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Abstract

Reinforcement learning (RL) algorithms are typically based on optimizing a
Markov Decision Process (MDP) using the optimal Bellman equation. Recent
studies have revealed that focusing the optimization of Bellman equations solely
on in-sample actions tends to result in more stable optimization, especially in the
presence of function approximation. Upon on these findings, in this paper, we pro-
pose an Empirical MDP Iteration (EMIT) framework. EMIT constructs a sequence
of empirical MDPs using data from the growing replay memory. For each of these
empirical MDPs, it learns an estimated Q-function denoted as Q̂. The key strength
is that by restricting the Bellman update to in-sample bootstrapping, each empirical
MDP converges to a unique optimal Q̂ function. Furthermore, gradually expanding
from the empirical MDPs to the original MDP induces a monotonic policy improve-
ment. Instead of creating entirely new algorithms, we demonstrate that EMIT can
be seamlessly integrated with existing online RL algorithms, effectively acting as a
regularizer for contemporary Q-learning methods. We show this by implementing
EMIT for two representative RL algorithms, DQN and TD3. Experimental results
on Atari and MuJoCo benchmarks show that EMIT significantly reduces estimation
errors and substantially improves the performance of both algorithms.

1 Introduction

Reinforcement learning (RL) has achieved remarkable success across various domains, such as games
[1, 2, 3, 4, 5], robotics [6, 7, 8] and industrial applications [9, 10], by modeling them as Markov
Decision Processes (MDPs). Most RL methods store transitions in a replay memory [11] and estimate
an action-value function from batches of that data. They apply the Bellman optimality equation as an
iterative update:

Q(s, a)← r(s, a) + γmax
a′

Q(s′, a′). (1)

Such value iteration converges to the optimal action value Q∗ given infinite state-action visitation and
updates [12, 13, 14, 15]. An optimal policy is derived by taking an action with maximum Q at each
state or approximated by a parameterized policy [16, 17, 18, 19]. In practice, data coverage in the
replay memory is limited to a potentially small subset of the whole state-action space, especially for
complex environments. Indeed, the Bellman update in Eq. (1) suffers from estimation errors due to the
combination of applying the max operator to out-of-sample actions and bootstrapping from a function
approximator. In the examples in Fig. 1a, the well-known double Q-learning method [20] cannot
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(a) Comparison of double Q technique with empirical Q̂. We train
Double DQN [21] and TD3 [17] with the double Q technique. Con-
currently, we learn Q̂ based on Eq. (2). The graphs show the dif-
ference between the Q value and discounted Monte Carlo return.
Greater/less than 0 means overestimation/underestimation. The dou-
ble Q technique overestimates on Breakout but underestimates on
HalfCheetah. Q̂ yields much more accurate estimation on both tasks.
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(b) In Empirical MDP Iteration (EMIT),
we consider transitions existing in the re-
play memory as an empirical MDP M̂i,
then solve M̂i and collect more data. Re-
peating this process yields refined empiri-
cal MDPs M̂1,M̂2, · · · , which progres-
sively approach the original MDPM.

eliminate the estimation error. Its effects are heavily task-specific: it overestimates on Breakout
game but underestimates on HalfCheetah.

We argue that the estimation error is hard to correct for methods based on Eq. (1) that consider the
entire MDP, because there are infinitely many suboptimal solutions consistent with the Bellman
equation when the data is incomplete. Errors due to such incomplete data can backpropagate to
transitions in the replay memory and impede the whole learning process. However, bootstrapping only
from in-sample actions without querying the values of unseen actions greatly reduces the estimation
error, even with function approximation. The function Q̂ in Fig. 1a was learned in this way.

Motivated by these observations, we advocate for solving the empirical MDP M̂ which only uses
transitions in a replay memory D collected from the environment.

Q̂(s, a)← r + γ max
a′:(s′,a′)∈D

Q̂(s′, a′). (2)

There is no out-of-sample bootstrapping in Eq. (2), and the solution in a finite state-action space is
unique. If D grows over time and gradually covers the entire MDP, then optimizing with Eq. (2)
eventually leads to the solution to the original MDP. This observation instantly implies a new iterative
learning procedure: alternate between exploitation by solving an incumbent empirical MDP, and
exploration for growing the empirical MDP with new data. This Empirical MDP Iteration (EMIT)
process is illustrated in Fig. 1b. How to grow M̂? In principle, exploration should find missing
strong actions that bring M̂ closer toM. Following the well-known principle of optimism in the
face of uncertainty [22], we argue that one option is to drive the exploration for growing M̂ by the
value difference between Q and Q̂. EMIT can be applied to any RL algorithms that can learn both Q

and Q̂ [23]. We implement and evaluate two variants based on DQN [16] and TD3 [17], for discrete
action spaces and continuous control tasks respectively. Our contributions are summarized as follows:

1. We provide a thorough analysis to show why the estimation error is hard to eliminate when using
the Bellman update with incomplete data, and that bootstrapping from in-sample transitions
greatly reduces this error, both with and without function approximation.

2. In the tabular case, we prove that the in-sample bootstrapping guarantees a unique optimal Q̂ for
M̂. If the optimal trajectory forM is included in M̂, then the greedy policy derived from Q̂∗ is
also optimal forM following the optimal trajectory. Further, monotonic improvement in learning
Q̂ is guaranteed with growing data coverage ifM is deterministic. These imply that Q̂ can be a
natural regularizer for Q.

3. We develop a novel framework EMIT, which can be used to enhance existing RL algorithms
by iteratively solving a current empirical MDP for stable finite-time performance, and can
progressively approach a solution to the original MDP. EMIT can be combined with any method
that learns a Q function. We add EMIT to DQN and TD3, and conduct extensive experiments on
Atari [24] and MuJoCo [25] tasks. We show strong performance enhancements for both methods.
Further analysis demonstrates that EMIT largely overcomes problems of estimation error.
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2 Background

Markov Decision Process (MDP). Reinforcement learning (RL) [26, 27] is a paradigm of agent
learning via interaction. It can be modeled as a Markov Decision Process (MDP), a 5-tupleM =
(S,A, R, P, γ). S denotes the state space,A denotes the action space, P (s′|s, a) : S×A×S → [0, 1]
is the environment dynamics, R(s, a) : S × A → R is the reward function which is bounded,
γ ∈ (0, 1) is the discount factor. The goal of an RL agent is to learn an optimal policy π that
maximizes the expected discounted cumulative reward Eπ[

∑∞
t=0 γ

trt].

Value-Based Methods. Q-learning is a classic algorithm based on the Bellman optimality equation
Q∗(s, a) = E [r + γmaxa′ Q∗(s′, a′)] [28]. An optimal policy takes an action with maximum Q at
each state. DQN [16] scales up from tabular Q-learning by using deep neural networks and experience
replay [11]. Actor-critic methods [6] such as SAC [18] and TD3 [17] learn a parameterized policy,
which is suitable for continuous action spaces. The policy is updated by gradient ascent of a Q
network,∇θ

1
|B|

∑
s∈B Qϕ(s, aθ), aθ ∼ πθ(·|s), where B is a batch of samples.

In-Sample Bellman Update. The in-sample constraint in Eq. (2) avoids bootstrapping from unseen
actions when estimating target values. Several recent offline RL [29] methods use Eq. (2) to
approximate an optimal action value function. For example, implicit Q-learning (IQL) [30] uses
expectile regression to learn the optimal Q function without ever querying the values of unseen
actions. Its learning goal is to minimize the expectile regression objective:

L(θ) = E(s,a,s′,a′)∼D[L
τ
2(r(s, a) + γQθ̄(s

′, a′)−Qθ(s, a))], (3)

where Lτ
2(u) = |τ−1(u < 0)|u2 is a weighted mean squared error loss, and Qθ̄ is the target network.

This asymmetric loss function defines the entire spectrum of methods between SARSA (τ = 0.5)
and Q-learning (τ → 1). Eq. (2) can be approximated using Eq. (3) with τ ≈ 1. Other methods like
In-Sample Actor-Critic (InAC) [31] and Extreme Q-learning (XQL) [32] are also based on Eq. (2),
and EMIT is straightforward to implement based on these offline methods.

3 Empirical MDP Iteration

A replay memoryD is maintained to store transitions (s, a, r, s′). In most cases, the original MDPM
is too large, and D contains only a small subset of all transitions inM. Due to the incomplete data,
infinitely many other MDPs can be consistent withM on transitions in D. For ease of notation, we
denote (s, a) ∈ D if ∃ (s, a, r, s′) ∈ D and s ∈ D if ∃ (s, a, r, s′) ∈ D or ∃ (s̃, a, r, s) ∈ D. A visit
count N(s, a, s′) is defined as the number of times (s, a, s′) appears in D. We define the empirical
MDP M̂ to be the lowest reward MDP that uses all data in D.

Definition 3.1 (Empirical MDP). Given a dataset D from MDP M, the empirical MDP M̂ :=

(Ŝ, Â, R̂, P̂ , γ), has state space Ŝ = {s|s ∈ D}, and action space Â = {a|(s, a) ∈ D}, with reward
function R̂(s, a) = R(s, a) if (s, a) ∈ D, and R̂(s, a) = −∞ otherwise. P̂ (s′|s, a) = N(s,a,s′)∑

s′ N(s,a,s′)

is the empirical transition dynamics based on visit counts in D, and γ ∈ (0, 1) is the discount factor.

The empirical MDP M̂ contains all information we can obtain from D. If a (state, action) pair is not
in the data, its reward is set to −∞ and its transition probabilities are zero.

We analyze two update rules in the tabular case with finite S × A, the Bellman update and the
in-sample Bellman update given in Eqs. (1) and (2). Both update rules try to minimize the Bellman
residual [33], which is a surrogate objective to minimize the action value error and approximate the
optimal value. Eq. (1) takes the maximum over all actions, while Eq. (2) only uses in-sample actions
for a state. Let Q∗ and Q̂∗ be the optimal action values forM and M̂ respectively. Then:

Proposition 3.2. If the data coverage D is incomplete, then the Bellman update Eq. (1) neither
guarantees convergence to the optimal value Q∗ for the original MDPM nor to the optimal value
Q̂∗ for the empirical MDP M̂, even in the limit of infinite updates.

The proof is straightforward. Given that D is incomplete, there exist transitions inM that are not
present in M̂. These absent transitions can be assigned any initial values, and may bootstrap to
in-sample transitions, thereby influencing the convergence process. This indicates that the Bellman
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(a) Value errors compared with Q∗ and Q̂∗. (b) Policies after learning.

Figure 2: (a) illustrates two cases in the CliffWalk task: memory D only contains a sub-optimal trajectory and
misses many transitions (left); D contains all optimal state-action pairs but misses some sub-optimal actions
(right). The curves show estimation errors of Q and Q̂ learned with Eqs. (1) and (2) compared with Q∗ and Q̂∗.
(b) presents the greedy policies after learning. Red arrows indicate incorrect actions neither follow argmaxQ∗

nor argmax Q̂∗. The blue shading signifies accurately estimated Q̂ and overestimated Q values.

update is heavily influenced by the values of unseen state-action pairs. A simple example is provided
in Appendix A Fig. 7. In contrast, the in-sample Bellman update is not affected by unseen transitions,
and thus converges to a unique optimal value Q̂∗ for M̂.
Proposition 3.3. The in-sample Bellman update Eq. (2) uniquely converges to the optimal value
Q̂∗ for the empirical MDP M̂ in the limit of infinitely many updates. Furthermore, if the optimal
trajectory forM is included in M̂, then the greedy policy derived from Q̂∗ is also optimal forM
following the optimal trajectory.

We defer the proof to Appendix A, and provide a toy example on CliffWalk [26] in Fig. 2 to illustrate
the difference between the two update rules. CliffWalk is a simple navigation task. The goal is to
reach the state G at the bottom right starting from the bottom left. The reward of reaching G is 1.
Dropping into the cliff gives reward -1, and all other rewards are 0. We present two cases: (1) D
contains a sub-optimal trajectory and misses many state-action pairs (Fig. 2a top left), and (2) D
contains an optimal action at each state but misses some sub-optimal actions (Fig. 2a top right).

We parameterize Q and Q̂ with neural networks and sample batches of data to update them with
gradient descent following Eqs. (1) and (2). The learning curves in Fig. 2a shows value errors
comparing with the optimal values. ∆(Q1, Q2) denotes the averaged absolute error on state-action
pairs inD between Q1 and Q2. ∆(Q̂, Q̂∗) converges to 0, indicates that Q̂ converges to Q̂∗. However,
Q neither converges to Q∗ nor Q̂∗. In particular in the second case, all optimal actions are included in
D. Q̂ converges to global optimum while Q still fails due to missing actions. This highlights the heavy
influence of missing transitions on the Bellman update. Fig. 2b further presents the greedy policies
derived from Q and Q̂ after learning. Red arrows present actions that neither follow argmaxQ∗

nor argmax Q̂∗. The blue shading indicates the action values. Q overestimates on most state-action
pairs (top row of Fig. 2b). The policy derived from Q cannot learn the (current) optimal actions,
while argmax Q̂ represents a best possible policy.

We solve each empirical MDP M̂i, defined by the current memory Di, and add data to progressively
approach the original MDPM. IfM is deterministic, a monotonic improvement of the learning is
guaranteed by alternating between learning a currently best possible policy and collecting more data.
Proposition 3.4. AssumeM has deterministic transitions. If {Di} are datasets collected fromM
with D1 ⊂ D2 ⊂ · · · ⊂ Dn and corresponding empirical MDPs {M̂i}, then Q̂∗

1 ≤ Q̂∗
2 ≤ · · · ≤ Q̂∗

n.

This result is intuitive. With more transitions in the replay memory, we take the maximum over a
wider range of actions, leading to a better solution closer to Q∗. If the empirical MDP contains all
transitions, then M̂ =M and Q̂∗ = Q∗. The proof details are provided in Appendix A.

The in-sample Bellman update provides a learning path to improve a policy. The guarantee of the
convergence to a unique optimal value on existing transitions is a key property, which makes the
in-sample Bellman update a more robust choice for learning in the presence of missing transitions.

4
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More importantly, if the globally optimal trajectory has been explored and included in the memory,
then the in-sample Bellman update can learn an optimal policy catching up with the optimal trajectory
even when some other transitions are missing. In contrast, the Bellman update is strongly affected by
such missing transitions, and cannot guarantee to learn even from optimal trajectories.

3.1 Enhancing Online RL Algorithms with EMIT

Two major questions in EMIT are how to learn Q̂ from M̂ and how to grow M̂ using out-of-the-box
strong reinforcement learning algorithms. To take advantage of an existing value-based learning
algorithm, we utilize Q̂ to modify Q learning in two places, based on the value difference. First,
given a sampled batch of data, we modify the standard mean squared error (MSE) loss function of Q
by adding a MSE loss of Q̂ as a regularizer:

L = MSE(Qθ, Qtarget) + αMSE(Qθ, Q̂), (4)

Here, Qtarget = r(s, a)+γmaxa′ Q(s′, a′), and α is a parameter controlling the level of regularization.
Second, we add an exploration bonus to the algorithm’s behavior policy. The rationale is that since
we regularize Q to approximate Q̂ on existing transitions in the replay memory, the values of Q(s, a)

and Q̂(s, a) should be closer at known than at unseen state-action pairs. Therefore, we provide more
incentive for the agent to explore those dissimilar states. Define the absolute difference between Q

and Q̂ at (s, a) when interacting with the environment by:

δ(s, a) = |Q(s, a)− Q̂(s, a)|. (5)

For algorithms in discrete action spaces such as DQN, we can add an exploration bonus δ(s, a) to the
greedy part of an ϵ-greedy policy: with probability ϵ it chooses an random action as usual, otherwise
it selects an action that is greedy w.r.t Q(s, a) + δ(s, a):

π =

{
random action, p = ϵ

argmaxa(Q(s, a) + δ(s, a)), p = 1− ϵ
(6)

Eq. (6) adds a targeted exploration mechanism to ϵ-greedy.

For algorithms in continuous action spaces such as TD3, where the policy is assumed to be a unimodal
Gaussian distribution, we use δ as a state-action dependent standard deviation and sample actions
according to:

a← π(s) + ϵ, ϵ ∼ clip(N (0, δ(s, a)),−c, c), (7)
The added noise is clipped to keep the target close to the original action [17].

Algorithm 1 shows pseudo-code for incorporating EMIT into a Q learning algorithm Alg. Blue text
highlights the components added or modified by EMIT. EMIT maintains Q̂ and incorporates it into the
algorithm’s action selection Alg.act() and Q update Alg.update(). Any method based on Eq. (2)
can be used to learn Q̂. In our experiments, we apply implicit Q-learning (IQL) [30]. We learn
Q using DQN [16] and TD3 [17] for discrete and continuous environments respectively. Clearly,
Algorithm 1 should be more appropriate be viewed as a new framework, rather than a fixed algorithm.

Algorithm 1 Empirical MDP Iteration for Enhancing a Q Learning Algorithm Alg (EMIT-Alg)
1: Alg.Initialize the replay memory D and action value network Qθ

2: EMIT.Initialize Q̂θ̂
3: Alg.Initialize the environment s0 ← Env
4: for environment step t = 0 to T do
5: Alg.Select an action at = Alg.act(st, Q̂θ̂) as Eq. (6) or (7) {Q̂ guided exploration}
6: Alg.Execute at in Env and get rt, st+1

7: Alg.Store transition (st, at, rt, st+1) in D
8: Alg.Sample random minibatch of transitions B from D
9: EMIT.update(Q̂θ̂,B) w.r.t MSE loss derived by Eq.(2) {Learning of Q̂}

10: Alg.update(Qθ,B, Q̂θ̂) as Eq.(4) {Q̂ regularized learning for Q}
11: end for

5
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Figure 3: Performance on Atari (first row) and MuJoCo (second row) tasks. The learning curves show mean
scores and standard deviations over five runs. EMIT consistently boosts performance across diverse tasks.

4 Experiments

In this section, we present experimental results to validate the effectiveness of our proposed method.
We applied EMIT to both DQN [16] and TD3 [17], covering both discrete and continuous action
spaces. Our results demonstrate a significant performance improvement when EMIT is applied to
these current DRL methods. Ablation studies underscore the importance of each component of our
method in contributing to this improvement. Further analysis provides insights into why EMIT works.
Notably, the in-sample Bellman update Eq. (2) is capable of learning a superior policy compared
to the Bellman update Eq. (1). Regularization of Q by Q̂ yields a more accurate estimate, and
the estimation error in Q decreases. Additionally, the observed decrease in policy churn [34] may
represent another potential benefit of our method, worth further investigation.

4.1 Setup

Environments. We evaluate EMIT on Atari [24] and MuJoCo [25] tasks based on OpenAI Gym
interface [35]. Atari provides a diverse set of video games, making it an ideal platform for evaluating
the general competency of AI agents. The input for these games is image-based, and the dynamics are
nearly deterministic. MuJoCo offers a set of continuous control tasks, all of which have a standardized
structure and interpretable rewards. These tasks are designed to facilitate research and development
in the field of robotics, where the need for fast and accurate simulation is paramount. The dynamics
in MuJoCo are deterministic and feature high-dimensional state features. More details about these
environments can be found in Appendix B.

Baselines and Implementation Details. We benchmark EMIT against several established algorithms.
For Atari games, we compare our method with DQN [16], C51 [36], IQN [37], and Rainbow [38].
Each run involves 10 million interaction steps. Performance is evaluated by executing 30 episodes
after every 100k environmental steps. For MuJoCo tasks, our method is compared with SAC [18, 39],
TD3 [17], XQL [32], TRPO [40], and PPO [41]. Each run involves 2 million interaction steps.
Performance is evaluated by executing 10 episodes after every 10k environmental steps. We use the
same network as in the original papers for each algorithm. We search the learning rates for baselines
among {1e-3,3e-4,1e-4} and report the best performance. Each experiment is run with 5 different
random seeds. For our method, we set the learning rate the same as the backbone algorithm, and
search for the best regularization parameter α ∈ {0.05, 0.1, 0.5}. All other common parameters are
set as detailed in Appendix B Tables 1 and 2. Further details can be found in Appendices B.2 and B.3.

4.2 Performance Enhancement of EMIT for DQN and TD3

To demonstrate the effectiveness of EMIT, we initially compare it with its backbone algorithms.
Fig. 3 depicts the learning curves for Atari games (first row) and MuJoCo tasks (second row). The
solid line represents the mean score, while the shaded area indicates the standard deviation. The Q̂
online result refers to an IQL agent run online with the learning rule Eq. (2). This agent attempts to
solve the empirical MDP but lacks the exploration mechanism that augments the MDP. DQN and
TD3 are agents that follow the learning rule Eq. (1). They have exploration mechanisms such as

6
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Figure 4: Average performance on 20 Atari games and 8 MuJoCo tasks, with each method’s score normalized
between 0 and 1. EMIT achieves the best average performance across these tasks.

ϵ-greedy and random noise. They differentiate from the EMIT counterparts in that they do not learn
from the empirical MDP, hence they lack the regularization and exploration bonus derived from Q̂.
Our EMIT methods learn both Q and Q̂. As depicted in Fig. 3, they achieve clear improvements on
all tasks compared to other methods that solely learn Q or Q̂. EMIT can effectively augment and
boost these existing RL algorithms. It provides a principled framework for seamlessly integrating
the strengths of traditional learning based on the Q function and the more recent advancements in
in-sample learning for Q̂. Additional results can be found in Appendix C Figs. 23 and 24.

4.3 Comparison with Other Baselines

We extend our comparison of EMIT with other strong baselines. For a clearer presentation, we
display normalized scores. For each task, we define Rmax and Rmin as the maximum and minimum
cumulative reward across all methods, respectively. The score for each method is then normalized
using the formula (R−Rmin)/(Rmax −Rmin).

The overall performance on various tasks is presented in Fig. 4. EMIT achieves the best average
performance across these tasks. Specifically, EMIT either outperforms or is on par with (within a
10% difference) the best baselines on 19 out of 28 tasks. Details are given in Appendix C.2 Fig. 17.
Notably, on MuJoCo tasks, EMIT significantly surpasses other baselines. These results corroborate
our intuition that Empirical MDP Iteration is a more effective approach than focusing on the original
MDP from the outset. This strategy circumvents bootstrapping error, thereby enhancing sample
efficiency. While the Double Q technique mitigates overestimation by employing the target network
to evaluate actions, the target network may still overestimate or underestimate certain state-action
pairs. The distributional perspective of value estimation fosters more stable and risk-aware behavior.
However, estimation error persists due to the maximization bootstrapping from out-of-sample actions.
In contrast, EMIT seeks to simplify the problem, addressing it incrementally and progressively
approximating the original problem. This approach can provide accurate target values for each
empirical MDP, leading to consistent improvement. In summary, EMIT reduces estimation error
and provides accurate targets, thereby making the learning process more efficient. Detailed learning
curves can be found in Appendix C.2.

4.4 How the In-Sample Bellman Update Benefits the Learning

In Section 3, we analyze beneficial properties of the in-sample Bellman update. In this section, we
provide comprehensive empirical evidence for them.

We first demonstrate that the in-sample Bellman update is well-suited for passive learning [42, 29],
without the need for active interaction with the environment. Since the policy under which the data
is collected is not a concern, this allows greater flexibility in designing exploration strategies. We
execute DQN and TD3 (based on the Bellman update in Eq. (1)) on Breakout and HalfCheetah to
learn a policy π. Concurrently, we learn a policy π̂ using another IQL agent with in-sample Bellman
updates Eq. (2). Policy π interacts with the environment and collects data into a replay memory. Both
π and π̂ learn from this same dataset. Fig. 5a illustrates the performance of π and π̂. Interestingly,
π̂ performs comparably, if not better than π. Despite π̂ being learned without taking actions in
the environment, we observe no performance degradation attributable to passive learning. This is
somewhat counterintuitive, as active learning is generally considered superior [43].
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Figure 5: (a) We run DQN and TD3 on Breakout and HalfCheetah, and concurrently learn action value Q̂ with
the collected data. The curves show the performance of policies π and π̂, derived from Q and Q̂ respectively.
Remarkably, π̂, learned without active environment interaction, matches or even surpasses π’s performance. (b)
EMIT helps reduce the error in Q and learns almost accurate value estimation during the learning process.

We conclude that the in-sample Bellman update can learn an effective policy from given data without
the need for active interaction with the environment, and that the active policy π does not fully utilize
the collected data and fails to identify the optimal policy due to bootstrapping errors. This underscores
that bootstrapping from out-of-sample transitions hampers sample-efficient learning. Similar results
on additional environments can be found in Appendix C.3 Figs. 18 and 19.

Next, we demonstrate that the regularization of Q with Q̂ significantly diminishes the estimation
error in Q. At each evaluation, we obtain the true discounted Monte Carlo return, denoted as QTrue,
by executing the current policy for 30 episodes and calculating the actual discounted cumulative
rewards, QTrue(st, at) =

∑T
t=t γ

trt. We then compute the average estimation difference between the
learned Q and the ground truth QTrue,

Vdiff(Q,QTrue) =
1

|T |
∑

(s,a)∈T

(Q(s, a)−QTrue(s, a)) , (8)

Here, T represents the set of evaluation trajectories, and |T | denotes the total number of state-action
pairs in T . We calculate Vdiff for our method and compare it with DQN and TD3 on Breakout and
HalfCheetah1. As shown in Fig. 5b, our method maintains the difference near zero, indicating that the
estimation is remarkably close to the true value, with no significant overestimation or underestimation.
Similar results for other environments can be found in Appendix C.3.

Another potential factor contributing to the performance improvement is the reduction of policy
churn, the rapid change of the greedy policy in value-based reinforcement learning, primarily induced
by high-variance updates in deep learning. Much of this policy change could be unnecessary,
particularly as learning converges [34]. Measuring policy change in a continuous action space is not
straightforward. Therefore, we assess the change on Breakout and Pong, which have discrete action
spaces. The results are shown in Fig. 6a, with additional results in Fig. 22 in Appendix C.4. Our
findings consistently indicate that our method reduces policy change compared to DQN. However,
policy churn is not entirely detrimental, as it can serve as a potentially beneficial form of implicit
exploration. The optimal frequency of change that could enhance learning remains unclear and
deserves further investigation.

4.5 Effect of Loss Regularization and Exploration Bonus

Our algorithm design comprises two key components: the regularization term, determined by the
parameter α, and the exploration term, designed based on the value difference δ(s, a). The impact
of each component on the Breakout and HalfCheetah environments is further shown in Figure 6b.
The label w/o reg term signifies the absence of regularization for the function Q, i.e., α = 0.
w/o explore term indicates the use of existing exploration methods, such as ϵ-greedy or random
noise, without the addition of our exploration mechanism. w/o both refers to the backbone methods
devoid of two enhancements. full method incorporates both the regularization and exploration
terms. Figure 6b reveals that both components independently contribute to learning. We see a more
significant performance decline without the regularization term. This suggests that, by adhering
to the paradigm of empirical MDP iteration, the current exploration mechanism can already yield
substantial improvements. The introduction of an advanced exploration mechanism can further
enhance performance. Similar results for more environments can be found in Appendix C.5.

1Unlike Fig. 1a that measures the error of Q̂, here we measure the estimation error of Q after regularization.
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Figure 6: (a) EMIT helps reduce unnecessary policy change comparing with DQN, potentially contributing
to the enhanced performance. (b) Both the regularization and the exploration mechanism benefit the online
learning. The regularization term exerts a greater impact than the exploration mechanism.

5 Related Work

Accurate value estimation is crucial for RL algorithms. The use of erroneous bootstrapping targets
can degrade the Q function, resulting in suboptimal performance [44, 45, 46, 47]. Overestimation
can occur when bootstrapping error is combined with maximizing over action values [20]. Double
DQN [21] mitigates this overestimation by computing the maximum from two Q functions. Maxmin
Q-learning [48] learns multiple Q functions to strike a balance between overestimation and underesti-
mation. It requires meticulous hyper-parameter fine-tuning, which can be computationally intensive.
CEER [49] constructs a graph to merge similar states and computes an additional conservative Q
estimation akin to solving Eq. (2). However, CEER is effective only when the constructed graph
is dense. C51 [36] and IQN [37] are distributional RL methods that are generally more stable and
risk-aware than DQN. Nonetheless, estimation error remains due to the maximization bootstrapping
from out-of-sample actions. Rainbow [38] integrates six enhancements to the DQN algorithm for im-
proved empirical performance: double Q-learning [21], prioritized replay [50], dueling networks [51],
multi-step learning [52], distributional RL [36], and noisy nets [53].

Offline reinforcement learning [29] tries to fully use existing data without additional online data
collection. They aim to extract best possible policy from the existing dataset. While earlier methods
focused on constraining the distance between the learned policy and the behavior policy to avoid
distributional shift caused by taking actions outside of the behavior distribution [54, 55, 56], recent
studies found that selecting actions within the support of the dataset during training, similar to Eq. (2),
is more effective [57, 30, 58, 31]. Implicit Q-Learning (IQL) [30] estimates the value of the best
available action at a given state with expectile regression, without ever directly querying the Q
function for unseen actions. In-Sample Actor-Critic (InAC) [31] approximates an in-sample softmax
using only actions in the dataset. Extreme Q-learning (XQL) [32] models the maximal value using
Extreme Value Theory (EVT) and avoids computing Q-values using out-of-sample actions. In EMIT,
we provide a framework for easy integration of any of these methods to solve Eq. (2).

6 Discussion and Limitations

We study the application of the Bellman equation as a learning objective in scenarios with incomplete
data. Bootstrapping from in-sample transitions with Eq. (2) theoretically leads to a unique solution and
significantly reduces the estimation error in practice, even with function approximation. We introduce
a novel learning paradigm, termed Empirical MDP Iteration (EMIT). Unlike previous methods that
solely focus on solving the entire original MDP, we propose a regularization approach for learning by
solving a series of empirical MDPs using only the transitions present in the data. EMIT provides an
iterative learning pathway that uniquely solves each empirical MDP and incrementally approaches the
original MDP through new data collection. We instantiate EMIT with the Q-learning algorithm DQN
and the actor-critic algorithm TD3. Results demonstrate a substantial improvement in performance in
applications of both video games and continuous control tasks. A shortcoming is that since the policy
derived from Q̂ lacks an exploration mechanism, we learn two Q functions in our algorithm design
and the wall-clock time would be double. One future work could be designing a learning process that
is directly based on in-sample Bellman update to avoid out-of-sample bootstrapping and also taking
the exploration mechanism into consideration.
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A Proof of Propositions in Section 3

In this section, we analyze the property of the two update rules in Eqs. (1) and (2) for finite state-action
space S ×A discussed in Section 3.

Proposition 3.2. If the data coverage D is incomplete, then the Bellman update Eq. (1) neither
guarantees convergence to the optimal value Q∗ for the original MDPM nor to the optimal value
Q̂∗ for the empirical MDP M̂, even in the limit of infinite updates.

We illustrate the property using an example in Fig. 7. The original MDP comprises two states
{s1, s2} and two actions {a1, a2}. The memory D includes transitions {(s1, a1), (s1, a2), (s2, a1)},
but lacks (s2, a2). Assuming a reward r(s, a) = 0 for all transitions for simplicity. In this case, the
optimal action value for all state-action pairs inM and M̂ is 0, i.e., Q∗(s, a) = Q̂∗(s, a) = 0, a ∈
{a1, a2}, s ∈ {s1, s2}.
However, the reward for the missing transition can take any value, leading to an infinite number of
MDPsMi ̸=M, where i ∈ I denotes different r(s2, a2) values. For the Bellman update Eq. (1),
any action-value function can only converge to one of theseMi, depending on the initialization. The
action value at state s1 may be determined by the value of the missing transition (s2, a2). For instance,
if Q(s2, a2) is initialized with any positive value, Eq. (1) converges to Q(s1, a) = γQ(s2, a2) > 0,
failing to approximate the optimal value 0 of either Q∗ or Q̂∗. This suggests that the Bellman update
is significantly affected by out-of-sample state-action pairs, and errors propagate back to in-sample
transitions. A more formal proof is available in related work [59] Corollary 1.

𝑠1 𝑠2

𝑎1

𝑎2

𝑎1

𝑎2
Figure 7: A toy MDP with two states and two actions. (s2, a2) is missed in the replay memory.

Proposition 3.3. The in-sample Bellman update Eq. (2) uniquely converges to the optimal value
Q̂∗ for the empirical MDP M̂ in the limit of infinitely many updates. Furthermore, if the optimal
trajectory forM is included in M̂, then the greedy policy derived from Q̂∗ is also optimal forM
following the optimal trajectory.

We first present the established results for the Bellman update in Eq. (1), and then provide a three-step
proof for Proposition 3.3.

The Bellman (optimality) operator B for Eq. (1) is defined as:

(BQ)(s, a) =
∑
s′∈S

P (s′|s, a)[r + γmax
a′

Q(s′, a′)]. (9)

Previous works have demonstrated that the operator B is a γ-contraction with respect to the supremum
norm:

∥BQ1 − BQ2∥∞ ≤ γ∥Q1 −Q2∥∞, (10)

where the supremum norm ∥v∥∞ = max1≤i≤d |vi|, and d is the dimension of vector v. According to
Banach’s fixed-point theorem [60], Q converges to optimal action value Q∗ if we consecutively apply
operator B to Q, limn→∞(B)nQ = Q∗. Furthermore, the update rule in Eq. (1), i.e. Q-learning, is
a sampling version that applies the γ-contraction operator B to Q. It can be viewed as a random
process and will converge to Q∗, limt→∞ Qt = Q∗, under certain mild conditions [61, 62, 63, 64].

In a similar vein, we define the empirical Bellman (optimality) operator B̂ for Eq. (2):

(B̂Q̂)(s, a) =
∑
s′∈S

P̂ (s′|s, a)[r + γ max
a′:(s′,a′)∈D

Q̂(s′, a′)]. (11)
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We prove Proposition 3.3 in three steps. Firstly, we demonstrate that B̂ is a γ-contraction operator
under supremum norm, and thus converges to the optimal action value Q̂∗, limn→∞(B)nQ̂ = Q̂∗.
Next, we show that the sampling-based update rule in Eq. (2) converges to Q̂∗, limt→∞ Q̂t = Q̂∗.
Finally, we illustrate the greedy policy derived from Q̂∗ is optimal forM if the optimal trajectory for
M is included in M̂.
Lemma A.1. The operator B̂ defined in Eq. (11) is a γ-contraction operator under supremum norm,

∥B̂Q̂1 − B̂Q̂2∥∞ ≤ γ∥Q̂1 − Q̂2∥∞. (12)

Proof. We rewrite ∥B̂Q̂1 − B̂Q̂2∥∞ as follows:

∥B̂Q̂1 − B̂Q̂2∥∞

= max
s,a

∣∣∣ ∑
s′∈S

P̂ (s′|s, a)[r + γ max
a′
1:(s

′,a′
1)∈D

Q̂1(s
′, a′1)]− P̂ (s′|s, a)[r + γ max

a′
2:(s

′,a′
2)∈D

Q̂2(s
′, a′2)]

∣∣∣
= max

s,a
γ
∣∣∣ ∑
s′∈S

P̂ (s′|s, a)[ max
a′
1:(s

′,a′
1)∈D

Q̂1(s
′, a′1)− max

a′
2:(s

′,a′
2)∈D

Q̂2(s
′, a′2)]

∣∣∣
≤ max

s,a
γ
∑
s′∈S

P̂ (s′|s, a)
∣∣∣ max
a′
1:(s

′,a′
1)∈D

Q̂1(s
′, a′1)− max

a′
2:(s

′,a′
2)∈D

Q̂2(s
′, a′2)

∣∣∣
≤ max

s,a
γ
∑
s′∈S

P̂ (s′|s, a) max
ã:(s′,ã)∈D

∣∣∣Q̂1(s
′, ã)− Q̂2(s

′, ã)
∣∣∣

≤ max
s,a

γ
∑
s′∈S

P̂ (s′|s, a) max
s̃,ã:(s̃,ã)∈D

∣∣∣Q̂1(s̃, ã)− Q̂2(s̃, ã)
∣∣∣

= max
s,a

γ
∑
s′∈S

P̂ (s′|s, a)∥Q̂1 − Q̂2∥∞

= γ∥Q̂1 − Q̂2∥∞,
(13)

where the last equality is due to
∑

s′∈S P̂ (s′|s, a) = 1.

To demonstrate that the sampling-based update rule in Eq. (2) converges to Q̂∗, we utilize an auxiliary
result from stochastic approximation [62, 63].

Theorem A.2. The random process {∆t} taking values in Rn and defined as
∆t+1(x) = (1− αt(x))∆t(x) + αt(x)Ft(x) (14)

converges to zero with probability 1 under the following conditions:

(1) 0 ≤ αt ≤ 1,
∑

t αt(x) =∞ and
∑

t α
2
t (x) <∞;

(2) ∥E[Ft(x)|Ft]∥W ≤ γ∥∆t∥W , with γ < 1;

(3) V ar[Ft(x)|Ft] ≤ C(1 + ∥∆t∥2W ), for C > 0.

W is a norm. In our proof it is supremum norm.

Proof. See [62, 63].

Lemma A.3. Given any initial estimation Q̂0, the following update rule:

Q̂t+1(st, at) = Q̂t(st, at) + αt(xt, at)[rt + γ max
a:(st+1,a)∈D

Q̂t(st+1, a)− Q̂t(st, at)], (15)

converges w.p.1 to the optimal action-value function Q̂∗ if

0 ≤ αt(s, a) ≤ 1,
∑
t

αt(s, a) =∞ and
∑
t

α2
t (s, a) <∞,

for all (s, a) ∈ S ×A.
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Proof. Applying Theorem A.2, we can demonstrate the convergence of the update rule in Eq. (15).
Rewriting Eq. (15), we get

Q̂t+1(st, at) = (1− αt(st, at))Q̂t(st, at) + αt(xt, at)[rt + γ max
a:(st+1,a)∈D

Q̂t(st+1, a)] (16)

Subtracting Q̂∗(st, at) from both sides yields:

Q̂t+1(st, at)− Q̂∗(st, at)

= (1− αt(st, at))(Q̂t(st, at)− Q̂∗(st, at)) + αt(xt, at)[rt + γ max
a:(st+1,a)∈D

Q̂t(st+1, a)− Q̂∗(st, at)]

(17)

Let’s define
∆t(s, a) = Q̂(s, a)− Q̂∗(s, a) (18)

and
Ft(s, a) = r + γ max

a′:(s′,a′)∈D
Q̂t(s

′, a′)− Q̂∗(s, a). (19)

This results in the same random process as shown in Theorem A.2 Eq. (14). Therefore, proving
limt→∞ Q̂t = Q̂∗ is equivalent to demonstrating that ∆t(s, a) converges to zero with probability 1.
We only need to verify that the assumptions in Theorem A.2 are satisfied under the definitions of
Eqs. (18) and (19).

The first assumption of Theorem A.2 aligns with the condition in Lemma A.3. This can be easily
achieved by choosing αt(s, a) = 1/t, for instance.

For the second assumption of Theorem A.2, we have

E[Ft(s, a)|Ft] =
∑
s′∈S

P̂ (s′|s, a)[r + γ max
a′:(s′,a′)∈D

Q̂t(s
′, a′)− Q̂∗(s, a)]

= (B̂Q̂t)(s, a)− Q̂∗(s, a)

= (B̂Q̂t)(s, a)− (B̂Q̂∗)(s, a)

(20)

Thus,

∥E[Ft(s, a)|Ft]∥∞ = ∥(B̂Q̂t)− (B̂Q̂∗)∥∞
≤ γ∥Q̂t − Q̂∗∥∞
= γ∥∆t∥∞,

(21)

with γ < 1.

For the third assumption of Theorem A.2, we obtain

V ar[Ft(s)|Ft] = E[Ft(s)− E[Ft(s)|Ft]|Ft]
2

= E[Ft(s)− ((B̂Q̂t)(s, a)− (B̂Q̂∗)(s, a))]2

= E[r + γ max
a′:(s′,a′)∈D

Q̂t(s
′, a′)− Q̂∗(s, a)− ((B̂Q̂t)(s, a)− (B̂Q̂∗)(s, a))]2

= E[r + γ max
a′:(s′,a′)∈D

Q̂t(s
′, a′)− (B̂Q̂t)(s, a)]

2

= V ar[r + γ max
a′:(s′,a′)∈D

Q̂t(s
′, a′)|Ft]

(22)

To align with the RHS in the third assumption of Theorem A.2, we add and subtract a
γmaxa′:(s′,a′)∈D Q̂∗(s′, a′) term:

V ar[r + γ max
a′:(s′,a′)∈D

Q̂∗(s′, a′) + γ max
a′:(s′,a′)∈D

Q̂t(s
′, a′)− γ max

a′:(s′,a′)∈D
Q̂∗(s′, a′)|Ft] (23)

Given that r is bounded, it follows that r + γmaxa′:(s′,a′)∈D Q̂∗(s′, a′) is also bounded. Moreover,
the second part maxa′:(s′,a′)∈D Q̂t(s

′, a′) −maxa′:(s′,a′)∈D Q̂∗(s′, a′) can be bounded by ∥∆t∥∞
with some constant. Hence, we obtain

V ar[Ft(s)|Ft] ≤ C(1 + ∥∆t∥2∞), (24)
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for some constant C > 0 under the supremum norm. Therefore, by Theorem A.2, ∆t converges to
zero with probability 1, implying that Q̂t converges to Q̂∗ with probability 1.

Finally, when we derive the greedy policy from Q̂∗ by selecting the action with the highest value
at each state π̂∗ = argmaxa Q̂

∗(s, a), π̂∗ is optimal for the empirical MDP M̂. If the optimal
trajectory forM is included in M̂, then this trajectory is optimal for M̂, i.e. π̂∗ will select actions
following that trajectory. Therefore, in this case, the greedy policy derived from Q̂∗ is also optimal
forM.

Proposition 3.4. AssumeM has deterministic transitions. If {Di} are datasets collected fromM
with D1 ⊂ D2 ⊂ · · · ⊂ Dn and corresponding empirical MDPs {M̂i}, then Q̂∗

1 ≤ Q̂∗
2 ≤ · · · ≤ Q̂∗

n.

Proof. Consider two datasets Di ⊂ Dj and their corresponding empirical MDPs M̂i,M̂j . Let B̂i
and B̂j be the corresponding empirical Bellman operators. We have:

(B̂iQ̂∗
i )(s, a) =

∑
s′∈S

P (s′|s, a)[r + γ max
a′:(s′,a′)∈Di

Q̂∗
i (s

′, a′)],

(B̂jQ̂∗
j )(s, a) =

∑
s′∈S

P (s′|s, a)[r + γ max
a′:(s′,a′)∈Dj

Q̂∗
j (s

′, a′)].
(25)

Where the transition probabilities P (s′|s, a) are the same for both B̂i and B̂j . Then, we can write:

Q̂∗
i (s, a)− Q̂∗

j (s, a) = B̂iQ̂∗
i (s, a)− B̂jQ̂∗

j (s, a)

=
∑
s′∈S

P (s′|s, a)[r + γ max
a′
i:(s

′,a′
i)∈Di

Q̂∗
i (s

′, a′i)]−
∑
s′∈S

P (s′|s, a)[r + γ max
a′
j :(s

′,a′
j)∈Dj

Q̂∗
j (s

′, a′j)]

=
∑
s′∈S

P (s′|s, a)γ[ max
a′
i:(s

′,a′
i)∈Di

Q̂∗
i (s

′, a′i)− max
a′
j :(s

′,a′
j)∈Dj

Q̂∗
j (s

′, a′j)]

≤
∑
s′∈S

P (s′|s, a)γ[ max
a′
i:(s

′,a′
i)∈Dj

Q̂∗
i (s

′, a′i)− max
a′
j :(s

′,a′
j)∈Dj

Q̂∗
j (s

′, a′j)]

≤
∑
s′∈S

P (s′|s, a)γ max
ã:(s′,ã)∈Dj

(Q̂∗
i (s

′, ã)− Q̂∗
j (s

′, ã))

≤ γ
∑
s′∈S

P (s′|s, a) max
(s̃,ã)∈Dj

(Q̂∗
i (s̃, ã)− Q̂∗

j (s̃, ã))

= γ max
(s̃,ã)∈Dj

(Q̂∗
i (s̃, ã)− Q̂∗

j (s̃, ã)) = γ max
(s,a)∈Dj

(Q̂∗
i (s, a)− Q̂∗

j (s, a)).

(26)

By repeatedly applying the inequality, we get

Q̂∗
i (s, a)− Q̂∗

j (s, a) ≤ γ max
(s,a)∈Dj

(Q̂∗
i (s, a)− Q̂∗

j (s, a))

≤ γ max
(s,a)∈Dj

(γ max
(s,a)∈Dj

(Q̂∗
i (s, a)− Q̂∗

j (s, a))) = γ2 max
(s,a)∈Dj

(Q̂∗
i (s, a)− Q̂∗

j (s, a))

≤ · · ·
≤ γn max

(s,a)∈Dj

(Q̂∗
i (s, a)− Q̂∗

j (s, a)).

(27)

Taking the limit on both sides and considering that 0 < γ < 1, we obtain Q̂∗
i (s, a)− Q̂∗

j (s, a) ≤ 0,
i.e., Q̂∗

i (s, a) ≤ Q̂∗
j (s, a).

Then for D1 ⊂ D2 ⊂ · · · ⊂ Dn and their corresponding empirical MDPs {M̂i}, we have Q̂∗
1 ≤

Q̂∗
2 ≤ · · · ≤ Q̂∗

n.
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B Experimental Details

B.1 Cliffwalk

Environment Details. Cliffwalk is a simple navigation task introduced by [26] and is depicted
in Fig. 8. The agent’s objective is to navigate from the bottom-left state to the goal state (G) located
at the bottom right. The environment consists of 48 states, represented as two-dimensional coordinate
axes x and y. In our experiments, we present it as a 4 × 12 × 3 binary array. The dimensions 4 x 12
correspond to the grid’s shape, while the 3 denotes three channels representing specific game objects.
The first channel shows the goal’s position, the second channel shows the cliff’s position, the last
channel shows the agent’s position. The action space comprises 4 directions: left, right, up, and down.
The reward system is as follows: reaching the goal yields +1, falling into the cliff results in -1, and all
other actions result in 0. We set the discount factor to 0.99 and the maximum episode steps to 100, as
per [49].

Figure 8: Illustration of the CliffWalk environment. Each grid represents a state, and the arrow
indicates the optimal path from the start state (S) to the goal state (G).

The advantage of using a simple example like this is that we can pre-compute the optimal value and
policy for a better understanding. Fig. 9 displays the optimal value for each state-action pair. Each
grid contains four numbers in different directions, corresponding to the action values for the four
actions: left, right, up, and down. The values, rounded to three decimal places, are highlighted in
orange if they are optimal.
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Figure 9: The optimal action value for each state-action pair. Each grid represents a state, with
numbers in each direction indicating the action value for that state. The values in orange show the
optimal actions.

Implementation Details. We train two DRL agents based on the Bellman update in Eq. (1) and
the in-sample Bellman update in Eq. (2). We use a convolutional neural network that consists of
a convolutional layer, followed by a fully connected layer. The convolutional layer has 16 3 × 3
convolutions with stride 1, the fully connected layer has 128 units. The optimizer for the network
is Adam [65] with a learning rate of 1e-4. We fill the replay memory with different transitions to
simulate various scenarios. Detailed results are given in Appendix C.1.
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(a) Asterix (b) Breakout (c) Freeway (d) Seaquest (e) SpaceInvaders

Figure 10: Visualization of Atari environments.

B.2 Arcade Learning Environment

Environment Details. The Arcade Learning Environment (ALE) [24] is a platform for evaluating
the development of general, domain-independent AI technology. It provides an interface to a large
number of Atari 2600 game environments with image input and discrete action space and with a
variety of diverse mechanics. We show the visualization of some games in Fig. 10. Please refer to
[24, 66] for more details.

Implementation Details. We use the same network for each algorithm as in the original paper.
We search the learning rates for baselines among {1e-3,3e-4,1e-4} and report the best performance.
For our method, we fix the learning rate to 1e-4 and search our regularization parameters α ∈
{0.05,0.1,0.5}. We run each experiment with 5 different random seeds. Each run consists of 10
million steps of interaction on Atari games and 2 million steps of interaction on MuJoCo tasks.
The performance is evaluated by running 30 episodes after every 100k environmental steps. We
proportionally reduce other parameters based on the interaction steps. The ϵ-greedy exploration is
linearly decayed from 1 to 0.01 in 1 million steps. The target network is updated every 1000 steps.
The replay memory size is set as 100,000. The minibatch size is 32. The replay ratio is 0.25 [67],
that is the Q function is updated once per four environmental steps. The optimizer for the network is
Adam. The discount factor is 0.99. Table 1 shows the details of hyper-parameters that used for all
methods.

Table 1: Hyper-parameters of DQN on Atari environments.

Hyperparameter Value Hyperparameter Value

Batch size 32 Optimizer Adam
Replay memory size 100,000 Initial exploration 1

Target network update frequency 1,000 Final exploration 0.01
Replay ratio 0.25 Exploration decay steps 1M

Discount factor 0.99 Total steps in environment 10M

B.3 MuJoCo

(a) Ant (b) HalfCheetah (c) Hopper (d) Swimmer (e) Walker2D

Figure 11: Visualization of MuJoCo environments.
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Environment Details. MuJoCo [25] stands for Multi-Joint dynamics with Contact. It is a general
purpose physics engine that aims to facilitate research and development in robotics. There are eleven
MuJoCo environments in total, and we choose eight of them in our experiments: Ant, HalfCheetah,
Hopper, Humanoid, InvertedDoublePendulum, Reacher, Swimmer and Walker2d. All of these
environments are stochastic in terms of their initial state, with a Gaussian noise added to a fixed
initial state in order to add stochasticity. The state spaces for MuJoCo environments in Gymnasium
[35] consist of two parts that are flattened and concatenated together: a position of a body part or
joint and its corresponding velocity. Often, some of the first positional elements are omitted from the
state space since the reward is calculated based on their values, leaving it up to the algorithm to infer
those hidden values indirectly. The action space is a vector that bounded within -1 and 1 for each
dimension. Reward functions vary for each tasks. Please refer to [25, 35] for more details.

Implementation Details. For continuous control tasks, we compare our method with SAC [18, 39],
TD3 [17], TRPO [40] and PPO [41]. SAC and TD3 are actor-critic methods that learn a Q network
and a policy network. TRPO and PPO are policy-based methods that only learn a policy network. We
use the same network and parameters for each algorithm as in the original paper. Actor network has a
tanh function before the final output, to control the action range at each dimension within [-1,1]. Our
method is based on TD3, we maintain TD3’s parameters the same as original paper [17] and search
our particular parameter α ∈ {0.05,0.1,0.5}. Other common parameters are shown in Table 2. We
run each experiment with 5 different random seeds, and show the mean score and standard deviation
with solid line and shaded area. Each run consists of 2 million steps of interaction on MuJoCo tasks.
The performance is evaluated by running 10 episodes after every 10k environmental steps. The action
is the output of mean value estimate without randomness.

For these baseline algorithms such as SAC2, TD33 and XQL4, we use their official code. We also
refer some awesome public codebases such as RLzoo [68], Tianshou [69] and Dopamine [70]. We
run all experiments on a server with Intel CPUs (Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz) and
NVIDIA GPUs (NVIDIA A5000). Each Atari experiment takes about one day, and each MuJoCo
experiment takes about half a day.

Table 2: Hyper-parameters of TD3 on MuJoCo environments.

Hyperparameter Value Hyperparameter Value

Batch size 256 Target update rate (τ ) 0.005
Replay memory size 1000,000 Policy noise 0.2

Discount factor 0.99 Noise clip 0.5
Optimizer Adam Delayed policy update frequency 2

Learning rate 3 · 10−4 Total steps in environment 2M

C Additional Experimental Results

C.1 Toy Example on CliffWalk

We provide an in-depth discussion considering the replay memory containing different state-action
pairs. We examine four cases:

(1) The replay memory only contains a failed trajectory and misses most of state-action pairs.
(2) The replay memory contains a sub-optimal trajectory and misses many state-action pairs.
(3) The replay memory contains optimal transitions but misses some sub-optimal state-action

pairs.
(4) The replay memory contains optimal transitions and nearly all state-action pairs.

In each case, the replay memory is fixed. The first row in Fig. 12 shows the four cases. In this toy
example with finite state-action space, we can track which actions are taken and which are not at

2https://github.com/haarnoja/sac
3https://github.com/sfujim/TD3
4https://github.com/Div99/XQL
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a state. We sample batches of data and take the max over all actions to learn Q, and constrain the
actions in the replay memory to learn Q̂.

The second row plot the error curves between Q, Q̂ and Q∗, Q̂∗. ∆(Q1, Q2) denotes the average
absolute error on state-action pairs in the replay memory between Q1 and Q2:

∆(Q1, Q2) =
1

|D|
∑

(s,a)∈D

|Q1(s, a)−Q2(s, a)|. (28)

We run five random seeds, the solid line shows the mean value and the shaded area shows standard
error. It is clear to find that ∆(Q̂, Q̂∗) converges to 0, while Q neither converges to Q∗ nor Q̂∗. In
particular, when we have Q∗(s, a) = Q̂∗(s, a) ∀(s, a) ∈ D. Q̂ converges to the global optimal while
Q still failed due to missing transitions. This highlights that the Bellman update is heavily affected
by missing transitions, and the generalization of function approximation cannot correct it.

The last two rows present the final policies derived from Q and Q̂ after learning. Red arrows represent
actions that neither follow the optimal value Q∗ nor Q̂∗. The blue shading indicates the action values.
We can observe that with function approximation, the policy based on the Bellman update cannot
learn the (sub)optimal actions and overestimates action values. While the in-sample Bellman update
converges to Q̂∗ and learn the best possible polices. When there are no successful samples in the first
case, Q̂ still targets on current samples and converges to Q̂∗.
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Figure 12: In the CliffWalk scenario, the rewards are as follows: +1 for reaching the goal, -1 for
falling into the cliff, and 0 otherwise. The first row illustrates four cases with increasing transition
coverage in the replay memory. The second row shows the errors during the learning process. The
third and last rows present the final policies derived from Q and Q̂. Red arrows represent incorrect
actions that neither follow Q∗ nor Q̂∗. The blue shading indicates the action values.
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C.2 Overall Performance

We present the performance improvement curves for all environments when our method is applied
to DQN and TD3 in Figs. 13 and 14. The solid line represents the mean score, and the shaded area
indicates the standard deviation. Q̂ online is the IQL agent we run online that follows the learning
rule Eq. (2) to learn Q̂. DQN and TD3 are agents that adhere to the learning rule Eq. (1) to learn Q.
While Q̂ online aims to solve the empirical MDP, it lacks the exploration that expands the MDP. DQN
and TD3 have exploration mechanism such as ϵ-greedy and random noise, but they do not target the
empirical MDP. Our method learn both Q and Q̂, encompassing both steps of the Empirical MDP
Iteration: solving the empirical MDP and augmenting the empirical MDP. Our method demonstrates
significant improvement on all kinds of tasks compared with the methods that only learn Q or Q̂.
This suggests that the Empirical MDP Iteration is an effective enhancement for current DRL methods,
and both steps are crucial for performance.

Next, we present the learning curves in comparison with other baselines in Figs. 15 and 16. The
mean score and the standard error are represented by the solid line and shaded area, respectively. Our
method either outperforms or is equivalent to (within a 10% difference) the best baselines on most
tasks. Especially on MuJoCo tasks, our method outperforms other baselines by a large margin. These
results validate our intuition and demonstrate that Empirical MDP Iteration is a superior approach
than focusing on the original MDP from the beginning. It avoids bootstrapping error and thereby
enhances sample efficiency.
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Figure 13: The performance improvement on Atari environments.
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Figure 14: The performance improvement on MuJoCo tasks.

0.0 0.2 0.4 0.6 0.8 1.0
Env. Steps 1e7

1000

2000

3000

4000

5000

M
ea

n 
Sc

or
e

Alien

EMITIQL-DQN
C51
Rainbow
IQN
DQN

0.0 0.2 0.4 0.6 0.8 1.0
Env. Steps 1e7

0

2000

4000

6000

8000

M
ea

n 
Sc

or
e

Asterix

EMITIQL-DQN
C51
Rainbow
IQN
DQN

0.0 0.2 0.4 0.6 0.8 1.0
Env. Steps 1e7

400

600

800

1000

1200

1400

1600

M
ea

n 
Sc

or
e

Asteroids

EMITIQL-DQN
C51
Rainbow
IQN
DQN

0.0 0.2 0.4 0.6 0.8 1.0
Env. Steps 1e7

0.0

0.5

1.0

1.5

2.0

2.5

M
ea

n 
Sc

or
e

1e6 Atlantis

EMITIQL-DQN
C51
Rainbow
IQN
DQN

0.0 0.2 0.4 0.6 0.8 1.0
Env. Steps 1e7

5000

10000

15000

20000

25000

30000

35000

M
ea

n 
Sc

or
e

BattleZone

EMITIQL-DQN
C51
Rainbow
IQN
DQN

0.0 0.2 0.4 0.6 0.8 1.0
Env. Steps 1e7

0

100

200

300

400

M
ea

n 
Sc

or
e

Breakout

EMITIQL-DQN
C51
Rainbow
IQN
DQN

0.0 0.2 0.4 0.6 0.8 1.0
Env. Steps 1e7

20000

40000

60000

80000

100000

120000

140000

M
ea

n 
Sc

or
e

CrazyClimber

EMITIQL-DQN
C51
Rainbow
IQN
DQN

0.0 0.2 0.4 0.6 0.8 1.0
Env. Steps 1e7

0

500

1000

1500

2000

M
ea

n 
Sc

or
e

Enduro

EMITIQL-DQN
C51
Rainbow
IQN
DQN

0.0 0.2 0.4 0.6 0.8 1.0
Env. Steps 1e7

10

0

10

20

30

40

M
ea

n 
Sc

or
e

Freeway

EMITIQL-DQN
C51
Rainbow
IQN
DQN

0.0 0.2 0.4 0.6 0.8 1.0
Env. Steps 1e7

0

200

400

600

800

1000

1200

M
ea

n 
Sc

or
e

Gravitar

EMITIQL-DQN
C51
Rainbow
IQN
DQN

0.0 0.2 0.4 0.6 0.8 1.0
Env. Steps 1e7

0

5000

10000

15000

20000

25000

30000

35000

M
ea

n 
Sc

or
e

KungFuMaster

EMITIQL-DQN
C51
Rainbow
IQN
DQN

0.0 0.2 0.4 0.6 0.8 1.0
Env. Steps 1e7

1000

2000

3000

4000

5000

M
ea

n 
Sc

or
e

MsPacman

EMITIQL-DQN
C51
Rainbow
IQN
DQN

0.0 0.2 0.4 0.6 0.8 1.0
Env. Steps 1e7

20

10

0

10

20

M
ea

n 
Sc

or
e

Pong

EMITIQL-DQN
C51
Rainbow
IQN
DQN

0.0 0.2 0.4 0.6 0.8 1.0
Env. Steps 1e7

0

2500

5000

7500

10000

12500

15000

17500

M
ea

n 
Sc

or
e

Qbert

EMITIQL-DQN
C51
Rainbow
IQN
DQN

0.0 0.2 0.4 0.6 0.8 1.0
Env. Steps 1e7

0

5000

10000

15000

20000

M
ea

n 
Sc

or
e

Seaquest

EMITIQL-DQN
C51
Rainbow
IQN
DQN

0.0 0.2 0.4 0.6 0.8 1.0
Env. Steps 1e7

0

1000

2000

3000

4000

M
ea

n 
Sc

or
e

SpaceInvaders

EMITIQL-DQN
C51
Rainbow
IQN
DQN

0.0 0.2 0.4 0.6 0.8 1.0
Env. Steps 1e7

0

10000

20000

30000

40000

50000

60000

M
ea

n 
Sc

or
e

StarGunner

EMITIQL-DQN
C51
Rainbow
IQN
DQN

0.0 0.2 0.4 0.6 0.8 1.0
Env. Steps 1e7

0

50

100

150

200

250

300

M
ea

n 
Sc

or
e

Tutankham

EMITIQL-DQN
C51
Rainbow
IQN
DQN

0.0 0.2 0.4 0.6 0.8 1.0
Env. Steps 1e7

0

500

1000

1500

M
ea

n 
Sc

or
e

Venture

EMITIQL-DQN
C51
Rainbow
IQN
DQN

0.0 0.2 0.4 0.6 0.8 1.0
Env. Steps 1e7

0

2500

5000

7500

10000

12500

15000

M
ea

n 
Sc

or
e

Zaxxon

EMITIQL-DQN
C51
Rainbow
IQN
DQN

Figure 15: Overall performance on Atari environments. The learning curves show mean scores across
5 seeds and shaded area shows standard deviation.
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Figure 16: Overall performance on MuJoCo environments. The learning curves show mean scores
across 5 seeds and shaded area shows standard deviation.
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Figure 17: Performance on 20 Atari games and 8 MuJoCo tasks, with each method’s score normalized between
0 and 1. EMIT outperforms or matches (within a 10% margin) the best baseline results in 19 of the 28 tasks.

C.3 Analysis of Estimation Error

To determine whether the estimation or bootstrapping error is a ubiquitous issue on more complex
environment, we run DQN and TD3 on Atari environments and MuJoCo tasks. These are based on
the Bellman update in Eq. (1), and we denote the policy as π. We concurrently learn another IQL
agent based on the in-sample Bellman update in Eq. (2), denoting the policy as π̂. The policy π
interacts with the environment and collect data into a replay memory, from which both π and π̂ learn.
As a result, both policies are learned with the identical dataset.

Figs. 18 and 19 shows the evaluation performance of π and π̂. We find that π̂ performs similarly or
even better than π on most of the tasks. These results may seem counterintuitive, as active learning is
commonly considered superior to passive learning [43]. This indicates that the in-sample Bellman
update can learn a good policy from given data without active interaction with environments. On the
contrary, the active policy π does not fully utilize collected data and cannot find the best possible
policy due to bootstrapping error. This highlights that bootstrapping from out-of-sample actions
impedes sample-efficient learning and there should be room to improve it.

Next, we demonstrate that regularizing Q with Q̂ significantly reduces the estimation error in
Q. Estimation bias has long been a problem in value-based methods due to the combination of
deep neural networks with the maximization operator in the Bellman optimality equation [20, 21].
Our method effectively eliminates overestimation or underestimation, achieving nearly accurate
estimation throughout the learning process. This implies that there is almost no bootstrapping
error, whether induced by the maximization operator or erroneous target estimation. At each
evaluation, we obtain the true discounted Monte Carlo return QTrue by running the current policy
for 30 episodes and computing the actual discounted cumulative rewards at each state-action pair:
QTrue(st, at) =

∑T
t=t γ

trt. We then compute the averaged estimation difference between the learned
Q and ground truth QTrue, Vdiff(Q,QTrue) =

1
|(s,a)|

∑
(s,a)∈T (Q(s, a)−QTrue(s, a)), where T is the

set of evaluation trajectories, |T | denotes the total number of state-action pairs in T . We compute
Vdiff for our method and compare it with DQN and TD3.

Figs. 20 and 21 show that our method reduces the estimation error for most environments and keeps
the difference near zero, indicating that the estimation is quite close to the true value and there is no
serious overestimation or underestimation.
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Figure 18: We run a DQN agent to interact with the environment, and concurrently learn action value
networks Q (DQN) and Q̂ (IQL) with the same data. The curves show the performance of argmax
policies of Q (π) and Q̂ (π̂).
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Figure 19: We run a TD3 agent to interact with the environment, and concurrently learn an IQL agent
with the same data. The curves show the performance of TD3 (π) and IQL (π̂).
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Figure 20: Estimation error on Atari environments. We compute the average difference between the
estimated Q value and the ground truth value during learning.
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Figure 21: Estimation error on Mujoco environments. We compute the average difference between
the estimated Q value and the ground truth value during learning.
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C.4 Analysis of Policy Churn

Policy churn refers to the rapid change of the greedy policy in value-based reinforcement learning
[34]. This phenomenon is primarily caused by deep learning with high-variance updates. Most of
this policy change could be unnecessary, especially when learning converges. The per-state policy
change between policies π and π′ is defined as:

W (π, π′|s) := 1

2

∑
a

|π(a|s)− π′(a|s)|, (29)

where 0 ≤W (π, π′|s) ≤ 1. When π and π′ are greedy policies derived from action-value functions,
W (π, π′|s) = 1 if π and π′ choose different actions, otherwise W (π, π′|s) = 0. Thus it is simply a
count of different actions after one step update. In agents that use a target network which is an older
copy of the online network, it is easy to measure W (π, π′|s) by comparing their argmax actions at
the points in training where the target network lags behind by just one update.

When the target network lags behind by one update during the learning, for example at time
step t, we sample a batch of data D and compute the average policy change W t(πt−1, πt) =
1

|D|
∑

s∈D W (πt−1, πt|s), where |D| is the size of the batch data. Then we compute the average

policy change over the whole learning process as W̃ = 1
|T |

∑
t∈T W t, where T is the set of time

steps that the target network lags behind by one update during the learning.

Fig. 22 shows the policy change on Atari environments. We can conclude that our method reduces
policy churn compared to DQN. Policy churn is not entirely undesirable as it can also be a potentially
beneficial form of implicit exploration. However, the frequency of change that benefits learning is
still unclear and deserves further study.
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Figure 22: Policy churn curves on Atari environments. We compute the average policy change at
each time step when the target network lags behind by one update.
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C.5 Ablation Study

Our method comprises two parts, the regularization term determined by parameter α, and the
exploration term designed based on δ(s, a). Figs. 23 and 24 illustrate the role of each part of our
method. w/o reg term denotes that we set α = 0. w/o explore term means we do not use our
exploration mechanism. w/o both refers to the backbone methods without our two improvements.
full method employs both improvements. We observe that both parts enhance the learning. The
performance decreases more without regularization, indicating that following the empirical MDP
iteration, the current exploration mechanisms such as ϵ-greedy and random noise can make notable
improvements. Adding an advanced exploration mechanism can further enhance the performance.
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Figure 23: Ablations on Atari environments. Both the regularization and the exploration mechanism
benefit the learning.
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Figure 24: Ablations on MuJoCo environments. Both the regularization and the exploration mecha-
nism benefit the learning.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction accurately reflect the paper’s contributions to the
field of online reinforcement learning.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the computational efficiency of the proposed method, the assump-
tions made in the theoretical results, and the applicable scope of the method.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: We provide all the assumptions and proofs in the appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide all the details needed to reproduce the main experimental results in
the appendix, such as the hyperparameters, the training details, and the evaluation metrics.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We specify the parameters for baselines and our method, and the training
details in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report the standard deviation in the figures.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide the details in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have reviewed the NeurIPS Code of Ethics and believe that our research
conforms to it.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite the original papers and provide the link to the code in the main text
and the appendix.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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