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Abstract

While tokenized graph Transformers have demonstrated strong performance in node
classification tasks, their reliance on a limited subset of nodes with high similarity
scores for constructing token sequences overlooks valuable information from
other nodes, hindering their ability to fully harness graph information for learning
optimal node representations. To address this limitation, we propose a novel graph
Transformer called GCFormer. Unlike previous approaches, GCFormer develops
a hybrid token generator to create two types of token sequences, positive and
negative, to capture diverse graph information. And a tailored Transformer-based
backbone is adopted to learn meaningful node representations from these generated
token sequences. Additionally, GCFormer introduces contrastive learning to extract
valuable information from both positive and negative token sequences, enhancing
the quality of learned node representations. Extensive experimental results across
various datasets, including homophily and heterophily graphs, demonstrate the
superiority of GCFormer in node classification, when compared to representative
graph neural networks (GNNs) and graph Transformers.

1 Introduction

Node classification, a crucial machine learning task in graph data mining, has garnered significant
attention recently due to its wide applicability in diverse areas such as social network analysis [24, 35].
Among numerous techniques developed for this task, graph neural networks (GNNs) stand out as the
leading architecture due to their exceptional ability to model graph structural data.

Built on the message-passing mechanism [14], GNNs [19, 8, 9, 33, 34] efficiently integrate node
and graph topology features to learn informative node representations, effectively preserving both
attribute and structural information. However, as research on GNNs progresses, inherent limitations
of the message-passing framework, such as over-smoothing [5] and over-squashing [1], have emerged.
These limitations hinder GNNs’ ability to capture long-range dependencies in graphs, ultimately
constraining their potential for node classification.

Recently, the emerging graph Transformer has attracted great attention in the field of graph represen-
tation learning. The crux of this approach is to leverage the Transformer architecture to learn node
representations from the input graph. Benefiting from the self-attention mechanism in Transformer,
graph Transformers [45, 17, 6, 7, 50] can effectively capture the long-range dependencies in graphs.
Serving as a new deep learning-based technique for graphs, graph Transformers have showcased
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Figure 1: A toy example to illustrate the difference of the token generator between the token generator
in our method and that used in the previous node tokenized graph Transformers. Previous methods
only sample nodes with high similarity to construct token sequences. In contrast, our method
introduces both positive and negative token sampling to preserve information carried by diverse nodes
in the graph.

remarkable performance in the node classification task. In this study, We roughly divide the existing
graph Transformers designed for node classification into two categories according to the model
architecture: GNN-based graph Transformers and tokenized graph Transformers.

GNN-based graph Transformers [30, 42, 41, 23, 27] utilize a hybrid framework that merges Trans-
former layers with GNN-style modules to learn node representations. However, this approach may
constrain the modeling capacity of the Transformer architecture due to the deeply coupled design of
the Transformer and GNN layers. A recent study [44] also theoretically proves that directly applying
Transformer to calculate the attention scores of all node pairs could cause the over-globalizing prob-
lem, which causes the model to overly rely on global information, negatively affecting the model’s
performance.

In contrast, tokenized graph Transformers [52, 50, 7, 13] initially generate token sequences for each
node and only calculate attention scores between tokens within the token sequence, naturally avoiding
the over-globalizing issue. These token sequences are then processed by a Transformer-based
backbone to learn node representations. This mechanism allows the Transformer to flexibly extract
informative node representations based on the input token sequences, demonstrating impressive
performance in node classification. Note that, tokenized graph Transformers focus on building token
sequences for each target node as model inputs, which is different from TokenGT [18] that transforms
all elements in graphs as tokens.

Token generation is a crucial step in tokenized graph Transformers, where node [50] and neigh-
borhood [7] elements form the core of the token sequences. While neighborhood tokens primarily
preserve local topology features [13], node tokens can capture a broader range of graph information,
including long-range dependencies and intrinsic graph properties (e.g., homophily and heterophily).
These advantages allow graph Transformers built on node-oriented token sequences [52, 50, 13] to
learn more informative node representations, compared to those based on neighborhood-oriented
token sequences.

In this study, we observe that the techniques employed by existing tokenized graph Transformers
for generating node-orient token sequences could be summarized as a two-step method. First, they
estimate the node similarity matrix according to node information across various feature spaces, such
as topology features [52] and attribute features [50, 13]. They then sample a fixed number of nodes
with high similarity scores from the generated similarity matrix to construct the input token sequence
for a target node. As depicted in Figure 1, only a small subset of nodes is considered, while other
nodes are excluded during the training stage.

Compared to sampled nodes which capture the commonality with the target node, these abandoned
nodes preserve the disparity, which is also valuable for learning distinguishable node representations.
A previous study [3] has proved that leveraging the information from dissimilar nodes aids the
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learning of node representations. Nevertheless, existing tokenized graph Transformers can not
comprehensively utilize both similar and dissimilar nodes to learn the representation of the target
node, inevitably limiting the model performance for node classification. Hence, a natural question
arises: How should we design a new graph Transformer to comprehensively and effectively leverage
diverse nodes in graphs to learn distinguishable node representations?

To answer this question, we propose a new method called Graph Contrastive Transformer (GCFormer).
Unlike previous graph Transformers, GCFormer first introduces a novel token sequence generator
that produces both positive and negative token sequences for each node in different feature spaces. In
this way, various graph information carried by node tokens can be carefully preserved in different
types of token sequences. Then, GCFormer develops a new Transformer-based backbone tailored for
effectively learning node representations from the generated positive and negative token sequences.
Finally, GCFormer leverages the contrastive learning to comprehensively utilize the tokens in both
positive and negative sequences to further enhance the quality of learned node representations.

The main contributions of this paper are summarized as follows:

• We develop a new token sequence generator that can generate different types of token
sequences in terms of positive and negative node tokens for each target node to preserve
various graph information.

• We propose a new graph Transformer GCFormer that formulates a Transformer-based back-
bone and leverages the contrastive learning to comprehensively learn node representations
from positive and negative token sequences.

• We conduct extensive experiments on both homophily and heterophily graphs to validate the
effectiveness of the proposed method. Experimental results demonstrate the superiority of
GCFormer in node classification compared to representative GNNs and graph Transformers.

2 Related Work

In this section, we first introduce recent studies of graph Transformers for node classification. We
then briefly review studies about contrastive learning on graphs.

2.1 Graph Transformer

We categorize existing graph Transformers for node classification into GNN-based methods and
tokenized methods. The former [30, 41, 42, 23, 27] combines the Transformer layers with GNN-style
modules to learn node representations. GraphGPS [41], one of the representative approaches, incorpo-
rates various linear Transformers, such as Reformer [20] and BigBird [47], and GNN layers [19] into
a unified framework for graph representation learning. However, these approaches require performing
the attention calculation on all node pairs, which can lead to what is known as the over-globalizing
problem. A recent study [44] provides both empirical evidence and theoretical analysis to show that
calculating attention scores for all nodes can cause the model to overly rely on global information,
which can negatively affect the model’s performance in node classification tasks.

In contrast, tokenized methods purely depend on the Transformer architecture. The key idea is to gen-
erate token sequences for each node from the input graph, which are then fed to Transformer to learn
node representations. Node-based [52, 50, 13] and neighborhood-based [7, 11, 13] token generators
have been developed to generate various token sequences for nodes. Node-based token generators
first calculate the similarity of nodes according to node features such as attribute features [50], then
sample nodes with high similarity scores as tokens of the input sequence. While neighborhood-based
token generators [7] aggregate the features of multi-hop neighborhoods and further transform them
into tokens to construct the token sequence. Compared to neighborhood-based tokens, node-based
tokens can express more complex graph information, such as long-range dependencies, which are
more suitable for learning informative node representations.

Different from previous node token-based graph Transformers that only consider nodes with high
similarity, our proposed GCFormer generates both positive and negative token sequences from
all nodes in the graph. Various graph information carried by diverse nodes in two types of token
sequences enables GCFormer to learn more distinguishable node representations, leading to superior
performance.
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2.2 Contrastive Learning on Graphs

Graph contrastive learning (GCL) [36, 54, 46, 31, 49] aims to introduce the contrastive learning
mechanism into GNNs to learn informative representations of graphs. Most of GCL approaches share
a similar framework that first performs graph augmentation techniques to generate various features of
different graph views and then applies the contrastive loss on these generated views to learn graph
representations [31]. Recent studies [32, 53, 48, 51] attempt to introduce contrastive learning into
graph Transformers. However, these methods require the entire graph as the model input [51, 48] or
need to combine GNN-based modules with tailored graph augmentation strategies [32, 53], which
are hard to directly apply on tokenized graph Transformers in the node classification task.

Our proposed GCFormer develops a new token generator to generate both positive and negative token
sequences for each node without any data augmentations. With the dedicated Transformer-based
backbone, GCFormer can effectively leverage the contrastive learning to comprehensively learn
informative node representations from two types of token sequences.

3 Preliminaries

3.1 Node Classification

Consider an attributed graph G = (V,E), where V and E are the node and edge sets, respectively.
We have the corresponding adjacency matrix A ∈ Rn×n, where n is the number of nodes. For
arbitrary two nodes vi and vj , Aij = 1 only if eij ∈ E. The diagonal degree matrix D ∈ Rn×n is
represented as Dii =

∑n
j=1 Aij . The normalized version of the adjacency matrix with self-loops is

represented as Â = (D+ I)−1/2(A+ I)(D+ I)−1/2, where I denotes the identity matrix. Nodes in
G are associated with attribute feature vectors, assembled into an attribute feature matrix denoted as
Xa ∈ Rn×d where d is the dimension of the feature vector. The node label matrix Y ∈ Rn×c, where
c is the label count, consists of rows that are one-hot vectors encoding the label of each node. Each
row in Y is a one-hot vector representing the label information of the corresponding node. Given a
subset of nodes with known labels Vl, the objective of node classification is to infer the labels for the
remaining nodes in the set V − Vl.

3.2 Transformer

Transformer stands as a notable model in deep learning, built upon the Encoder-Decoder architecture.
This brief overview focuses on the Transformer layer, a pivotal component of the model. Each
Transformer layer is composed of two essential parts: Multi-Head Self-Attention (MSA) and Feed-
Forward Networks (FFN).

MSA harnesses multiple attention heads, employing the self-attention mechanism to refine the
representations of input entities. Given the input feature matrix H ∈ Rn×din, the calculation of the
i-th attention head is as follows:

headi(H) = Softmax(
QKT

√
dk

)V, (1)

where Q = HWQ, K = HWK and V = HWV. WQ ∈ Rdin×dk , WK ∈ Rdin×dk and
WV ∈ Rdin×dv are learnable parameter matrices. The output of MSA with m attention heads is
calculated as:

H′ = (head1||head2|| · · · ||headm)WO, (2)
where || denotes the vector concatenation operation and WO is the learnable matrix.

FFN, comprised of two linear layers enveloping a nonlinear activation function, is defined as:
H′ = Linear(σ(Linear(H))), (3)

where Linear(·) indicates a linear layer, and σ(·) symbolizes the nonlinear activation function.

4 Method

In this section, we detail our proposed GCFormer. First, we introduce the hybrid token generator,
which produces both positive and negative token sequences for each node. Then, we introduce the
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tailored Transformer-based backbone for extracting node representations from the generated token
sequences. Finally, we introduce how to integrate contrastive learning into GCFormer to enhanced
node representations.

4.1 Hybrid Token Generator

The proposed hybrid token generator contains two steps: similarity estimating and node sampling.
The critical operation of similarity estimating is to calculate the similarity score matrix S ∈ Rn×n of
all node pairs. Obviously, different node features lead to different score matrices, describing node
pairs’ relations in different feature spaces. To preserve the complex relations of nodes in the graph,
besides the attribute-aware feature matrix Xa, we construct the topology-aware feature matrix Xt:

Xt = ÂkXa, (4)

where k is the propagation step. Xt preserves the local topology feature within the k-hop neigh-
borhood for each node, which is the essential information to characterize the node property on the
graph [7, 16].

Then, we utilize the cosine similarity to calculate the similarity score Sa ∈ Rn×n and St ∈ Rn×n

based on the node feature matrices Xa and Xt, respectively. Given a node pair (vi, vj), the similarity
scores in the attribute feature space Sa

ij and topology feature space St
ij are calculated as follows:

Sa
ij =

Xa
i ·XaT

j

|Xa
i ||Xa

j |
, St

ij =
Xt

i ·XtT

j

|Xt
i||Xt

j |
. (5)

After estimating the similarity scores of all node pairs, GCFormer then conducts a two-stage sampling
process involving positive token sampling and negative node sampling to generate the token sequences.
Here, we introduce the sampling process based on the attribute similarity matrix Sa for a simplified
description. For a given target node vi, in the positive token sampling stage, we adopt the top-k
strategy to select nodes to construct the positive token sequence:

V a,p
i = {vj |vj ∈ Top(Sa

i )}, (6)

where Top(·) denotes the top-k sampling function and V a,p
i denotes the positive token sequence with

length pk. As for the negative token sampling stage, we have the set of rest nodes for vi after positive
token sampling V a,r

i = V − V a,p
i . In this paper, we regard all nodes in V a,r

i as the negative samples
since their similarity scores are below the threshold of top-k selection. Then, we apply the sampling
function to sample nodes from V a,r

i to construct the negative token sequence for vi:

V a,n
i = {vj |vj ∈ Sample(V a,r

i )}, (7)

where Sample(·) denotes an arbitrary sampling function. Here, we use uniform sampling for
computing efficiency. V a,n

i denotes the negative token sequence with length nk.

Following the same sampling process, we can obtain positive and negative token sequences V t,p
i

and V t,n
i based on the topology similarity matrix St. The constructed positive and negative token

sequences not only capture node relations in different feature spaces but also comprehensively extract
valuable information from all nodes on the graph.

4.2 Transformer-based Backbone

GCFormer formulates a Transformer-based backbone to effectively learn node representations from
positive and negative token sequences. For a node vi, we first combine itself with generated
positive and negative token sequences to construct the model input, Ha,io ∈ R(1+pk+nk)×d =
{Xi,Xp,Xn|vp ∈ V a,p

i , vn ∈ V a,n
i } and Ht,io ∈ R(1+pk+nk)×d = {Xt

i,X
t
p,X

t
n|vp ∈ V t,p

i , vn ∈
V t,n
i }. Note that we utilize the generated Xt to construct the model input of topology-aware token

sequences. In this way, the topology features can be carefully preserved in the model input Ht,io ,
exhibiting significant differences with previous methods [52, 50, 13] that utilize the attribute features
to construct topology-aware token sequences. Following previous studies [8, 7, 13], we leverage
projection layers to obtain the initial input:

Ha,i = Ha,ioWa, Ht,i = Ht,ioWt, (8)
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where Wa ∈ Rd×d0 and Wt ∈ Rd×d0 denote the parameter matrices of the projection layers.

Given the model input Ha,i of the node vi, GCFormer first separates the negative tokens from
Ha,i, resulting in two parts: Pa,i(0) ∈ R(1+pk)×d0 and Na,i(0) ∈ Rnk×d0 . Next, GCFormer adds a
virtual token with learnable features into Na,i(0) as the first token to facilitate extracting valuable
information from negative tokens. Then, GCFormer adopts standard Transformers layers to learn
node representations from Pa,i(0) and Na,i(0) :

Pa,i(l)
′

= MSA(Pa,i(l−1)

) +Pa,i(l−1)

, Pa,i(l) = FFN(Pa,i(l)
′

) +Pa,i(l)
′

, (9)

Na,i(l)
′

= MSA(Na,i(l−1)

) +Na,i(l−1)

, Na,i(l) = FFN(Na,i(l)
′

) +Na,i(l)
′

, (10)
where MSA(·) and FFN(·) denote the multi-head self-attention and feed-forward networks.

Through several Transformer layers, the corresponding Pa,i ∈ R(1+pk)×dout and Na,i ∈
R(1+nk)×dout contains information extracted from positive and negative token sequences, respec-
tively. To effectively fuse information from different types of token sequences, inspired by signed
attention mechanism in previous approaches [3, 10], we develop the following readout function:

Ha,i = Pa,i
0 −Na,i

0 , (11)

where Ha,i ∈ R1×dout denote the node representation of vi extracted from the attribute-aware token
sequence.

The rationale of Equation 11 is that the representations Pa,i
0 (the target node) and Na,i

0 (the virtual
node) contain the learned information from positive and negative token sequences, respectively. The
desired representation of vi should be far away from the representations of negative tokens in the
hidden feature space since there is a high probability that they belong to different labels. While the
signed aggregation operation can enforce Ha,i to be dissimilar with the representations of negative
tokens according to the previous study [3, 10].

We can also obtain the representation Ht,i ∈ R1×dout extracting from the topology-aware token
sequence Ht,io via the same operation. Considering the contributions of attribute information and
topology information vary on different graphs, we develop a weighted fusion strategy to obtain the
final representation Zi:

Zi = α ·Ha,i + (1− α) ·Ht,i, (12)
where α ∈ [0, 1] is a hyper-parameter to determine the contributions of attribute information and
topology information to the final representation.

4.3 Integrating Contrastive Learning

Though Equation 11 leverages information of negative tokens to learn node representation, it fails to
directly model relations between the target node and its negative tokens. To this end, we introduce
the contrastive learning loss [15] to fully utilize negative tokens for enhanced node representations.
For a node vi, the contrastive learning loss is calculated as follows:

Lcl(vi) = − log
exp(Pa,i

0 ·P̂a,iT/τ)∑nk

j=1 exp(P
a,i
0 ·Na,iT

j /τ)
− log

exp(Pt,i
0 ·P̂t,iT/τ)∑nk

j=1 exp(P
t,i
0 ·Nt,iT

j /τ)
, (13)

where P̂a,i = 1
pk

∑pk

j=1 P
a,i
j and P̂t,i = 1

pk

∑pk

j=1 P
t,i
j . τ is a temperature hyper-parameter. Equa-

tion 13 enforces the representation of the target node to be close to the central representation of all
positive tokens and away from all negative samples, which promotes learning distinguishable node
representations, beneficial for downstream classification tasks. We further adopt the Cross-entropy
loss for node classification:

Lce = −
∑
i∈Vl

YilnŶi, Ŷi = MLP(Zi), (14)

where MLP(·) denotes the Multilayer Perceptron-based classifier. Hence, the overall loss function of
GCFormer is as follows:

L = Lce + β · Lcl, (15)
where β is the coefficient for the contrastive learning term.
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Table 1: Comparison of all models in terms of mean accuracy ± stdev (%). The best results appear in
bold. The second results appear in underline.

Dataset Photo ACM Comuter Corafull BlogCatalog UAI2010 Flickr Romanempire
H(G) 0.83 0.82 0.78 0.57 0.40 0.36 0.24 0.05
APPNP 93.00±0.55 93.00±0.55 91.31±0.29 63.37±0.04 94.77±0.19 76.41±0.47 84.66±0.31 52.96±0.35

SGC 93.74±0.07 93.24±0.49 88.90±0.11 62.77±0.19 72.61±0.07 69.87±0.17 47.48±0.40 34.42±0.77

GPRGNN 94.57±0.44 93.42±0.20 90.15±0.34 69.08±0.11 94.36±0.29 76.94±0.64 85.91±0.51 67.06±0.27

FAGCN 94.06±0.03 93.37±0.24 83.17±1.81 56.61±2.94 79.92±4.39 72.17±1.57 82.03±0.40 48.21±3.15

ACM-GCN 94.56±0.21 93.04±1.28 85.19±2.26 65.11±1.98 94.53±0.53 76.87±1.42 83.85±0.73 63.35±1.80

SGFormer 92.93±0.12 93.79±0.34 81.86±3.82 64.62±1.20 94.33±0.19 57.98±3.95 61.05±0.68 41.31±0.51

ANS-GT 94.88±0.23 93.92±0.21 89.58±0.28 67.94±0.21 91.93±0.31 74.16±0.71 85.94±0.25 73.95±0.32

Specformer 95.22±0.13 93.63±1.94 85.47±1.44 69.18±0.24 94.21±0.23 73.06±0.77 86.55±0.40 63.69±0.61

VCR-Graphormer 95.13±0.24 93.24±0.31 90.14±0.43 68.96±0.28 93.92±0.37 75.78±0.69 86.23±0.74 74.76±0.83

GraphGPS 93.79±0.32 93.31±0.26 89.21±0.28 62.08±0.35 94.35±0.52 75.44±0.48 83.61±0.57 68.29±0.92

NAGphormer 95.47±0.29 93.32±0.30 90.79±0.45 69.34±0.52 94.42±0.63 76.36±1.12 86.85±0.85 74.94±0.52

GCFormer 95.65±0.41 94.32±0.47 92.09±0.21 69.53±0.35 96.03±0.44 77.57±0.86 87.90±0.45 75.38±0.68

5 Experiments

5.1 Experimental Setup

We briefly introduce the experimental setup including datasets, baselines and parameter settings.
Detailed information is provided in Appendix A due to the space limitation.

Datasets. We adopt eight widely used datasets, including four homophily and four heterophily graphs:
Photo [7], ACM [37], Computer [7], Corafull [4], BlogCatalog [28], UAI2010 [38], Flickr [28]
and Romanempire [29]. The edge homophily ratio [22] H(G) ∈ [0, 1] is adopted to evaluate the
graph’s homophily level. H(G) → 1 means strong homophily, while H(G) → 0 means strong
heterophily. Statistics of datasets are summarized in Appendix A. Following the settings of previous
studies [41, 42], we randomly choose 50% of each label as the training set, 25% as the validation set,
and the rest as the test set.

Baselines. We adopt eleven powerful approaches on node classification as baselines, including GNNs
and graph Transformers: APPNP [21], SGC [40], GPRGNN [12], FAGCN [3], ACM-GCN [26],
SGFormer [42], ANS-GT [50], Specformer [2], VCR-Graphormer [13], GraphGPS [30] 1 and
NAGphormer [7]. The first five are representative GNNs and others are recent graph Transformers.

Parameter settings. For baselines, referring to recommended settings in their official implemen-
tations, we perform hyper-parameter tuning for all models. For GCFormer, we try the dimen-
sion of hidden representations in {128, 256, 512}, number of layers in {1, 2, 3}, learning rate in
{0.01, 0.005, 0.001}, dropout rate in {0.1, 0.3, 0.5}. The training process is early stopped within 50
epochs and parameters are optimized using AdamW [25].

5.2 Performance Comparison

To evaluate the model performance in node classification, we run each model with different random
seeds on datasets and report the average value of accuracy and the corresponding standard deviation.

Table 1 reports the results. We can observe that GCFormer achieves the best performance on
all datasets, indicating the superiority of GCFormer on the node classification task. Specifically,
GCFormer beats recent tokenized graph Transformers on all datasets, especially ANS-GT which
is the representative method of node token sequence-based graph Transformers. This is because
that GCFormer generates both positive and negative token sequences for each node, which preserve
both commonality and disparity between node features. In addition, the tailored Transformer-based
backbone and contrastive learning enable GCFormer to comprehensively learn distinguishable node
representations from different types of token sequences, further enhancing the performance in the node
classification task. Moreover, we also find graph Transformer-based baselines achieve higher accuracy
values than GNN-based baselines on over half of datasets. This is because graph Transformers can

1Due to the various implementations of GraphGPS, here we only report the best combination. Detailed
results of all combinations can refer to Appendix C.
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Figure 2: Performance of GCFormer with different sampling sizes on all datasets.

effectively preserve various graph information, such as local topology features [7] and long-range
dependencies [50], revealing the potential of graph Transformers in graph mining tasks.

5.3 Parameter Sensitivity Analysis

The token sampling size and the aggregation weight α in Equation 12 are key parameters in GCFormer.
The former determines the model input and the latter controls the learning of final node representations
from different feature spaces. Here, we conduct experiments to analyze the influence of these
parameters on model performance.

Analysis of token sampling sizes. To analyze the influence of different sampling sizes on model
performance, we vary pk and nk in {2, 3, . . . , 10} where pk and nk are the lengths of positive token
sequences and negative token sequences. Figure 2 shows the changes in model performance across
all datasets. Generally speaking, a large sampling size of negative tokens can lead to competitive
model performance. For instance, nk over six can enable GCFormer to achieve high accuracy on
almost all datasets except ACM. This is because a large value of nk is more conducive to preserving
the disparity between target nodes and negative node tokens, leading to more distinguishable node
representations. This phenomenon also indicates that introducing negative tokens can effectively
enhance the performance of tokenized graph Transformers in node classification. In addition,
GCFormer is relatively sensitive to np. Half of the datasets, such as Photo and BlogCatalog, require a
small value of np to achieve competitive performance. While other datasets prefer large np. This
is because different graphs can exhibit diverse features, including node attribute features and graph
topology features, which affect the sampling of positive tokens. And a large np could introduce
irrelevant nodes into positive token sequences when the features of graphs are too complex to sample
relevant nodes, further hurting the performance of GCFormer.

Analysis of α. To explore the influence of α on model performance, we vary α in {0, 0.1, . . . , 1} and
observe the changes of model performance. α = 0 or α = 1 mean that we abandon the information
from attribute-aware token sequences or topology-aware token sequences when generating the final
node representations. Results across all datasets are shown in Figure 3. We can find that the optimal
α falls in (0, 1) for all datasets. This observation indicates that comprehensively considering the
features of attribute and topology information is essential to learn distinguishable node representations.
Another observation is that the model performances on graphs extracted from the same domain exhibit
similar changing trends. For instance, GCFormer achieves the best performance when α = 0.5 on
BlogCatalog and Flickr, which are extracted from the social platforms. This may be because graphs
extracted from the same domains exhibit similar graph topology features and node attribute features.
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Figure 3: Performance of GCFormer with different α on all datasets.
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Figure 4: Performances of GCFormer and its variants.

5.4 Ablation Study

Generating negative token sequences and integrating contrastive learning loss are two key designs of
GCFormer. To comprehensively validate the effectiveness of these designs, we propose four variants
of GCFormer termed GCFormer-N, GCFormer-C, GCFormer-NE and GCFormer-NN. GCFormer-N
removes the negative token sequences and the contrastive learning loss. GCFormer-C only removes
the contrastive learning loss. GCFormer-NE retains the use of Transformer layers for learning
negative token representations but only employs these representations in the contrastive learning
loss (ignoring them in Equation 11). GCFormer-NN, conversely, directly uses the representations of
negative tokens for contrastive learning without passing them through Transformer layers. We then
run four variants on all datasets and the results are shown in Figure 4. We can observe that GCFormer
beats four variants on all datasets, indicating the effectiveness of our key designs in enhancing the
model performance. In addition, we can also find that GCFormer-C beats GCFormer-N on over half
datasets. This phenomenon demonstrates that introducing negative token sequences can effectively
improve the model performance. Nevertheless, the performances of GCFormer-C behind GCFormer-
N on three citation networks. This situation reveals that different types of graphs can affect the gains
of introducing negative tokens. In addition, The results demonstrate that GCFormer-NE outperforms
GCFormer-NN on all datasets, indicating that leveraging the Transformer to learn representations of
negative tokens can effectively enhance the benefits of introducing contrastive learning. Furthermore,
GCFormer surpasses GCFormer-NE, suggesting that comprehensively utilizing the representations
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of negative tokens through the signed aggregation operation and contrastive learning can further
augment the model’s ability to learn more discriminative node representations.

6 Conclusion

In this paper, we propose GCFormer, a novel graph Transformer for node classification. GCFormer
establishes a new framework of tokenized graph Transformers to effectively learn node representations.
Specifically, GCFormer develops a new hybrid token generator that generates both positive and
negative token sequences. Compared to previous methods that only sample nodes with high similarity
as tokens, GCFormer considers diverse nodes with high and low similarity. This merit enables
GCFormer to preserve both commonality and disparity between node representations. By formulating
a Transformer-based backbone and integrating contrastive learning, GCFormer can comprehensively
learn distinguishable node representations from different types of token sequences. Extensive
experimental results on diverse graphs extracted from different domains showcase the superiority of
GCFormer in node classification compared to representative GNNs and graph Transformers.

The main limitation of GCFormer is the unified sampling strategy for different types of graphs.
Experimental results show that the performance of GCFormer is sensitive to the sampling size on
different graphs. The phenomenon implies that an adaptive sampling strategy is required to improve
the performance and stability of GCFormer on diverse graphs.
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A Detailed Experimental Settings

Here, we introduce the detailed information about experimental settings.

A.1 Datasets

In this paper, we adopt eight datasets from diverse domains, including homophily and heterophily
graphs. The statistics of datasets are summarized in Table 2.

• Citation networks. ACM, Corafull and UAI2010 are constructed from citation networks
where nodes represent research papers and edges represent the relations between papers
(e.g., having common authors or citation relation).

• Co-purchase networks. Photo and Computer are extracted from the Amazon purchase
network where nodes represent goods and edges represent that two goods appear in a same
shopping list.

• Social networks. BlogCatalog and Flickr are generated from social platforms BlogCatalog
and Flickr, respectively. Nodes represent users and edges represent social relationships
between users.

• Wikipedia. Romanempire is extracted from English Wikipedia where nodes represent
words in the text and edges represent that two words connected in the dependency tree of
the sentence.

ACM, UAI2010, BlogCatalog and Flickr can be downloaded from 1. Corafull, Photo and Computer
can be downloaded from 2. Romanempire can be downloaded from 3. In practice, we first apply
the principal components analysis (PCA) to reduce the raw features into 256-dimension vectors on
Corafull, BlogCatalog, UAI2010 and Flickr since the raw features of these datasets are too sparse
which waste computing resources.

Table 2: Statistics on datasets, ranked by the homophily level from high to low.

Dataset # nodes # edges # features # labels H ↓
Photo 7,650 238,163 745 8 0.83
ACM 3,025 1,3128 1,870 3 0.82
Computer 13,752 491,722 767 10 0.78
Corafull 19,793 126,842 8,710 70 0.57
BlogCatalog 5,196 171,743 8,189 6 0.40
UAI2010 3,067 28,311 4,973 19 0.36
Flickr 7,575 239,738 12,047 9 0.24
Romanempire 22,662 32,927 300 18 0.05

A.2 Parameter Configuration

Referring to the official implementations, we perform hyper-parameter tuning of baselines on each
dataset. We adopt the grid search strategy to determine the optimal parameters. Specifically, We
try learning rate in {0.001, 0.005, 0.01}, dropout in {0.3, 0.5, 0.7}, dimension of hidden represen-
tations in {128, 512}. For GCFormer, we try pk and nk in {3, 5, 7}, α in {0.1, . . . , 0.9}, β in
{0.05, 0.1, 0.5, 1}. We implement all codes based on Python 3.8, Pytorch 1.11, and CUDA 11.0. All
experiments are conducted on a Linux server with one Intel Xeon(R) Sliver 4210, 256G RAM and
one RTX TITAN.

1https://github.com/zhumeiqiBUPT/AM-GCN
2https://github.com/JHL-HUST/NAGphormer
3https: //github.com/yandex-research/heterophilous-graphs
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Table 3: Comparison of all models in terms of mean accuracy ± stdev (%).
Dataset Photo ACM Comuter Corafull BlogCatalog UAI2010 Flickr Romanempire
H(G) 0.83 0.82 0.78 0.57 0.40 0.36 0.24 0.05
ClusterSCL 93.98±0.43 93.27±0.29 88.74±0.64 62.32±0.29 84.62±0.1.24 74.37±0.58 83.84±0.42 67.37±0.81

CoCoS 93.73±0.12 93.24±0.66 89.66±0.48 64.25±0.38 87.56±0.26 75.89±0.33 83.43±0.59 66.28±0.47

NCLA 94.21±0.36 93.46±0.39 89.52±0.45 62.79±0.34 86.69±0.68 76.28±0.82 84.06±0.54 71.89±0.49

GCFormer 95.65±0.41 94.32±0.47 92.09±0.21 69.53±0.35 96.03±0.44 77.57±0.86 87.90±0.45 75.38±0.68

Table 4: Performance of different GraphGPS’s implementations."T" and "P" indicate the original
Transformer and Performer. "L", "R" and "D" indicate the Laplacian positional encoding, RWSE
structural encoding and degree-based encoding. "OOM" indicates the out-of-memory issue.

Dataset Photo ACM Comuter Corafull BlogCatalog UAI2010 Flickr Romanempire
H(G) 0.83 0.82 0.78 0.57 0.40 0.36 0.24 0.05
GCN+T+L 93.79 93.12 OOM OOM 84.62 74.37 83.84 OOM
GCN+T+R 93.81 93.26 OOM OOM 84.62 74.37 83.84 OOM
GCN+T+D 92.95 92.84 OOM OOM 84.62 74.37 83.84 OOM
GCN+P+L 93.74 93.23 89.21 61.27 94.21 75.44 83.54 68.29
GCN+P+R 93.62 93.31 89.18 62.08 94.35 75.14 82.72 67.52
GCN+P+D 92.38 92.43 88.06 59.86 92.75 70.16 80.88 64.56
GCFormer 95.65 94.32 92.09 69.53 96.03 77.57 87.90 75.38

B Performance Comparison with GSL-based Approaches

Here, we conduct additional experiments to validate the effectiveness of GCFormer on node classi-
fication, compared with representative graph contrastive learning-based methods. Specifically, we
select three approaches, CluterSCL [39], CoCoS [43] and NCLA [31] for performance comparison.
We adopt their official implementations and turn hyper-parameters accordingly on each dataset. The
results are shown in Table 3. We can observe that GCFormer outperforms representative GCL-based
approaches on all datasets, demonstrating its superiority in node classification.

C Detailed results of GraphGPS

Here, we provide the detailed results of different implementations of GraphGPS. We adopt this
resource code1 for experiments. The results are shown in Table 4. The results demonstrate that
GCFormer outperforms GraphGPS on all datasets, highlighting the effectiveness of GCFormer in
comparison to representative graph Transformers in the task of node classification.

1https://github.com/luis-mueller/probing-graph-transformers
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We have claimed that this paper focuses on developing a new graph Trans-
former for the node classification task in the abstract and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have discussed in the conclusion that the limitation of the proposed method
is the unified sampling strategy for diverse graphs, making the performance sensitive to the
sampling size of node tokens.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

16

85839https://doi.org/10.52202/079017-2725



Answer: [NA]

Justification: There are no theoretical results in this paper.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: In the experiment section and appendix, we have provided the detailed experi-
mental settings for results reproducing.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have provided open access to the datasets and detailed experimental settings
for reproducing results in the appendix. The code will be released after the paper has been
accepted.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have provided the detailed experimental settings in the experiment section
and appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Following previous studies, we use the average accuracy and standard deviation
to evaluate the model performance in the node classification task.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: In the appendix, we have provided detailed information on hardware and
software environments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our paper is conducted with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This paper focuses on foundational research of graph representation learning,
which does not involve societal impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We use the public datasets for experiments in this paper and have cited the
original paper that produced the dataset.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper focuses on graph representation learning, which does not involve
crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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