 94.2 101.7 92.2 99.7 100.0 108.2 168.9 297.5 177.6 303.0 95.9 193.2 96.5 197.4 108.7 211.8 188.4 334.6 100.2 203.3 99.3 201.0
720 - - - - - - - - - - - - - - - - - - - - - -
Avg. 90.8 98.4 89.7 96.7 95.8 104.6 167.7 296.9 175.7 301.7 94.2 191.0 90.7 190.6 106.3 209.1 187.5 333.0 96.9 199.0 94.6 195.6

ODW1V

96 79.6 104.3 75.7 98.1 82.0 108.5 101.5 130.2 81.6 107.5 98.8 127.4 327.6 392.4 135.0 168.3 111.0 141.6 116.6 155.8 111.5 144.9
192 87.8 115.5 82.5 108.4 90.8 120.3 107.0 136.7 90.2 118.9 110.4 141.6 334.4 403.4 145.4 180.2 117.5 149.2 123.4 164.1 116.0 152.4
336 103.9 133.4 98.7 125.4 107.0 138.7 113.2 142.4 106.1 137.5 120.0 153.2 341.6 413.7 122.1 153.5 126.3 159.7 133.6 161.3 123.2 167.4
720 - - - - - - - - - - - - - - - - - - - - - -
Avg. 90.4 117.7 85.6 110.6 93.3 122.5 107.2 136.4 92.6 121.3 109.7 140.7 334.5 403.2 134.2 167.3 118.3 150.2 124.5 160.4 116.9 154.9

ODW2T
96 111.0 159.4 99.0 135.5 127.9 178.2 158.3 241.2 173.3 247.1 107.1 152.8 101.2 147.9 115.9 166.3 183.6 273.3 142.3 199.6 158.8 201.3

192/336/720 - - - - - - - - - - - - - - - - - - - - - -
Avg. 111.0 159.4 99.0 135.5 127.9 178.2 158.3 241.2 173.3 247.1 107.1 152.8 101.2 147.9 115.9 166.3 183.6 273.3 142.3 199.6 158.8 201.3

ODW2V
96 105.3 135.7 96.8 122.1 110.2 155.4 151.5 190.7 150.5 189.3 112.2 141.2 115.5 145.8 110.2 143.4 162.1 212.5 106.4 136.8 149.6 188.2

192/336/720 - - - - - - - - - - - - - - - - - - - - - -
Avg. 105.3 135.7 96.8 122.1 110.2 155.4 151.5 190.7 150.5 189.3 112.2 141.2 115.5 145.8 110.2 143.4 162.1 212.5 106.4 136.8 149.6 188.2

1st Count 1 16 0 0 0 0 2 0 0 0 0

Table 4: Few-Shot learning results on imputation task (5% training data), where random masking
ratio is 50%. A lower value indicates better performance. Bold: the best, Underline: the second best,
‘-‘ denotes insufficient data. Appendix E.2 shows our full results.

Method LM-WEATHER-AVE LM-WEATHER FL-GPT4TS FL-Reformer FL-Pyraformer FL-DLinear FL-PatchTST FL-iTransformer FL-LightTS FL-Transformer FL-Informer

Ratio Length MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

ODW1T

96 61.2 121.2 59.9 120.8 62.4 138.6 147.4 261.3 149.5 256.4 110.0 209.1 64.2 147.0 119.0 228.5 173.0 310.8 140.8 260.0 143.9 264.7
192 69.1 130.2 64.7 127.7 67.3 145.2 151.3 267.8 152.0 258.1 110.1 203.4 74.1 155.1 120.9 223.0 172.2 301.4 149.1 262.4 150.3 264.2

336/720 - - - - - - - - - - - - - - - - - - - - - -
Avg. 65.2 125.7 62.3 124.4 64.9 141.9 149.4 264.6 150.8 257.3 110.0 206.2 69.2 151.0 120.0 225.7 172.6 306.1 145.0 261.2 147.1 264.4

ODW1V

96 62.2 134.1 62.8 135.5 67.3 131.2 103.9 189.8 61.5 132.6 112.2 208.4 161.1 281.5 117.6 219.5 119.6 223.5 98.0 198.5 94.2 188.1
192 71.4 140.5 72.2 142.1 74.6 152.7 103.3 182.4 70.6 138.8 113.3 200.6 160.5 272.4 124.5 218.9 122.7 217.8 101.8 191.3 96.7 181.5

336/720 - - - - - - - - - - - - - - - - - - - - - -
Avg. 66.8 137.3 67.5 138.8 71.0 142.0 103.6 186.1 66.1 135.7 112.7 204.5 160.8 276.9 121.0 219.2 121.2 220.7 101.8 194.9 95.5 184.8

ODW2T
96 102.5 156.3 99.4 151.6 112.0 157.2 116.2 161.3 124.9 165.6 123.7 178.3 173.0 256.7 127.3 190.6 133.8 200.3 124.3 187.5 105.7 161.1

192/336/720 - - - - - - - - - - - - - - - - - - - - - -
Avg. 102.5 156.3 99.4 151.6 112.0 157.2 116.2 161.3 124.9 165.6 123.7 178.3 173 256.7 127.3 190.6 133.8 200 124.3 188 105.7 161.0

ODW2V
96 42.4 62.9 35.7 112.1 56.4 77.3 106.8 135.5 70.8 95.5 113.3 148.0 153.8 199.5 101.8 136.4 106.1 142.2 100.1 134.6 89.8 119.0

192/336/720 - - - - - - - - - - - - - - - - - - - - - -
Avg. 42.4 62.9 35.7 112.1 56.4 77.3 106.8 135.5 70.8 95.5 113.3 148.0 153.8 199.5 101.8 136.4 106.1 142.2 100.1 134.6 89.8 119.0

1st Count 0 12 1 0 6 0 0 0 0 0 0

5.5 Zero-Shot Learning (Out of Distribution Modeling) Experiments

Table 5: Results on Zero-Shot Learning (ave. MAE on forecast-
ing/imputation tasks report). Bold: the best, Underline: the second
best, ⇔: domain transferring between datasets.

Setting LM-WEATHER-AVE FL-GPT4TS FL-DLinear FL-PatchTST

1T ⇔ 1V 54.2/48.9 59.4/48.4 50.2/54.9 67.4/69.5
1T ⇔ 2V 92.1/33.2 89.9/34.2 99.4/80.4 96.7/56.4
1T ⇔ 2T 80.4/48.4 87.4/53.5 94.8/67.2 86.5/71.1

2T ⇔ 2V 84.9/33.3 88.2/36.4 106.5/99.1 92.1/55.5
2T ⇔ 1V 57.7/49.6 58.3/47.5 69.1/75.3 74.2/71.1
2T ⇔ 1T 59.5/25.5 63.1/27.1 78.3/57.1 61.2/38.6

1V ⇔ 2V 90.1/36.9 96.7/27.2 114.2/101.2 104.7/59.2
1V ⇔ 2T 79.3/46.1 84.5/47.5 96.9/71.2 89.7/77.4
1V ⇔ 1T 51.2/25.8 53.8/27.2 67.7/54.0 56.4/32.7

2V ⇔ 1V 56.0/51.8 58.5/54.2 70.4/74.2 72.7/69.9
2V ⇔ 1T 59.5/29.6 63.1/30.9 72.9/59.8 60.4/39.9
2V ⇔ 2T 72.1/44.3 76.9/41.2 87.4/66.7 80.5/65.7

1st Count 18 5 1 0

Beyond few-shot learning, PLMs hold
potential as effective zero-shot reason-
ers. We evaluate the zero-shot learn-
ing capabilities of LM-WEATHER
within the framework of cross-domain
adaption. Specifically, we examine
how well a method performs on a
dataset when it is optimized on an-
other dataset, where the model has not
encountered any data samples from
the original dataset. We use fore-
casting/imputation protocol and evalu-
ate on various cross-domain scenarios.
Note that we choose LM-WEATHER-
AVE rather than LM-WEATHER for
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comparison due to it can obtain an unified model for zero-shot experiments whereas LM-WEATHER
is obtain multiple personalized models. The results are in Tab. 5. LM-WEATHER-AVE consistently
outperforms the most competitive baselines by a large margin, over 14.2% and 14.2% w.r.t the
second-best in MAE reduction, in forecasting and imputation, respectively. We attribute this to our
personalized adapter that we implant in PLMs being better at activating the PLM’s knowledge transfer
and domain-adaption capabilities in a resource-efficient manner when modeling weather variables.

5.6 Framework Analysis Experiments

We demonstrate the effectiveness of LM-WEATHER through experiments focused on ablation studies,
computational/communication comparison, and robustness evaluation. For detailed results and further
analysis, please refer to the Appendix D and Appendix E.

Ablation Study. Follow the setting of main experiments, we report our brief ablation results
in Tab. 6, please refer to Appendix E.3 for full results. The results indicate a notable drop in
performance when we omit the weather decomposition components (LM-WEATHER-A/B/C/D).
Additionally, keeping the decomposition term but removing the associated generator leads to a 14.5%
average performance decline. This suggests that our personalized adapter effectively leverages the
PLM’s modeling of weather data. Conversely, when we alter the personalized approach by changing
the shared low-rank matrix to other trainable parameters (LM-WEATHER-F), we observe a significant
performance drop and increased communication costs. Furthermore, moving from LoRA to fully
fine-tuning the attention parameters results in a slight performance gain but incurs over four times
the parameter count and a massive increase in communication overhead, which is inefficient for us.
These outcomes highlight the benefits of the personalized adapter.

Table 6: Ablation results on forecasting (multivariate to multivariate) and imputation (50% masking
ratio, OWD1T dataset). A lower value indicates better performance. Bold: the best, Underline: the
second best, ↓ and ↑ denote performance degradation and performance improvement, respectively.

Method
Task Ablation Perspective Ave. Variations Params.#

Forecasting Imputation Model Component Personalized Method Forecasting Imputation Train.# Comm.#

LM-WEATHER 45.4/74.6 23.1/40.0 Original Original - - 10.38 M 0.38 M

LM-WEATHER-A 50.8/87.6 26.0/47.7 wo Decomposition Original ↓ 11.8% ↓ 12.6% 10.38 M 0.38 M
LM-WEATHER-B 50.9/85.6 25.4/47.1 wo Trend Component Original ↓ 12.1% ↓ 10.0% 10.37 M 0.38 M
LM-WEATHER-C 50.1/83.6 25.0/46.1 wo Seasonal Component Original ↓ 10.3% ↓ 8.2% 10.37 M 0.38 M
LM-WEATHER-D 49.3/81.7 24.4/45.6 wo Residual Component Original ↓ 8.6% ↓ 5.6% 10.37 M 0.38 M
LM-WEATHER-E 53.8/95.6 25.5/47.0 wo Prompt Generator Original ↓ 18.5% ↓ 10.4% 10.36 M 0.38 M
LM-WEATHER-F 49.4/82.3 28.1/52.0 Original w LoRA, Local: Low-Rank Matrix, Global: the rest of trainable param. ↓ 8.8% ↓ 21.6% 10.38 M 10.00 M
LM-WEATHER-G 43.2/71.4 22.4/39.1 Original wo LoRA, Local: Attention Param. Global: Attention Param ↑ 5.1% ↑ 3.1% 52.01 M 41.99 M
LM-WEATHER-H 42.7/71.2 22.2/39.3 Original wo LoRA, Local: Attention Param. Global: the rest of trainable param. ↑ 6.3% ↑ 4.1% 52.01 M 10.00 M

Table 7: Experiment results on parameter comparison
(ave. MAE/RMSE report), Bold: the best.

Method
Task Params.#

Forecasting Imputation Train. Comm. Ratio

LM-WEATHER 45.4/74.6 23.1/42.2 10.38 M 0.38 M 3.70%

FL-GPT4TS 49.9/82.5 25.1/46.2 12.42 M 12.42 M 100%
FL-Reformer 78.2/98.7 69.8/92.5 19.74 M 19.74 M 100%

FL-Pyraformer 73.0/91.3 68.0/89.7 153.32 M 153.32 M 100%
FL-DLinear 63.3/82.8 28.5/49.9 1.06 M 1.06 M 100%

FL-PatchTST 48.6/81.0 45.4/73.5 74.74 M 74.74 M 100%
FL-Itransformer 53.7/63.7 27.6/48.2 26.74 M 26.74 M 100%

FL-LightTS 62.7/93.4 26.1/45.7 1.68 M 1.68 M 100%
FL-Transformer 52.8/84.7 57.6/82.3 45.55 M 45.55 M 100%

FL-Informer 53.4/85.2 61.4/85.9 52.31 M 52.31 M 100%

Parameter Comparison. The results
are shown in Tab. 7. LM-WEATHER
ensures top while only communicate
about 3.7% of the trainable parame-
ters, compared to the baseline that com-
municates the full model parameters.
When compared with competitive meth-
ods, FL-DLinear and FL-LightTS, LM-
WEATHER’s communication overhead is
just 35.9% and 22.6% of theirs, respec-
tively, highlighting LM-WEATHER’s su-
perior communication efficiency.

Communication Efficiency. To further validate the excellent communication efficiency of LM-
WEATHER, we introduce quantitative comparisons by including FL methods tailored to improve
communication efficiency (FedKD [27], FedPAQ [28], FedBF [29], FedAP [29], PromptFL [30])
as baselines2. The results is shown in Table 8, which demonstrate our LM-WEATHER achieves
a significant improvement in communication efficiency while maintaining excellent performance.
Additionally, LM-WEATHER significantly outperforms baseline in terms of both communication
efficiency and performance across different tasks. Even when compared to lightweight baselines

2Due to scenario and model differences, we modified these baselines for LM-WEATHER by applying solely
their strategies to improve communication efficiency, as detailed in Appendix B.2
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(i.e., FL-LightTS/DLinear), LM-WEATHER continues to outperform them. This underscores LM-
WEATHER’s superiority in both communication efficiency and performance.

Table 8: Comparison of LM-WEATHER and baseline that tailored to improve communication effi-
ciency in terms of forecasting (multivariate-multivariate)/imputation (50% masking rate) performance
as well as communication efficiency, with × denotes the improvement in communication efficiency
relative to the standard line (LM-WEATHER-Ave), MAE/RMSE report. Bold: the best.

Method Forecasting Imputation Train. Comm. Params. Comm.

FL-Pyraformer 73.0/91.3 68.0/89.7 153.32 M 153.32 M 0.07×
FL-PatchTST 48.6/81.0 45.4/73.5 74.74 M 74.74 M 0.14×
FL-LightTS 62.7/93.4 26.1/45.7 1.68 M 1.68 M 6.2×
FL-DLinear 63.3/82.8 28.5/49.9 1.06 M 1.06 M 9.8×

LM-WEATHER-Ave 47.5/78.7 24.0/44.1 10.38 M 10.38 M 1×
LM-WEATHER (Ours) 45.4/74.6 23.1/42.4 10.38 M 0.38 M 27.3×

LM-WEATHER (w FedKD) 49.6/76.2 27.5/43.6 10.38 M 1.68 M 6.2×
LM-WEATHER (w FedPer) 52.1/79.0 25.1/44.3 10.38 M 8.46 M 1.2×
LM-WEATHER (w FedBF) 46.2/78.1 23.7/44.0 10.49 M 10.49 M 0.9×
LM-WEATHER (w FedAP) 47.4/79.2 24.3/44.7 10.38 M 9.6 M 1.1×

LM-WEATHER (w PromptFL) 46.0/78.4 23.8/45.1 10.38 M 8.4 M 1.2×

Robustness to Number of Devices. To evaluate LM-WEATHER’s robustness against device count
variations, we assessed the percentage change in performance relative to the default device num-
ber. Our results (Tab. 9) reveals that LM-WEATHER maintains robustness across different device
counts due to several factors: (1) Increasing device numbers during training typically yields slight
performance improvements within a stable range, applicable in both regular and few-shot scenarios.
(2) Additional devices can sometimes impair performance due to imbalances in data distribution,
highlighting non-proportional gains. (3) Adding more devices increases communication overhead,
which may not justify minor improvements, especially in resource-limited settings. These findings
underscore LM-WEATHER’s relative resilience to device count variations and its ability to strike an
optimal balance between performance enhancement and communication overhead.

Table 9: Results of LM-WEATHER under forecasting (multivariate-multivariate) and imputation
(50% masking rate) at different device participation rates [0.1, 0.3, 0.5, 0.7, 0.9], ↑/↓ implies an
increase/decrease in performance relative to the original setting (0.1), MAE/RMSE report, where
15% represents the proportion of data on each client involved in training.

Dataset Rate / Devices
Normal Few-Shot (15%)

Forecasting Imputation Forecasting Imputation

ODW1T

0.1 (2/round) 44.4/73.6 22.6/42.0 64.7/100.4 40.2/68.2
0.3 (5/round) 43.7/72.5 (↑ 1.55) 24.2/43.7 (↓ 5.55) 63.4/99.7 (↑ 1.40) 41.4/68.7 (↓ 1.85)
0.5 (8/round) 42.9/72.0 (↑ 2.85) 21.0/42.1 (↑ 3.90) 63.7/99.2 (↑ 1.40) 42.3/68.5 (↓ 2.8)

0.7 (11/round) 43.9/74.1 (↑ 0.25) 21.8/41.2 (↑ 2.80) 64.5/101.0 (↑ 0.10) 39.5/66.7 (↑ 2.00)
1.0 (16/round) 44.2/74.0 (0 -) 21.3/41.6 (↑ 3.10) 63.6/100.2 (↑ 0.95) 40.4/68.0 (↓ 0.1)

ODW2T

0.1 (4/round) 66.2/89.1 37.2/54.9 89.7/131.8 77.2/112.6
0.3 (11/round) 68.2/89.7 (↓ 1.85) 36.5/53.1 (↑ 2.65) 90.2/132.5 (↓ 0.55) 75.4/110.3 (↑ 2.25)
0.5 (18/round) 65.4/89.2 (↑ 0.55) 36.7/53.4 (↑ 2.05) 89.1/131.4 (↑ 0.50) 76.5/111.2 (↑ 1.10)
0.7 (25/round) 65.7/88.8 (↑ 0.90) 36.1/53.9 (↑ 2.45) 88.9/130.9 (↑ 0.80) 76.9/112.3 (↑ 0.35)
1.0 (36/round) 65.9/89.0 (↑ 0.25) 36.9/55.0 (↑ 0.30) 89.1/130.7 (↑ 0.75) 76.7/112.1 (↑ 0.50)

6 Conclusion and Future Works

This paper demonstrate that pre-trained language models (PLMs) are strong foundation models for
personalized on-device meteorological variable modeling. We propose LM-WEATHER, a generic
framework to taming PLMs to acquire highly customized models for heterogeneous meteorological
data on devices while keeping high efficiency. Concretely, we introduce a lightweight personalize
adapter into PLMs and endow it with weather pattern awareness. Experiments on real-world datasets
demonstrate that LM-WEATHER outperforms the SOTA results by a large margin across various
tasks. In addition, extensive analyses indicate that LM-WEATHER can (1) effectively achieve cross-
domain knowledge transfers, (2) render device with highly customized model while keeping high
efficiency, and (3) generalize under few-shot and zero-shot scenario. In future work, we plan to
extend LM-WEATHER to multimodal weather data (text/image/time-series) and to finer scales.
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APPENDIX: Personalized Adapter for Large Meteorology Model on Devices:
Towards Weather Foundation Models

The appendix includes missing information from our main text, including: Appendix A More Related Work;
Appendix B Experimental Details; Appendix C Theorems and Proof; Appendix D Additional Finding &
Experiment & Discussion; Appendix E Full Experimental Results and Appendix F Additional Statements.

Appendix A More Related Work

In this section, we will discuss in detail advances relevant to our work, which include weather variable modeling,
personalized federated learning, universal time series learning, and large language models (LLMs) in time series.

From Meteorological Variable Modeling to Weather Forecasting. Weather conditions play a crucial
role in sectors such as transportation, tourism, and agriculture. Meteorological factors, including temperature,
humidity, and precipitation, provide essential support and historical insights that enable researchers to analyze
weather trends. For decades, Numerical Weather Prediction (NWP) [14] has been the prevalent method,
employing physical models to simulate and forecast atmospheric dynamics. However, the accuracy of NWP
can be compromised by the uncertainty of initial conditions in differential equations [31, 32], particularly in
complex atmospheric processes, and it requires significant computational resources [5, 33, 34].

The recent exponential growth in weather data has prompted a shift from traditional physics-based methods to
data-driven approaches using machine learning (ML) and deep learning (DL), which bypass physical constraints
in meteorological variables [5]. DL strategies, with their deeper representational capabilities, generally surpass
ML methods. Various deep network architectures have been employed to perform extensive weather modeling
using large-scale reanalysis data [1, 4, 35, 36, 37]. Yet, these methods tend to focus on global weather patterns,
often overlooking the specifics of regional weather variables, and thus fail to offer detailed regional analyses.
Moreover, these models require extensive datasets and substantial computational resources—for example, some
need to train on 192 NVIDIA Tesla V100 GPUs for 16 days [4]. Additionally, prevailing models assume
centralized data storage, which contrasts with the decentralized data collection from diverse ground weather
stations. Our research addresses these challenges by focusing on regional meteorological variables in low-
resource settings, aiming to provide reliable analytical support for weather pattern modeling and understanding.

Personalized Federated Learning. Federated learning (FL) [7] is a distributed learning paradigm that
facilitates the collaborative training of models without exposing data from each participant. Personalized FL
(PFL) aims to train a personalized model for each client. Existing PFLs are based on various techniques.
Refs. [38, 39, 40] add a regularization term that benefits decomposing the personalized model optimization from
global model learning. Refs. [8, 41] share part of the model and keep personalized layers private to achieve
personalization. Ref. [42] enables a more flexible personalization by adaptive weighted aggregation. Ref. [43]
study PFL from a Model-Agnostic Meta-Learning where a meta-model is learned to generate the initialized local
model for each client. This paper tackles on-device meteorological variable modeling from PFL perspective.

Universal Time Series Learning. On-device meteorological variable modeling addresses time series
analysis of complex weather patterns on diverse, low-resource devices. We have expanded this to include task-
specific time series learning. Recent advancements have enhanced Transformer [44] for time series forecasting by
integrating signal processing techniques such as patching [6], exponential smoothing [45], decomposition [24],
and frequency analysis [46]. Among them, PatchTST [6] improves the accuracy of long-term forecasting
compared to other Transformer models. ETSFormer [47] applies principles of power series smoothing within the
Transformer framework to boost efficiency. Similarly, FEDformer [46] merges the Transformer with seasonal
& trend decomposition, offering improved performance and efficiency. Autoformer [45] leverages sequence
periodicity for better dependency discovery and representation, excelling in both efficiency and accuracy.

While these methods excel in efficiency and accuracy, they are typically tailored for narrow-range forecasting on
select classical time series datasets. Real-world weather data, however, often displays more complex patterns
and interconnected variable relationships. Furthermore, weather modeling extends beyond forecasting, rendering
these methods less effective for weather sequences. To improve modeling for intricate weather sequences,
models need the flexibility to adjust to complex distributions and various tasks with minimal training. The ideal
weather models would capture weather patterns accurately, facilitating knowledge transfer, such as between
regions. However, creating versatile weather models remains a challenging endeavor. Recent studies have started
to examine the potential of large-scale climate models [1, 4], utilizing simulated datasets advances. Yet, their
generalizability is hindered by data differences, complex architectures, and the vast number of model parameters.

LLMs in Time Series. Large language models (LLMs) have spurred advances in natural language processing
(NLP). Although time series modeling hasn’t seen similar leaps, the impressive capabilities of LLMs have
led to their use in this field. In general, pre-trained LLMs are often fine-tuned or reprogrammed to model
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time series [18, 11, 10, 17]. Among them, PROMPTCAST [16] and HEALTHLEARNER [26] treat time series
as "text sequences," inputting them directly into LLMs and using prompts for forecasting. [17] dencodes time
series as embeddings for LLM output, showing LLMs’ strength in time series analysis. LLM4TS [18] uses
a two-stage fine-tuning approach to adapt LLMs to time series data. TEMPO [10] breaks down time series
features to leverage LLMs in prediction tasks, while TIME-LLM [11] fine-tunes LLMs with multimodal data,
integrating relevant text prompts for efficient analysis. However, these approaches focus on centralized time
series modeling and overlook the complexities of real-world distributed settings. Weather data, in particular,
has unique challenges like heterogeneity from geographic factors and privacy concerns, making central training
methods both risky and difficult.

Appendix B Experimental Details

B.1 Datasets

Despite the proliferation of reanalysis data aimed at building frameworks for global climate analysis, these
datasets often struggle to model regional weather trend due to: (1) they depend on numerous simulations of
atmospheric equations, introducing biases inconsistent with real observations, and (2) they face challenges
in refining their scale to suit specific regional applications. Hence, we collected real observational data from
various weather stations across different regions. We then organized this data into two series, each comprising
two distinct datasets, to underscore the heterogeneity inherent in real-world settings.

On-device Weather Series 1# (ODW1). The dataset gathered from 15 ground weather stations across
China, Japan, and South Korea, encompasses over 20 variables3. It has been divided into two subsets: ODW1T
has a heterogeneous time span, meaning the data collection start and end times vary by location. and ODW1V
extends ODW1T by adding variability in the observed variables; while one variable remains constant at each
station, the others vary. The temporal resolution of the dataset is 1h. Details are presented in Tab. 10 and Tab. 11.

Table 10: Details about ODW1T dataset, where Start and End indicate the respective beginning
and ending timestamps of data collected at a specific weather station, Samples denotes the count
of weather sequence samples gathered at that station, and Variables refers to the weather variables
included in the data from each station (For the full names of these variables, please refer to Tab. 14).

Weather Station Start (UTC+0) End (UTC+0) Num. of Samples # Variables
Hua-Nan 06/11/2018 16:00 03/19/2020 00:00 230,280

ap, t, mxt, mnt, dt, rh, wvp, p1, p2, p3, p4, p5, wd, ws, mwd, mws, st, hv1, hv2, vv

E-Min 01/23/2019 16:00 06/07/2024 04:00 240,280
Huhehaote 09/02/1028 01:00 06/01/2020 07:00 306,400
Yin-Chuan 10/31/2018 20:00 05/06/2020 07:00 265,220
Shen-Yang 04/09/2018 01:00 08/30/2019 06:00 243,980
Hai-Dian 05/29/2017 16:00 12/05/2018 11:00 266,340
Xin-Du 01/29/2020 08:00 06/29/2021 00:00 248,040
Lin-Zhi 10/13/2019 08:00 03/30/2021 09:00 256,380

Kun-Ming 08/28/2018 07:00 06/13/2020 22:00 314,740
Wu-Han 05/20/2019 01:00 02/17/2021 21:00 247,160
Tokyo 07/17/2017 23:00 01/27/2019 14:00 248,180

Nagoya 05/10/2017 15:00 02/14/2019 17:00 309,680
Hiroshima 05/27/2019 10:00 11/01/2020 03:00 251,420

Seoul 04/28/2017 04:00 11/20/2018 00:00 274,040
Busan 02/24/1029 18:00 07/17/2020 17:00 244,340

On-device Weather Series 2# (ODW2). This dataset consists of data from 36 weather observation stations
in the United States, Canada, and Israel, covering 5 different variables with a temporal resolution of 1 hour.
Following the dataset setting of ODW1, the dataset was also subdivided into two different dataset, including
ODW2T and ODW2V. Detailed information are presented in Tab. 12 and Tab. 13.

Remark. Four standard steps were performed during the collection and compilation of these dataset, as
shown below:

[1] Collection of Raw Meteorological Data. Raw data collection represents the foundational and
initial step in constructing our dataset. We procure open-source raw data from various national
meteorological centers and data repositories, including the National Meteorological Science Data
Center of China4, Korea Meteorological Administration5, Global Surface Meteorological Observations

3We treat the value of each meteorological variable at each timestamp as an independent sample uniformly.
4https://data.cma.cn/
5https://www.kma.go.kr/
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Table 11: Details about ODW1V dataset, where Start and End indicate the respective beginning and
ending timestamps of data collected at a specific weather station, Num. of Samples # denotes the
count of weather sequence samples gathered at that station, and Fixed Variables refers to the shared
variables among different weather stations, and Other Variables is the remain weather variables in
each weather station (For the full names of these variables, please refer to Tab. 14).

Weather Station Start (UTC+0) End (UTC+0) Num. of Samples # Fixed Variable Other Variables
Hua-Nan 06/11/2018 16:00 03/19/2020 00:00 69,084

Temperature

ws, p4, p1, p5, p2
E-Min 01/23/2019 16:00 06/07/2024 04:00 72,072 p1, mwd, p2, wvp, ws

Huhehaote 09/02/1028 01:00 06/01/2020 07:00 91,920 vv, p3, dt, mwd, p4
Yin-Chuan 10/31/2018 20:00 05/06/2020 07:00 79,566 ws, dt, mnt, p3, p2
Shen-Yang 04/09/2018 01:00 08/30/2019 06:00 73,194 wd, st, hv1, mwd, vv
Hai-Dian 05/29/2017 16:00 12/05/2018 11:00 79,902 p5, rh, ap, mxt, mwd
Xin-Du 01/29/2020 08:00 06/29/2021 00:00 74,412 p1, hv1, wvp, mxt, p5
Lin-Zhi 10/13/2019 08:00 03/30/2021 09:00 76,914 ws, vv, p1, hv1, p5

Kun-Ming 08/28/2018 07:00 06/13/2020 22:00 94,422 hv2, mws, mnt, p2, mwd
Wu-Han 05/20/2019 01:00 02/17/2021 21:00 92,148 st, ws, p3, p5, rh
Tokyo 07/17/2017 23:00 01/27/2019 14:00 80,454 p5, st, hv1, ws, hv2

Nagoya 05/10/2017 15:00 02/14/2019 17:00 92,904 mwd, p1, mws, mnt, st
Hiroshima 05/27/2019 10:00 11/01/2020 03:00 75,426 p4, mwd, wd, hv1, dt

Seoul 04/28/2017 04:00 11/20/2018 00:00 82,212 hv1, mwd, vv, rh, p4
Busan 02/24/1029 18:00 07/17/2020 17:00 73,302 p4, p3, wvp, p1, vv

Table 12: Details about ODW2T dataset, where Start and End indicate the respective beginning
and ending timestamps of data collected at a specific weather station, Num. of Samples # denotes
the count of weather sequence samples gathered at that station, and Variables refers to the weather
variables included in the data from each station (For meaning of variables, please refer to Tab. 14).

Weather Station Start (UTC+0) End (UTC+0) Num. of Samples # Variables
Albuquerque 02/26/2016 01:00 11/16/2016 19:00 31,780

h, p, t, wd, ws

Atlanta 03/24/2013 21:00 12/05/2013 18:00 30,715
Beersheba 05/06/2014 06:00 03/26/2015 18:00 35,350

Boston 04/06/2015 10:00 03/23/2016 00:00 35,120
Charlotte 08/10/2013 09:00 04/24/2014 14:00 30,875
Chicago 06/09/2015 17:00 03/22/2016 10:00 34,415
Dallas 04/11/2013 00:00 08/26/2014 11:00 35,463
Denver 06/23/2015 22:00 05/18/2016 02:00 39,510
Detroit 10/30/2012 06:00 08/22/2013 22:00 35,610
Eilat 11/24/2012 19:00 08/02/2013 05:00 30,060
Haifa 05/18/2013 21:00 04/16/2014 14:00 39,915

Houston 12/19/2013 02:00 11/13/2014 02:00 39,490
Indianapoils 01/10/2016 23:00 10/07/2016 04:00 32,435
Jacksonvile 11/11/2012 16:00 09/28/2013 01:00 38,455
Jerusalem 04/22/2015 03:00 02/28/2016 01:00 37,440

Kansas City 06/03/2015 12:00 03/08/2016 21:00 33,535
Las Veges 11/25/2014 09:00 10/19/2015 15:00 39,400

Los Angeles 07/04/2013 08:00 04/28/2014 18:00 35,820
Miami 02/10/2014 10:00 12/05/2014 10:00 35,770

Minneapolis 10/17/2013 03:00 08/31/2014 15:00 38,230
Montreal 08/14/2015 07:00 04/26/2016 06:00 30,725
Nahariyya 12/03/2013 02:00 09/18/2014 01:00 34,685
Nashville 02/08/2017 03:00 11/13/2017 15:00 33,430
New York 09/27/2013 20:00 06/14/2014 15:00 31,185

Philadelphia 12/08/2012 05:00 09/13/2013 20:00 33,565
Phoenix 07/25/2013 15:00 06/05/2014 09:00 37,780

Pittsburgh 10/16/2015 06:00 07/19/2016 16:00 33,300
Portland 10/12/2013 12:00 06/27/2014 18:00 31,000

Saint Louis 09/16/2014 13:00 07/21/2015 06:00 36,935
San Antonio 03/15/2014 01:00 12/03/2014 20:00 31,665
San Diego 07/02/2015 11:00 03/18/2016 00:00 31,155

San Francisco 05/10/2013 06:00 01/21/2014 12:00 30,760
Seattle 08/06/2014 22:00 06/28/2015 05:00 39,045

Tel Aviv District 09/23/2013 06:00 06/27/2014 18:00 33,310
Toronto 12/06/2016 16:00 10/19/2017 15:00 38,045

Vancouver 08/26/2015 10:00 06/02/2016 20:00 33,780

Historical Dataset 6, Canadian Meteorological Data Center 7, and World Weather Data Repository

6https://k.data.cma.cn/mekb/?r=dataService/cdcindex&datacode=A.0020.0002.S001
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Table 13: Details about ODW2V dataset, where Start and End indicate the respective beginning and
ending timestamps of data collected at a specific weather station, Num. of Samples # denotes the
count of weather sequence samples gathered at that station, and Fixed Variables refers to the shared
variables among different weather stations, and Other Variables is the remain weather variables in
each weather station (For the full names of these variables, please refer to Tab. 14).

Weather Station Start (UTC+0) End (UTC+0) Num. of Samples # Fixed Variable Other Variables
Albuquerque 02/26/2016 01:00 11/16/2016 19:00 19,068

Humidity

ws, wd
Atlanta 03/24/2013 21:00 12/05/2013 18:00 18,429 wd,p

Beersheba 05/06/2014 06:00 03/26/2015 18:00 21,210 t, ws
Boston 04/06/2015 10:00 03/23/2016 00:00 21,072 ws, wd

Charlotte 08/10/2013 09:00 04/24/2014 14:00 18,525 t, p
Chicago 06/09/2015 17:00 03/22/2016 10:00 20,649 t, p
Dallas 04/11/2013 00:00 08/26/2014 11:00 21,279 p, wd
Denver 06/23/2015 22:00 05/18/2016 02:00 23,706 t, p
Detroit 10/30/2012 06:00 08/22/2013 22:00 21,366 p, t
Eilat 11/24/2012 19:00 08/02/2013 05:00 18,036 ws, p
Haifa 05/18/2013 21:00 04/16/2014 14:00 23,949 ws, t

Houston 12/19/2013 02:00 11/13/2014 02:00 23,694 p, wd
Indianapoils 01/10/2016 23:00 10/07/2016 04:00 19,461 t, p
Jacksonvile 11/11/2012 16:00 09/28/2013 01:00 23,073 ws, t
Jerusalem 04/22/2015 03:00 02/28/2016 01:00 22,464 ws, p

Kansas City 06/03/2015 12:00 03/08/2016 21:00 20,121 wd, ws
Las Veges 11/25/2014 09:00 10/19/2015 15:00 23,640 p, t

Los Angeles 07/04/2013 08:00 04/28/2014 18:00 21,492 ws, t
Miami 02/10/2014 10:00 12/05/2014 10:00 21,462 wd, ws

Minneapolis 10/17/2013 03:00 08/31/2014 15:00 22,938 t, p
Montreal 08/14/2015 07:00 04/26/2016 06:00 18,435 wd, p
Nahariyya 12/03/2013 02:00 09/18/2014 01:00 20,811 p, ws
Nashville 02/08/2017 03:00 11/13/2017 15:00 20,058 wd, ws
New York 09/27/2013 20:00 06/14/2014 15:00 18,711 t, p

Philadelphia 12/08/2012 05:00 09/13/2013 20:00 20,139 ws, wd, h
Phoenix 07/25/2013 15:00 06/05/2014 09:00 22,668 ws, wd

Pittsburgh 10/16/2015 06:00 07/19/2016 16:00 19,980 wd, ws
Portland 10/12/2013 12:00 06/27/2014 18:00 18,600 ws, p

Saint Louis 09/16/2014 13:00 07/21/2015 06:00 22,161 t, wd
San Antonio 03/15/2014 01:00 12/03/2014 20:00 18,999 t, wd
San Diego 07/02/2015 11:00 03/18/2016 00:00 18,693 t, p

San Francisco 05/10/2013 06:00 01/21/2014 12:00 18,456 p, t
Seattle 08/06/2014 22:00 06/28/2015 05:00 23,427 t, wd

Tel Aviv District 09/23/2013 06:00 06/27/2014 18:00 19,986 t, p
Toronto 12/06/2016 16:00 10/19/2017 15:00 22,827 wd, p

Vancouver 08/26/2015 10:00 06/02/2016 20:00 20,268 wd, ws

from Kaggle 8. This process ensures that the collected weather data from these sources are consistent
in terms of temporal resolution and variable dimensions. All raw data are open-source and can be
freely utilized or modified.

[2] Selection of Critical Meteorological Variables. To support personalized on-device meteorological
variable modeling and enhance regional weather forecasting reliability, we selected twenty representa-
tive meteorological variables. These variables, including temperature, barometric pressure, relative
humidity, and precipitation, were chosen based on their significant impact on weather conditions.
Detailed definitions, physical descriptions, and units of these selected variables are provided in
Table 14.

[3] Ensuring Completion of Meteorological Time Series. In this step, we primarily focus on ensuring
the completeness of weather time series data collected from ground weather stations. Incomplete
weather time series can generate unreliable predictions, potentially leading to significant unforeseen
losses. Most ground weather stations are susceptible to unpredictable events such as power outages and
equipment damage, which may result in data gaps. To enhance dataset completeness, we meticulously
examined the raw data for missing values across various timestamps and employed a linear interpolation
strategy to fill these gaps.

[4] Handling of Outliers. Outliers are common in weather time series data. We distinguish between
factual outliers, typically caused by extreme weather events (e.g., heavy rainfall, typhoons, thunder-
storms), and non-factual outliers, often due to observational device anomalies or sensor malfunctions

7https://weather.gc.ca/
8https://www.kaggle.com/datasets
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Table 14: Abbreviations, full names and corresponding units of the different variables in our proposed
datasets.

Abbreviation Full name Unit

ap Air Pressure hpa
t Air Temperature ◦C

mxt Maximum Temperature ◦C
mnt Minimum Temperature ◦C
dt Dewpoint Temperature ◦C
rh Relative Humidity %

wvp Water Vapor Pressure hpa
p1 Precipitation in 1h mm
p2 Precipitation in 3h mm
p3 Precipitation in 6h mm
p4 Precipitation in 12h mm
p5 Precipitation in 24h mm
wd Wind Direction ◦C
ws Wind Speed ms−1

mwd Maximum Wind Direction ◦

st Land Surface Temperature ◦C
hv1 Horizontal Visibility in 1 min m
hv2 Horizontal Visibility in 10 min m
vv Vertical Visibility m

at weather stations. We identify significant deviations in a weather variable—for instance, a sudden
increase from an average rainfall of 2 mm to 200 mm—as outliers. These are manually corrected;
initially, the values are set to zero and then replaced using linear interpolation, reflecting the gradual
nature of weather phenomena.

Visualisation. We hope to deepen the reader’s understanding of the datasets we have collected and compiled
by providing standard visualizations. Considering the overall size of the datasets and the large number of
meteorological variables, we have provided visualisations of representative variables here for reference. The
visualisation of OWD1 is shown in Fig. 2. Due to the number of devices involved in the OWD2 dataset, we have
divided it into two consecutive images for presentation, as shown in Fig 3 and Fig. 4.

B.2 Baselines

We compare with state-of-the-art time series analysis models and put them into Federated Learning environments,
including Transformer-based methods like Transformer [44], Informer [3], Reformer [21], Pyraformer [22],
iTransformer [23], and PatchTST [6], and recent competitive models including GPT4TS [17], DLinear [24] and
LightTS [48], detailed information about baselines is below:

• Transformer. [44] This model uses a self-attention mechanism, popular for time series prediction
tasks, to efficiently and accurately learn relationships within a sequence and contextual information.

• Informer. [3] An optimized Transformer-based model for long-range time series prediction. It uses
ProbSparse self-attention for efficiency, processes long inputs effectively, and employs a fast prediction
decoder.

• Reformer. [21] This model improves Transformer efficiency by using locality-sensitive hashing for
attention and reversible residual layers. It offers better memory efficiency and speed for lengthy
sequences without sacrificing performance.

• Pyraformer. [22] It features hierarchical pyramidal attention modules with binary trees to capture
temporal dependencies across different ranges efficiently, both in time and memory complexity.

• iTransformer. [23] The iTransformer adds attention and feedforward networks to the inverse dimen-
sion. It embeds time points as variable tokens, using attention to capture multivariate correlations and
feedforward networks for nonlinear representation of each token.

• PatchTST. [6] This method divides the time series into patches at the subseries level for input to the
Transformer. Each channel holds a univariate time series, sharing the same embedding and Transformer
weights across all series.
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Figure 2: Visualisation of partial variables in ODW1 dataset, where we have selected the first
1,000 time points for presentation. The data distribution from different ground weather stations
exhibit significant heterogeneity, and even though the trends of some variables may be similar, there
are serious differences in magnitudes. The selected variables are, from left to right, temperature,
precipitation in 1-hour/12-hour, humidity, and wind direction.

• DLinear. [24] DLinear integrates decomposition schemes from Autoformer and FEDformer with
linear layers to model time series data tables. It effectively summarizes trend and seasonal components,
enhancing performance on datasets rich in trends.

• LightTS. [48] A lightweight structure based on a simple MLP. It utilizes two downsampling strate-
gies—spaced and sequential sampling—on the MLP structure, capitalizing on the fact that downsam-
pled time series generally maintain most of their original information.

• GPT4TS. [17] This model is designed for time series analysis across various scenarios, achieved
by fine-tuning a pre-trained language model, specifically GPT2, for the time series domain. It’s
important to note that for a fair comparison, our baseline setup differs from the original publication’s
configuration. Instead of using the first six layers of GPT2 as the backbone, we align with our approach
and utilize only the first five layers.

In addition, pre-trained language models (PLMs) are the key component of our LM-Weather, we use different
PLMs as the backbone to demonstrate the PLM can as the strong weather foundation model for on-device
weather modeling. We use GPT-2 as the default setting, and BERT [49], LLaMA [50] as the alternatives.

• BERT. [49] BERT, short for Bidirectional Encoder Representations from Transformers, is a deep
learning model that uses the Transformer architecture. It understands the context of words by analyzing
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Figure 3: Visualisation of partial variables in ODW2 dataset, where we have selected the first
1,000 time points for presentation. The data distribution from different ground weather stations
exhibit significant heterogeneity, and even though the trends of some variables may be similar,
there are serious differences in magnitudes. The selected variables are, from left to right, humidity,
precipitation, temperature, wind direction, and wind speed.

text in both directions. When used as a baseline for evaluation, we only employ the first 5 layers of the
pre-trained BERT.

• GPT-2. [15] Developed by OpenAI, GPT-2 is a language model that can generate coherent and diverse
text based on a given prompt. In our research, we utilize the first 5 layers of the pre-trained GPT-2-base.

• LLaMa. [50] LLaMa stands for Large Language Model Meta AI and is a series of cutting-edge
language models with sizes ranging from 7B to 65B parameters. They offer top-notch performance
with less computational power and resources. In our research, we utilize the first 4 layers of the 3B
LLaMa model.

A brief description of these FL methods tailored to improve communication efficiency is as follows.

• FedKD: This parameter-efficient PFL method integrates knowledge distillation within a single client
and employs a parameter aggregation strategy using Singular Value Decomposition (SVD). For the
purposes of this section, which focuses solely on comparing communication efficiency, we incorporate
only the SVD-based client-server communication strategies into LM-WEATHER as a baseline.

20

84916https://doi.org/10.52202/079017-2696



Los Angeles

Humidity Wind DirectionPrecipitation Wind Speed

Miami

Minneapolis

Montreal

Nahariyya

Nashville

New York San Fancisco

Philadelphia

Temperature Humidity Wind DirectionPrecipitation Wind SpeedTemperature

Seattle

Phoenix

Pittsburgh

Portland

Saint Louis

San Antonio

San Diego

Toronto Vancouver

Figure 4: (Figure 3 continued) Visualisation of partial variables in ODW2 dataset, where we have
selected the first 1,000 time points for presentation. The selected variables are, from left to right,
humidity, precipitation, temperature, wind direction, and wind speed.

• FedPer: This PFL approach maintains a personalized layer while sharing the remaining base layers
during communication. This enhances communication efficiency by transmitting only a portion of the
parameters.

• FedBF: This fine-tuning method enhances parameter efficiency by sharing only the biases of the local
model during global aggregation, thereby reducing communication overhead. To integrate this method
into LM-WEATHER as a baseline, we adjusted all biases in LM-WEATHER to be unfrozen.

• FedAP: A parameter-efficient fine-tuning method in FL, which involves sharing only adapters during
global aggregation.

• PromptFL: This parameter-efficient FL method enables participants to cooperatively train lightweight
prompts without sharing the entire model, significantly accelerating both local training and global
aggregation. In our experiments, we treat the adapter generated on clients as the prompt to facilitate
the incorporation of this baseline.

B.3 Task Setups

We evaluate our proposed LM-WEATHER using four distinct on-device weather modeling datasets, each
with tailored settings for various tasks. The specific task settings for these datasets are detailed in Tab. 15.

21

84917 https://doi.org/10.52202/079017-2696



Additionally, the specific tasks and scenarios for the on-device weather forecasting/imputation vary by dataset,
as outlined in Tab. 16.

Table 15: Task setup for different datasets during the evaluation. Note that for the imputation task
there are actually no historical observations, but rather they are performed on a single long sequence.

Dataset Task Historical Observation Horizon Prediction Horizon Random Masking Ratio

ODW1T
Forecasting 192

{96, 192, 336, 720}

N

Imputation Consistent with the prediction horizon {25%, 35%, 50%}

ODW1V
Forecasting 192 N

Imputation Consistent with the prediction horizon {25%, 35%, 50%}

ODW2T
Forecasting 192 N

Imputation Consistent with the prediction horizon {25%, 35%, 50%}

ODW2V
Forecasting 192 N

Imputation Consistent with the prediction horizon {25%, 35%, 50%}

Table 16: Summary of framework evaluation scenarios for various datasets. Scenario 1/2/3/4 (in
forecasting) refers to multivariate to univariate forecasting, where all historical variables are used
to predict a single future variable. All represents multivariate to multivariate forecasting, meaning
all variables predict all others. The symbol "-" indicates a non-existent scenario for that dataset.
Scenario 1/2/3 (in imputation) indicates different masking ratios for the original weather sequences.

Dataset
Forecasting Imputation

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 1 Scenario 2 Scenario 3

ODW1T Temperature Humidity Wind Speed Surface Temperature All

25% 35% 50%
ODW1V Temperature - - - All
ODW2T Temperature Humidity - - All
ODW2V Humidity - - - All

B.4 Implementation

We mainly follow the experimental configurations across all baselines within a unified evaluation pipeline in
https://github.com/thuml/Time-Series-Library for fair comparison. Specially, we use GPT-2-base
as the default backbone model unless state otherwise. All our experiments are repeat five times and we report
the averaged results. Our detailed model configurations are in Appendix B.8. All the algorithm implementations
and designs in this study are based on Py torch and the algorithms are run on two RTX3090 GPUs 24GB.

B.5 Technical Details

Reversible Normalization. In time series analysis, statistical properties like mean and variance often
shift over time, indicating distributional changes in the data. To address this, we’ve incorporated Reversible
Normalization (RevIn) [51] into our LM-WEATHER. Specifically, we’ve integrated RevIn into our Task Adapter
Generation. This introduces two dynamic factors that adaptively normalize segments of the meteorological
variable sequence X , or their decomposed components (Trend XTrend, Seasonal XSeasonal, Residual XResidual),
enhancing the accuracy of meteorological variable modeling. Specifically, for the trend component of X , i.e.,,
XTrend, its transformed value X ′

Trend can be given by:

X ′
Trend = γT

(
XTrend −

E[XTrend]√
Var [XTrend] + ϵT

)
+ βT (6)

where E[XTrend] and Var [XTrend] are the instance-specific mean and variance, respectively. γT and βT are the
trainable parameters for this component. This transformation is also applied to both the seasonal and residual
components.

Pre-trained Language Model (PLM). In LM-WEATHER, we do not change the main architecture of
the PLM, but use the parameter-efficient fine-tuning (PEFT) strategy to avoid large-scale parameter variations
to ensure high efficiency on resource-constrained weather devices, and in this way, to achieve more reliable
cross-domain knowledge transfer. Specifically, we introduce LoRA in the local PLM, which allows only 1.5%
of the PLM parameters to be trained while the rest remain frozen, as shown in Fig. Note that LoRA is only
applied to the query and value of each Attention in the PLM, and the resulting low-rank matrices are used for
global sharing between the client and the server.
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Figure 5: Schematic diagram of the PLM in LM-WEATHER, where we introduced LoRA to the PLM,
to achieve more reliable cross-domain knowledge transfer while at the same time ensuring greater
efficiency in adapting to low-resource weather devices.

Low-Rank Adaption (LoRA). To achieve more reliable cross-domain knowledge transfer (i.e., from
natural language to complex weather sequences) while guaranteeing higher efficiency, we introduce LoRA [19],
a parameter-efficient fine-tuning method for large language models, into PLM. Specifically, LoRA is applied to
the Query and Value of each Attention layer by creating low-rank matrices for two pre-trained parameters Wq

and Wk:
QUERY =WqX +AqBq, VALUE =WvX +AvBv, (7)

where X denote the latent representation from input weather sequences through PLM’s word embedding layer,
Aq ∈ Rd×r and Bq ∈ Rr×d are low-rank matrices created from Wq ∈ Rd×d, Av ∈ Rd×r and Bv ∈ Rr×d

are low-rank matrices created from Wv ∈ Rd×d, d is the number of dimensions, r is the rank, and r ≪ d. It’s
important to note that only the low-rank matrices Aq, Bq, Av, Bv are trainable; the others remain fixed during
training. Initially, Aq and Av are set with random Gaussian values, and Bq and Bv start as zero at the beginning
of training.

Task Adapter Generation. The XTrend, XSeasonal, XResidual obtained from decomposition are used to generate
Task Adapter via an unified generator as Fig. 1B that consisting of Token Embedding, Position Embedding,
and Temporal Embedding. Specially, we use one-dimensional convolution operation to map each each specific
sample X k ∈ RT×1 while keeping raw shape to generate TOKEN ADAPTER PTO ∈ RT×C , as

P k
TO = CONV1D(X k), PTO = CONV1D(X ) (8)

Additionally, we use a trainable lookup table to map each point’s explicit position in the entire sequence, to
generate POSITION ADAPTER PPO ∈ RT×C , as:

PPO = E(INDEX(X )), (9)

where E(·) is the trainable lookup table, and INDEX(·) is a function that achieve the indices of each point’s
locations of weather sequence X . Furthermore, we separately encode different time attributes such as minutes,
hours, days, weeks, and months, using trainable parameters to dynamically model complex temporal shifts, to
generate TEMPORAL ADAPTER PTE, as

PTE =
∑

α∈{mins,hours,days,weeks,months}

Eα(X ) (10)

where α represents different temporal attributes, Eα denotes the trainable lookup table for each temporal
attributes. Finally, for each decomposition components, corresponding generated adapters can be obtained
by aggregating Token Adapter PTO ∈ RL×C , Position Adapter PPO ∈ RL×C , and Temporal Adapter PTE ∈
RL×C as Pd = P d

TO + P d
PO + P d

TE, where d ∈ {Trend, Seasonal,Residual}, this means that we can obtain
PTrend,PSeasonal,PResidual.
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B.6 Theoretical Insights on Personalized Adapter

The effectiveness and superiority of our proposed Personalized Adapter have been demonstrated in sufficient
ablation studies (please refer to Table 6 in the main text). Here, we will discuss theoretical insights that further
supports the effectiveness of Personalized Adapter. Personalized Adapter can effectively capture potential pattern
in meteorological variable time series, which comprises both the Task Adapter and the FFN-based Parameter
Adapter. Specifically, our focus primarily revolves around the Task Adapter active in extracting representations,
which including Token/Positional/Temporal Embedding for transforming meteorological variable time series.

Let the weather sequence be X = (x1,x2, · · · ,xT ), where xt ∈ Rd Is the observed value with d variables
at t moment. Let X represent the function space to which xt of a weather sequence belongs, and Z denote
the function space to which the implicit representation zt belongs. Token Embedding can be interpreted as
a mapping fθ : X → Z . According to the Kolmogorov-Arnold representation theorem, for any continuous
function f ∈ C([0, 1]d), there exist 2d+ 1 continuous functions ϕq ∈ C([0, 1]) and ψq ∈ C([0, 1]) such:

f(x) =

2d∑
q=0

ϕq(

d∑
p=1

ψq(xp)),

which means Token Embedding can construct a high-dimensional nonlinear mapping from multiple one-
dimensional functions, capturing complex patterns within weather sequences. Positional Embedding introduces
a vector pt for each step, enabling the model to differentiate between observations at different time steps. For
any two steps t1 and t2, their position vectors pt1 and pt2 satisfy:

||pt1 − pt2 ||2 =

√
2k(1− cos

2π(t1 − t2)

100001/k
).

The growing distance between t1 and t2 with an increasing time gap mirrors the relative positioning of time
steps, aiding the model in grasping temporal dependencies. Additionally, the sine-cosine function’s periodicity
resonates with weather data’s cyclical behavior, helping the model to learn from these recurrent patterns.

Finally, consider the role of Temporal Embedding from the view of matrix decomposition. Suppose the temporal
matrix T has a rank of r, it can be decomposed as zt ⊗T =

∑r
i=1(zt ⊗ ui)v

T
i . Temporal Embedding

transforms the original sequence by scaling and rotating it to represent different interaction patterns. Using
singular value decomposition, the top r singular vectors distill the core structure of the time-based matrix. This
allows Temporal Embedding to intuitively learn a compact representation of weather sequences, highlighting
the primary interactions between variables. In optimizing Personalized Adapter within LM-WEATHER, the
focus lies solely on Personalized Adapter and the attention layer influenced by LoRA during local updates. As
Personalized Adapter undergoes solely local updates while sharing low-rank matrices globally, akin to layer-wise
optimization in PLM, the efficacy of its optimization process can be theoretically substantiated by the theoretical
analysis provided in [52].

B.7 Evaluation Metrics

For evaluation metrics, as [34], we utilize the mean absolute error (MAE) and root mean square error (RMSE)
for both forecasting and imputation. The calculation of these metrics are as follows:

MAE =
1

T

T∑
i=1

|Yi − Ŷi|, RMSE =

√√√√ 1

T

T∑
i=1

(Yi − Ŷi)2, (11)

where T denotes the number of data points (i.e., prediction horizon in our cases), Yi and Ŷi are the i-th ground
truth and prediction where i ∈ {1, ..., T}.

B.8 Model Configurations

The configurations of our LM-WEATHER for different tasks and datasets are summarized in Tab. 17. We
consistently use the AdamW [53] optimizer in all experiments.

Appendix C Theorems and Proofs

Theorem C.1 (Decomposition Rationality from Time Series). Given a weather time series X = XTrend,t +
XSeasonal,t + XResidual,t, t ∈ [t1, tn]. Let E = {e1, e2, ..., en} denotes a set of orthogonal bases. Lets
ESeasonal ⊆ E denote the subset of E on which XSeasonal,t has non-zero eigenvalues and ETrend ⊆ E de-
note the subset of E on which XTrend,t has non-zero eigenvalues. If XTrend,t and XSeasonal,t are not orthogonal,
i.e.,

∑n
i=1 X

i
Trend,tX i

Seasonal,t ̸= 0, then ETrend
⋂

ESeasonal ̸= 0, i.e., E can not disentangle the two signals onto
two disjoint set of bases.
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Table 17: An overview of the experimental configuration for LM-WEATHER. LR is the initial
learning rate, (FS) denotes the few-shot learning setting.

Task-Dataset / Configuration
Model Hyperparameter Traning Process

Backbone (PLM) Layers Input Length Patch Dim Heads LR Loss Batch Size Local Epochs Communication Round participation rate

Forecasting - ODW1T 5 192 16 8 0.005 MSE 128 20 50 0.1

Forecasting - ODW1V 5 192 16 8 0.005 MSE 128 20 50 0.1

Forecasting - ODW2T 5 192 16 8 0.005 MSE 256 20 50 0.1

Forecasting - ODW2V 5 192 16 8 0.005 MSE 256 20 50 0.1

Imputation - ODW1T 5 96, 192, 336, 720 16 8 0.005 MSE 128 20 50 0.1

Imputation - ODW1V 5 96, 192, 336, 720 16 8 0.005 MSE 128 20 50 0.1

Imputation - ODW2T 5 96, 192, 336, 720 16 8 0.005 MSE 256 20 50 0.1

Imputation - ODW2V 5 96, 192, 336, 720 16 8 0.005 MSE 256 20 50 0.1

Forecasting - ODW1T (FS) 5 192 16 8 0.005 MSE 128 20 50 0.1

Forecasting - ODW1V (FS) 5 192 16 8 0.005 MSE 128 20 50 0.1

Forecasting - ODW2T (FS) 5 192 16 8 0.005 MSE 256 20 50 0.1

Forecasting - ODW2V (FS) 5 192 16 8 0.005 MSE 48 20 50 0.1

Imputation - ODW1T (FS) 5 96, 192, 336, 720 16 8 0.005 MSE 128 20 50 0.1

Imputation - ODW1V (FS) 5 96, 192, 336, 720 16 8 0.005 MSE 128 20 50 0.1

Imputation - ODW2T (FS) 5 96, 192, 336, 720 16 8 0.005 MSE 256 20 50 0.1

Imputation - ODW2V (FS) 5 96, 192, 336, 720 16 8 0.005 MSE 48 20 50 0.1

Proof. We decompose XSeasonal,t and XTrend,t onto E and acquire that XSeasonal,t =
∑
aiei and XTrend,t =∑

biei. Then it is obvious that ei ∈ XSeasonal ⇔ ai ̸= 0 and ei ∈ XTrend ⇔ bi ̸= 0. Now, let us consider the
inner product of XSeasonal,t and XTrend,t:

n∑
i=1

X i
Trend,tX i

Seasonal,t = XTrend,tXSeasonal,t

= (
∑

aiei) · (
∑

biei) =
∑
i,j

aibjeiej

(12)

Note that
∑n

i=1 X
i
Trend,tX i

Seasonal,t = 0. Thus, there must be at least one i such that ai ̸= 0 and bi ̸= 0. Thus.
ei ∈ ESeasonal and ei ∈ ETrend, in other words, ETrend ∩ESeasonal ̸= 0. The theorem demonstrates that if XTrend,t
and XSeasonal,t are not orthogonal, orthogonal bases that separate XTrend,t and XSeasonal,t into two distinct sets
cannot exist. Typically, periodic and non-periodic signals are not orthogonal because the periodic signal has a
discrete spectrum, while the non-periodic signal has a continuous one, leading to potential overlaps at non-zero
frequencies. Principal Component Analysis (PCA) seeks to find orthogonal bases in data, but it cannot split these
two signals into separate bases. Citing Theorem 1 from [17], we understand that self-attentive mechanisms
in pre-trained large models function similarly to PCA. Thus, without manual intervention, the self-attentive
mechanism is unable to automatically divide a time series into trend and seasonal components.

Theorem C.2 (Exchange Low-Rank Matrices Ensures Privacy: Parameter Interaction Perspective).
Given a on-device weather modeling framework based on federated learning that global optimization object
is F (θ) =

∑i=1
n pif({Di}; θ), where f(x; θ) is the loss function of i-th client, {Di} is dataset of i-th client,

and pi and θ denote the data distribution weight of client i and the model parameters, respectively. Given that
the parameters θ of the PLM Mθ broadcasted by the server consist of two parts: a frozen part Mθ,f and a
trainable part Mθ,t, interacting only the low-rank matrix parameters Mθ,l ⊂ Mθ,t is a subset of trainable
part Mθ,t during each round ensures privacy.

Proof. We assume that f(x; θ) is a convex function with respect to θ, i.e., for any θ1 and θ2 and λ ∈ [0, 1], we
have

f(x;λθ1 + (1− λ)θ2) ≤ λf(x; θ1) + (1− λ)f(x; θ2). (13)
Since only low-rank matrices parameter Mθ,l parameterized by θl is exchanged, we can convert θ to θ′ = [θ′l, θo],
where θ′l is the embedding parameter after the server update. Since we only update on θl, θo remains unchanged.
Thus, data privacy can be ensured, as θo contains parameters that reveal user-specific information. Furthermore,
the low-rank matrices applied to the PLM Mθ using LoRA are initialized with a random Gaussian distribution
and all-zero values, respectively, before training. This global information sharing approach also helps to enhance
privacy.

Theorem C.3 (Exchange Low-Rank Matrices Ensures Privacy: Model Indistinguishability Perspective).
Our LM-Weather can hide key features of local model when sharing low-rank parameters, even external attacker
gains access to a shared low-rank update, it is difficult to reconstruct or differentiate between the original models
of different participants. Support client i and client j get two different local model due to updated on heterogeneity
weather time series, as Mi and Mj parametered by θi and θj ,L(M) denotes the low-rank matrix generated
by model M, where B ∈ Rd×r and A ∈ Rr×d, and r ≪ d, and define Adv as the adversary. Conditions exist
such that for any polynomial-time attacker Adv,|Pr[Adv(L(Mi)) = 1]− Pr[Adv(L(Mj)) = 1]| ≤ ϵ holds,
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where ϵ is a small positive number, which implies that even if the attacker acquires a shared low-rank update, it
is difficult to reconstruct or distinguish between the original models of the different participants.

Proof. The goal of LoRA is to find the low-rank approximation: min||θ − θ0 − BA||F , where θ0 is the
initial weight, || · ||F is the Frobenius paradigm. Consider two models Mi and Mj , whose weights differ by
∆θ = θi − θj . The corresponding LoRA matrix is:

Li = BiAi ≈ ∆θi = θi − θ0,

Lj = BjAj ≈ ∆θj = θj − θ0.
(14)

According to matrix approximation theory, for the best approximation with rank r, the upper bound on the error
is:

||∆θi − Li||F ≤ σr+1(∆θi) (15)

where σr+1(∆θi) is the r+1-st singular value of ∆θi. By Johnson-Lindenstrauss Lemma [54], for any ϵ > 0,
there exists a mapping f : Rd → Rk, where k = O(log(n)/ϵ2), such that for any x, y ∈ Rd. In our case, LoRA
can be regarded as such a degenerate mapping. Assume ||∆θi −∆θj ||F ≤ δ and according to the trigonometric
inequality:

||Li − Lj ||F ≤ ||Li −∆θi||F + ||∆θi −∆θj ||F + ||∆θj − Lj ||F ≤ σr+1(∆θi) + δ + σr+1(∆θj), (16)

Let ε′ = σr+1(∆θi) + σr+1(∆θj), we get:

||Li − Lj ||F ≤ δ + ε′. (17)

For any polynomial-time attacker Adv,its ability to distinguish between Li and Lj is restricted to the difference
in their Frobenius paradigms. We can define a function f such that:

|Pr[Adv(L(Mi)) = 1]− Pr[Adv(L(Mj)) = 1]| ≤ f(||Li − Lj ||F ) (18)

where f is a monotonically increasing function that represents the attacker’s capability with respect to the matrix
difference. Combining Eq. 16 and Eq. 17:

|Pr[Adv(L(Mi)) = 1]− Pr[Adv(L(Mj)) = 1]| ≤ ϵ (19)

when δ and ε′ are small enough, we can make sure that the right-hand side is smaller than the intended ε. This
means that an attacker cannot reverse-engineer personalised local parameters and data to ensure privacy through
the low-rank matrix of communication across clients.

Appendix D Additional Finding & Experiment & Discussion

In this section, we explore and discuss potential research findings and questions for our LM-WEATHER via
conducting additional experiments. These potential research questions are as follows:

• RQ1. How does LM-WEATHER compare to Personalized Federated Learning (PFL) baselines in
terms of trade-offs in personalization and global model performance?

• RQ2. How does LM-WEATHER perform compared to centralized and local-only training modes?

• RQ3. How does the pre-trained language model contribute in LM-WEATHER?

• RQ4. What is the resource utilization and training & inference cost of LM-WEATHER?

• RQ5. Can LM-WEATHER be used for other tasks?

D.1 Trade-offs in Personalization and Global Model Performance (RQ1)

Our LM-WEATHER builds on the assumption that the foundation model already exists, treating pre-trained
language models (PLMs) as such and broadcasting it to each client to achieve local updates. Our aim is to
employ device information-specific (e.g., geographic/atmospheric patterns) adapter, to promote the local PLM in
achieving cross-domain knowledge transfer from language to meteorological sequences. This approach yields
highly customized models for individual devices while achieving global knowledge to avoid data silo, thereby
supporting diverse analyses of heterogeneous weather data. Alternative PFL methods do not match the efficiency
and flexibility of our personalized adapter in this context, making them less suitable. By incorporating PFL
baselines (Per-FedAvg [43], APPLE [55], FedPer [56], and FedALA [57]), we provide quantitative results that
substantiate our claims, experiment setting is consistent with the manuscript on ODW1T.
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PFL Baseline. A brief description of PFL baselines used in this section of the experiment is as follows.

• Per-FedAvg: Allowing for personalized model updates for each client by adding client-specific
parameters to the global model and optimizing them during FL training.

• APPLE: Tackling statistical heterogeneity in FL by automatically capturing information required by
clients from global models using adaptive local aggregation methods.

• FedPer: Dividing the model into a base layer and a personalization layer, only the base layer is
uploaded during aggregation while keeping the personalization layer to combat statistical heterogeneity.

• FedALA: Tackling statistical heterogeneity in FL by automatically capturing information required by
clients from global models using adaptive local aggregation methods.

Table 18: Comparison on personalized performance between our LM-WEATHER and PFL baselines
under forecasting (multivariate-multivariate) and imputation (50% masking rate), where Avg. denotes
the average performance of four periods [96, 192, 336, 720], Bold means the best.

Task / Method LM-WEATHER (Ours) Per-FedAvg APPLE FedALA FedPer

Forecasting (Avg.) 45.4/74.6 48.6/76.7 51.7/79.0 50.4/80.0 52.1/79.0
Imputation (Avg.) 23.1/42.4 27.7/50.1 26.5/49.6 34.4/57.2 30.2/54.0

Forecasting (Avg., 5% Few-Shot) 89.7/96.7 101.4/197.3 99.6/186.2 117.3/214.0 104.9/202.8
Imputation (Avg., 5% Few-Shot) 62.3/124.4 89.2/177.8 92.1/199.2 82.4/153.7 84.9/159.7

Personalized Performance Comparison. The performance quantification of our LM-WEATHER and
PFL baselines under personalized performance for different tasks and scenarios is shown in Table 18. Our
LM-WEATHER outperform other PFL baselines across different tasks (forecasting/imputation) and scenarios
(regular/few-shot learning) by a wide margin. This supports our finding that in the scenario of on-device weather
variable modeling, PFL methods is not appropriate.

Global Model Performance Comparison. The comparison on global model performance across client
between our LM-WEATHER and PFL baselines are shown in Table 18. Our LM-WEATHER outperforms PFL
baselines in terms of global model performance, as demonstrated by the fact that its global model performs more
stable across client with heterogeneous data.

Table 19: Comparison on global model performance across client between LM-Weather and PFL
baselines on multivariate-multivariate forecasting tasks (OWD1T dataset, MAE/RMSE report),
Red denotes the original LM-WEATHER’s performance, and Bold means the best among global
performance.

Client ID LM-WEATHER (Ours) LM-WEATHER (Global) Per-FedAvg (Global) APPLE (Global) FedALA (Global) FedPer (Global)

1 44.8/73.9 42.5/69.4 50.3/78.2 53.4/77.1 51.7/76.3 52.8/82.5
2 46.1/75.4 56.8/84.7 61.8/90.1 64.7/88.6 63.2/88.1 68.3/99.8
3 45.2/74.3 49.3/75.2 54.2/82.6 57.2/81.4 55.9/80.7 57.1/87.2
4 47.1/79.0 61.2/89.6 64.9/93.4 67.8/92.1 66.5/91.6 73.6/105.3
5 43.1/70.6 45.7/72.1 52.1/80.3 55.1/78.9 53.6/78.2 54.9/84.6
6 43.3/73.7 59.1/87.3 63.4/91.7 66.3/90.3 64.8/89.5 70.2/102.1
7 44.8/74.1 47.6/73.8 55.9/84.5 58.9/83.2 57.3/82.4 59.5/89.9
8 48.1/77.2 53.4/80.5 59.6/88.5 62.6/87.4 61.1//86.6 65.7/96.4
9 42.6/71.7 44.1/70.7 50.9/78.8 53.8/77.6 52.3/76.9 53.6/83.3

10 46.0/75.3 57.9/86.2 64.2/92.6 67.1/91.5 65.7/90.6 71.9/103.7
11 45.3/74.4 50.2/76.3 54.7/83.2 58.0/82.3 56.6/81.3 60.8/91.6
12 45.6/74.9 55.7/82.9 60.8/89.4 63.9/88.5 62.5/87.7 67.4/98.2
13 48.7/77.8 43.3/68.5 49.6/77.5 56.3/76.3 50.9/75.5 51.7/81.1
14 49.2/75.5 60.5/88.4 65.7/94.2 68.7/92.8 67.4/92.4 72.5/104.5
15 41.1/73.2 48.7/74.4 53.4/81.9 56.3//80.2 54.5/79.4 58.2/88.5

Total (Avg.) 45.4/74.6 51.2/78.7 57.0/84.9 59.9/83.2 58.4/82.8 61.4/92.7

Personalization and Global Model Performance Trade-offs. We consider the trade-off between
personalization performance and global model performance for our LM-WEATHER and PFL baselines, the
results are shown in Table 20. Compared with PFL baselines, our LM-WEATHER maintains the best trade-off
between personalization performance and global model performance, i.e., the personalization performance does
not significantly exceed the global model performance while the performance far exceeds PFL methods, which
means that the LM-WEATHER can be flexibly applied to different practical scenarios, including personalised
analysis of regional weather trends as well as comprehensive analysis of weather trends over large-scale regions.
This means that LM-WEATHER can be flexibly applied to different practice scenarios, including the personalised
analysis of regional weather trends and the comprehensive analysis of weather trends over large scale areas.
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Table 20: Comparison of LM-Weather between personalized performance and global model perfor-
mance, results are obtained on the multivariate-multivariate forecasting task on OWD1T (MAE/RMSE
report), Bold means the best, ↑ represents the improvement (gap) in the personalization performance
of the method relative to the global model performance.

Method Personalized Performance Global Model Performance Ave. Variation (Personalized vs. Global)

Per-FedAvg 48.6/76.7 57.0/84.9 ↑ 13.99%
APPLE 51.7/79.0 59.9/83.2 ↑ 10.58%
FedALA 50.4/80.0 58.4/82.8 ↑ 9.68%
FedPer 52.1/79.0 61.4/92.7 ↑ 17.59%

LM-WEATHER (Ours) 45.4/74.6 51.2/78.7 ↑ 9.16%

Performance and Adapter Updating Trade-offs. Furthermore, we investigated the effect of varying
the number of local update rounds in adapters across clients on the performance of LM-WEATHER regrading
personalization. The results are presented in Table 21. We observed that increasing the local update rounds from
the default five to fifteen leads to smoother and enhanced personalization performance across heterogeneous
clients. However, this increase in local update rounds also incurs additional computational and communication
costs, which, in our assessment, do not justify the modest performance improvements.

Table 21: Performance of each client under the multivariate-multivariate forecasting task on ODWT1
with different adapter local update epoch (MAE/RMSE report), where E = 5/10/15 represent the 5,
10, and 15 local training rounds, respectively.

Client ID LM-WEATHER (E = 5) LM-WEATHER (E = 10) LM-WEATHER (E = 15)

1 44.8/73.9 41.3/70.5 41.6/69.7
2 46.1/75.4 47.9/75.8 46.3/74.5
3 45.2/74.3 43.5/72.1 43.1/71.1
4 47.1/79.0 46.2/74.6 45.7/73.6
5 43.1/70.6 42.7/71.3 42.4/70.4
6 43.3/73.7 45.5/74.2 44.9/73.0
7 44.8/74.1 44.1/73.0 43.5/71.7
8 48.1/77.2 48.6/76.3 47.2/75.2
9 42.6/71.7 40.9/70.1 41.2/69.3
10 46.0/75.3 46.8/75.4 45.3/74.1
11 45.3/74.4 43.2/71.8 42.8/70.8
12 45.6/74.9 45.7/74.5 44.5/72.7
13 48.7/77.8 42.1/70.9 41.9/70.1
14 49.2/75.5 47.3/75.1 46.8/74.9
15 41.1/73.2 44.8/73.4 43.8/72.3

Total (Avg.) 45.4/74.6 44.6/73.2 44.0/72.2

D.2 Centralised and Local-only Training (RQ2)

The ordinary centralised training strategy (all data were aggregated into a single server) exhibits learning
efficiency that an ordinary distributed learning strategy. The ultimate goal of FL is to achieve performance
close to that of centralised training and to ensure privacy across data sources. Table 22 illustrates that our
LM-WEATHER achieves comparable effectiveness to Non-FL (centralised) training, with only a 2.04% disparity.
Compared to LM-WEATHER-Local, which lacks interaction between devices, LM-WEATHER performs better
due to overcoming data silos.

D.3 Contributions of Pre-trained Language Model in LM-WEATHER (RQ3)

Our LM-WEATHER significantly outperforms time series-specific models trained from scratch under centralised
setup. Centralised training aims to acquire an excellent pre-trained model, where PLMs possess inherent
advantages due to their prior sequence modeling capabilities. Moreover, various parameter-efficient fine-tuning
(PEFT) strategies enable PLMs to adapt to new domain knowledge cost-effectively. FL-based aggregation
facilitates a stable on-device fine-tuning process, with LM-Weather enabling highly customized on-device
fine-tuning of PLMs with greater efficiency. This highlights the substantial contribution of PLMs in this task.
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Table 22: Comparison of LM-WEATHER’s multivariate-multivariate performance in the FL and the
Non-FL (centralised) setups, LM-WEATHER-Local is the setting in which LM-WEATHER is trained
locally at each device without communication, and disparity is the difference in performance relative
to Non-FL.

Dataset Length Non-FL (centralised) LM-WEATHER (Ours) LM-WEATHER-Ave LM-WEATHER-Local

ODW1T

96 41.7/70.3 42.3/71.1 44.1/74.8 45.9/72.9
192 43.5/71.6 44.4/73.6 46.3/77.5 46.7/74.3
336 45.2/72.9 45.8/75.2 47.9/79.3 48.2/77.0
720 46.8/73.6 49.2/78.5 51.8/83.0 50.5/80.5
Avg. 44.3/72.1 45.4/74.6 47.5/78.7 47.8/76.2

ODW1V

96 42.3/68.7 42.3/69.6 42.7/69.5 44.5/68.6
192 43.9/69.9 44.4/71.7 45.5/72.6 46.1/70.4
336 45.4/71.2 46.0/72.4 47.2/74.3 48.8/73.2
720 46.8/72.6 49.7/74.0 51.2/78.2 53.2/79.4
Avg. 44.6/70.6 45.6/71.9 46.6/73.6 48.2/72.9

Communication Param. # None 0.38 M 10.38 M Not applicable

Disparity 0 ↓ 2.04% ↓ 4.37% ↓ 5.67%

Table 23: Comparison between fine-tuning PLM with Adapter (LM-WEATHER) and training from
scratch using non-PLM architecture (Pyraformer, Reformer, PatchTST, DLinear, and LightTS) on
multivariate-multivariate forecasting tasks (MAE/RMSE report), Bold means the best.

Dataset Length LM-WEATHER (Ours) Pyraformer Reformer PatchTST Dlinear LightTS

ODW1T

96 43.0/75.2 66.0/84.2 68.2/89.6 44.7/76.1 48.6/77.6 52.1/83.3
192 44.7/78.4 68.7/87.4 69.3/89.9 46.5/78.4 51.0/79.8 57.5/87.0
336 47.2/80.9 71.3/90.9 71.4/91.7 48.2/80.3 52.3/84.1 62.3/94.2
720 50.4/83.8 76.8/92.3 74.5/93.9 54.2/84.5 55.4/86.3 69.5/98.4
Avg. 46.3/79.6 70.7/88.7 70.9/91.3 48.4/79.8 51.8/82.0 60.4/90.7

ODW1V

96 45.4/71.3 60.4/69.1 45.7/71.8 47.2/73.4 48.5/74.7 50.1/75.3
192 46.9/72.9 61.9/73.2 51.9/75.5 48.4/74.2 49.4/76.6 52.7/78.8
336 49.0/75.5 64.4/76.9 53.4/76.9 48.9/76.7 53.7/78.3 54.0/80.4
720 53.7/79.1 68.2/82.7 56.5/84.9 54.1/77.4 57.2/82.2 57.7/84.8
Avg. 48.8/74.9 63.7/75.5 51.9/77.3 49.7/75.4 52.2/78.0 53.6/79.8

1st Count 16 1 0 3 0 0

D.4 No Free Lunch in Performance Improvement (RQ4)

The remarkable capabilities of cutting-edge DL models across various domains and tasks, such as LLMs, and
VLMs, can be attributed to their extensive parameters and training on large datasets. Currently, a perfect balance
among performance, model size, and cost does not exist. Despite numerous studies focusing on reducing training
and inference costs while maintaining superior performance, there is no one-size-fits-all solution. This is also
true for our LM-WEATHER, which demonstrates exceptional performance across diverse tasks and scales on
real-world datasets with significant heterogeneity, significantly outperforming comparable DL methods. In
this context, we analyze the costs associated with training and inference for LM-WEATHER and its baselines,
exploring and discussing the trade-offs between cost-effectiveness and performance in practical applications.

Table 24: Comparison of training/inference costs based on ODW1T with N = 192 under multivariate-
multivariate forecasting tasks (MAE/RMSE report), where Bold denotes the best, ‘Comm.‘ and ‘Perf.‘
denote communication and performance, respectively.

Method Ave. Training Time (per round) Inference Time (per client) Training Memory (per client) Inference Memory (per client) Comm. Time Perf.

FL-DLinear 4 s 1 s 7.93 MB 4.21 MB 1.44 s 52.3/81.8
FL-LightTS 4 s 2 s 30.94 MB 17.24 MB 9.93 s 59.5/90.6

FL-PatchTST 124 s 10 s 1260.01 MB 660.02 MB 59.62 s 47.3/79.8
FL-Transformer 121 s 11.0 s 1700.95MB 841.09 MB 36.44 s 52.1/84.0
FL-iTransformer 9 s 1.6 s 705.36 MB 372.28 MB 22.40 s 51.8/84.3

FL-Informer 110 s 10 s 1890.00 MB 897.21 MB 42.81 s 52.9/84.6
FL-Reformer 145 s 17.7 s 786.98 MB 421.23 MB 16.72 s 75.1/98.3

FL-Pyraformer 80 s 8.1 s 1880.41 MB 950.77 MB 119.66 s 70.0/90.9
FL-GPT4TS 108 s 21.2 s 3640.11 MB 1900.98 MB 10.03 s 48.6/81.3

LM-WEATHER 91 s 14 s 3014.82 MB 1500.81 MB 0.29 s 44.4/73.6

The quantification and comparison of computational costs against LM-WEATHER and baseline are shown in
Table 24. We discuss this results from two perspectives as follow.
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Communication and Performance. LM-WEATHER outperforms baseline in these two key metrics, which
is critical for practical meteorological variable modeling and analysis, a bandwidth-sensitive and high accuracy
demanding application.

Trade-offs between Resource Consumption and Performance. In terms of training and inference
time and memory usage, LM-WEATHER is less efficient than lightweight baselines such as FL-DLinear, LightTS,
and iTransformer, due to its use of a Pretrained Language Model (PLM) as a backbone. Although LM-WEATHER
demands more resources, the trade-off is justified by its cost-effective performance gains. Its slightly increased
memory requirements for training and inference are manageable on most devices. In the context of weather
analysis, where precision is critical, prioritizing performance improvements over minimal resource consumption
is essential. Additionally, LM-WEATHER capitalizes on the knowledge-rich PLM and requires only minimal,
low-cost fine-tuning on devices to achieve superior performance. This strategy not only enhances performance
but also reduces the frequency of future model updates, thereby lowering long-term costs compared to developing
a baseline model from scratch.

Table 25: Comparison between LM-Weather and baseline in terms of model size on the device and
performance of forecasting (multivariate-to-multivariate), and imputation (50% masking rate) on
ODW1T (MAE/RMSE report), where Bold and Underline denote the best and the second best.

Method Size Forecasting Imputation

FL-DLinear 0.28 M 53.3/82.8 28.5/49.9
FL-LightTS 1.10 M 62.7/93.4 26.1/45.7

FL-PatchTST 37.61 M 48.6/81.0 45.4/73.5
FL-Transformer 45.55 M 52.8/84.7 57.6/82.3
FL-iTransformer 25.19 M 53.7/63.7 27.6/48.2

FL-Informer 52.31 M 53.4/85.2 61.4/85.9
FL-Reformer 45.59 M 78.2/98.7 69.8/92.5
FL-GPT4TS 321.7 M 49.9/82.5 25.1/46.2

LM-WEATHER 304.1 M 45.4/74.6 23.1/42.4

In addition, we further provide a comparison of model sizes and performance between LM-WEATHER and
baseline, as shown in Table 25. The difference in model size between our LM-WEATHER and baseline can be
deemed acceptable for the following reasons.

Trade-offs between Performance and Size. While LM-WEATHER may not be as compact in terms of
model size or resource efficiency as lightweight baselines, it offers significant advantages in various analysis
tasks. Its high performance is particularly valuable in practical applications. Moreover, with a model size of
304.19 M, LM-WEATHER is still accessible for devices with limited resources. This contrasts sharply with many
large foundation models, which typically comprise several hundred million parameters. The trade-off between
performance and size is justified, especially considering the critical nature of accurate weather data analysis.

Efficient Parameter Update and Communication. LM-WEATHER implements efficient on-device
fine-tuning of the pretrained language model. Unlike baselines that require training from scratch, LM-WEATHER
only needs fine-tuning of a relatively small number of parameters (10.38 M) on each device, with minimal
device-to-server communication overhead (0.38 M). This approach facilitates highly personalized cross-domain
knowledge transfer, significantly reducing the ongoing costs associated with processing the ever-changing
streams of weather data. These aspects highlight the pragmatic considerations that have shaped the design
of LM-WEATHER. The model’s capabilities to deliver exceptional performance, combined with its efficient
parameter tuning and communication strategies, offer a cost-effective solution for advanced weather data analysis
in resource-constrained environments.

D.5 Additional Tasks for Potential Applications (RQ5)

Given datasets we proposed in this paper focus on forecasting and imputation tasks, we broaden its scope briefly
to explore its potential application by integrating anomaly weather detection tasks. This involves relabeling the
dataset to identify intervals with anomalous meteorological variables as instances of abnormal weather processes.
Specifically, we label original datasets via Isolation Forecast [58], the main process as follows: (1) We set the
cut length to 100, using this metric to segment each channel (variable) and construct several random trees that
collectively form a forest. (2) The “isolation“ degree of each data point is quantified by the average path length
from the root node to the terminal node. (3) Data points with shorter path lengths are more easily isolated and
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thus more likely to be outliers. (4) We establish a threshold based on the average path length; data points falling
below this threshold are classified as anomalies.

Evaluation Metrics. We used Precision (P), Recall (R), and F1-Score (F1) to simply quantify the per-
formance of LM-WEATHER and baselines on the weather anomaly detection task, these can be formulated
as:

P =
TP

TP + FP
, R =

TP
TP + FN

, F1 = 2× P × R
P + R

, (20)

where TP (True Positives), FP (False Positives), and FN (False Negatives) represent the number of samples
correctly labeled as anomalous, the number of samples incorrectly labeled as anomalous, and the number of
samples that were not labeled as anomalous by the model but were actually anomalous, respectively.

Experiments and Results. We set the input time series length to 100, and other settings (e.g., baselines,
hyper-parameters, local updating steps and federated communication rounds, etc.) are consistent with those in
the main text, and we conduct experiments on OWD1T and OWD2T to briefly show the results. The performance
quantification of our proposed LM-WEATHER and baseline on weather anomaly detection tasks is shown in
Table 26 (ODW1T results) and Table 27 (ODW2T results).The findings underscore LM-WEATHER’s robust
applicability and its Moreover, LM-WEATHER’s superior performance over baselines in both regular and few-
shot tasks reaffirms its effectiveness and overall superiority. Moreover, LM-WEATHER’s superior performance
over baselines in both normal and few-shot tasks reaffirms its effectiveness and overall superiority.

Table 26: Results of LM-WEATHER and baseline for weather anomaly detection tasks on ODW1T,
including regular and few-shot scenarios, where 5% means that 5% of the data is used in training,
Bold and Underline denote the best and the second best.

Scenario Regular Few-Shot

Method/Metrics P R F1 P R F1

FL-DLinear 82.33 78.54 80.34 69.72 71.22 70.48
FL-LightTS 86.11 72.89 78.76 70.46 70.86 70.54

FL-PatchTST 88.94 82.57 85.55 73.47 71.52 72.41
FL-Transformer 74.23 76.61 75.36 64.27 66.89 65.65
FL-iTransformer 83.68 82.96 83.17 67.8 74.87 71.21

FL-Informer 76.87 78.32 77.32 69.24 71.23 70.2
FL-Reformer 78.21 79.76 78.87 70.22 67.43 68.55

FL-Pyraformer 80.28 83.66 81.71 67.46 69.05 68.06
FL-GPT4TS 89.72 85.43 87.44 76.34 77.31 76.76

LM-WEATHER-Ave 90.21 88.14 89.18 80.41 82.68 81.46
LM-WEATHER (Ours) 92.00 90.45 91.15 84.25 86.23 85.09

Table 27: Results of LM-WEATHER and baseline for weather anomaly detection tasks on ODW2T,
including regular and few-shot scenarios, where 5% means that 5% of the data is used in training,
Bold and Underline denote the best and the second best.

Scenario Regular Few-Shot

Method/Metrics P R F1 P R F1

FL-DLinear 80.21 75.88 78.32 72.56 73.75 72.98
FL-LightTS 84.30 81.74 82.70 68.68 70.24 69.56

FL-PatchTST 80.65 81.36 80.91 74.23 70.06 72.29
FL-Transformer 76.45 78.11 77.18 68.97 65.34 67.02
FL-iTransformer 81.76 69.53 75.07 67.32 70.74 69.02

FL-Informer 78.07 78.38 78.04 68.09 68.84 68.15
FL-Reformer 74.47 84.26 79.04 72.36 77.46 74.61

FL-Pyraformer 77.48 80.23 78.86 66.78 70.90 68.83
FL-GPT4TS 87.37 83.85 85.32 78.48 80.22 79.32

LM-WEATHER-Ave 89.99 89.20 89.55 86.24 84.33 85.10
LM-WEATHER (Ours) 90.49 95.45 92.98 88.37 87.47 87.64
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Appendix E Full Experiment Results

In this section, we provide the full experimental results not included in the main manuscript. This includes
the main experiments (Appendix E.1), few-shot learning experiments (Appendix E.2), and ablation studies
(Appendix E.3), as well as extra analysis of our framework, covering hyperparameter sensitivity (Appendix E.4)
and its performance with different PLMs.

E.1 Full Main Results

In this section, we show detailed and full experimental results including:

• Forecasting (Tab. 28) and imputation (Tab. 29) across different scenes and settings on the ODW1T
dataset.

• Forecasting (Tab. 30) and imputation (Tab. 31) across different scenes and settings on the ODW1V
dataset.

• Forecasting (Tab. 32) and imputation (Tab. 33) across different scenes and settings on the ODW2T
dataset.

• Forecasting (Tab. 34) and imputation (Tab. 35) across different scenarios and settings on the ODW2V
dataset.

Note that we only show the comparison between the proposed LM-WEATHER and the time series-specific
baseline in the full experimental results. Our LM-WEATHER outperforms specialized time-series analysis
models on on-device weather datasets across various environments. Unlike these models, our method doesn’t
require training from scratch but only minor adjustments to a small number of parameters. This validates the
effectiveness and superiority of our proposed framework in on-device weather modeling practice.

Table 28: Comparison of the performance of LM-WEATHER and baselines on the ODW1T under
forecasting tasks. Bold: the best, Underline: the second best.

Method LM-WEATHER-AVE LM-WEATHER FL-Reformer FL-Pyraformer FL-DLinear FL-PatchTST FL-iTransformer FL-LightTS FL-Transformer FL-Informer

Variable Length MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Temperature

96 27.8 36.6 26.6 34.7 58.8 72.3 51.1 62.8 27.9 36.9 30.2 39.4 32.7 42.3 28.2 37.2 38.1 50.2 41.2 51.9
192 31.9 38.4 30.4 36.5 73.5 89.5 59.8 72.7 31.8 41.6 34.1 44.1 34.8 44.9 32.1 41.9 39.7 50.5 43.0 54.1
336 33.3 40.1 31.6 38.0 83.7 101.5 66.1 79.7 34.8 45.0 36.5 46.6 37.1 47.4 35.2 45.4 40.7 51.5 44.7 55.9
720 39.2 48.0 37.2 45.4 89.9 114.2 67.1 80.9 42.9 53.8 46.0 57.5 47.0 58.6 43.1 54.1 51.5 64.1 51.5 64.0
Avg. 33.0 40.8 31.5 38.7 76.5 94.4 61.0 74.0 34.3 44.3 36.7 46.9 37.9 48.3 34.6 44.6 42.5 54.1 45.1 56.5

Humidity

96 52.0 67.4 49.9 64.0 75.8 92.0 70.7 85.2 53.3 69.5 57.9 75.4 59.3 77.2 53.6 69.8 69.4 87.1 73.6 91.7
192 55.9 71.6 53.0 67.8 80.1 96.6 74.8 89.5 57.5 73.9 60.4 79.1 61.9 80.3 57.6 74.3 68.4 86.7 75.7 94.1
336 58.6 74.0 55.6 70.1 85.0 102.2 79.2 94.6 60.4 76.4 75.1 93.3 63.6 81.8 60.3 77.0 68.6 86.8 77.2 95.4
720 62.1 77.0 59.0 73.1 88.1 105.1 81.9 97.2 64.1 79.5 72.7 89.9 66.6 84.5 65.2 80.2 79.5 97.4 79.5 97.4
Avg. 56.7 72.5 54.4 68.8 83.0 99.0 76.7 91.6 58.8 74.9 66.5 84.5 62.8 80.9 59.2 75.3 71.5 89.5 76.5 94.6

Wind speed

96 68.4 88.5 65.7 84.0 80.3 105.0 74.8 97.1 69.8 91.1 72.5 95.1 73.8 96.1 69.6 91.0 80.5 102.6 79.8 102.5
192 69.5 89.7 66.7 85.0 83.0 108.0 77.3 99.7 71.0 92.4 73.0 96.7 74.4 97.0 70.8 92.3 80.4 103.4 80.5 103.4
336 70.1 90.4 67.2 85.7 84.5 109.8 78.7 101.3 71.6 93.2 74.9 98.0 75.3 98.2 71.5 93.2 81.1 104.0 81.0 104.2
720 70.9 91.4 68.0 86.5 85.7 232.3 79.8 215.0 72.6 94.3 76.4 99.9 76.0 99.4 72.5 94.2 81.8 105.5 81.8 105.5
Avg. 69.7 90.0 66.9 85.3 83.4 138.8 77.6 128.3 71.2 92.8 74.2 97.4 74.9 97.7 71.1 92.7 80.9 103.9 80.8 103.9

Surface Temperature

96 28.1 39.2 27.0 37.4 55.7 72.9 52.0 67.6 28.1 39.9 31.4 43.0 33.0 44.9 28.3 40.0 56.9 72.0 56.4 72.0
192 30.2 42.1 29.0 39.9 63.0 81.1 58.7 75.0 31.3 43.8 33.9 46.2 34.2 46.6 31.5 43.9 41.3 55.4 57.8 73.1
336 32.4 44.7 31.1 42.4 69.6 88.9 64.7 82.1 33.9 46.7 57.4 75.9 36.3 49.1 34.3 47.1 44.0 58.9 58.8 74.4
720 38.6 50.4 36.8 47.9 73.2 93.3 68.0 86.2 40.3 53.5 43.3 57.4 42.4 55.8 40.7 53.9 62.2 78.9 61.7 78.9
Avg. 32.3 44.1 31.0 41.9 65.4 84.1 60.9 77.7 33.4 46.0 41.5 55.6 36.5 49.1 33.7 46.2 51.1 66.3 58.7 74.6

All

96 44.1 74.8 42.3 71.1 70.7 92.9 67.2 86.1 49.7 78.6 45.0 77.0 48.4 80.2 54.8 85.6 50.7 82.1 51.9 83.2
192 46.3 77.5 44.4 73.6 75.1 98.3 70.0 90.9 52.3 81.8 47.3 79.8 51.8 84.3 59.5 90.6 52.1 84.0 52.9 84.6
336 47.9 79.3 45.8 75.2 79.8 100.5 74.1 92.8 53.9 83.7 49.0 81.7 54.5 87.3 64.0 94.6 52.9 85.2 53.5 85.6
720 51.8 83.0 49.2 78.5 87.1 102.9 80.5 95.2 57.2 87.3 53.3 85.6 60.1 93.1 72.4 102.7 55.4 87.6 55.3 87.4
Avg. 47.5 78.7 45.4 74.6 78.2 98.7 73.0 91.3 53.3 82.8 48.6 81.0 53.7 63.7 62.7 93.4 52.8 84.7 53.4 85.2

1st Count 0 50 0 0 0 0 0 0 0 0

Table 29: Comparison of the performance of the proposed method and the baseline method on the
ODW1T under the imputation task, where bold indicates the optimal results and underline indicates
the sub-optimal results.

Method LM-WEATHER-AVE LM-WEATHER FL-Reformer FL-Pyraformer FL-DLinear FL-PatchTST FL-iTransformer FL-LightTS FL-Transformer FL-Informer

Ratio Length MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

25%

96 20.8 39.8 20.2 38.6 39.0 57.7 38.2 56.0 23.6 43.8 25.1 48.9 21.0 40.3 20.5 38.9 56.3 82.6 40.2 60.1
192 20.3 38.5 20.7 37.0 39.2 56.5 38.3 54.9 23.4 43.7 41.9 69.4 22.6 39.1 22.0 41.0 57.4 82.2 40.5 58.9
336 21.4 39.9 21.0 38.4 54.5 77.0 53.0 74.8 23.2 43.3 60.7 96.3 24.5 45.7 22.6 41.8 58.0 80.7 56.6 80.2
720 22.3 40.9 21.5 39.3 69.1 93.1 67.1 90.3 23.2 43.2 67.1 107.3 27.7 47.8 22.7 42.1 61.6 84.0 71.7 97.0
Avg. 21.2 39.8 21.1 38.3 50.5 71.1 49.2 69.0 23.4 43.5 48.7 80.5 23.9 43.2 22.0 40.9 58.3 82.4 52.3 74.0

35%

96 21.8 41.2 21.1 39.8 69.2 95.2 67.5 92.5 25.9 46.6 28.9 53.6 22.2 42.1 21.9 40.6 57.3 81.7 71.8 99.2
192 22.0 39.9 21.3 38.3 70.3 94.5 68.5 91.7 25.6 46.3 25.5 49.4 26.6 43.7 23.6 42.8 58.4 82.7 42.4 61.4
336 22.8 41.2 22.1 39.5 71.3 96.2 69.4 93.2 25.3 45.7 37.9 64.0 29.6 44.2 24.5 43.7 56.1 80.4 36.7 53.8
720 23.9 41.5 23.2 39.8 77.8 99.5 75.6 96.6 25.2 45.4 49.2 70.2 33.2 45.2 24.6 44.2 64.2 88.4 73.3 98.5
Avg. 22.6 41.0 21.9 39.4 72.2 96.4 70.3 93.5 25.5 46.0 35.4 59.3 27.9 43.8 23.6 42.8 59.0 83.3 56.0 78.2

50%

96 22.4 43.5 21.7 41.8 63.7 88.4 62.2 85.9 29.2 50.8 28.9 54.6 22.8 44.5 24.4 43.7 58.3 82.8 70.8 99.6
192 23.4 43.7 22.6 42.0 67.2 91.2 65.5 88.5 28.7 50.2 47.5 77.3 23.8 44.1 25.7 45.3 57.3 82.4 66.3 92.1
336 24.1 44.1 23.2 42.4 70.4 93.4 68.5 90.6 28.3 49.4 48.6 77.0 27.2 47.7 26.9 46.6 58.4 83.5 36.9 55.3
720 26.0 45.1 24.9 43.3 77.9 96.8 75.8 93.9 28.0 49.0 56.6 85.1 36.5 56.2 27.2 47.4 56.6 80.4 71.7 96.7
Avg. 24.0 44.1 23.1 42.4 69.8 92.5 68.0 89.7 28.5 49.9 45.4 73.5 27.6 48.2 26.1 45.7 57.6 82.3 61.4 85.9

1st Count 1 29 0 0 0 0 0 0 0 0
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Table 30: Comparison of the performance of LM-WEATHER and baselines on the ODW1V under
the long-term forecasting task. Bold: the best, Underline: the second best.

Method LM-WEATHER-AVE LM-WEATHER FL-DLinear FL-PatchTST FL-iTransformer FL-LightTS FL-Transformer FL-Informer FL-Reformer FL-Pyraformer

Variable Length MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Temperature

96 32.0 38.9 28.0 37.0 28.9 36.9 32.5 46.1 32.6 42.2 32.2 39.2 40.6 51.2 87.5 101.1 87.4 101.1 84.4 98.3
192 36.8 44.4 31.8 41.4 35.8 46.6 39.2 50.5 34.7 44.8 37.1 44.9 39.3 50.0 87.2 100.8 87.3 100.9 87.3 100.8
336 39.1 48.0 34.6 44.7 39.8 51.0 39.5 50.7 36.9 47.2 39.7 48.9 44.6 55.8 87.1 100.5 87.1 100.5 87.8 101.1
720 49.0 58.8 43.1 54.2 48.9 59.8 54.8 67.4 45.4 56.7 49.4 60.3 51.5 64.1 87.0 100.0 88.8 104.1 86.7 99.7
Avg. 39.2 47.5 34.3 44.3 38.3 48.6 41.5 53.7 37.4 47.7 39.6 48.3 44.0 55.3 87.2 100.6 87.6 101.6 86.6 100.0

All

96 42.7 69.5 42.3 69.6 42.9 67.8 57.7 67.2 46.4 73.3 44.3 69.6 56.8 76.8 48.0 75.1 67.0 89.4 59.0 80.3
192 45.5 72.6 44.4 71.7 48.4 75.4 59.2 69.4 47.9 75.1 46.8 72.1 55.0 75.0 49.1 79.2 69.9 93.0 61.2 82.8
336 47.2 74.3 46.0 72.4 51.0 77.0 63.4 73.3 49.1 76.9 48.5 74.8 62.4 83.7 50.8 77.9 71.4 94.8 63.7 85.8
720 51.2 78.2 49.7 74.0 54.5 82.3 67.3 76.1 52.5 80.3 54.3 79.1 72.1 96.2 54.7 82.7 76.2 87.3 68.4 91.8
Avg. 46.6 73.6 45.6 71.9 49.2 75.6 61.9 71.5 49.0 76.4 48.5 73.9 58.1 85.0 50.7 78.7 71.1 91.1 63.1 85.2

1st Count 0 17 0 3 0 0 0 0 0 0

Table 31: Comparison of the performance of LM-WEATHER and baselines on the ODW1V dataset
under the imputation task. Bold: the best, Underline: the second best.

Method LM-WEATHER-AVE LM-WEATHER FL-DLinear FL-PatchTST FL-iTransformer FL-LightTS FL-Transformer FL-Informer FL-Reformer FL-Pyraformer

Ratio Length MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

25%

96 36.7 56.8 35.9 55.4 37.9 59.4 29.2 48.6 31.8 50.7 45.2 68.6 34.5 53.1 36.7 55.8 34.5 52.8 33.6 50.3
192 38.8 59.8 37.9 58.2 40.3 62.6 31.4 51.1 39.2 60.3 50.4 74.3 34.8 53.4 38.9 59.8 34.7 53.2 41.7 58.5
336 42.3 63.8 41.3 62.2 44.0 66.8 35.1 56.8 45.6 68.6 54.4 78.6 45.2 58.0 41.1 61.1 45.0 63.7 46.6 61.3
720 44.5 66.1 43.4 64.4 46.3 69.3 42.2 65.5 51.8 76.0 58.2 82.2 45.5 64.3 48.3 66.3 48.4 65.9 56.4 72.5
Avg. 40.6 60.1 40.2 60.1 42.1 64.5 34.5 55.5 42.1 63.9 52.1 75.9 40.0 57.2 41.3 60.8 40.6 58.9 44.6 60.7

35%

96 38.1 58.5 37.3 57.1 39.7 61.2 40.3 50.2 35.9 55.1 48.2 71.6 38.4 55.2 38.8 58.2 35.9 54.6 36.6 53.8
192 40.2 61.2 39.3 59.8 41.9 64.2 42.5 52.6 43.1 64.5 53.0 76.9 46.8 65.7 39.1 59.4 36.1 54.9 44.4 61.6
336 40.8 62.4 39.9 60.9 42.5 65.4 51.7 64.1 48.6 71.7 56.8 81.0 47.3 66.4 44.3 60.9 46.5 65.4 48.1 65.2
720 43.1 65.1 42.1 63.5 44.9 68.2 56.9 70.4 53.7 77.9 60.1 84.2 60.7 76.9 49.5 69.0 50.4 69.0 56.5 74.2
Avg. 40.6 62.9 39.7 61.4 42.3 64.7 47.9 59.3 45.3 67.3 54.5 78.4 48.3 66.1 42.9 61.9 42.2 61.0 46.4 63.7

50%

96 42.1 62.0 41.1 60.4 43.8 64.9 42.3 53.0 43.0 63.0 53.6 77.1 38.7 58.2 41.5 61.5 37.8 56.9 41.1 59.2
192 43.9 64.5 42.8 62.8 45.8 67.6 44.7 56.2 49.3 71.2 57.5 81.5 49.3 68.9 41.9 62.0 44.1 57.4 48.8 66.8
336 45.7 66.6 44.6 64.9 47.6 69.8 54.6 65.7 53.4 76.6 60.7 85.0 60.0 79.8 47.3 64.6 48.5 68.0 50.2 67.1
720 47.5 68.7 46.3 66.9 49.6 72.0 59.2 73.5 56.8 80.7 63.3 87.4 61.6 80.4 52.5 72.9 52.7 70.1 60.3 77.2
Avg. 44.8 65.5 43.7 63.8 46.7 68.6 50.2 62.1 50.6 72.9 58.8 82.7 52.4 71.8 45.8 65.3 45.8 63.1 50.1 67.6

1st Count 0 10 0 9 1 0 1 1 4 1

Table 32: Comparison of the performance of LM-WEATHER and baselines on the ODW2T under
the long-term forecasting task. Bold: the best, Underline: the second best.

Method LM-WEATHER-AVE LM-WEATHER FL-Reformer FL-Pyraformer FL-DLinear FL-PatchTST FL-iTransformer FL-LightTS FL-Transformer FL-Informer

Metrics Ratio MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Temperature

96 40.6 52.5 40.2 51.8 90.8 107.0 90.5 107.3 41.1 53.5 52.2 65.6 41.2 53.2 41.8 54.1 58.7 72.7 59.1 73.4
192 45.3 57.8 44.6 56.9 97.3 119.3 96.9 114.3 46.2 59.0 48.0 60.8 46.2 58.8 46.6 59.4 60.5 75.2 60.9 75.5
336 48.4 61.0 47.7 60.2 100.3 121.2 99.8 117.2 50.1 63.3 49.2 62.2 49.2 62.1 49.7 62.8 61.1 76.0 62.2 77.2
720 55.3 69.2 54.6 68.1 130.3 150.3 127.7 144.1 61.4 75.1 58.2 73.0 56.2 70.4 59.1 72.9 67.9 78.2 66.3 82.7
Avg. 47.4 57.1 46.8 59.3 104.7 124.4 103.7 120.7 49.7 62.7 51.9 65.4 48.2 61.1 49.3 62.3 62.0 75.5 62.1 77.2

Humidity

96 67.3 85.3 66.2 83.1 88.4 106.0 85.1 103.1 67.9 84.7 70.2 88.1 68.6 86.5 68.4 85.4 85.0 103.0 84.7 102.7
192 70.3 88.4 69 85.9 91.3 110.3 89.7 107.8 71.4 88.1 72.2 90.7 71.1 88.9 71.9 88.9 85.0 103.0 84.9 102.8
336 71.4 89.3 70 86.6 94.3 111.2 92.2 110.2 73.0 89.5 73.0 91.9 71.8 89.6 73.7 90.5 82.6 100.5 84.8 102.9
720 72.8 90.9 71.3 88.2 96.1 114.1 94.0 112.2 76.1 92.9 75.1 93.3 72.9 91.0 76.7 93.7 84.1 105.1 85.4 103.8
Avg. 70.5 88.5 69.1 86.0 92.5 110.4 90.2 108.3 72.1 88.8 72.6 91.0 71.1 89.0 72.7 89.6 84.2 102.9 84.9 103.1

All

96 64.3 88.2 62.8 85.5 100.3 126.3 95.0 120.3 67.9 84.7 70.2 88.1 68.6 86.5 68.4 85.4 85.0 103.0 84.7 102.7
192 67.7 91.5 66.2 89.1 102.1 130.3 99.9 125.8 71.4 88.1 72.2 90.7 71.1 88.9 71.9 88.9 85.0 103.0 84.9 102.8
336 69.5 93.7 67.9 91.1 104.2 130.0 102.0 128.5 73.0 89.5 73.0 91.9 71.8 89.6 73.7 90.5 82.6 100.5 84.8 102.9
720 72.6 97.3 70.7 94.6 107.3 134.2 104.2 131.4 76.1 92.9 75.1 93.3 72.9 91.0 76.7 93.7 84.1 105.1 85.4 103.8
Avg. 68.5 92.7 66.9 90.1 103.5 130.2 100.3 126.5 72.1 88.8 72.6 91.0 71.1 89.0 72.7 89.6 84.2 102.9 84.9 103.1

1st Count 0 14 4 4 0 0 0 0 0 0

Table 33: Comparison of the performance of the proposed method and the baseline method on the
ODW2T under the imputation task. Bold: the best, Underline: the second best.

Method FLAME-ave FLAME FL-Reformer FL-Pyraformer FL-DLinear FL-PatchTST FL-iTransformer FL-LightTS FL-Transformer FL-Informer

Ratio Length MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

25%

96 32.9 50.3 32.1 48.9 48.9 68.8 95.4 120.8 34.0 52.4 41.3 61.9 33.6 51.9 33.4 51.7 52.0 71.9 42.4 62.2
192 36.2 54.9 35.1 53.2 51.2 71.1 96.7 122.0 34.6 54.7 46.5 66.4 37.3 56.6 33.5 51.8 62.7 83.8 43.9 64.0
336 41.6 60.0 40.4 58.2 54.4 73.5 99.1 127.4 37.0 59.1 68.8 90.2 42.9 61.9 42.9 58.9 54.3 75.1 42.0 62.3
720 46.1 65.5 44.9 63.5 59.2 78.5 101.2 128.1 42.2 63.0 75.1 98.1 47.5 67.5 43.1 62.0 57.8 77.2 40.8 60.6
Avg. 41.2 60.1 40.1 60.9 53.4 73.0 98.1 124.6 36.9 57.3 57.9 79.1 40.3 59.5 38.2 56.1 56.7 77.0 42.3 62.2

35%

96 34.9 52.8 33.8 51.2 48.7 68.1 95.3 117.2 36.7 55.3 40.8 61.0 35.9 54.4 35.6 54.2 54.1 73.7 45.4 65.5
192 36.5 55.2 35.3 53.5 51.4 72.4 96.2 119.4 37.1 56.5 50.6 71.8 37.6 57.0 35.9 54.3 55.6 75.9 47.1 67.6
336 41.9 60.3 40.6 58.5 53.9 74.0 98.9 124.5 39.4 63.7 68.7 90.0 43.2 62.2 43.3 63.4 56.1 76.5 46.1 66.9
720 47.2 67.6 45.8 65.6 61.5 77.7 100.5 127.3 44.4 69.4 76.1 98.5 48.6 69.7 44.3 65.4 57.9 77.8 45.5 65.8
Avg. 39.5 59.0 36.6 59.2 53.9 73.1 97.7 122.1 39.4 61.2 59.1 80.3 41.3 60.8 39.8 59.3 55.9 76.0 46.0 66.4

50%

96 38.0 56.6 36.9 54.9 50.3 70.3 95.4 120.8 40.8 60.0 38.4 58.6 39.1 58.3 38.8 57.8 65.5 86.6 51.7 72.0
192 38.3 56.6 37.2 54.9 52.1 74.2 96.2 122.3 42.9 62.7 66.7 87.8 39.4 58.3 39.5 58.4 71.4 92.8 55.0 75.7
336 43.5 65.5 42.2 63.5 56.6 78.9 97.8 125.5 46.0 67.7 68.7 90.1 44.8 67.5 47.8 65.3 66.8 88.8 51.5 72.8
720 47.9 68.8 46.5 66.7 64.3 87.7 99.1 129.9 52.8 76.1 70.4 93.5 49.3 71.0 48.0 68.0 67.4 89.2 51.5 73.0
Avg. 41.9 61.9 38.8 61.7 55.8 77.8 97.1 124.6 45.6 66.6 61.1 82.5 43.2 63.8 43.5 62.4 67.8 89.4 52.4 73.4

1st Count 0 20 0 0 3 0 0 5 0 2

E.2 Full Few-Shot Learning Experiments

In this section, we show detailed and full few-shot learning experimental results including:
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Table 34: Comparison of the performance of LM-WEATHER and the baseline method on the ODW2V
under the forecasting task. Bold: the best, Underline: the second best.

Metho FLAME-ave FLAME FL-Reformer FL-Pyraformer FL-DLinear FL-PatchTST FL-iTransformer FL-LightTS FL-Transformer FL-Informer

Variable Length MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Humidity

96 79.7 97.5 66.7 84.6 88.5 106.0 85.7 103.5 78.2 94.8 87.7 92.8 84.3 93.2 90.3 110.2 83.7 101.5 97.8 116.4
192 84.0 102.2 71.4 90.3 89.7 109.5 89.2 107.1 87.6 98.8 91.4 106.1 90.1 99.5 97.7 119.3 84.8 102.7 96.5 114.6
336 84.4 102.6 70.6 88.5 93.3 111.3 91.6 109.3 93.0 106.5 93.9 108.2 94.4 104.4 100.7 122.9 85.9 104.0 98.9 117.4
720 85.0 103.5 72.1 90.3 97.9 114.2 93.5 111.5 94.6 108.6 98.5 103.2 99.7 112.7 104.5 127.5 89.4 109.3 99.3 119.4
Avg. 83.3 101.4 70.2 88.4 92.4 110.2 90.0 107.9 88.3 102.2 92.9 102.6 92.1 102.4 98.3 120.0 86.0 104.4 98.1 117.0

All

96 76.8 99.7 65.1 88.4 89.6 112.7 89.1 112.5 74.8 96.8 76.3 99.9 73.5 97.7 92.2 117.7 77.0 100.1 77.4 100.4
192 77.9 100.8 68.3 91.4 90.5 114.2 96.4 120.1 76.6 98.9 79.9 103.3 78.8 103.6 100.5 128.1 78.3 101.8 78.0 101.1
336 78.5 101.5 69.9 93.0 94.2 119.3 98.4 122.2 77.6 100.2 81.8 105.3 82.1 107.5 105.5 134.4 79.4 103.3 78.7 102.0
720 79.9 103.6 72.9 96.5 97.4 120.4 100.5 125.0 79.6 103.0 86.2 100.2 86.2 112.7 111.0 141.3 86.1 112.3 81.3 105.6
Avg. 78.3 101.4 69.0 92.3 92.9 116.6 96.1 120.0 77.2 99.7 81.1 102.2 80.2 105.4 102.3 130.4 80.2 104.4 78.8 102.2

1st Count 0 20 0 0 0 0 0 0 0 0

Table 35: Comparison of the performance of LM-WEATHER and the baseline method on the ODW2V
under the imputation task. Bold: the best, Underline: the second best.

Method LM-WEATHER-AVE LM-WEATHER FL-Reformer FL-Pyraformer FL-DLinear FL-PatchTST FL-iTransformer FL-LightTS FL-Transformer FL-Informer

Ratio Length MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

25%

96 28.1 45.4 27.5 44.1 43.9 63.2 42.1 59.4 63.4 82.8 35.1 52.8 58.6 78.9 91.2 117.8 45.2 64.9 46.2 66.8
192 28.6 45.3 28.0 44.0 44.3 63.4 39.7 56.8 68.0 87.9 39.7 57.8 69.3 91.1 95.6 123.0 45.9 65.7 46.8 67.6
336 30.1 46.6 29.3 45.2 47.6 68.7 38.3 55.9 70.5 90.8 44.5 63.2 76.2 99.3 100.2 128.4 46.1 66.0 47.0 67.6
720 34.2 48.1 33.2 46.7 51.4 76.2 44.3 65.4 71.4 91.7 53.5 73.2 79.5 102.7 99.3 126.0 49.4 67.5 46.2 65.9
Avg. 30.2 46.4 29.5 45.0 46.8 67.9 41.1 59.4 68.3 88.3 43.2 61.7 70.9 93.0 96.6 123.8 46.6 66.0 46.5 67.0

35%

96 28.1 45.3 27.5 44.0 46.4 66.0 44.5 62.0 66.3 85.8 36.7 54.7 64.2 85.2 93.5 120.4 48.2 68.2 49.5 70.8
192 28.7 45.4 28.1 44.1 46.9 66.3 41.0 59.1 70.6 90.5 41.4 59.8 73.2 95.5 97.0 124.5 49.1 69.4 50.4 71.9
336 39.7 55.4 38.6 53.8 49.9 72.4 40.4 58.4 72.8 93.2 46.6 65.5 78.7 102.0 100.8 128.8 49.4 69.8 50.7 72.2
720 41.2 59.1 40.0 57.3 54.5 78.6 47.8 69.0 73.4 93.6 55.5 75.4 80.8 103.9 99.1 125.5 51.4 71.5 50.0 70.7
Avg. 34.4 51.3 33.6 49.8 49.4 70.8 43.4 62.1 70.8 90.8 45.1 63.8 74.2 96.6 97.6 124.8 49.5 69.7 50.1 71.4

50%

96 28.1 45.3 27.5 44.0 50.3 70.3 53.2 72.4 72.1 92.0 39.8 58.4 72.7 94.7 96.4 123.5 52.7 73.2 54.8 76.9
192 28.6 45.3 28.0 44.0 51.0 71.1 46.1 65.2 75.7 95.9 44.9 63.7 79.1 102.0 98.6 125.8 53.9 74.7 56.2 78.8
336 33.7 49.8 32.7 48.4 54.2 76.6 74.2 97.3 77.3 97.8 50.9 70.1 82.6 106.1 101.2 128.8 54.4 75.4 56.8 79.7
720 37.1 53.1 36.0 51.5 59.4 81.7 82.4 100.9 77.1 97.3 59.2 79.3 83.0 106.0 98.5 124.3 55.4 77.5 56.4 78.6
Avg. 31.9 48.4 31.1 47.0 53.7 74.9 64.0 84.0 75.5 95.8 48.7 67.9 79.4 102.2 98.7 125.6 54.1 75.2 56.0 78.5

1st Count 0 30 0 0 0 0 0 0 0 0

• Forecasting (Table. 36 for 5% training data, Table. 37 for 15% training data) and imputation (Table. 38
for 5% training data, Table. 39 for 15% training data) across different scenes and settings on the
ODW1T dataset.

• Forecasting (Table. 40 for 5% training data, Table. 41 for 15% training data) and imputation (Table. 42
for 5% training data, Table. 43 for 15% training data) across different scenes and settings on the
ODW1V dataset.

• Forecasting (Table. 44 for 5% training data, Table. 45 for 15% training data) and imputation (Table. 46
for 5% training data, Table. 47 for 15% training data) across different scenes and settings on the
ODW2T dataset.

• Forecasting (Table. 48 for 5% training data, Table. 49 for 15% training data) and imputation (Table. 50
for 5% training data, Table. 51 for 15% training data) across different scenarios and settings on the
ODW2V dataset.

Table 36: Comparison of the performance of LM-WEATHER with the baseline method on the
ODW1T dataset under the long-term forecasting task in a scenario where the proportion of training
data is set to be 5% in the few-shot learning. Bold: the best, Underline: the second best, “-“ denotes
insufficient training data.

Method LM-WEATHER-AVE LM-WEATHER FL-Reformer FL-Pyraformer FL-Dlinear FL-PatchTST FL-iTransformer FL-Lights FL-Transformer FL-Informer

Metrics Length MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Temperature

96 91.6 102.1 84.6 93.9 298.5 328.2 295.9 327.3 94.0 118.9 85.6 103.8 91.6 117.0 304.2 362.4 147.8 179.4 103.6 130.4
192 92.7 108.9 85.1 99.2 300.4 330.0 301.0 332.2 99.1 125.2 93.5 112.1 102.3 130.0 311.6 376.7 128.9 159.7 107.8 135.8
336 97.0 110.2 88.6 101.0 302.6 331.8 304.4 335.7 103.9 130.2 108.3 130.0 111.1 140.1 315.0 379.0 114.7 143.9 114.0 143.0
720 - - - - - - - - - - - - - - - - - - - -
Avg. 93.8 107.0 86.1 98.0 300.5 330.0 300.5 331.7 99.0 124.8 95.8 115.3 101.7 129.0 310.3 372.7 130.5 161.0 108.4 136.4

Humidity

96 84.7 108.0 78.1 99.4 111.0 130.1 105.6 124.9 90.7 99.8 78.8 95.0 81.0 102.8 115.3 140.2 111.5 137.0 87.8 109.5
192 90.9 115.4 83.3 105.5 105.5 123.4 109.1 129.2 93.9 103.9 82.3 98.4 87.9 110.9 117.9 143.9 88.7 109.4 87.6 108.3
336 96.2 117.1 88.1 107.1 106.7 125.3 112.5 134.2 96.2 106.3 92.0 108.2 92.7 116.2 118.4 144.3 88.0 112.0 90.3 111.8
720 - - - - - - - - - - - - - - - - - - - -
Avg. 90.6 113.5 83.2 104.0 107.7 126.3 109.1 129.4 93.6 103.3 84.4 100.5 87.2 109.9 117.2 142.8 96.1 119.5 88.5 109.9

Wind speed

96 90.4 112.3 83.1 103.3 93.1 120.3 96.2 125.8 90.0 115.9 89.1 113.6 98.9 127.5 107.2 138.6 118.3 150.7 93.2 120.8
192 94.9 114.5 87.0 105.0 92.9 120.5 97.4 127.1 91.3 117.4 90.8 116.9 101.5 130.6 108.7 140.2 92.7 120.6 92.5 118.9
336 96.4 117.4 88.3 107.5 94.6 123.0 100.7 131.2 92.2 118.5 94.9 123.0 103.2 132.7 109.0 140.6 95.1 122.6 95.6 122.5
720 - - - - - - - - - - - - - - - - - - - -
Avg. 93.9 114.7 86.1 105.3 93.6 121.2 98.1 128.1 91.2 117.2 91.6 117.8 101.2 130.3 108.3 139.8 102.0 131.3 93.8 120.8

Surface Temperature

96 83.5 94.2 80.2 93.2 176.9 204.5 179.6 208.8 82.9 107.0 83.6 102.2 74.1 97.5 188.2 229.5 98.0 126.6 91.8 115.9
192 92.3 101.3 92.7 99.6 180.1 207.5 183.4 212.7 88.2 112.9 89.6 109.4 87.8 114.0 194.8 239.3 98.3 128.1 93.1 119.4
336 95.1 102.7 96.1 100.6 182.7 210.2 185.6 215.6 92.0 117.2 103.1 118.0 99.1 127.6 196.9 240.9 98.6 129.4 94.8 122.2
720 - - - - - - - - - - - - - - - - - - - -
Avg. 90.3 99.4 89.7 97.8 179.9 207.4 182.9 212.4 87.7 112.3 92.1 109.9 87.0 113.0 193.3 236.6 98.3 128.1 93.2 119.1

All

96 88.1 95.1 87.3 93.9 166.9 296.0 173.6 299.2 92.4 187.5 85.1 182.7 103.3 204.8 185.8 328.3 93.7 193.5 91.1 190.0
192 90.2 98.4 89.6 96.5 166.9 297.3 176.0 303.0 94.4 192.4 90.7 191.6 106.7 210.7 188.1 336.0 96.8 200.1 93.5 195.9
336 94.2 101.7 92.2 99.7 168.9 297.5 177.6 303.0 95.9 193.2 96.5 197.4 108.7 211.8 188.4 334.6 100.2 203.3 99.3 201.0
720 - - - - - - - - - - - - - - - - - - - -
Avg. 90.8 98.4 89.7 96.7 167.7 296.9 175.7 301.7 94.2 191.0 90.7 190.6 106.3 209.1 187.5 333.0 96.9 199.0 94.6 195.6

1st Count 5 21 0 0 3 7 3 0 1 0
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Experimental results indicate that our LM-WEATHER significantly outperforms the baseline in resource-
constrained situations, such as few-shot learning environments with limited training data. This suggests that
LM-WEATHER effectively leverages PLMs for sequential data modeling and achieves commendable performance
without requiring extensive data for training.

Table 37: Comparison of the performance of LM-WEATHER with baselines on the ODW1T under
the forecasting task in a scenario where the proportion of training data is set to be 15% in the few-shot
learning. Bold: the best, Underline: the second best, “-“ denotes insufficient training data.

Method LM-WEATHER-AVE LM-WEATHER FL-Reformer FL-Pyraformer FL-DLinear FL-PatchTST FL-iTransformer FL-Lights FL-Transformer FL-Informer

Variable Length MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Temperature

96 53.9 70.6 52.3 66.6 181.8 205.4 168.4 191.7 74.4 93.2 52.7 69.6 59.9 77.6 143.1 170.2 102.2 124.9 80.8 102.1
192 60.2 78.4 57.4 73.9 192.7 216.7 184.7 208.7 77.3 97.5 60.3 78.7 69.2 89.0 185.6 222.9 106.0 130.2 90.5 114.2
336 66.2 84.5 62.4 79.4 200.4 223.9 202.9 226.6 80.6 101.1 66.4 108.1 77.6 98.5 210.4 252.0 99.5 122.8 95.5 119.3
720 69.7 86.2 65.7 80.9 220.2 240.9 220.7 243.6 94.2 116.7 83.7 104.7 95.6 119.7 236.1 277.8 103.6 127.0 108.7 133.8
Avg. 62.5 79.9 59.5 75.2 198.8 221.7 194.2 217.6 81.6 102.1 65.8 90.3 75.6 96.2 193.8 230.7 102.8 126.2 93.9 117.3

Humidity

96 65.3 85.1 63.7 82.7 96.2 114.2 89.8 107.9 74.7 93.0 63.2 83.5 69.7 90.7 91.3 112.4 87.1 108.0 86.0 106.0
192 68.4 89.9 66.6 87.4 95.0 113.4 93.7 112.3 81.0 100.7 68.9 90.3 77.3 99.3 99.5 122.8 90.3 111.2 88.5 108.5
336 70.7 91.5 69.7 88.8 94.6 112.9 95.7 114.7 85.1 105.0 72.5 93.7 84.3 106.6 102.8 126.7 88.7 108.8 89.9 110.2
720 72.9 93.8 71.6 91.0 97.5 115.2 97.6 117.4 89.7 109.7 78.2 98.9 93.9 117.2 107.1 131.6 89.9 109.7 91.3 112.1
Avg. 69.3 90.1 67.9 87.5 95.8 113.9 94.2 113.0 82.6 102.1 70.7 91.6 81.3 103.4 100.2 123.4 89.0 109.4 88.9 109.2

Wind speed

96 79.1 102.8 77.4 100.7 86.3 113.0 86.7 113.1 84.1 108.6 78.9 103.8 87.3 113.3 97.2 125.7 88.0 115.9 87.3 113.5
192 81.8 109.9 81.3 107.0 86.8 113.3 88.3 114.8 86.6 111.5 81.3 106.7 92.1 118.9 100.2 129.2 87.5 115.5 87.9 113.9
336 85.0 113.3 83.1 109.2 87.1 113.6 89.5 116.4 88.1 113.2 83.2 109.0 95.6 123.1 101.2 130.5 87.2 114.7 88.1 114.1
720 87.2 114.9 85.6 111.8 90.2 115.5 91.0 118.2 89.6 115.1 87.5 113.9 99.3 127.5 102.5 131.8 88.1 115.8 89.2 115.7
Avg. 83.3 110.2 81.9 107.2 87.6 113.8 88.9 115.6 87.1 112.1 82.7 108.3 93.6 120.7 100.3 129.3 87.7 115.5 88.1 114.3

Surface Temperature

96 43.2 59.6 42.7 58.5 135.0 162.6 122.6 148.9 60.4 80.6 42.4 58.9 51.0 68.0 128.3 157.5 83.9 108.6 80.9 102.7
192 47.9 65.4 47.3 64.1 140.0 167.6 136.5 164.6 69.6 90.9 47.3 64.9 58.2 77.2 150.3 185.9 83.9 109.3 83.6 108.2
336 50.7 68.4 50.0 67.2 143.8 171.0 147.6 175.5 76.0 97.9 52.0 70.1 67.6 88.7 161.0 198.3 82.7 107.8 85.3 110.0
720 52.2 70.4 51.9 68.2 160.2 181.6 156.4 183.9 84.9 109.0 64.2 84.2 86.4 111.5 172.7 210.2 85.8 111.1 90.2 115.8
Avg. 48.5 65.9 48.0 64.5 144.8 170.7 140.8 168.2 72.7 94.6 51.5 69.5 65.8 86.3 153.1 188.0 84.1 109.2 85.0 109.2

All

96 58.4 99.4 57.7 97.8 118.1 175.0 123.3 180.3 70.2 109.5 59.2 100.2 68.4 109.9 114.4 171.6 69.8 111.9 68.1 109.2
192 65.7 102.5 64.7 100.4 119.3 177.5 127.5 184.8 71.0 111.3 63.4 105.5 73.7 116.8 125.2 190.8 71.0 114.1 69.8 112.1
336 66.5 104.6 65.5 101.8 120.9 179.1 130.6 187.3 72.2 112.3 66.4 108.1 77.0 120.1 130.2 198.7 72.1 114.7 71.3 113.4
720 70.7 111.2 69.2 108.2 127.8 184.2 133.6 189.0 77.1 117.8 74.5 116.5 83.4 127.0 136.6 206.0 76.7 118.8 76.2 118.1
Avg. 65.3 104.4 64.3 102.1 121.5 179.0 128.8 185.4 72.6 112.7 65.9 107.6 75.6 118.4 126.6 191.8 72.4 114.9 71.3 113.2

1st Count 0 44 0 0 0 7 0 0 0 0

Table 38: Comparison of the performance of LM-WEATHER with the baseline on the ODW1T under
the imputation task in a scenario where the proportion of training data is set to be 5% in the few-shot
learning. Bold: the best, Underline: the second best, “-“ denotes insufficient training data.

Method LM-WEATHER-AVE LM-WEATHER FL-Reformer FL-Pyraformer FL-DLinear FL-PatchTST FL-iTransformer FL-LightTS FL-Transformer FL-Informer

Ratio Length MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

25%

96 56.1 111.4 52.6 109.2 137.4 242.2 133.6 227.9 87.5 176.7 56.8 134.9 98.8 198.1 175.2 317.1 130.8 248.0 133.8 253.5
192 60.1 114.3 57.6 112.0 142.0 248.7 145.6 245.1 89.4 173.4 69.5 148.4 104.5 197.9 176.3 310.6 140.1 251.7 141.1 254.5
336 - - - - - - - - - - - - - - - - - - - -
720 - - - - - - - - - - - - - - - - - - - -
Avg. 58.1 112.9 55.1 110.6 139.7 245.5 139.6 236.5 88.5 175.0 63.1 141.7 101.7 198.0 175.8 313.9 135.5 249.9 137.5 254.0

35%

96 61.7 120.4 58.2 119.7 141.2 245.2 139.6 231.3 95.8 188.3 59.7 139.8 106.7 210.1 174.4 315.0 134.4 252.4 137.5 257.5
192 64.5 126.5 60.9 122.3 142.6 247.1 141.3 234.8 97.0 184.3 72.4 156.8 110.7 207.7 174.7 307.1 143.5 255.6 144.6 257.9
336 - - - - - - - - - - - - - - - - - - - -
720 - - - - - - - - - - - - - - - - - - - -
Avg. 63.1 123.5 59.6 121.0 141.9 246.2 140.5 233.1 96.4 186.3 66.1 148.3 108.7 208.9 174.6 311.0 138.9 254.0 141.1 257.7

50%

96 63.1 122.4 62.1 119.4 147.4 261.3 149.5 256.4 110.0 209.1 64.2 147.0 119.0 228.5 173.0 310.8 140.8 260.0 143.9 264.7
192 67.3 129.7 62.5 129.4 151.3 267.8 152 258.1 110.1 203.4 74.1 155.1 120.9 223.0 172.2 301.4 149.1 262.4 150.3 264.2
336 - - - - - - - - - - - - - - - - - - - -
720 - - - - - - - - - - - - - - - - - - - -
Avg. 65.2 125.7 62.3 124.4 149.4 264.6 150.8 257.3 110.0 206.2 69.2 151.0 120.0 225.7 172.6 306.1 145.0 261.2 147.1 264.4

1st Count 0 18 0 0 0 0 0 0 0 0

Table 39: Comparison of the performance of the LM-WEATHER with the baseline on the ODW1T
under the imputation task in a scenario where the proportion of training data is set to be 15% in the
few-shot learning. Bold: the best, Underline: the second best, “-“ denotes insufficient training data.

Method LM-WEATHER-AVE LM-WEATHER FL-Reformer FL-Pyraformer FL-DLinear FL-PatchTST FL-iTransformer FL-LightTS FL-Transformer FL-Informer

Ratio Length MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

25%

96 30.8 58.8 30.1 54.2 76.3 121.9 74.1 120.3 62.6 96.6 31.6 60.0 63.5 101.6 113.3 173.7 72.4 115.3 73.3 117.0
192 36.0 64.8 35.0 61.2 77.4 124.9 75.4 122.1 65.3 99.2 37.4 66.9 71.5 110.6 117.5 179.2 72.6 114.0 73.2 115.6
336 42.0 71.2 41.0 68.6 80.2 130.2 79.9 126.0 67.3 100.5 43.7 73.8 76.3 115.0 121.1 181.8 72.5 112.0 72.8 113.4
720 54.4 84.3 52.6 80.2 84.1 136.6 82.1 132.2 68.6 99.9 56.2 86.3 79.0 114.8 115.0 169.3 76.1 112.1 76.0 113.1
Avg. 40.8 69.8 39.7 66.1 79.5 128.4 77.9 125.2 66.0 99.1 42.2 71.8 72.6 110.5 116.7 176.0 73.4 113.4 73.8 114.8

35%

96 32.4 60.8 31.3 58.2 78.1 123.8 77.0 120.4 95.8 188.3 33.4 62.5 71.0 112.1 115.8 177.0 73.9 117.1 75.1 119.2
192 38.0 67.3 36.8 62.5 79.4 125.9 78.1 122.4 70.7 106.2 39.3 69.4 77.1 118.7 118.6 180.3 74.2 115.9 75.1 117.9
336 44.1 73.7 42.9 70.4 82.1 129.4 80.3 126.3 72.2 106.9 45.8 76.4 80.6 121.2 121.0 181.3 74.3 114.1 75.1 116.0
720 55.9 85.6 54.0 82.5 85.0 134.6 83.2 130.4 72.3 104.8 57.7 88.1 81.5 118.8 113.9 167.4 78.8 115.3 79.1 116.7
Avg. 42.6 71.9 41.3 68.4 81.2 128.4 79.7 124.9 77.8 126.6 44.0 74.1 77.6 117.7 117.3 176.5 75.3 115.6 76.1 117.4

50%

96 35.4 65.6 34.3 62.5 81.4 128.3 80.9 123.2 79.0 118.1 36.7 67.2 82.4 128.0 118.8 180.4 76.3 119.9 78.3 123.3
192 41.7 71.7 40.2 68.2 83.0 130.7 82.1 127.8 80.3 119.3 43.0 74.2 86.0 131.2 119.7 180.8 76.8 119.1 78.7 122.3
336 48.0 78.6 46.5 75.9 86.2 134.2 84.9 130.2 80.8 118.7 49.7 81.0 87.5 131.1 120.4 179.6 77.5 117.9 79.2 121.0
720 58.1 87.8 56.0 84.8 90.1 139.4 89.9 134.4 78.9 113.8 59.8 90.7 85.9 125.4 112.3 164.4 83.9 121.6 84.8 123.5
Avg. 45.8 75.9 44.3 72.9 85.2 133.2 84.5 128.9 79.7 117.5 47.3 78.3 85.4 128.9 117.8 176.3 78.6 119.6 80.3 122.5

1st Count 0 30 0 0 0 0 0 0 0 0
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Table 40: Comparison of the performance of LM-WEATHER with the baseline method on the
ODW1V under the long-term forecasting task in a scenario where the proportion of training data
is set to be 5% in the few-shot learning. Bold: the best, Underline: the second best, “-“ denotes
insufficient training data.

Method LM-WEATHER-AVE LM-WEATHER FL-DLinear FL-PatchTST FL-iTransformer FL-LightTS FL-Transformer FL-Informer FL-Reformer FL-Pyraformer

Metrics Length MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Temperature

96 74.1 95.8 71.1 90.0 94.0 118.9 75.6 98.8 91.5 117.0 303.3 363.3 125.0 155.4 102.8 130.0 108.0 143.0 103.6 133.0
192 81.8 104.9 77.3 98.6 99.1 125.2 83.5 108.1 102.2 130.0 309.6 372.7 134.3 165.5 108.8 137.2 114.3 150.9 107.2 140.3
336 95.9 121.3 90.6 113.8 103.9 130.2 98.3 125.0 111.1 140.0 316.1 381.3 112.9 141.0 116.8 146.6 128.1 161.3 119.2 150.0
720 - - - - - - - - - - - - - - - - - - - -
Avg. 83.9 107.3 79.7 100.8 99.0 124.8 85.8 110.6 101.6 129.0 309.7 372.4 124.0 154.0 109.5 138.0 116.8 151.7 110.0 141.1

All

96 79.6 104.3 75.7 98.1 101.5 130.2 81.6 107.5 98.8 127.4 327.6 392.4 135.0 168.3 111.0 141.6 116.6 155.8 111.5 144.9
192 87.8 115.5 82.5 108.4 107.0 136.7 90.2 118.9 110.4 141.6 334.4 403.4 145.4 180.2 117.5 149.2 123.4 164.1 116.0 152.4
336 103.9 133.4 98.7 125.4 113.2 142.4 106.1 137.5 120.0 153.2 341.6 413.7 122.1 153.5 126.3 159.7 133.6 161.3 123.2 167.4
720 - - - - - - - - - - - - - - - - - - - -
Avg. 90.4 117.7 85.6 110.6 107.2 136.4 92.6 121.3 109.7 140.7 334.5 403.2 134.2 167.3 118.3 150.2 124.5 160.4 116.9 154.9

1st Count 0 16 0 0 0 0 0 0 0 0

Table 41: Comparison of the performance of LM-WEATHER with baselines on the ODW1V under
the forecasting task in a scenario where the proportion of training data is set to be 15% in the few-shot
learning. Bold: the best, Underline: the second best, “-“ denotes insufficient training data.

Method LM-WEATHER-AVE LM-WEATHER FL-DLinear FL-PatchTST FL-iTransformer FL-LightTS FL-Transformer FL-Informer FL-Reformer FL-Pyraformer

Metrics MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Temperature

96 52.2 67.5 51.1 65.5 74.4 93.2 52.7 69.6 59.9 77.6 143.2 170.7 83.9 105.1 75.6 95.8 78.7 102.0 80.3 105.1
192 59.1 76.3 57.7 74.1 77.3 97.5 60.3 78.7 69.2 88.9 184.3 220.5 95.4 118.4 83.8 106.2 87.2 113.3 89.0 116.7
336 64.5 82.4 62.8 80.1 80.6 101.1 66.1 84.9 77.5 98.4 211.0 253.0 92.2 114.6 88.2 110.8 92.1 117.9 94.0 121.4
720 81.4 101.6 79.2 98.6 94.2 116.7 83.7 104.7 95.5 119.6 236.3 278.3 100.5 123.5 104.0 128.8 108.2 137.9 110.4 142.0
Avg. 64.3 82.0 62.7 79.6 81.6 102.1 65.7 84.5 75.5 96.1 193.7 230.7 93.0 115.4 87.9 110.4 91.6 117.8 93.4 121.3

All

96 56.0 73.5 54.7 71.3 79.7 101.7 56.9 75.8 64.1 84.5 153.4 185.5 89.8 114.5 81.6 104.5 85.0 109.7 86.7 113.0
192 63.4 83.2 61.7 80.7 83.1 106.2 65.1 85.8 74.2 97.0 197.4 240.1 102.4 129.1 90.5 115.9 94.3 124.1 96.2 127.8
336 69.6 89.9 67.6 87.2 86.8 110.2 71.4 92.7 83.0 107.4 226.2 275.7 103.5 135.1 95.3 121.0 99.5 129.5 101.9 133.4
720 88.3 110.7 85.9 107.4 101.3 127.2 90.4 114.1 102.2 130.4 253.9 303.5 108.0 134.6 112.3 140.5 116.9 150.3 119.5 154.8
Avg. 69.3 89.3 67.5 86.7 87.7 111.3 71.0 92.1 80.9 104.8 207.7 251.2 100.9 128.3 94.9 120.5 98.9 128.4 101.1 132.3

1st Count 0 20 0 0 0 0 0 0 0 0

Table 42: Comparison of the performance of LM-WEATHER with baselines on the ODW1V under
the imputation task in a scenario where the proportion of training data is set to be 5% in the few-shot
learning. Bold: the best, Underline: the second best, “-“ denotes insufficient training data.

Method LM-WEATHER-AVE LM-WEATHER FL-DLinear FL-PatchTST FL-iTransformer FL-LightTS FL-Transformer FL-Informer FL-Reformer FL-Pyraformer

Ratio Length MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

25%

96 54.7 122.2 55.3 123.6 83.4 159.3 54.2 120.6 93.6 179.6 163.0 288.0 107.6 207.3 109.9 209.9 88.5 187.7 85.1 178.1
192 67.1 134.7 67.8 136.3 84.5 155.3 66.4 132.9 98.4 177.5 164.3 280.1 114.3 205.1 112.9 205.2 91.6 180.2 87.2 171.0
336 - - - - - - - - - - - - - - - - - - - -
720 - - - - - - - - - - - - - - - - - - - -
Avg. 60.9 128.5 55.3 130.0 84.0 157.3 60.3 126.8 96.0 178.5 163.6 284.0 111.0 206.2 111.4 207.5 90.1 184.0 86.2 174.6

35%

96 60.9 128.3 61.5 129.8 90.9 171.0 57.0 125.3 100.8 190.9 162.3 285.3 111.1 211.5 113.4 215.2 91.3 189.8 87.6 180.3
192 61.6 126.6 62.2 128.0 91.4 165.0 68.1 135.4 103.9 186.3 162.8 277.1 118.0 210.4 116.5 209.7 94.6 183.4 90.1 174.0
336 - - - - - - - - - - - - - - - - - - - -
720 - - - - - - - - - - - - - - - - - - - -
Avg. 61.3 127.5 61.9 128.9 91.2 168.0 62.6 130.4 102.4 188.6 162.5 281.2 114.6 211.0 114.9 212.4 93.0 186.6 88.9 177.2

50%

96 62.2 134.1 62.8 135.5 103.9 189.8 61.5 132.6 112.2 208.4 161.1 281.5 117.6 219.5 119.6 223.5 98.0 198.5 94.2 188.1
192 71.4 140.5 72.2 142.1 103.3 182.4 70.6 138.8 113.3 200.6 160.5 272.4 124.5 218.9 122.7 217.8 101.8 191.3 96.7 181.5
336 - - - - - - - - - - - - - - - - - - - -
720 - - - - - - - - - - - - - - - - - - - -
Avg. 66.8 137.3 67.5 138.8 103.6 186.1 66.1 135.7 112.7 204.5 160.8 276.9 121.0 219.2 121.2 220.7 101.8 194.9 95.5 184.8

1st Count 4 0 0 14 0 0 0 0 0 0

Table 43: Comparison of the performance of LM-WEATHER with baselines on the ODW1V under
the imputation task in a scenario where the proportion of training data is set to be 15% in the few-shot
learning. Bold: the best, Underline: the second best.

Method LM-WEATHER-AVE LM-WEATHER FL-DLinear FL-PatchTST FL-iTransformer FL-LightTS FL-Transformer FL-Informer FL-Reformer FL-Pyraformer

Ratio Length MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

25%

96 30.1 56.7 29.7 55.4 60.2 91.2 30.4 57.4 60.4 95.9 107.1 164.1 66.3 108.4 69.7 113.2 72.6 117.7 54.3 90.3
192 35.5 62.3 34.8 61.0 62.3 93.3 35.9 63.1 67.7 103.8 111.3 169.3 65.4 106.1 68.2 110.1 71.0 114.5 52.8 87.0
336 41.6 69.4 40.6 67.8 64.2 95.5 42.1 70.3 74.8 110.2 115.1 174.4 64.7 104.9 66.5 107.8 69.3 112.2 51.3 84.5
720 53.1 82.2 52.0 80.4 65.3 96.1 53.7 83.3 74.8 110.2 108.1 161.7 62.1 98.5 61.9 98.9 64.5 102.9 55.2 90.1
Avg. 41.6 67.7 39.3 66.2 63.0 94.0 40.5 68.5 69.4 105.0 110.4 167.4 64.6 104.5 66.6 107.5 71.0 111.8 53.4 88.0

35%

96 31.8 58.8 31.4 57.6 65.7 98.2 32.1 59.5 67.5 105.9 109.3 167.2 68.9 111.7 73.0 117.6 75.9 122.5 57.3 93.8
192 37.2 64.5 36.6 63.0 67.3 99.9 37.6 65.3 73.0 111.6 112.3 170.4 68.2 109.6 71.5 114.5 74.4 119.3 55.4 89.9
336 43.6 71.7 42.8 70.0 68.7 101.6 44.1 72.6 76.3 115.0 114.9 173.7 67.6 108.6 69.8 112.2 72.7 117.0 53.8 87.2
720 54.5 83.9 53.3 82.0 68.7 101.6 55.1 85.0 76.9 113.8 107.1 159.9 65.3 102.8 65.2 103.5 67.9 107.8 57.4 92.1
Avg. 41.8 73.4 41.0 68.2 67.6 100.3 42.2 70.6 73.4 111.6 110.9 167.8 67.5 108.2 69.9 111.9 73.6 114.7 56.0 90.8

50%

96 34.8 62.9 34.1 61.4 75.6 111.6 35.2 63.7 78.3 121.0 112.1 170.3 72.9 116.2 78.3 124.5 81.4 129.7 62.8 100.6
192 40.6 68.8 39.9 67.1 76.3 112.4 41.0 69.7 81.4 123.5 113.4 171.0 72.6 114.8 76.8 121.6 80.0 126.7 61.3 101.2
336 47.1 75.9 46.0 74.1 76.7 112.8 47.7 76.9 80.7 119.9 114.3 172.0 72.4 114.6 75.3 119.5 78.4 124.6 58.4 92.5
720 56.4 86.2 55.0 84.2 74.2 108.9 57.1 87.4 80.7 119.9 105.5 156.9 71.0 109.9 71.0 110.9 73.8 115.5 64.2 102.4
Avg. 44.7 73.5 43.8 71.7 75.7 111.4 45.3 74.4 80.3 121.1 111.3 167.5 72.2 113.9 75.4 119.1 78.4 124.1 61.7 99.2

1st Count 0 30 0 0 0 0 0 0 0 0
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Table 44: Comparison of the performance of LM-WEATHER with baselines on the ODW2T under
the forecasting task in a scenario where the proportion of training data is set to be 5% in the few-shot
learning. Bold: the best, Underline: the second best, “-“ denotes insufficient training data.

Method LM-WEATHER-AVE LM-WEATHER FL-Reformer FL-Pyraformer FL-DLinear FL-PatchTST FL-iTransformer FL-LightTS FL-Transformer FL-Informer

Variable Length MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Temperature

96 103.6 129.1 92.2 116.2 254.5 278.5 254.2 279.6 98.8 122.9 83.4 105.9 103.5 129.7 263.0 311.5 101.7 125.2 250.8 275.0
192 - - - - - - - - - - - - - - - - - - - -
336 - - - - - - - - - - - - - - - - - - - -
720 - - - - - - - - - - - - - - - - - - - -
Avg. 103.6 129.1 92.2 116.2 254.5 278.5 254.2 279.6 98.8 122.9 83.4 105.9 103.5 129.7 263.0 311.5 101.7 125.2 250.8 275.0

Humidity

96 110.2 134.1 97.2 122.0 128.6 153.0 132.5 158.9 106.6 128.7 96.7 120.0 113.3 139.6 143.7 175.3 119.0 145.4 131.4 157.5
192 - - - - - - - - - - - - - - - - - - - -
336 - - - - - - - - - - - - - - - - - - - -
720 - - - - - - - - - - - - - - - - - - - -
Avg. 110.2 134.1 97.2 122.0 128.6 153.0 132.5 158.9 106.6 128.7 96.7 120.0 113.3 139.6 143.7 175.3 119.0 145.4 131.4 157.5

All

96 111.0 159.4 99.0 135.5 158.3 241.2 173.3 247.1 107.1 152.8 101.2 147.9 115.9 166.3 183.6 273.3 142.3 199.6 158.8 201.3
192 - - - - - - - - - - - - - - - - - - - -
336 - - - - - - - - - - - - - - - - - - - -
720 - - - - - - - - - - - - - - - - - - - -
Avg. 111.0 159.4 99.0 135.5 158.3 241.2 173.3 247.1 107.1 152.8 101.2 147.9 115.9 166.3 183.6 273.3 142.3 199.6 158.8 201.3

1st Count 0 4 0 0 0 2 0 0 0 0

Table 45: Comparison of the performance of LM-WEATHER with baselines on the ODW2T under
the forecasting task in a scenario where the proportion of training data is set to be 15% in the few-shot
learning. Bold: the best, Underline: the second best, “-“ denotes insufficient training data.

Method LM-WEATHER-AVE LM-WEATHER FL-Reformer FL-Pyraformer FL-DLinear FL-PatchTST FL-iTransformer FL-LightTS FL-Transformer FL-Informer

Variable Length MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Temperature

96 68.0 85.1 66.6 84.5 240.0 260.3 211.1 233.4 88.2 108.1 66.2 88.2 70.2 89.4 221.5 254.3 100.2 123.2 236.5 258.1
192 73.7 93.3 71.7 90.7 234.9 255.2 225.6 247.8 86.1 106.7 78.5 94.8 79.2 100.0 239.2 281.8 120.3 144.3 241.9 263.4
336 91.0 103.0 86.7 109.7 235.3 255.5 234.2 255.7 89.1 110.7 89.5 109.2 88.9 111.7 250.2 295.8 133.2 160.7 249.1 270.3
720 - - - - - - - - - - - - - - - - - - - -
Avg. 77.5 93.8 76.7 97.1 236.7 257.0 223.6 245.6 87.8 108.5 78.1 97.4 79.5 100.3 237.0 277.3 117.9 142.7 242.5 263.9

Humidity

96 80.7 95.5 78.9 98.5 110.4 131.6 102.6 123.9 89.4 109.5 88.2 109.6 82.9 104.1 109.5 133.1 98.1 117.7 112.8 134.4
192 103.5 117.8 100.4 114.0 109.1 130.0 108.0 129.7 98.4 111.4 99.2 118.9 89.6 111.4 118.3 144.2 105.2 128.4 113.0 134.6
336 104.6 121.2 102.4 116.4 109.3 130.2 111.0 132.7 109.8 119.5 104.3 129.0 96.6 119.3 122.8 149.8 102.9 125.2 112.7 134.1
720 - - - - - - - - - - - - - - - - - - - -
Avg. 96.3 111.5 93.9 109.6 109.6 130.6 107.2 128.8 99.2 113.5 97.2 119.2 89.7 111.6 116.9 142.4 102.1 123.7 112.8 134.4

All

96 84.2 124.7 82.3 121.0 142.2 167.9 146.7 209.7 97.1 136.0 85.5 123.7 91.3 132.9 153.1 223.5 112.5 143.8 174.4 200.4
192 92.1 135.9 89.7 131.8 158.8 177.3 150.6 214.8 98.4 140.1 89.5 133.1 100.5 146.1 161.4 238.8 123.1 150.0 176.3 205.7
336 95.4 141.3 92.9 137.1 182.5 190.2 153.8 218.6 101.0 146.4 98.7 146.8 107.4 156.9 166.7 246.9 130.4 158.5 188.2 211.1
720 - - - - - - - - - - - - - - - - - - - -
Avg. 90.6 134.0 86.0 129.1 161.2 178.5 150.4 214.4 98.8 140.8 91.2 134.5 99.7 145.3 160.4 236.4 122.0 150.8 179.6 205.7

1st Count 2 14 1 0 1 2 4 0 0 0

Table 46: Comparison of the performance of LM-WEATHER with the baseline on the ODW2T under
the imputation task in a scenario where the proportion of training data is set to be 5% in the few-shot
learning. Bold: the best, Underline: the second best, “-“ denotes insufficient training data.

Method LM-WEATHER-AVE LM-WEATHER FL-DLinear FL-PatchTST FL-iTransformer FL-LightTS FL-Transformer FL-Informer FL-Reformer FL-Pyraformer

Ratio Length MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

25%

96 92.7 143.4 91.3 139.2 95.7 131.2 113.2 147.6 104.6 149.0 173.6 260.5 115.7 175.2 121.5 183.3 111.3 170.1 94.8 147.8
192 - - - - - - - - - - - - - - - - - - - -
336 - - - - - - - - - - - - - - - - - - - -
720 - - - - - - - - - - - - - - - - - - - -
Avg. 92.7 143.4 91.3 139.2 95.7 131.2 113.2 147.6 104.6 149.0 173.6 260.5 115.7 175.2 121.5 183.3 111.3 170.1 94.8 147.8

35%

96 95.6 147.2 94.1 144.2 103.2 141.8 116.3 151.2 112.0 160.5 173.4 259.1 119.9 180.8 126.0 189.5 115.9 176.3 98.0 151.7
192 - - - - - - - - - - - - - - - - - - - -
336 - - - - - - - - - - - - - - - - - - - -
720 - - - - - - - - - - - - - - - - - - - -
Avg. 95.6 147.2 94.1 144.2 103.2 141.8 116.3 151.2 112 160.5 173.4 259.1 119.9 180.8 126.0 189.5 115.9 176.3 98.0 151.7

50%

96 102.5 156.3 99.4 151.6 116.2 161.3 124.9 165.6 123.7 178.3 173.0 256.7 127.3 190.6 133.8 200.3 124.3 187.5 105.7 161.1
192 - - - - - - - - - - - - - - - - - - - -
336 - - - - - - - - - - - - - - - - - - - -
720 - - - - - - - - - - - - - - - - - - - -
Avg. 102.5 156.3 99.4 151.6 116.2 161.3 124.9 165.6 123.7 178.3 173 256.7 127.3 190.6 133.8 200 124.3 188 105.7 161.0

1st Count 0 8 4 0 0 0 0 0 0 0

Table 47: Comparison of the performance of LM-WEATHER with the baselines on the ODW2T
under the imputation task in a scenario where the proportion of training data is set to be 15% in the
few-shot learning. Bold: the best, Underline: the second best, “-“ denotes insufficient training data.

Method LM-WEATHER-AVE LM-WEATHER FL-DLinear FL-PatchTST FL-iTransformer FL-LightTS FL-Transformer FL-Informer FL-Reformer FL-Pyraformer

25%

96 72.5 105.3 71.7 103.7 81.1 111.1 85.1 118.7 76.7 111.8 137.7 204.5 89.9 140.3 94.4 146.7 85.6 134.9 76.8 122.8
192 74.6 108.5 73.7 106.8 88.3 120.6 94.4 129.0 92.2 130.1 150.7 223.5 93.2 143.4 97.0 148.8 87.4 136.1 77.0 122.2
336 75.1 117.5 74.2 115.6 91.7 125.1 97.8 133.7 102.0 142.3 160.1 236.5 95.7 145.4 98.4 149.5 88.2 136.0 77.3 121.1
720 - - - - - - - - - - - - - - - - - - - -
Avg. 74.1 110.4 73.2 108.7 87.0 119.0 94.4 131.4 90.3 128.1 149.5 221.5 92.9 143.0 96.6 148.3 87.1 135.7 77.0 122.0

35%

96 74.3 103.4 73.6 102.0 87.8 120.2 94.0 121.7 86.2 125.6 141.2 209.5 92.2 143.2 98.5 152.3 88.0 137.9 79.8 126.8
192 77.6 110.9 76.6 109.4 94.6 129.3 100.8 138.4 99.5 141.0 151.6 224.3 96.2 147.5 101.2 154.9 90.4 140.0 79.3 125.3
336 80.2 115.8 79.2 114.3 97.6 133.0 104.4 142.4 107.2 150.2 159.2 234.3 99.6 151.0 102.6 155.8 92.2 141.5 79.2 123.8
720 - - - - - - - - - - - - - - - - - - - -
Avg. 77.4 110.0 76.5 108.6 93.3 127.5 94.0 134.2 97.6 138.9 150.7 222.7 96.0 147.2 100.8 154.3 90.2 139.8 79.4 125.3

50%

96 74.9 105.3 74.1 103.7 100.0 138.0 105.5 147.7 101.2 147.1 145.4 214.9 96.1 147.7 105.4 161.7 92.2 143.1 85.0 133.7
192 78.1 114.2 77.2 112.6 105.8 145.5 112.7 155.7 110.7 157.8 152.6 224.2 101.6 154.4 108.5 165.2 95.9 147.3 83.4 130.9
336 84.1 119.0 83.1 117.3 108.0 148.1 115.6 158.5 115.6 163.2 157.6 230.5 106.6 160.6 109.9 166.2 99.5 151.6 82.7 128.7
720 - - - - - - - - - - - - - - - - - - - -
Avg. 79.0 112.8 78.6 111.2 104.6 143.8 111.3 154.0 109.2 156.0 151.8 223.2 101.5 154.2 107.9 164.3 95.9 147.3 83.7 131.1

1st Count 0 17 0 0 0 0 0 0 0 1
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Table 48: Comparison of the performance of LM-WEATHER with the baseline on the ODW2V under
forecasting tasks in a scenario where the proportion of training data is set to be 5% in the few-shot
learning. Bold: the best, Underline: the second best, “-“ denotes insufficient training data.

Method LM-WEATHER-AVE LM-WEATHER FL-Reformer FL-Pyraformer FL-Dlinear FL-PatchTST FL-iTransformer FL-LightTS FL-Transformer FL-Informer

Variable Length MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Humidity

96 109.6 133.5 99.7 124.3 130.7 155.2 130.1 155.8 109.6 138.7 116.7 140.0 113.3 139.7 146.2 178.9 118.3 144.0 128.4 153.3
192 - - - - - - - - - - - - - - - - - - - -
336 - - - - - - - - - - - - - - - - - - - -
720 - - - - - - - - - - - - - - - - - - - -
Avg. 109.6 133.5 99.7 124.3 130.7 155.2 130.1 155.8 109.6 138.7 116.7 140.0 113.3 139.7 146.2 178.9 118.3 144.0 128.4 153.3

All

96 105.3 135.7 96.8 122.1 151.5 190.7 150.5 189.3 112.2 141.2 115.5 145.8 110.2 143.4 162.1 212.5 106.4 136.8 149.6 188.2
192 - - - - - - - - - - - - - - - - - - - -
336 - - - - - - - - - - - - - - - - - - - -
720 - - - - - - - - - - - - - - - - - - - -
Avg. 105.3 135.7 96.8 122.1 151.5 190.7 150.5 189.3 112.2 141.2 115.5 145.8 110.2 143.4 162.1 212.5 106.4 136.8 149.6 188.2

1st Count 0 8 0 0 0 0 0 0 0 0

Table 49: Comparison of the performance of LM-WEATHER with baselines on the ODW2V under
the long-term forecasting task in a scenario where proportion of training data is set to be 15% in the
few-shot learning. Bold: the best, Underline: the second best, “-“ denotes insufficient training data.

Method LM-WEATHER-AVE LM-WEATHER FL-Reformer FL-Pyraformer FL-DLinear FL-PatchTST FL-iTransformer FL-LightTS FL-Transformer FL-Informer

Variable Length MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Humidity

96 79.1 99.9 75.7 94.9 111.1 132.5 100.7 121.0 87.4 102.4 96.2 96.6 83.0 104.2 110.3 134.1 100.5 124.1 112.1 133.3
192 89.7 111.8 85.3 106.2 109.4 130.3 105.8 126.7 91.4 114.4 100.2 110.9 89.7 111.5 118.1 144.1 109.0 132.8 113.2 134.6
336 105.7 120.8 100.4 114.8 109.3 130.0 109.8 131.0 97.8 118.5 102.3 113.0 106.6 119.4 122.3 149.2 106.5 129.8 113.5 135.3
720 - - - - - - - - - - - - - - - - - - - -
Avg. 91.5 110.8 87.1 105.3 109.9 130.9 105.4 126.2 92.2 111.8 99.5 106.8 93.1 111.7 116.9 142.5 105.3 128.9 112.9 134.4

All

96 79.0 106.4 75.6 101.1 135.4 172.3 126.9 162.3 89.6 115.9 78.5 106.1 85.7 114.1 135.8 178.1 108.7 143.1 134.4 171.1
192 87.8 116.6 83.6 110.8 133.7 169.9 131.9 167.6 90.8 117.4 82.6 110.5 92.7 122.1 141.9 187.2 107.4 141.5 134.4 170.8
336 89.6 119.0 85.1 113.1 133.9 170.1 133.6 169.6 92.4 119.8 85.6 114.0 98.3 129.0 146.3 193.2 105.7 139.5 134.8 171.1
720 - - - - - - - - - - - - - - - - - - - -
Avg. 85.5 114.0 81.4 108.3 134.3 170.8 130.8 166.5 90.9 117.7 82.2 110.2 92.2 121.7 141.3 186.2 107.3 141.4 134.6 171.0

1st Count 0 12 0 0 0 0 0 0 0

Table 50: Comparison of the performance of LM-WEATHER with baselines on the ODW2V under
the imputation task in a scenario where the proportion of training data is set to be 5% in the few-shot
learning. Bold: the best, Underline: the second best, “-“ denotes insufficient training data.

Method LM-WEATHER-AVE LM-WEATHER FL-DLinear FL-PatchTST FL-iTransformer FL-LightTS FL-Transformer FL-Informer FL-Reformer FL-Pyraformer

Ratio Length MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

25%

96 42.2 62.9 39.7 60.5 91.3 117.0 61.5 84.9 98.3 129.6 155.1 203.0 92.5 125.2 94.9 128.2 90.4 122.4 87.0 115.9
192 - - - - - - - - - - - - - - - - - - - -
336 - - - - - - - - - - - - - - - - - - - -
720 - - - - - - - - - - - - - - - - - - - -
Avg. 42.2 62.9 39.7 60.5 91.3 117.0 61.5 84.9 98.3 129.6 155.1 203.0 92.5 125.2 94.9 128.2 90.4 122.4 87.0 115.9

35%

96 41.5 63.0 38.5 61.2 96.8 123.5 65.0 88.9 104.2 136.7 154.7 201.8 95.7 129.1 98.9 133.3 93.7 126.6 88.1 117.1
192 - - - - - - - - - - - - - - - - - - - -
336 - - - - - - - - - - - - - - - - - - - -
720 - - - - - - - - - - - - - - - - - - - -
Avg. 41.5 63.0 38.5 61.2 96.8 123.5 65.0 88.9 104.2 136.7 154.7 201.8 95.7 129.1 98.9 133.3 93.7 126.6 88.1 117.1

50%

96 42.4 62.9 35.7 112.1 106.8 135.5 70.8 95.5 113.3 148.0 153.8 199.5 101.8 136.4 106.1 142.2 100.1 134.6 89.8 119.0
192 - - - - - - - - - - - - - - - - - - - -
336 - - - - - - - - - - - - - - - - - - - -
720 - - - - - - - - - - - - - - - - - - - -
Avg. 42.4 62.9 35.7 112.1 106.8 135.5 70.8 95.5 113.3 148.0 153.8 199.5 101.8 136.4 106.1 142.2 100.1 134.6 89.8 119.0

1st Count 0 10 0 2 0 0 0 0 0 0

Table 51: Comparison of the performance of LM-WEATHER with baselines on the ODW2V under
the imputation task in a scenario where the proportion of training data is set to be 15% in the few-shot
learning. Bold: the best, Underline: the second best, “-“ denotes insufficient training data.

Method LM-WEATHER-AVE LM-WEATHER FL-Dlinear FL-PatchTST FL-iTransformer FL-LightTS FL-Transformer FL-Informer FL-Reformer FL-Pyraformer

Ratio Length MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

25%

96 35.2 54.2 33.4 52.9 77.3 101.0 40.9 60.9 70.6 96.0 125.5 166.4 74.7 104.0 77.1 107.6 72.6 101.3 63.7 88.8
192 36.7 56.3 34.3 53.4 83.9 108.2 47.5 68.1 86.1 114.0 134.8 179.1 77.4 106.9 80.5 144.6 74.6 103.5 64.9 90.3
336 41.2 60.2 40.0 59.1 87.9 113.0 59.5 81.9 96.8 126.8 144.9 191.6 82.7 113.5 84.0 115.3 77.8 107.6 71.9 98.7
720 - - - - - - - - - - - - - - - - - - - -
Avg. 37.7 56.9 35.9 55.1 83.0 107.4 49.3 70.3 84.5 112.3 135.1 179.0 78.3 108.1 80.5 122.5 75.0 104.1 66.8 92.6

35%

96 36.4 55.8 36.0 55.1 82.7 107.2 42.7 63.1 78.8 106.3 128.2 169.5 77.0 106.7 80.4 111.7 74.5 103.4 122.4 157.9
192 36.9 57.0 35.4 56.1 88.9 114.1 49.5 70.5 92.2 121.8 135.6 179.5 79.9 109.9 84.2 116.2 76.6 106.0 69.4 96.1
336 43.8 64.6 41.2 63.5 92.4 118.5 62.3 84.9 100.9 132.1 144.1 189.9 86.0 117.8 87.9 120.5 80.7 111.2 73.4 100.4
720 - - - - - - - - - - - - - - - - - - - -
Avg. 39.0 59.1 37.5 58.2 88.0 113.3 51.5 72.9 90.6 120.0 136.0 179.7 81.0 111.4 84.2 116.1 77.3 106.9 88.4 118.1

50%

96 36.8 56.4 32.7 55.5 92.6 119.2 46.0 67.1 91.8 122.3 131.4 172.8 80.6 110.4 86.3 118.8 77.7 106.9 84.1 111.5
192 37.4 57.9 36.7 56.8 97.7 124.9 53.6 75.4 101.6 133.5 136.3 179.3 84.3 115.1 90.8 124.7 80.6 110.7 83.8 112.5
336 44.2 65.7 43.4 64.4 100.7 128.6 67.4 90.7 107.5 140.4 142.7 187.1 92.2 125.5 94.8 129.4 86.2 118.2 80.8 109.2
720 - - - - - - - - - - - - - - - - - - - -
Avg. 39.5 60.0 37.6 58.9 97.0 124.2 55.7 77.7 100.3 132.1 136.8 179.7 85.7 117.0 90.6 124.3 81.5 112.0 82.9 111.1

1st Count 0 24 0 0 0 0 0 0 0 0

38

84934https://doi.org/10.52202/079017-2696



E.3 Full Ablation Experiments

In this subsection, we show the results of the complete ablation experiment, both in the forecasting (Table. 52)
and in imputation (Table. 53).

Table 52: Ablation experimental (forecasting) results for both the model composition level and
the personalization mechanism level are included, where ↑ represent the degree of performance
increase relative to the original LM-WEATHER, ↓ represent the degree of performance degradation,
and the Comm. Param# represents the number of parameters transferred between client and server
communication for the different variants. Bold: the best, Underline: the second best.

Method
Original Model Composition Perspective Personalized Perspective

LM-WEATHER LM-WEATHER-A LM-WEATHER-B LM-WEATHER-C LM-WEATHER-D LM-WEATHER-E LM-WEATHER-F LM-WEATHER-G LM-WEATHER-H

Variables Length MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Temperature

96 26.6 34.7 29.5 39.9 28.8 38.2 28.5 37.8 27.7 36.5 31.0 43.7 28.8 38.3 24.2 32.4 24 30.9
192 30.4 36.5 34.1 42 33.2 40.2 32.9 39.6 32.0 38.2 35.9 45.8 33 40.2 28.0 32.5 27.9 32.6
336 31.6 38.0 35.6 44 35 42.3 34.3 41.5 33.3 40.0 38.5 48.1 43.5 41.9 29.4 34.2 29.2 34.1
720 37.2 45.4 42.1 52.9 41.3 50.8 40.7 50.2 39.3 48.6 44.2 57.8 40.5 50.2 35.1 42.0 33.8 42.6
Avg. 31.5 38.7 35.3 44.7 34.6 42.9 34.1 42.3 33.1 40.8 37.4 48.9 36.5 42.7 29.2 35.3 28.7 35.1

Humidity

96 49.9 64.0 56.2 75.1 54.7 72.3 54.1 71.2 52.7 68.6 59.0 81.9 53.8 70.5 48.1 61.5 47.8 61.4
192 53.0 67.8 60.5 80 59.3 78 58.3 75.8 57.6 73.9 63.6 87.4 58.4 75.0 51.7 65.3 51.3 64.7
336 55.6 70.1 63.5 82.7 62.3 81.1 61.0 78.5 60.0 76.6 66.7 90.4 60.6 77.4 54.1 67.2 53.7 66.3
720 59.0 73.1 67.3 86.7 66.1 85.2 64.8 82.0 63.5 80.0 70.7 94.8 64.3 82.0 57.4 71.1 56.7 69.4
Avg. 54.4 68.8 61.9 81.1 60.6 79.2 59.6 76.9 58.5 74.8 65.0 88.6 59.3 76.2 52.8 66.3 52.4 65.5

Wind speed

96 65.7 84.0 73.8 99.7 72.2 96.6 71.5 94.6 70.8 92.1 78.1 108.9 70.8 92.6 64.2 81.8 63.9 81.4
192 66.7 85.0 75.5 101.0 74.2 98.2 73.2 95.7 73.2 93.3 80.0 110.3 72.5 93.9 65.5 82.7 65.1 82.1
336 67.2 85.7 76.3 101.7 75.1 99 74.0 96.4 74.0 94.0 81.0 9.3 73.4 94.7 66 83.2 65.6 82.5
720 68.0 86.5 77.2 102.7 76.1 100 74.9 97.3 74.8 94.9 82.7 112.1 74.3 95.7 66.7 83.9 66.3 83.3
Avg. 66.9 85.3 75.7 101.3 74.4 98.5 73.4 96.0 73.2 93.6 80.5 85.2 72.8 94.2 65.6 82.9 65.2 82.3

Surface Temperature

96 27.0 37.4 29.5 43.0 29.1 41.4 28.8 40.7 28.2 39.5 31.6 44.8 29.1 41.1 24.4 33.3 24.3 34.2
192 29.0 39.9 31.7 46.0 32.4 43.6 31.0 43.8 31.3 42.6 34.1 50.2 31.4 44.2 26.3 36.1 26.1 37
336 31.1 42.4 34.1 49.2 35.1 48.2 33.4 46.5 33.7 45.4 36.3 51.0 33.6 46.7 28.3 38.3 28.1 38.9
720 36.8 47.9 41 55.3 41.4 54.5 39.9 52.7 39.7 51.0 43.1 57.9 40 52.7 34.5 44.5 33.2 44.8
Avg. 31.0 41.9 34.1 48.4 34.5 46.9 33.3 45.9 33.2 44.6 36.3 51.0 33.5 46.2 28.4 38.1 27.9 38.7

All

96 42.3 71.1 47.0 83.2 46.2 81.2 45.7 79.4 45.2 77.7 50.0 90.5 45.7 78.3 40.0 68.1 39.8 68.3
192 44.4 73.6 49.4 86.3 49.7 84.3 48.9 82.3 48.1 80.4 52.8 94.1 48.3 81.0 42.3 70.4 42 70.4
336 45.8 75.2 51.4 88.6 52 86.7 51.3 84.5 50.4 82.6 54.5 96.7 50.0 82.9 43.6 71.9 43.2 71.8
720 49.2 78.5 55.5 92.3 55.5 90 54.6 88.2 53.6 86.2 57.9 101.1 53.6 86.8 47.0 75.2 45.6 74.2
Avg. 45.4 74.6 50.8 87.6 50.9 85.6 50.1 83.6 49.3 81.7 53.8 95.6 49.4 82.3 43.2 71.4 42.7 71.2

Average 45.8 61.9 51.6 72.6 51.0 70.6 50.1 68.9 49.5 67.1 54.6 73.9 50.3 68.4 43.8 58.8 43.4 58.6
Change - - 12.70% ↓ 17.3% ↓ 11.4% ↓ 14.1% ↓ 9.4% ↓ 11.3% ↓ 8.1% ↓ 8.4% ↓ 19.2% ↓ 19.4% ↓ 9.8% ↓ 10.5% ↓ 4.6% ↑ 5.3% ↑ 5.5% ↑ 5.6% ↑

Comm. Param. # 0.38 M 0.38 M 0.38 M 0.38 M 0.38 M 0.38 M 10.00 M 41.99 M 10.00 M

Table 53: Ablation experimental results (imputation) for both the model composition level and
the personalization mechanism level are included, where ↑ represent the degree of performance
increase relative to the original LM-WEATHER, ↓ represent the degree of performance degradation,
and the Comm. Param# represents the number of parameters transferred between client and server
communication for the different variants. Bold: the best, Underline: the second best.

Method
Original Model Composition Perspective Personalized Perspective

LM-WEATHER LM-WEATHER-A LM-WEATHER-B LM-WEATHER-C LM-WEATHER-D LM-WEATHER-E LM-WEATHER-F LM-WEATHER-G LM-WEATHER-H

Metrics Length MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

25%

96 20.2 38.6 21.8 43.4 22 42.8 21.4 41.8 21.0 41.5 22.0 42.7 23.1 47.2 19.4 36.9 19.2 35.8
192 20.7 37.0 22.8 41.6 22.5 43.4 21.9 42.8 21.5 41.6 22.8 42.9 23.8 45.3 19.8 34.2 19.6 34.1
336 21.0 38.4 23.2 43.0 23 42.6 22.2 43.8 21.8 41.2 23.2 42.5 24.2 46.8 20.2 37.1 20.0 35.6
720 21.5 39.3 23.8 44.0 23.5 43.6 22.9 42.7 22.4 43.2 23.8 43.4 24.9 47.9 20.6 36.3 20.4 36.1
Avg. 21.1 38.3 22.9 43.0 22.8 43.1 22.1 42.8 21.7 41.9 23.0 42.9 24.0 46.8 20.0 36.1 19.8 35.4

35%

96 21.1 39.8 23.4 44.8 23.2 44.2 22..4 43.4 22.0 43.0 23.4 44.2 24.5 49.1 20.3 35.3 20.1 36.8
192 21.3 38.3 23.6 45.2 23.4 42.6 22.7 41.6 22.2 44.1 23.6 43.0 24.7 46.7 20.4 36.7 20.3 37.1
336 22.1 39.5 24.6 44.4 24.7 43.9 23.7 43.1 23.0 42.4 24.5 43.8 26.0 48.4 21.5 36.4 22.1 37.2
720 23.2 39.8 25.9 44.8 25.6 45.4 25 43.4 24.2 42.8 25.7 44.2 27.6 28.8 22.4 37.0 22.2 36.8
Avg. 21.9 39.4 24.4 44.8 24.2 44.0 23.8 42.9 22.9 43.1 24.3 43.8 25.7 43.3 21.2 36.4 21.2 37.0

50%

96 21.7 41.8 24.3 47 23.7 46.4 23.2 45.3 22.8 44.9 23.9 46.3 25.9 51.2 21.0 38.6 20.8 38.8
192 22.6 42 25.4 47.2 24.8 46.6 24.4 45.6 23.9 45.0 24.9 46.5 27.4 51.4 21.9 38.8 21.8 38.9
336 23.2 42.4 26.2 47.7 25.6 47.1 25.3 46.2 24.6 45.4 25.7 47.0 28.4 52.0 22.5 39.1 22.4 39.3
720 24.9 43.3 27.9 48.8 27.3 48.2 27.2 47.2 26.3 47.2 27.4 48.1 30.6 53.2 24.0 40.0 23.9 40.2
Avg. 23.1 42.4 26.0 47.7 25.4 47.1 25.0 46.1 24.4 45.6 25.5 47.0 28.1 52.0 22.4 39.1 22.2 39.3

Average 22.1 40.0 24.4 45.2 24.1 44.7 23.6 43.9 23.0 43.5 24.3 44.6 26.1 48.4 21.2 37.2 21.1 37.2

variations - - 9.50% ↓ 13% ↓ 9.0% ↓ 11.8% ↓ 6.8% ↓ 9.8% ↓ 4.1% ↓ 8.8% ↓ 10.0% ↓ 11.5% ↓ 18.1% ↓ 21.0% ↓ 4.2% ↑ 7.5% ↑ 4.7% ↑ 7.5% ↑
Comm. Param. # 0.38 M 0.38 M 0.38 M 0.38 M 0.38 M 0.38 M 10.00 M 41.99 M 10.00 M

E.4 Hyper-parameter Sensitivity

The impacts of rank on performance are detailed in Table. 54. As the rank goes up, there’s a consistent
improvement, reaching its best at r = 8. However, when r = 12, there’s a drop in performance. This happens
because a higher rank means the local model has more trainable parameters, which can improve performance
empirically. While a higher rank can cause increased communication cost and introduce more uncertainty.

E.5 Pre-trained Language Model Variants

We compare three representative PLM backbones with varying capacities, the result is shown in Table. 55. Under
the proposed LM-WEATHER framework, it’s evident that various PLM backbones maintain strong sequence
modeling capabilities. Moreover, the lightweight personalized adapter in LM-WEATHER enhance the PLM’s
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Table 54: Results on parameter impact study, where Length refers to the length of weather sequences
(that is, predicted horizons in forecasting and input sequence length in imputation). Avg. represents
the average value of predicted horizons, encompassing {96, 192, 336, 720}.

Rank Length
Forecasting Imputation Param.#

MAE RMSE MAE RMSE Trainable Comm.

2 Avg. 47.6 79.8 25.1 46.6 10.14 M 0.12 M

4 Avg. 46.5 78.4 24.2 45.1 10.25 M 0.24 M

6 Avg. 46.5 76.9 24.0 44.6 10.37 M 0.35 M

12 Avg. 45.9 76.1 23.4 43.7 10.72 M 0.70 M

8 (Ori.) Avg. 45.4 74.6 23.1 42.4 10.49 M 0.47 M

Table 55: Performance statistics for the proposed LM-WEATHER with various PLM backbones are
presented, recording only the average performance across all lengths for different datasets (namely,
96/192/336/720 prediction horizons). For the imputation task, results are documented solely for a
random masking probability of 50%. Bold: the best, Underline: the second best.

Variant Dataset Forecasting Imputation (50%)

LM-WEATHER (GPT2, Original)

ODW1T 45.4/74.6 23.1/42.4
ODW1V 45.6/71.9 43.7/63.8
ODW2T 66.9/90.1 38.8/61.7
ODW2V 69.0/92.3 31.1/47.0

LM-WEATHER (Bert, 5)

ODW1T 49.3/82.9 25.0/47.2
ODW1V 49.9/80.0 48.3/71.2
ODW2T 73.6/100.4 42.4/68.7
ODW2V 76.2/102.9 34.5/52.6

LM-WEATHER (Llama, 4)

ODW1T 47.2/77.6 24.0/44.5
ODW1V 47.2/74.2 45.7/67.2
ODW2T 69.5/94.4 40.5/65.0
ODW2V 72.3/97.6 32.4/49.8

ability to transfer knowledge from natural language sequences to complex weather sequences. This further
validates the superiority and versatility of our LM-WEATHER.

Appendix F Additional Statements

F.1 Impact Statements

We highlight that the goal of this study to proposed LM-WEATHER is not to compete but instead to complement
current on-device meteorological variable modeling framework. Today’s climate foundation models are typically
trained from scratch, utilizing exceptionally large datasets (nearly 100TB) and incurring substantial computational
costs. We hope that LM-WEATHER offers a cost-effective alternative for modeling meteorological variables
on-device, thereby enabling accurate regional weather trend analysis. In addition, the dataset we complied can
be the important resource to provide exploring chances for this field, facilitating future research.

This research seeks to make on-device meteorological variable modeling more efficient and adaptable. By using
a PLM as a foundation model instead of training large foundation models from scratch, it eliminates the need
for large-scale real weather data and extensive computational resources. Additionally, it supports a variety
of devices, enabling everything from advanced smartphones to basic IoT sensors to perform meteorological
variable modeling. The method is also designed to be stable in environments with limited data and those outside
of typical distribution ranges, providing credible analytical support for further weather trend analyses.
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F.2 Limitations

Although our LM-WEATHER significantly outperforms models trained from scratch for time series analysis
across various tasks and scenarios with minimal parameter tweaks, it still faces two primary limitations:

• Limited Dataset Scale: Due to constraints on computational resources and operational costs, we
evaluated the performance of LM-WEATHER using the real-world datasets that did not approach the
scale of tens of terabytes often required for training large-scale meteorological models. This limitation
does not affect LM-WEATHER to be extended as a general framework for regional weather trend
analysis. This framework supports the analysis of on-device meteorological variables and can be
further developed and adapted for additional applications.

• Dependence on PLMs’ Quality and Performance: Although LM-WEATHER leverages PLMs to
achieve high efficiency and customization on heterogeneous devices, this dependency means that the
quality and the performance of LM-WEATHER are intrinsically tied to the underlying PLMs. Should
there be inherent limitations or biases within the PLMs, these could translate to the meteorological
modeling performance. Conversely, if conditions allow the use of a more powerful LLM, LM-
WEATHER’s performance can be significantly improved. This might give the community more
opportunities to explore the future road-map.

F.3 Future Works

In future work, we aim to broaden the use of LM-WEATHER across more on-device variable modeling appli-
cations. We also plan to incorporate additional types of data, including satellite and radar imagery, as well
as textual weather descriptions, to advance towards a more generalized approach to on-device meteorological
variable modeling.
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Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]
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paper’s contributions and scope.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made in the
paper.

• The abstract and/or introduction should clearly state the claims made, including the contributions
made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: This paper has discussed the limitations of the work.
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• The answer NA means that the paper has no limitation while the answer No means that the paper
has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
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asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach. For
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• The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address problems
of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by reviewers
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preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.
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Question: For each theoretical result, does the paper provide the full set of assumptions and a complete
(and correct) proof?

Answer: [Yes]

Justification: This paper provide the full set of assumptions and a complete proof.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.

42

84938https://doi.org/10.52202/079017-2696



• The proofs can either appear in the main paper or the supplemental material, but if they appear in
the supplemental material, the authors are encouraged to provide a short proof sketch to provide
intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
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• The answer NA means that the paper does not include experiments.
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are provided or not.
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• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might suffice,
or if the contribution is a specific model and empirical evaluation, it may be necessary to either
make it possible for others to replicate the model with the same dataset, or provide access to
the model. In general. releasing code and data is often one good way to accomplish this, but
reproducibility can also be provided via detailed instructions for how to replicate the results,
access to a hosted model (e.g., in the case of a large language model), releasing of a model
checkpoint, or other means that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe the

architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should either be

a way to access this model for reproducing the results or a way to reproduce the model (e.g.,
with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: This paper has provided access to the code, but due to the size of the dataset, additional
releases are required.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

• The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.
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• The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

• Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: This paper has specified all the training and test details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that is

necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-
tion about the statistical significance of the experiments?

Answer: [No]

Justification: The experiments in this paper were conducted under five different random seeds and
averaged to from the final reprot.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report

a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is
not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: This paper has provided sufficient information on the computer resource.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud

provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual experimental
runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into
the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code
of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This research is conducted in the paper conform, in every respect, with the NeurIPS code
of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a deviation

from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due

to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative societal impacts
of the work performed?

Answer: [Yes]

Justification: This paper has discussed both potential positive societal impacts and negative societal
impacts of the work performed.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact or

why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to particular
applications, let alone deployments. However, if there is a direct path to any negative applications,
the authors should point it out. For example, it is legitimate to point out that an improvement in
the quality of generative models could be used to generate deepfakes for disinformation. On the
other hand, it is not needed to point out that a generic algorithm for optimizing neural networks
could enable people to train models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-
ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the
efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or
scraped datasets)?

Answer: [Yes]

Justification: This paper has described the relevant safegurads adopted.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with necessary

safeguards to allow for controlled use of the model, for example by requiring that users adhere to
usage guidelines or restrictions to access the model or implementing safety filters.
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• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: This paper has noted the original owners of the assets used.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service of

that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package should

be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer: [Yes]

Justification: This paper introduces new datasets and has been described in detail.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create an
anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Including this information in the supplemental material is fine, but if the main contribution of the
paper involves human subjects, then as much detail as possible should be included in the main
paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human Subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?
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Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly state
this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

• For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.
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