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Abstract

Identifying subgroups with differential responses to treatment is pivotal in ran-
domized clinical trials, as tailoring treatments to specific subgroups can advance
personalized medicine. Upon trial completion, identifying best-performing sub-
groups–those with the most beneficial treatment effects–is crucial for optimizing
resource allocation or mitigating adverse treatment effects. However, traditional
clinical trials are not customized for the goal of identifying best-performing sub-
groups because they typically pre-define subgroups at the beginning of the trial
and adhere to a fixed subgroup treatment allocation rule, leading to inefficient
use of experimental efforts. While some adaptive experimental strategies exist
for the identification of the single best subgroup, they commonly do not enable
the identification of the best set of subgroups. To address these challenges, we
propose a dynamic subgroup identification covariate-adjusted response-adaptive
randomization (CARA) design strategy with the following key features: (i) Our
approach is an adaptive experimental strategy that allows the dynamic identification
of the best subgroups and the revision of treatment allocation towards the goal
of correctly identifying the best subgroups based on collected experimental data.
(ii) Our design handles ties between subgroups effectively, merging those with
similar treatment effects to maximize experimental efficiency. In the theoretical
investigations, we demonstrate that our design has a higher probability of correctly
identifying the best set of subgroups compared to conventional designs. Addi-
tionally, we prove the statistical validity of our estimator for the best subgroup
treatment effect, demonstrating its asymptotic normality and semiparametric effi-
ciency. Finally, we validate our design using synthetic data from a clinical trial on
cirrhosis.

1 Introduction

Most clinical trial designs adopt “one-size-fits-all" rules for treatment assignment and evaluation
based on models that ignore patient heterogeneity. This approach is disconnected from medical
practice in recent years, where physicians use each patient’s diagnosis and prognostic variables to
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make personalized, precision medicine treatment decisions. As such, identifying patient subgroups
with differential responses to a treatment plays a pivotal role in designing randomized clinical trials
[28, 18, 2, 39]. Adaptive clinical trials–that allow randomization probabilities to be adaptively
optimized during the trial based on sequentially accrued data–have received much attention due to
their potential advantages in promoting precision health. Nevertheless, these trials often involve
pre-specifying the patient subgroups to be analyzed [3, 38]. This approach not only leads to inefficient
use of experimental efforts but may also reduce the statistical power to detect non-pre-specified
subgroups that exhibit high effect sizes. Consequently, there is a pressing need for novel and statistical
clinical trial designs for dynamic subgroup identification to address these issues.

In this paper, we propose a novel statistical design that dynamically performs subgroup identification
in CARA experiments. Our contributions are summarized as follows:

1. From the design perspective, there are three highlights of our design: (i) Our design facilitates
dynamic identification and sequential refinement of the best subgroups within the framework
of covariate-adjusted response-adaptive (CARA) experiments (Section 4). This adaptive
setting enhances the ability to identify and adjust to the best-performing subgroups over time.
(ii) Unlike traditional designs that focus on identifying a single best-performing subgroup,
our design is tailored to identify the best set of subgroups with competitive performance
(Section 3). This broader objective makes our approach suitable for more general application
settings. (iii) Our design demonstrates a higher probability of correctly identifying the best
subgroups compared to conventional designs. This efficiency ensures that experimental
efforts are utilized more effectively.

2. From a theoretical perspective, our proposed design strategy accommodates tied treatment
effects among candidate subgroups, whereas many existing methods demand that these
effects be distinctly separated. Additionally, our algorithm involves resampling in the
presence of dependent data structures caused by adaptive treatment allocation, presenting
technical challenges in proving statistical validity. We overcome these challenges and show
that the best subgroup identified by our design asymptotically converges to the true set of best
subgroups (Theorem 1). We also demonstrate that our proposed design strategy converges
to the oracle design, which is the optimal design under the setting that the underlying data-
generating distribution is known (Theorem 2). Furthermore, we establish valid statistical
inference for the treatment effect of the identified best subgroup and demonstrate that our
constructed estimator is semiparametrically efficient (Theorem 3).

In comparison to the existing literature, our design strategy is closely related to CARA designs.
Originating from response-adaptive randomization (RAR) designs [5, 33, 46]. Heuristically, CARA
incorporates covariate information along with treatment assignment probabilities based on observed
outcomes [14, 32, 30, 13]. Building upon RAR designs, CARA designs utilize both outcome and
covariate information to optimize for design objectives. [15] introduces a family of CARA designs
that balance efficiency and ethics objectives. Further generalizations to incorporate semiparametric
estimates have been explored by [49]. Related developments in CARA designs include [22, 40, 48, 47].
However, conventional CARA designs often consider subgroups to be pre-specified, which is different
from our goal of data-adaptively identifying the best subgroups.

Our proposed method also connects with the literature on subgroup identification. In post-hoc
analyses using previously collected data, the first line of work uses data from prior randomized
controlled trials. [20] employs clustering techniques based on randomized controlled trial data.
A comprehensive review can be found in [23]. The second line of work uses data from prior
observational studies. [43] identifies subgroups from existing observational data using machine
learning. [36] introduces a causal inference tree approach for subgroup identification, which requires
specifying the conditional distribution of the outcome given covariates. Similarly, [45] develops causal
inference tree types of algorithm that include double robust estimators for constructing subgroup-
specific splitting criteria. Other tree-based approaches for subgroup identification include [17, 24, 16].
Besides the tree-based approaches, [10] develops a subgroup identification method within the value
function framework. While post-hoc subgroup analyses do not require new data collection, they often
rely on untestable causal assumptions, limiting the credibility of causal conclusions. For instance,
the unconfoundedness assumption necessary for causal inference in observational studies assumes
random treatment assignment based on observed confounders, but unmeasured confounders can
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compromise these conclusions. Conversely, in randomized experiments, valid causal conclusions do
not depend on such assumptions.

In the adaptive experiment literature, relatively few methods have been developed for identifying the
best subgroups. While [11] is in the adaptive experiment setting and proposes a Bayesian adaptive
design that sequentially revises treatment allocation to identify the effective subgroup-treatment pairs,
their approach is carried out under the Bayesian framework, relying on the specification of prior
distributions and does not provide theoretical justification for the identified subgroups. In contrast,
our design is aligned with the frequentist framework and is model-free, avoiding any parametric
modeling assumption on the joint distribution of potential outcomes and covariates, and providing
theoretical investigations from three aspects.

As our method aims to identify the best subgroups, it shares some similarities with the multi-armed
bandit (MAB) literature. Notable MAB algorithms, such as the Thompson sampling method [35],
the ϵ-greedy algorithm, and the upper confidence bound algorithm [37], focus on identifying the
best arm. Similar to the contextual bandit literature [21, 6, 1], our design also incorporates covariate
information. However, our design objective diverges significantly from those in traditional MAB
approaches as we seek to identify the best subgroups rather than the best arm. Moreover, recognizing
that randomized experiments can be time-consuming, costly, and may result in adverse outcomes for
patients if treatments are ineffective, our approach seeks to efficiently allocate experimental resources
within a constrained budget to identify the most beneficial subgroups. Specifically, we focus on
scenarios in which the cost per experimental unit (e.g., per patient) is significant. For instance, in
clinical settings, randomized experiments are often expensive due to the substantial costs of treatment
medications. As a result, the primary resource constraint in our framework is the limited number
of treatments that can be administered, underscoring the need for a resource-efficient experimental
design.

2 Formulation of CARA

In this section, we shall introduce the formulation of our covariate-adjusted response-adaptive
randomization (CARA) experiment framework.

We enroll participants sequentially across T stages, where T < ∞. Denote the total number of
enrolled participants as N =

∑T
t=1 nt, where nt is the number of participants in Stage t, for

t = 1, . . . , T . The cumulative sample size up to Stage t is denoted as Nt =
∑t

s=1 ns. In Stage t, we
denote the treatment assignment status of participant i as Dit ∈ {0, 1}, i = 1, . . . , nt, where Dit = 1
denotes the treatment arm, and Dit = 0 denotes the control arm. The observed outcome is denoted
as Yit ∈ R. We follow the Neyman-Rubin causal model [27, 34] to define Yit(d) as the potential
outcome we would have observed if participant i receives treatment d at Stage t, for d ∈ {0, 1}. The
observed outcome can then be represented as

Yit = DitYit(1) + (1−Dit)Yit(0), i = 1, . . . , nt, t = 1, . . . , T.

We assume that the outcomes are observed without delay, and their underlying distributions do not
shift over time [14].

In CARA experiments, covariate information is also available to practitioners. We denote the covariate
information for participant i as Xit ∈ R and assume the covariate space X can be partitioned into m
regions, denoted as {Sj}mj=1. In clinical settings, each partition of the sample space is commonly
referred to as a subgroup [3, 19, 44]. We denote the number of subjects enrolled in subgroup j
at Stage t as ntj =

∑nt

i=1 1(Xit∈Sj) and the cumulative sample size for group j up to Stage t is
Ntj =

∑t
s=1 nsj . Denote the total number of subjects enrolled in subgroup j as Nj = NTj .

As we are interested in assessing the effectiveness of the treatment in each subgroup, we define the
subgroup average treatment effect as

τj = E[Yit(1)− Yit(0)|Xit ∈ Sj ], j = 1, . . . ,m.

Due to the adaptive nature of CARA experiments, practitioners can sequentially revise treatment
allocation based on outcome and covariate information accumulated during the experiment. Formally,
we define the treatment assignment probability for participants in subgroup j as

etj = P(Dit = 1|Xit ∈ Sj ,Ht−1), t = 1, . . . , T, j = 1, . . . ,m,
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where Ht−1 = {(Yis, Dis, Xis)
ns
i=1}

t−1
s=1 denotes the historical information up to Stage t − 1. In

CARA experiments, we aim to dynamically revise etj to reach desired design goals, which shall be
introduced in the following section.

3 Design objective for best subgroups identification

In real-world applications, suppose we start with m subgroups, and practitioners may only aim to
find subgroups with the largest treatment effects. It is possible that the best-performing subgroup is
not unique. For example, the FORTE trial is a clinical trial aiming to investigate the treatment effect
of carfilzomib-based induction–intensification–consolidation regimens on a patient’s progression-
free survival rate [25]. Instead of reporting the single best subgroup with the largest survival rate
improvement, the trial reports that both the risk myeloma patient subgroup and high-risk patient
subgroup show similar survival rate improvement.

Without loss of generality, suppose the population subgroup treatment effects follow the order
τ1 ≥ τ2 ≥ . . . ≥ τk > . . . > τm. In this case, there are k subgroups exhibiting the largest treatment
effects. Thus, it is natural to identify all of the k best subgroups instead of the single best subgroup.

To describe the set of best-performing subgroups, we introduce the concept of a tie set. We denote
the tie set of τ1 as T1 = {k : |τ1 − τk| = o(N−1/2), k = 1, . . . ,m} which contains the indices of
the tied subgroups. This tie set is also known as the “near tie set" as it captures the subgroups of
which the treatment effects lie in the

√
N -local neighborhood of τ1. We then denote the subgroups

that belong to the best set as ST1
. Note that when T1 = {1}, ST1

is equivalent to S1. The population
treatment effect under the best subgroups is defined as τT1

= E[Yit(1)− Yit(0)|Xit ∈ ∪j∈T1
Sj ]. We

further assume that τT1
> τj , for j /∈ T1.

Our design objective is to correctly identify all the best subgroups. Mathematically, we aim to
maximize the correct identification probability:

max
e

P
(
τ̂T1
≥ max

j /∈T1

τ̂j
)
, where T1 = {1, . . . , k}.

Leveraging the large deviation theory [8, 12], we can formulate our design objective as

max
e

{
min
j /∈T1

G(ST1
,Sj ; e1, ej) :=

(τj − τT1
)2

2
(
VT1

(e1) + Vj(ej)
)}, ← Maximize correct selection probability

s.t. δ ≤ ej ≤ 1− δ, ← Feasibility constraints

where T1 = {1, . . . , k}, 1 ≤ k < m, δ ∈ (0, 1/2), and VT1
denotes the variance of the best

subgroups. Detailed derivations of the equivalence between the correct identification probability and
the optimization objective see Appendix (Section C).

However, in practice, solving this optimization problem is challenging. On the one hand, as we do
not have knowledge regarding the membership of subgroups that have the largest treatment effects,
we do not have any information regarding ST1 . On the other hand, because experimenters have no
prior information about the joint distribution of the subgroup treatment effects, τj’s and Vj’s are also
unknown. To address these two practical challenges, we propose a dynamic subgroup identification
algorithm that can adaptively identify and merge the set of best subgroups. Additionally, the dynamic
subgroup identification method operates seamlessly under a CARA experimental strategy, which
allows experimenters to sequentially learn the unknown parameters and adjust the subgroup treatment
allocation to attain our design objective.

4 Proposed design: Dynamic subgroup identification with CARA

In this section, we shall illustrate our proposed dynamic subgroup identification strategy with
CARA design in Algorithm 1: the design strategy in Section 4.1, encompassing two sub-algorithms
(Algorithm 2 and 3), followed by the statistical inference procedure in Section 4.2. We defer several
variations of our algorithm to Appendix (Section J). To clarify our design strategy, we also provide a
notation table in the Appendix (Section A, Table 2).
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4.1 Proposed design strategy

In Stage 1 (line 1-4), we obtain initial estimates of the group-level treatment effect τ̂1j and the associ-
ated variances V̂1j . Then, in Stage t = 2, . . . , T − 1 (Algorithm 1 line 6–11), we perform three tasks:
(1) adaptively update treatment allocation and treatment effect estimates, (2) dynamically identify
best subgroups, and (3) select hyperparameters that help with dynamic subgroup identification.

For the first task, we obtain the optimal treatment allocation ê∗t = (ê∗t1, . . . , ê
∗
tm∗

t
) by solving the

following optimization problem based on sequentially collected data:

max
e

min
2≤j≤m∗

t

(τ̂t−1,(j) − τ̂t−1,(1))
2

2
(
V̂t−1,(1)(e1) + V̂t−1,(j)(ej)

) , s.t.
m∗

t∑
l=1

p̂tlel ≤ c1, c2 ≤ el ≤ 1− c2, l = 1, . . . ,m∗
t ,

where c1 ∈ (0, 1) and c2 ∈ (0, 1/2), p̂tl =
∑t

s=1

∑ns
i=1 1(Xis∈S(l))∑t
s=1 ns

is the estimated subgroup propor-
tion. The total number of subgroups after merging the identified tie set in Stage t− 1 is denoted as
m∗

t = m− |T̂t−1,1|+ 1 and the subscript (j) indexes the subgroup with the j-th largest estimated
treatment effect. The procedure of finding T̂t−1,1 shall be illustrated in Algorithm 2. In the set of
constraints, the first one is the resource constraint, and the second one is the feasibility constraint.
Because of the nonlinear objective function of the optimization problem above, we instead work with
its equivalent epigraph representation:

ê∗
t = argmax

e

{
z :

m∗
t∑

l=1

p̂tlel ≤ c1, c2 ≤ el ≤ 1− c2, min
2≤j≤m∗

t

(τ̂t−1,(j) − τ̂t−1,(1))
2

2
(
V̂t−1,(1)(e1) + V̂t−1,(j)(ej)

) − z ≥ 0
}
.

(1)

To calibrate for the complete randomized treatment allocation in Stage 1, we require an additional
calibration step in Stage t:

ẽt,(j) =

(
ê∗t,(j)Nt,(j)

)
−Nt−1,(j)(1)

nt,(j)
, j = 1, . . . ,m∗

t , (2)

where nt,(j) =
∑nt

i=1 1(Xit∈S(j)), Nt−1,(j)(1) =
∑t−1

s=1

∑ns

i=1 1(Xis∈S(j))Dis, and Nt,(j) =∑t
s=1 ns,(j). We then allocate treatments with calibrated probability ẽt,(j) and update the subgroup

treatment effects as in Eq (8).

Dynamic identification of the best subgroups (Algorithm 2). The dynamic subgroup identification
algorithm for identifying T̂t,1 at Stage t involves a resampling step that generates bootstrap samples
τ̂ ◦
t from a Gaussian distribution centering around τ̂t at Stage 1 and a resampling step that generates

bootstrap samples with accrued data {Hs}ts=1 at later stages. In line 9, we identify the best subgroups
at Stage t as

T̂t,1 = {k : w◦
k,(1) = 1, k = 1, . . . ,m∗

t }, (3)

where w◦
k,(1) = 1{−ctL ·N−δ

t · V̂δ
t,(1) ≤ (τ̂◦tk − τ̂◦t,(1)) ≤ ctR ·N−δ

t · V̂δ
t,(1)},

where the distance between the upper and lower bounds of the interval for w◦
k,(1) is of order nδ with

δ = 0.25 to guarantee the statistical validity of our proposed procedure and balance the trade-off
between bias and variance. Note that the dynamic subgroup identification procedure relies on a pair
of hyperparameters (ctL, c

t
R), which are selected data-adaptively. In what follows, we shall illustrate

the algorithm for selecting these hyperparameters.

Hyperparameter selection (Algorithm 3). In line 7 of Algorithm 3, we adopt a bootstrap method
and propose several alternative bootstrap methods in Algorithm 5 (line 3) in Appendix (Section
J). Algorithm 3 involves a resampling step that generates bootstrap samples τ̂ ∗

t from a Gaussian
distribution centering around τ ∗

t at Stage 1. In line 2, we compute τ ∗
t = (τ∗t1, . . . , τ

∗
t,m∗

t
)′ as

τ∗tj = ∆ ·
∑m∗

t
j=1 τ̂tj

m∗
t

+ (1−∆) · τ̂tj , j = 1, . . . ,m∗
t , (4)

5
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where ∆ = min{0.99,
∑m∗

t
j=1 V̂tj

Nt
∑m∗

t
j=1(τ̂tj−τ̂t)

2
×Nγ

t } and γ ∈ (0, 0.2). We impose a lower bound on ∆ to

ensure that ∆ does not equal to 1. We choose γ = 0.05 in our simulation studies, and our procedure
is shown to be not sensitive to the choice of γ < 1. In line 7, we compute τ̂ ∗

t = (τ̂∗t1, . . . , τ̂
∗
t,m∗

t
)′ at

Stage t for t > 1 as

τ̂∗tj = ∆ ·
∑m∗

t
j=1 τ̂

◦
tj

m∗
t

+ (1−∆) · τ̂◦tj , (5)

where τ̂◦tj is computed with the bootstrap samples as in Eq (8). In line 10, we compute

τ̃∗t,(1) =

m∗
t∑

k=1

w∗
k,(1)τ̂

∗
tk

/ m∗
t∑

k=1

w∗
k,(1), Btb(cL, cR) = 1(τ̃∗,bt,(1) ≤ τ∗t,(1)), (6)

where w∗
k,(1) = 1{−ctL ·N−δ

t ·V̂δ
t,(1) ≤ (τ̂∗tk−τ̂∗t,(1)) ≤ ctR ·N−δ

t ·V̂δ
t,(1)} and the subscript (1) indexes

the subgroup with the largest estimated treatment effect. We also propose a double bootstrap-based
alternative hyperparameter selection procedure in Algorithm 4 in Appendix (Section J). Finding the
optimal hyperparameters involves minimizing a loss function Lt(cL, cR) at each Stage t, which is
defined as

Lt (cL, cR) =
1

2
(Lt0 (cL, cR) + Lt1 (cL, cR)) , (7)

where for l = 0, 1, Ltl(cL, cR) = 1
B

∑B
b=1(1(Btb(cL, cR) = l) −

∑B
b=1 1(Btb(cL,cR)=l)

B )2. Given
a desirable pair of hyperparameters (cL, cR) and l value, the indicator function 1(Btb(cL, cR) =

l) is binary, which roughly follows a Bernoulli distribution with probability
∑B

b=1 1(Btb(cL,cR)=l)

B .
Intuitively, the loss function defined in Eq (7) measures the average of squared differences between
1(Btb(cL, cR) = l) and the expected value of Bernoulli(

∑B
b=1 1(Btb(cL,cR)=l)

B ) random variables. We
would expect that the optimal pair of hyperparameters (ctL, c

t
R) at Stage t minimizes such a loss.

Algorithm 1 Dynamic subgroup identification CARA design

Stage 1 (Initialization):
1: Enroll n1 participants, and assign treatments in group j with e1j =

1
2 ;

2: Compute τ̂1j and V̂1j ;
3: Choosing hyperparameters

(
c1L, c

1
R
)

using single bootstrap method (see Algorithm 3);
4: Identify tie set and merge tied subgroups with the best subgroup (see Algorithm 2).

Stage t (Adaptive treatment allocation revision):
5: for t→ 2 to T do
6: With τ̂t−1,(j) and V̂t−1,(j) estimated using Eq 8, solve the optimization problem in Eq (1) to

find ê∗t,(j);
7: Enroll nt participants and assign treatment with calibrated probability ẽ∗t,(j) as in Eq (2);

8: Update τ̂t,(j) and V̂t,(j) as in Eq (8);
9: Choosing hyperparameters (ctL, c

t
R) using single bootstrap (see Algorithm 3);

10: Identify tie set and merge tied subgroups with the best subgroup (see Algorithm 2).
11: Calculate the merged subgroup ATE estimator τ̂t,T̂t1

as in Eq (9), and its variance estimator

V̂t,T̂t1
as in Eq (10).

12: end for
Stage T (Inference):

13: Identify the best tie set T̂1, and construct two-sided confidence intervals for τ̂T̂1
as in Eq (11).

4.2 Statistical inference

Our CARA design also enables making valid statistical inference on the estimated best subgroup
treatment effect. We highlight two parts of the statistical inference procedure: (1) estimating unknown

6
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parameters based on accrued experimental data while dynamically identifying best subgroups, and
(2) constructing valid confidence intervals to confirm the estimated best subgroup treatment effect.

First, based on accumulated experimental data, the subgroup treatment effects and associated variances
can be updated as

τ̂t−1,(j) =

∑t−1
s=1

∑ns

i=1 1(Xis∈S(j))DisYis

Nt−1,(j)(1)
−
∑t−1

s=1

∑ns

i=1 1(Xis∈S(j))(1−Dis)Yis

Nt−1,(j)(0)
, (8)

V̂t−1,(j)(ej) =

∑t−1
s=1

∑ns

i=1 1(Xis∈S(j))Dis

(
Yis − Ȳt−1,(j)(1)

)2
Nt−1,(j)(1)

(ej ·Nt−1,(j)

Nt−1

)−1

+

∑t−1
s=1

∑ns

i=1 1(Xis∈S(j))(1−Dis)
(
Yis − Ȳt−1,(j)(0)

)2
Nt−1,(j)(0)

( (1− ej) ·Nt−1,(j)

Nt−1

)−1

,

where Nt−1,(j)(1) =
∑t−1

s=1

∑ns

i=1 1(Xis∈S(j))Dis, Nt−1,(j)(0) =
∑t−1

s=1

∑ns

i=1 1(Xis∈S(j))(1 −
Dis), Nt−1,(j) =

∑t−1
s=1

∑ns

i=1 1(Xis∈S(j)), Ȳt−1,(j)(0) =
∑t−1

s=1

∑ns

i=1 1(Xis∈S(j))(1 −
Dis)Yis/Nt−1,(j)(0), and Ȳt−1,(j)(1) =

∑t−1
s=1

∑ns

i=1 1(Xis∈S(j))DisYis/Nt−1,(j)(1).

Additionally, denote the subgroup proportions as p1, . . . , pm. Following dynamic subgroup iden-
tification at each stage, we merge all subgroups in the T̂t1 and estimate the merged best subgroup
treatment effect as

τ̂t,T̂t1
=
∑
j∈T̂t1

pj τ̂tj

/ ∑
j∈T̂t1

pj , (9)

and estimate the variance of the merged best subgroup treatment effect estimator as

V̂t,T̂t1
=
∑
j∈T̂t1

p2j V̂tj

/( ∑
j∈T̂t1

pj

)2
. (10)

In Stage T (line 13), we let T̂1 := T̂T1, τ̂T̂1
:= τ̂T,T̂1

and V̂T̂1
:= V̂T,T̂1

. Lastly, to confirm the
estimated best subgroup treatment effect, we construct a two-sided level-α confidence interval as[

τ̂T̂1
± Φ−1(1− α/2) ·

√
V̂T̂1

/N

]
. (11)

Algorithm 2 Dynamic subgroup identification in Stage t

Step 1 (Input):
1: Input {Hs}ts=1, τ̂tj , V̂tj , and (ctL, c

t
R) computed from Algorithm 3.

Step b (Bootstrap):
2: for b← 1 to B do
3: if t = 1 then
4: Generate τ̂ ◦

1 from N
(
τ̂1, Ω̂n/n1

)
, where Ω̂n = diag

(
V̂11, . . . , V̂1m

)
;

5: else if t > 1 then
6: Generate ns resamples randomly with replacement sequentially from eachHs;
7: Compute τ̂◦tj as in Eq (8) with the bootstrap samples;
8: end if
9: Identify the best subgroups T̂t1 with the bootstrap samples as in Eq (3).

10: end for
Step B (Output):

11: Choose T̂t1 with the highest frequency of occurrence and merge subgroups that belong to T̂t1.
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5 Theoretical investigation

Assumption 1 (Regularity conditions). (Yit(0), Yit(1), Xit) are independently identically distributed
for i = 1, . . . , nt, t = 1, . . . , T . In addition, E[|Yit(d)|]4 <∞, d ∈ {0, 1}. Lastly, there exists some
δ > 0, such that V[Yit(d)|Xit ∈ Sj ] ≥ δ for d ∈ {0, 1}, j = 1, . . . ,m.
Assumption 2 (Positivity). The subgroup proportions δ ≤ p1, . . . , pm ≤ 1− δ, δ ∈ (0, 1/2).

Assumption 1 says that the potential outcomes have bounded moments and have variability in each
subgroup. Assumption 2 says that the subgroup proportions are non-zero in the population.
Theorem 1 (Dynamic best subgroup identification consistency). Under Assumptions 1 and 2, for
j = 1, . . . ,m and for ε > 0, we have

lim
N→∞

P
(
|1(j ∈ T̂1)− 1(j ∈ T1)| > ε

)
= 0.

Theorem 1 suggests that our dynamic subgroup identification algorithm correctly identifies the best
set of subgroups as the sample size tends to infinity.
Theorem 2 (Design strategy consistency). Under Assumptions 1 and 2, for δ > 0, as nt → ∞,
t = 1, . . . , T , for the actual treatment allocation, we have

P(||êt − e∗|| ≤ δ)→ 1,

where e∗ = (e∗1, . . . , e
∗
m) is the optimal treatment allocation.

Theorem 2 says that the actual treatment allocation under our proposed design strategy converges to
the optimal treatment allocation asymptotically.
Theorem 3 (Asymptotic normality). Under Assumptions 1 and 2, as N →∞,

√
N(τ̂T̂1

− τT1)→ N
(
0,VT1(e

∗
1)
)
,

and

V̂T̂1
− VT1

(e∗1) = Op(
1√
N

).

Theorem 3 says that the estimated treatment effect of the identified best subgroups converge to a
Gaussian distribution asymptotically, and our variance estimator consistently estimates the asymptotic
variance. Theorem 3 also verifies the validity of our constructed confidence interval.

6 Synthetic real data study

In this section, we investigate the performance of our proposed design strategy for identifying the tie
set of best-performing subgroups in a synthetic case study using clinical trial data.

We design our synthetic case study using the dataset from the Mayo Clinic’s trial on primary
biliary cirrhosis (PBC), containing clinical biomarkers, treatments, and patient outcomes. PBC is a
progressive autoimmune liver disease marked by inflammation and damage to the intrahepatic bile
ducts. The Mayo Clinic conducted an extensive trial from 1974 to 1984 to assess the effectiveness of
D-penicillamine in treating PBC. This dataset includes 424 patients, encompassing both those who
were actively enrolled in the trial and additional cases who consented to provide basic measurements
[26].

In this case study, we work with a subset (n = 312) of patients who participate in the randomized
controlled trial. These patients are randomly assigned to one of the two arms: the treatment arm
(n = 158), who receive D-penicillamine D = 1, and the control arm (n = 154), who receive
placebos D = 0. The outcome of interest is the square root of the survival time, defined as the
number of days from registration to the earlier death, transplantation, or the time of study analysis.
This dataset includes 17 covariates, and we use median imputation to handle missingness in these
covariates. We aim to investigate the effectiveness of D-penicillamine in improving liver function
and symptoms in five subgroups defined by age (in days): (1) patients with age in [9, 598, 15, 695],
(2) age in (15, 695, 17, 082], (3) age in (17, 082, 20, 440], (4) age in (20, 440, 21, 900], (5) age in
(21, 900, 28, 650]. We generate synthetic experimental data based on the original dataset, which shall
be illustrated in the next section.
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Algorithm 3 Hyperparameter selection for dy-
namic subgroup identification

Step 1 (Input):
1: Input {Hs}ts=1, τ̂tj , V̂tj , and (cL, cR);
2: Compute τ∗tj as in Eq (4).

Step b (Bootstrap):
3: for b← 1 to B do
4: if t = 1 then
5: Generate τ̂ ∗

1 from N
(
τ ∗
1 , Ω̂n/n1

)
,

where Ω̂n = diag
(
V̂11, . . . , V̂1m

)
;

6: else if t > 1 then
7: Generate ns resamples randomly with

replacement sequentially from each Hs (the
same as Algorithm 2 line 6);

8: Compute τ̂◦tj as in Eq (8) with the boot-
strap samples, and then τ̂∗tj as in Eq (5);

9: end if
10: Compute τ̃∗t,(1) as in Eq (6), and
Btb (cL, cR) as in Eq (7).

11: end for
Step B (Output):

12: Compute Lt(cL, cR) as in Eq (7). Choose the
pair (ctL, c

t
R) that minimizes Lt(cL, cR).

We generate synthetic data that mimic the
original PBC dataset. Denote the sub-
group membership for each participant i as
S = (1(Xi∈S1), . . . ,1(Xi∈S5))

⊺. We generate
the potential outcome from Yi(d)|Xi ∈ Sj ∼
N (µdj , σ

2
dj), j = 1, . . . , 5, where µ1 =

(42.57, 50.44, 44.37, 44.30, 37.71)
⊺
,µ0 =

(45.34, 39.91, 45.58, 33.42, 39.17)
⊺
,σ1 =

(10.85, 12.29, 12.64, 14.28, 14.64)
⊺
,σ0 =

(11.50, 15.18, 14.57, 13.09, 15.06)
⊺.

The subgroup proportions are p =
(0.28, 0.13, 0.30, 0.11, 0.19)

⊺. We denote
the true subgroup treatment effects as
τ = (−2.77, 10.53,−1.21, 10.89,−1.46)⊺.
Therefore, Subgroup 2 and Subgroup 4 are the
set of best subgroups with a merged average
treatment effect of 10.70. The treatment
assignment Di is decided based on different
experiment strategies, which shall be discussed
later in the section. To generate synthetic
data, We mimic CARA experiments where
participants are enrolled sequentially across T
experimental stages. Here, we set T = 15 and
nt = 400, for t = 1, . . . , T . All experiments
are conducted with an Intel Core i7-11800H
CPU and 16 GB of RAM.

We compare our proposed design strategy with
the complete randomization design and two
multi-armed bandit (MAB) algorithms. (1) The complete randomization design refers to a de-
sign that fixes etj = 1

2 across all experimental stages, t = 1, . . . , T, j = 1, . . . ,m. (2) To customize
the MAB algorithms to our setting, for each subgroup, we consider two candidate arms: treatment and
control. We set the rewards as the negative asymptotic variance of the treatment effect estimator, i.e.,
−Vj(ej). We consider two MAB algorithms: (a) The ϵ-greedy algorithm, which aims to balance the
exploration and the exploitation efforts [37]. Here, we set ϵ = 0.1. (b) The upper confidence bound
1 algorithm balances exploration and exploitation using confidence intervals and chooses the arm
that maximizes the upper confidence bound on the estimated reward [4]. When customizing MAB
algorithms to our setting, we omit the step of identifying and merging tie sets using conventional
methods, such as K-means or agglomerative clustering, due to several challenges: the requirement
to predefine the number of clusters, the limited applicability of clustering for a small number of
subgroups, and the inconsistency of these methods in effectively merging the best subgroups.
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Figure 1: Comparison of the correct selection probability among three conventional methods and our
proposed design strategy.“Single and separate bootstrap" refers to our proposed design.

9

85318 https://doi.org/10.52202/079017-2708



Table 1: Comparison among three conventional methods and our proposed design strategy based
on estimated best tie set or subgroup treatment effect (Est), 95% confidence interval (95% CI),√
N -scaled bias, and standard deviation (SD).

Method Est (95% CI)
√
NBias SD

CR 11.33 (9.30,13.36) 34.55 80.29
ϵ-greedy 11.26 (9.20,13.31) 28.84 81.19
UCB 1 11.34 (9.29,13.38) 34.82 80.85
Proposed 10.31 (9.28,11.35) 29.98 40.94

To evaluate the performance of different design strategies, we assess the effectiveness of each
adaptive experiment strategy from two aspects. First, we compare the correct selection probability
of identifying the best subgroups. The correction selection probability can be written as P(τ̂T1 ≥
maxj /∈T1

τ̂j). Second, we compare the 95% confidence interval,
√
N -scaled bias, and standard

deviation of the estimated best subgroup treatment effect. In our resampling procedure, we set
B = 2, 000. The synthetic case study results are summarized in Figure 1 and Table 1.

First, from Figure 1, our proposed design strategy shows a higher correct selection probability than
the complete randomization design and the MAB algorithms. Additionally, the correct selection
probability under our proposed design strategy increases with the number of experimental stages.
Specifically, our proposed design has a correct selection probability tending to 1 after 15 experimental
stages. We also adopt the normalized mutual information as an additional metric to compare our
proposed design and three competing methods in the Appendix (Section K.1), which further confirms
that our proposed design strategy outperforms the conventional methods.

Second, from Table 1, we observe that our proposed design strategy has a smaller standard deviation
and smaller

√
N -scaled bias, implying that our method is more efficient and less biased. In sum, our

proposed adaptive design demonstrates efficient use of experimental data to correctly identify the
best-performing subgroups of the three competing methods. We defer additional simulation studies
to the Appendix (Section K.1) and an additional synthetic real data study to the Appendix (Section
K.3). We also extend our proposed dynamic subgroup identification with CARA to the augmented
inverse propensity score weighting (AIPW) estimator. Then we compare our proposed design with
AIPW estimator with the three contextual MAB algorithms in the Appendix (Section K.2).

7 Discussion

We propose a dynamic subgroup identification method within the CARA design framework that
could significantly advance precision medicine. However, we acknowledge some limitations in our
approach. We aim to explore and address these challenges in our future research.

First, our method assumes that outcomes in CARA experiments are observed immediately at the end
of each stage without delay. This assumption, prevalent in adaptive experiments such as [15] and [49],
simplifies the modeling process and facilitates quick adjustments based on the latest data. However,
in some practical scenarios, outcomes may be observed with delays, complicating the process of
adjusting treatment allocations, as highlighted by [31] and [29]. In future work, we plan to revise our
design framework and update our estimators to account for the impact of delayed responses on both
treatment effects and variance estimators.

Second, our work addresses scenarios where assigning a treatment is costly, and there is an overall
constraint on how many treatments can be deployed. A key challenge arises from the potential
misalignment between efficiently estimating the best causal effect and determining the optimal causal
decision rule–particularly when the best decision rule is to treat all patients when there is any positive
effect. For instance, [9] focuses on ensuring that all individuals who would benefit are accurately
assigned to the treatment arm, assuming negligible treatment costs. To maximize the welfare for
participating subjects, in future work, we plan to incorporate an “early stopping" step which would
not only identify the most effective subgroups but also halt enrollment for subgroups exhibiting
significantly adverse treatment effects.
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Technical Appendix

A Notations

We present a notation table, as shown in Table 2, to illustrate the key symbols and their descriptions
used in our covariate-adjusted response-adaptive randomization (CARA) experiment framework.

Table 2: Notation table for the proposed dynamic subgroup identification strategy with CARA design.
Symbol Description

T Total number of stages in the experiment.
N Total number of enrolled participants across all stages.
ntj Number of subjects enrolled in subgroup j at Stage t.
nt Number of participants enrolled in Stage t.
Ntj Cumulative sample size for subgroup j up to Stage t.
Nt Cumulative sample size up to Stage t.
Dit Treatment assignment status of participant i in Stage t.
Yit Observed outcome for participant i in Stage t.
Yit(d) Potential outcome for participant i if assigned treatment d in Stage t.
Xit Covariate information for participant i in Stage t.
X Covariate space.
Ht Historical information up to Stage t.
m Total number of subgroups.
m∗

t Number of subgroups after merging the identified tie set in Stage t− 1.
pj The j-th subgroup proportion.
p̂tj Estimated subgroup proportion of subgroup j at Stage t.
etj Treatment assignment probability for participants in subgroup j at Stage t.
ê∗tj Optimal treatment allocation probabilities at Stage t.
T1 Tie set of the highest treatment effect τ1, containing indices of tied subgroups.
Sj The j-th subgroup.
ST1

Subgroups that belong to the best set identified by T1.
τj Subgroup average treatment effect for subgroup j.
τT1

Population treatment effect under the best subgroups in T1.

B Assumptions, lemmas, and corollaries

Before discussions, we define some additional notations first. For t = 1, . . . , T , j = 1, . . . ,m, and
c > 0, denote

µj,c(1) = E[Yit(1)
c|Xit ∈ Sj ], µj,c(0) = E[Yit(0)

c|Xit ∈ Sj ],

µ̂tj,c(1) =

∑t
s=1

∑ns

i=1 1(Xis∈Sj)DisY
c
is

Ntj(1)
, µ̂tj,c(0) =

∑t
s=1

∑ns

i=1 1(Xis∈Sj)(1−Dis)Y
c
is

Ntj(0)
.

Assumption 3 (Subgroup treatment effects). For δ ∈ (0, 0.5), the asymptotic distance between
treatment effects of Subgroup j and Subgroup 1 diverges as N →∞:

Nδ · min
j /∈T1

|τ1 − τj | → ∞, ∀j = 1, . . . ,m.

Lemma 1. Assume Assumption 1 and 2 holds. Let pj = P(Xit ∈ Sj |Ht−1) be the subgroup
proportions, and ê∗tj = P(Dit = 1|Xit ∈ Sj ,Ht−1) be the treatment probabilities. Assume there
exists some δ ∈ (0, 1/2) such that for all j = 1, 2, . . . ,m and t = 1, 2, . . . T ,

δ ≤ ê∗tj ≤ 1− δ.

Then for any j = 1, 2, . . . ,m, d = 0, 1, and any t satisfying nt →∞,

µ̂tj,c(d) = µj,c(d) +Op

(
1√
Nt

)
.
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Corollary 1. Let δ ∈ (0, 1/2) be some constant. Assume Assumptions 1 and 2 hold,

sup
δ≤e≤1−δ

∣∣∣V̂tj(e)− Vj(e)
∣∣∣ = Op

(
1√
Nt

)
.

Corollary 2. Assume Assumptions 1 and 2 hold. Then

τ̂tj − τj = Op

(
1√
Nt

)
.

Theorem 4. Under Assumptions 1 and 2, as N →∞,
√
N(τ̂j − τj)→ N

(
0,Vj(e

∗
j )
)
, V̂j − Vj(e

∗
j ) = Op(

1√
N

).

Lemma 1, Corollaries 1 and 2, and Theorem 4 are similar to the theoretical results in [41]. We defer
readers to [41] for more technical details.
Lemma 2. Under Assumptions 3, for j = 1, . . . ,m, t = 1, . . . , T , any positive constant C and
δ ∈ (0, 1

2 ), the following statement holds

lim
Nt→∞

P
(∣∣τ̂◦tj − τj

∣∣ ≥ N−δ
t · C

)
= 0.

Lemma 3. Let δ ∈ (0, 1/2) be some constant. Assume Assumptions 1 and 2 hold,

τ̂t,T̂t1
− τT1

= Op

(
1√
Nt

)
, sup

δ≤e≤1−δ

∣∣∣V̂t,T̂t1
(e)− VT1

(e)
∣∣∣ = Op

(
1√
Nt

)
.

Lemma 4. Assume Assumptions 1 and 2 hold. Let E∗ be the solution(s) to the problem as follows:

max
e

{
min

k+1≤j≤m
G(ST1

,Sj ; e1, ej) =
(τj − τT1

)2

2
(
VT1

(e1) + Vj(ej)
)},

s.t.
m∑

j=k+1

pjej ≤ c1, c2 < ej < 1− c2, j = 1, . . . ,m,

where c1 ∈ (0, 1), c2 ∈ (0, 1/2), T1 = {1, . . . , k}, 1 ≤ k < m, and VT1 denotes the variance of the
top subgroups. Let Ê∗ be the optimized treatment allocations solved from the sample analog of this
problem. Then for any δ > 0, and any t satisfying Nt−1 →∞,

P
(

sup
ê∗
t∈Ê∗

inf
e∗∈E∗

∥∥ê∗t − e∗
∥∥ ≤ δ

)
→ 1.

C Optimization problem objective function derivations

Proof. Because maximizing the correct selection probability is equivalent to minimizing the incorrect
selection probability, we formulate the incorrect selection probability as P

(
τ̂T1 ≤ maxj /∈T1

τ̂j
)

and
denote the cardinality of T1 as k, 1 ≤ k ≤ m− 1, where m denotes the total number of subgroups.
The incorrect selection probability can be bounded as

max
j /∈T1

P (τ̂T1
≤ τ̂j) ≤ P

(
τ̂T1
≤ max

j /∈T1

τ̂j

)
≤ (m− k) ·max

j /∈T1

P (τ̂T1
≤ τ̂j) ,

where the inequality follows from the union bound. For both sides, take the logarithm and divide by
N ,

1

N
logmax

j /∈T1

(1− P (τ̂T1 ≥ τ̂j)) ≤
1

N
log (m− k) +

1

N
log

(
max
j /∈T1

(1− P (τ̂T1 ≥ τ̂j))

)
.

Additionally, by the large deviation theory [8], there exists a rate function G(ST1
,Sj ; e1, ej), such

that

lim
N→∞

1

N
log (1− P (τ̂T1 ≥ τ̂j)) = −G(ST1 ,Sj ; e1, ej), j /∈ T1.
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Therefore, maxj /∈T1

(
1− P

(
τ̂T1
≥ τ̂j

))
is equivalent to exp

(
−minj /∈T1

G(ST1
,Sj ; e1, ej)

)
. We

obtain

−min
j /∈T1

G(ST1
,Sj ; e1, ej) ≤

1

N
log

(
1− P

(
τ̂T1
≥ max

j /∈T1

τ̂j

))
≤ log (m− k)

N
− min

j /∈T1

G(ST1
,Sj ; e1, ej).

As a result, based on the Gartner-Ellis Theorem [8, ch.2.3], when the sample size tends to infinity, we
are able to obtain:

lim
N→∞

1

N
log
(
1− P

(
τ̂T1 ≥ max

j /∈T1

τ̂j
))

= −min
j /∈T1

G(S1,Sj ; e1, ej),

G(ST1
,Sj ; e1, ej) =

(τj − τT1)
2

2
(
VT1(e1) + Vj(ej)

) .

D Proof of Lemma 2

Proof. Note that √
Nt

(
τ̂◦tj − τj

)
=
√
Nt (τ̂tj − τj) +

√
Nt

(
τ̂◦tj − τ̂tj

)
.

As for the first term
√
Nt (τ̂tj − τj), by Corollary 2, we have√

Nt (τ̂tj − τj) = Op (1) .

As for the second term
√
Nt

(
τ̂◦tj − τ̂tj

)
, we consider two situations under t = 1 and t > 1 separately.

When t = 1, τ̂◦1j is generated from N
(
τ◦1j , V̂1j/N1

)
, so we have√

N1

(
τ̂◦1j − τ◦1j

)
= Op (1) .

When t > 1, we compute τ̂◦tj the same way as τ̂tj with the bootstrap samples instead, so τ̂◦tj and τ̂tj
are consistent and we have √

Nt

(
τ̂◦tj − τ̂tj

)
= Op (1) .

Therefore, we obtain for t ≥ 1,
√
Nt

(
τ̂◦tj − τj

)
= Op (1), i.e., for any given ε > 0, there exists an

M , such that

P
(√

Nt|τ̂◦tj − τj | > M
)
< ε.

Then for any Nt such that Nt >
(
M
C

) 1
1
2
−δ , we have

P
(
|τ̂◦tj − τj | > N−δ

t · C
)
< ε,

and thus

lim sup
n→∞

P
(
|τ̂◦tj − τj | ≥ N−δ

t · C
)
< ε.

Note that the above inequality holds for arbitrary ε > 0. Hence, we have

lim sup
n→∞

P
(
|τ̂◦tj − τj | ≥ N−δ

t · C
)
= 0,

which completes the proof.
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E Proof of Theorem 1

Proof. Recall our definition of the tie set of best-performing subgroups:

T1 = {j : |τ1 − τj | = o(N−1/2), j = 1, . . . ,m}.

This suggests that ∀j ∈ T1, there exists a sequence δn → 0 as N → 0, such that

τj = τ1 +N− 1
2 · δn, ∀j ∈ T1.

We further define a set of subgroups with treatment effects smaller than those in the set T1:

T L
1 = {j : τj < min

m∈T1

{τm}, j = 1, . . . ,m}.

As for the estimated near tie set of τ1 in Stage t for t = 1, . . . , T , we have for any j ∈ T̂t1, and a pair
of hyperparameters (ctL, c

t
R) that

−ctL ·N−δ
t · V̂δ

t,(1) ≤ (τ̂◦tj − τ̂◦t,(1)) ≤ ctR ·N−δ
t · V̂δ

t,(1),

where δ = 0.25. Thus, there exists a positive constant C such that

|τ̂◦tj − τ̂◦t,(1)|
N−δ

t

< C, ∀j ∈ T̂t1.

Similar to the proof of Lemma 1 in [42], our proof is composed of the following three steps:

Step 1. We first show that the subgroup with the largest treatment effect in the resampled statistics
falls into the set T1 with high probability, that is

lim
Nt→∞

P
(
1̌t ∈ T1

)
= 1, (12)

where 1̌t =
∑m∗

t
j=1 j · 1(τ̂◦tj = τ̂◦t,(1)) for t = 1, . . . , T .

Because τ̂◦
t,1̌t
∈ [minj∈T1

τ̂tj ,maxj∈T1
τ̂◦tj ] by definition, coupled with the fact that{

max
k∈T L

1

τ̂◦tk < min
j∈T1

τ̂◦tj ≤ max
j∈T1

τ̂◦tj

}
⊂
(
1̌t ∈ T1

)
.

Under Assumption 3, by Lemma 2, for any k ∈ T L
1 and j ∈ T1, we have

lim
Nt→∞

P
(
τ̂◦tk < τ̂◦tj

)
= 1,

so we can obtain limNt→∞ P
(
maxk∈T L

1
τ̂◦tk < minj∈T1

τ̂◦tj ≤ maxj∈T1
τ̂◦tj

)
= 1. Thus we have

shown that limNt→∞ P
(
1̌t ∈ T1

)
= 1.

Step 2. We then show, for j /∈ T1, and t = 1, . . . , T ,

lim
Nt→∞

P
(
1(j ∈ T̂t1) > ε, j /∈ T1

)
= 0. (13)

For any ε > 0 and j /∈ T1, we have the following holds

P
(∣∣∣1(j ∈ T̂t1)∣∣∣ > ε

)
=P
(∣∣∣1(j ∈ T̂t1)∣∣∣ > ε|j ∈ T̂t1

)
· P
(
j ∈ T̂t1

)
+ P

(∣∣∣1(j ∈ T̂t1)∣∣∣ > ε|j /∈ T̂t1
)
· P
(
j /∈ T̂t1

)
≤P
(
j ∈ T̂t1

)
Def
=P

(
|τ̂◦tj − τ̂◦t,(1)|

N−δ
t

< C

)
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=P

(
|τ̂◦tj − τ̂◦

t,1̌
|

N−δ
t

< C

)
=P
(
|τ̂◦tj − τ̂◦t,1̌| < N−δ

t · C
)

=P
(
|
(
τ̂◦tj − τj

)
−
(
τ̂◦t,1̌ − τ1̌

)
+
(
τj − τt,1̌

)
| < N−δ

t · C
)

≤P
(
Nδ

t |τj − τ1̌| −Nδ
t

∣∣τ̂◦tj − τj
∣∣−Nδ

t

∣∣∣τ̂◦t,1̌ − τ1̌

∣∣∣ < C
)

=P
(
Nδ

t

∣∣τ̂◦tj − τj
∣∣+Nδ

t

∣∣∣τ̂◦t,1̌ − τ1̌

∣∣∣ > Nδ
t |τj − τ1̌|+ C

)
.

By definition, for j /∈ T1,
P
(
Nδ

t |τj − τ1̌| < C
)
≤ P

(
Nδ

t |τj − τ1̌| < C, 1̌ ∈ T1
)
+ P

(
1̌ /∈ T1

)
≤ max

k∈T1

P
(
Nδ

t |τj − τk| < C, k ∈ T1
)
+ P

(
1̌ /∈ T1

)
.

Under Assumption 3, Lemma 2 and the conclusion in Eq (12) in Step 1 suggest that by letting
Nt →∞ on both sides, we have the above probability converges to zero. Based on above derivation,
we have shown that limNt→∞ P

(
1(j ∈ T̂t1) > ε, j /∈ T1

)
= 0.

Step 3. We are left to prove that for all j ∈ T1 and t = 1, . . . , T , the following holds for all ε > 0:

lim
Nt→∞

P
(∣∣∣1(j ∈ T̂t1)− 1

∣∣∣ > ε
)
= 0.

Following similar arguments, for a positive constant C, we have for k, j ∈ T1, the following statement
holds:

P
(∣∣∣1(j ∈ T̂t1)− 1

∣∣∣ > ε
)

=P
(∣∣∣1(j ∈ T̂t1)− 1

∣∣∣ > ε|j ∈ T̂t1
)
· P
(
j ∈ T̂t1

)
+ P

(∣∣∣1(j ∈ T̂t1)− 1
∣∣∣ > ε|j /∈ T̂t1

)
· P
(
j /∈ T̂t1

)
≤P
(
j /∈ T̂t1

)
Def
=P

(
|τ̂◦tj − τ̂◦t,(1)|

N−δ
t

≥ C

)

=P

(
|τ̂◦tj − τ̂◦

t,1̌
|

N−δ
t

≥ C

)
=P
(
|
(
τ̂◦tj − τj

)
−
(
τ̂◦t,1̌ − τ1̌

)
+ (τj − τ1̌) | ≥ N−δ

t · C
)

≤P
(∣∣τ̂◦tj − τj

∣∣+ |τtj − τ1̌|+
∣∣∣τ̂◦t,1̌ − τ1̌

∣∣∣ ≥ N−δ
t · C

)
≤P
(
N

1
2
t

∣∣τ̂◦tj − τj
∣∣+N

1
2
t |τj − τ1̌|+N

1
2
t

∣∣∣τ̂◦t,1̌ − τ1̌

∣∣∣ ≥ N
1
2−δ
t · C

)
.

By definition of the near-tie set, for j ∈ T1, we have

P
(
N

1
2
t |τj − τ1̌| < C

)
≤P
(
Nδ

t |τj − τ1̌| < C, 1̌ ∈ T1
)
+ P

(
1̌ /∈ T1

)
=max

k∈T1

P
(
Nδ

t |τj − τk| < C, k ∈ T1
)
+ P

(
1̌ /∈ T1

)
Again, under Assumption 3, Lemma 2 and the conclusion in Eq (13) we have derived in Step 1, by
letting Nt → ∞ on both side, we have the above probability converges to 1. According to above
discussion, we have shown that limNt→∞ P

(∣∣∣1(j ∈ T̂t1)− 1
∣∣∣ > ε

)
= 0.

Combining the results obtained in the aforementioned three steps, we have for j = 1, . . . ,m∗
t and for

ε > 0, the following holds:

lim
Nt→∞

P
(
|1(j ∈ T̂t1)− 1(j ∈ T1)| > ε

)
= 0, ∀t = 1, . . . , T.

Then it is straightforward to get the final results by taking t = T .
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F Proof of Lemma 3

Proof. Note that

τ̂t,T̂t1
− τT1

= (τ̂t,T̂t1
− τ̂t,T1

) + (τ̂t,T1
− τT1

),

V̂t,T̂t1
(e)− VT1

(e) = (V̂t,T̂t1
(e)− V̂t,T1

(e)) + (V̂t,T1
(e)− VT1

(e)).

Thus this lemma follows directly from Corollary 1, Corollary 2 and Theorem 1.

G Proof of Lemma 4

Proof. Denote the oracle objective function as

f(e) = min
|T1|+1≤j≤m

(τj − τT1
)2

VT1
(e1) + Vj(ej)

= min
|T1|+1≤j≤m

(τ(j−|T1|+1) − τT1
)2

VT1
(e1) + V(j−|T1|+1)(ej)

,

where the second equality follows from regarding the tie set T1 as a whole after merging the data, and
then T1 ranks 1 and other subgroups rank from 2 to m− |T1|+ 1. Then, the original optimization
problem can be written as

max
e

f(e), s.t.
m∑

j=|T1|+1

pjej ≤ c1, c2 ≤ ej ≤ 1− c2, j = |T1|+ 1, . . . ,m.

For notational simplicity, let E be the set of candidate allocation rules (i.e., all allocation rules
satisfying the constraints).

Similarly, let f̂t(e) be the estimated objective function, that is, with m∗
t = m− |T̂t−1,1|+ 1,

f̂t(e) = min
2≤j≤m∗

t

(τ̂t−1,(j) − τ̂t−1,T̂t−1,1
)2

V̂t−1,T̂t−1,1
(e1) + V̂t−1,(j)(ej)

= min
|T̂t−1,1|+1≤j≤m

(τ̂t−1,(j−|T̂t−1,1|+1) − τ̂t−1,T̂t−1,1
)2

V̂t−1,T̂t−1,1
(e1) + V̂t−1,(j−|T̂t−1,1|+1)(ej)

.

We solve the following optimization problem:

max
e

f̂t(e), s.t.
m∑

j=|T̂t−1,1|+1

pjej ≤ c1, c2 ≤ ej ≤ 1− c2, j = |T̂t−1,1|+ 1, . . . ,m.

We denote the set of maximizers to the above optimization problem as Ê∗. Lastly, let the δ-
enlargement of E∗ be E∗ +Bδ, where Bδ is the Euclidean ball centered at the origin with radius δ:
E∗ +Bδ = {e+ u : e ∈ E∗, ∥u∥ = δ}. Finally, we notice that supe∈E |f̂t(e)− f(e)| = op(1) due
to Lemma 3, and Theorem 1. By the same proof of Lemma C.2 in [41], we have Ê∗ ⊆ E∗ + Bδ,
which closes the proof.

H Proof of Theorem 2

Proof. Adopting the same proof of Theorem 1 in [41], we obtain that

êj =

∑T
t=1

∑nt

i=1 1(Xit∈Sj)(Dit − ê∗tj)∑T
t=1

∑nt

i=1 1(Xit∈Sj)

+

∑T
t=1

∑nt

i=1 1(Xit∈Sj)ê
∗
tj∑T

t=1

∑nt

i=1 1(Xit∈Sj)

=Op

(
1√
N

)
+
(
1 + op(1)

)∑T
t=1 ntê

∗
tj

N
.

From Lemma 4, one has

sup
2≤t≤T

|ê∗tj − e∗j | = op(1).
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Then with the calibration procedure presented in Section 4.1, by replacing ê∗tj with ẽtj , we have that

∑T
t=1 ntẽtj
N

=

T∑
t=1

nt

N

(
ê∗tj(ntj +Nt−1,j)

)
−Nt−1,j(1)

ntj

=

T∑
t=1

nt

N
ê∗tj +

T∑
t=1

nt

N

ê∗tjNt−1,j −Nt−1,j(1)

ntj

= e∗j −
T∑

t=1

1

Npj

t−1∑
s=1

ns∑
i=1

1(Xis∈Sj)

(
Dis − ê∗tj

)
+ op(1)

= e∗j + op(1),

where the second term in the last equality has the order of Op(1/
√
N) with variance calculation.

Thus, we complete the proof.

I Proof of Theorem 3

Proof. Note that

τ̂T̂1
− τT1 = (τ̂T̂1

− τ̂T1) + (τ̂T1 − τT1),

and

τ̂T1
− τT1

=
∑
j∈T1

pj τ̂j

/∑
j∈T1

pj −
∑
j∈T1

pjτj

/∑
j∈T1

pj

=
∑
j∈T1

pj (τ̂j − τj)

/∑
j∈T1

pj .

Applying the result presented in Theorem 4,

√
N(τ̂j − τj)

D→ N
(
0,Vj(e

∗
j )
)
,

we have that
√
N(τ̂T1

− τT1
)

D→ N
(
0,VT1

(e∗1)
)
,

where VT1(e
∗
1) =

∑
j∈T1

p2jVj

(
e∗j
)/(∑

j∈T1
pj

)2
. By Theorem 1, we also have τ̂T̂1

− τ̂T1 →p 0.

Thus by Slutsky’s theorem,

√
N(τ̂T̂1

− τT1)
D→ N

(
0,VT1(e

∗
1)
)
.

Consistency of the variance estimator follows from Theorem 1 and Lemma 1, which is similar to the
proof of Lemma 3.

J Additional algorithms

In this section, we provide another data-adaptive algorithm for choosing hyperparameters for Stage 1
and another bootstrap-based merging data bootstrap for later stages.

We present a double bootstrap method for choosing hyperparameters in Algorithm 4 as an alternative
to Algorithm 3.
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Algorithm 4 Hyperparameter selection in Stage 1
Step 1 (Input):

1: InputH1, τ̂1j , V̂1j , and (cL, cR).
2: Compute τ∗1j as in Eq (4).

Step b (Bootstrap):
3: for b← 1 to B do
4: Generate τ̂ ∗

1 from N
(
τ ∗
1 , Ω̂n/n1

)
, where Ω̂n = diag

(
V̂11, . . . , V̂1m

)
;

5: for r ← 1 to R do
6: Generate τ̂ ∗∗

1 from N
(
τ̂ ∗
1 , Ω̂n/n1

)
;

7: Compute τ̃∗∗1,(1) as in Eq (6);
8: end for
9: Record B1,(b) (cL, cR) as in Eq (14).

10: end for
Step B (Output):

11: Compute L1(cL, cR) as in Eq (14). Choose the pair (c1L, c
1
R) that minimizes L1(cL, cR).

Here, we define the loss function

B1,(b) (cL, cR) =
1

R

R∑
r=1

1
(
τ̃∗∗,r(1) ≤ τ∗,r(1)

)
, L1 (cL, cR) =

1

B

B∑
b=1

(
B1,(b)(cL, cR)−

b

B + 1

)2
,

(14)

where B1,(b) (cL, cR) is the b-th smallest statistics in B11 (cL, cR) , . . . ,B1B (cL, cR).

We could know that P(τ̃∗1,(1) ≤ τ1|(Yis, Dis, Xis)
n1
i=1) roughly follows Unif(0,1) when the sample

size n1 is large. Given a desirable pair of hyperparameters (cL, cR), we would thus expect that
B1,(1)(cL, cR), . . . ,B1,(B)(cL, cR)share a similar distribution with the ordered statistics of i.i.d. Unif(0,
1) random variables. The loss function defined in Eq (14) measures the average of squared differences
between B1,(b)(cL, cR) and the expected value of the order statistics of the Unif(0, 1) random variables.
Given the rational above, we would expect that the optimal pair of hyperparameters (c1L, c

1
R) at Stage

1 minimizes such a loss.

We present naïve bootstrap method for identifying and merging data for later stages in Algorithm 5
as an alternative to Algorithm 2.

Algorithm 5 Subgroup identification in Stage t (t > 1)
Step 1 (Input):

1: Input {Hs}ts=1, τ̂tj , V̂tj , and (ctL, c
t
R) computed from Algorithm 3 or Algorithm 4.

Step b (Bootstrap):
2: for b← 1 to B do
3: Generate totally

∑t
s=1 ns resamples randomly with replacement from {Hs}ts=1.

4: Compute τ̂◦tj as in Eq (8) with the bootstrap samples;
5: Identify the best subgroups T̂t1 with the bootstrap samples as in Eq (3).
6: end for

Step B (Output):
7: Choose T̂t1 with the highest frequency of occurrence and merge subgroups that belong to T̂t1.

K Additional details on synthetic real data study

K.1 Additional simulation results of our proposed algorithms

In this section, we mainly focus on the comparison of four variations of our proposed design strategy
adopted with single or double bootstrap for selecting hyperparameters and naïve or separate bootstrap
for data merging. We adopt the same setting mentioned in Section 6.
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Figure 2: Comparison of the correct selection probability among four variations of our proposed
design strategies.

Table 3: Comparison among four variations of our proposed design strategy based on estimated best
tie set treatment effect (Est), 95% confidence interval (95% CI),

√
N -scaled bias (

√
NBias), and

standard deviation (SD).

Method Est (95% CI)
√
NBias SD

Double and naïve bootstrap 10.16 (9.14,11.18) 41.69 40.40
Double and separate bootstrap 10.25 (9.22,11.28) 34.44 40.71
Single and naïve bootstrap 10.26 (9.22,11.29) 34.20 40.85
Single and separate bootstrap 10.31 (9.28,11.35) 29.98 40.94

First, from the comparison in Figure 2, as the adaptive design goes on, four variations of our proposed
design strategy do not present a distinctly different performance, and they are all efficient with correct
selection probability gradually rising over 0.9. Our design conducted with a single bootstrap for
choosing hyperparameters and naïve bootstrap for identifying and merging tie sets perform a little
better than other variations after 15 stages.

Second, from Table 3, we obtain that our proposed strategy conducted with a single bootstrap for
selecting hyperparameters and a separate bootstrap for identifying and merging data has the smallest√
N -scaled bias. Overall, these four variations demonstrate similar efficiency in identifying and

merging the best subgroups with almost the same estimated treatment effect and standard deviation.
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Figure 3: Comparison of the normalized mutual information among three conventional methods and
four variations of our proposed design strategies.

We add normalized mutual information as an additional metric to evaluate the similarity of estimated
tie set and true tie set of best-performing subgroups. With the results presented in Figure 3 (a) and
(b), the normalized mutual information for our proposed design strategy and the three conventional
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methods exhibits a similar trend in terms of correct selection probability. This observation further
confirms that our proposed design strategy outperforms the conventional methods.

K.2 Extension: AIPW estimator

When contextual information (or additional covariate information) is considered in our design, the
subgroup treatment effects and associated variances in Eq.8 can be replaced by

τ̂t−1,(j) =
1

Nt−1,(j)

t−1∑
s=1

ns∑
i=1

1(Xis∈S(j))

{
Dis

êt−1,(j)
(Yis − µ̂1(Zis)) + µ̂1(Zis)

}

− 1

Nt−1,(j)

t−1∑
s=1

ns∑
i=1

1(Xis∈S(j))

{
1−Dis

1− êt−1,(j)
(Yis − µ̂0(Zis)) + µ̂0(Zis)

}

V̂t−1,(j)(ej) =

∑t−1
s=1

∑ns

i=1 1(Xis∈S(j))Dis(Yis − µ̂1(Zis))
2

Nt−1,(j)(1)

(ej ·Nt−1,(j)

Nt−1

)−1

+

∑t−1
s=1

∑ns

i=1 1(Xis∈S(j))(1−Dis)(Yis − µ̂0(Zis))
2

Nt−1,(j)(0)

( (1− ej) ·Nt−1,(j)

Nt−1

)−1

+
1

Nt−1,(j)

t−1∑
s=1

ns∑
i=1

1(Xis∈S(j))

(
µ̂1(Zis)− µ̂0(Zis)− τ̂t−1,(j)

)2
,

where µ̂d(Zis) = Ê[Yis|Dis = d, Zis ∈ Sj ], d ∈ {0, 1}. We still generate synthetic data that mimic
the original PBC dataset with the potential outcome from Yi(d)|Xi ∈ Sj = µdj+0.5Zi+εdj , Zi ∼
N (0, 1), εdj ∼ N (0, σ2

dj), j = 1, . . . , 5 to investigate the performance of our proposed stratgy with
AIPW estimator.

Through simulation studies in Figure 4, we found that our method (whether using IPW or AIPW) has
the highest accuracy in identifying the best subgroups. The performance of the causal tree model is
comparable to that of the contextual bandit algorithms where treatment effects are estimated with
the AIPW estimator, thereby including contextual information. Regarding the causal tree model,
we would like to note that the comparison may not be entirely fair for the causal tree model. This
is because the causal tree method is a method used to identify subgroups after the data has already
been collected, whereas our method focuses on designing data collection mechanisms to accurately
identify the best subgroups. Therefore, it can be expected that our approach will have higher accuracy
in identifying subgroups.
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Figure 4: Comparison of the correct selection probability and normalized mutual information among
our proposed design with IPW estimator, three conventional algorithms and our proposed design with
AIPW estimator and causal tree.

K.3 Additional synthetic real data study

In this section, we provide an additional synthetic real study in another domain to showcase the
performance of our proposed design. We consider a job dataset from the National Supported Work
(NSW) program. This program, initiated in the 1970s, aims to provide disadvantaged workers
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with work experience. We utilize the dataset from a field experiment referenced in [7] (n = 455),
which includes 185 workers in the treatment group and 260 workers in the control group. The
dataset features a treatment indicator variable, an outcome variable representing participant earnings
post-treatment in 1978, and eight baseline variables. These baseline variables include age, years
of education, an indicator for high school graduation, indicators for Black and Hispanic ethnicity,
marital status, and pre-treatment earnings for the years 1974 and 1975.

We aim to investigate whether the job training program is indeed beneficial for certain groups of
workers in for subgroups defined by: (1) education years ≥ 11 and age ≥ 26, (2) education years
< 11 and age ≥ 26, (3) education years ≥ 11 and age < 26, (4) education years < 11 and age < 26.
It is a suitable dataset because by conducting two-sample t-tests between every two subgroups the
pairwise similarity of the distribution of subgroups, Subgroups (1), (2) and (3) are regarded as tie sets
of the best subgroups under the significance level of α = 0.05. We provide the results in Figure 5,
which can validate the performance of our proposed strategy.
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Figure 5: Comparison of the correct selection probability and normalized mutual information among
three conventional methods and our proposed design strategy based on job dataset.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Please see Section 1.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We have discussed the limitations of our work in Section 7.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: Please see Section 5.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Please see Section 6 and Supplementary Materials.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: Please see Section 6 and Supplementary Materials.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Please see Section 6 and Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Please see Section 6.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Please see Section 6.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research in the paper conforms with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discussed the potential positive social impacts in Section 1. The negative
social impacts are not applicable.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have properly credited the original data source.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The manuscript does not involve crowdsourcing nor research with human
subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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