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Abstract

We introduce a multi-winner reconfiguration model to examine how to transition
between two subsets of alternatives (aka. committees) through a sequence of minor
yet impactful modifications, called reconfiguration path. We analyze this model
under four approval-based voting rules: Chamberlin-Courant (CC), Proportional
Approval Voting (PAV), Approval Voting (AV), and Satisfaction Approval Voting
(SAV). The problem exhibits computational intractability for CC and PAV, and
polynomial solvability for AV and SAV. We provide a detailed multivariate com-
plexity analysis for CC and PAV, demonstrating that although the problem remains
challenging in many scenarios, there are specific cases that allow for efficient
parameterized algorithms.

1 Introduction

In the rapidly evolving landscape of technology, policy, and market dynamics, we need to be able
to adapt and reconfigure existing solutions. This necessity spans various domains, such as disaster
management (Ito et al., 2011; Ju et al., 2017) – where one needs to switch, step by step, from an
existing power supply distribution to another one, while ensuring no blackouts occur in-between –
and game and puzzle-solving (Nishimura, 2018) – where one needs to transfer from one feasible state
to another via a sequence of feasible moves. The crucial idea is to employ a systematic approach
to transition from one solution to another with minimal disruption. Such a concept, known as
reconfiguration (Ito et al., 2011), is omnipresent in areas ranging from everyday life to complex
decision-making processes in computational social choice (COMSOC) such as switching catalogs in
streaming services (Prime-Video, 2024; Netflix, 2024) or product displays in department stores.

This paper delves into reconfiguration within COMSOC, using multi-winner elections as a primary
example to illustrate its importance and applicability. Our focus is on how to find such a recon-
figuration through incremental yet meaningful changes, adhering to a set criterion that quantifies
the “closeness” between successive solutions. In multi-winner elections, we are given a preference
profile consisting of a finite set of alternatives and a finite set of voters, each with preferences over
the alternatives. The objective is to select a committee (i.e., a subset of alternatives) of fixed size k,
representing voters’ preferences optimally. Briefly put, in multi-winner reconfiguration we need to
decide whether there exists a transformation between two size-k (not necessarily optimal) committees
via a sequence of intermediate size-k committees that are “almost” as good as the input committees
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and close to one another (see Section 2 for the formal definition). Multi-winner reconfiguration can
model many real-world applications:

– Streaming service providers, such as Prime Video and Netflix, change their catalog fre-
quently (Prime-Video, 2024; Netflix, 2024) to keep it engaging, while ensuring that popular
or critically acclaimed content remains available. Here, customer satisfaction hinges on a balanced
mix of fresh and familiar content. The multi-winner reconfiguration model can be used to optimize
this balance, ensuring the catalog evolves in a way that minimizes disruption to viewer experience.

– Likewise, for physical or online stores, product displays are crucial in attracting and retaining
customers. However, generally shelf or display space is limited. The challenge is to introduce new
products or promotions without overshadowing popular or staple items. The reconfiguration model
can guide the arrangement of products using fixed capacity in a way that maximizes visibility for
new items while ensuring customer satisfaction.

– An online gaming platform may need to shut down some old games to free up server space to
support new games. However, abruptly removing a lot of games could alienate players, and thus
the changes should be implemented incrementally in order to ensure player satisfaction throughout
the whole exchange process.

In each of the above scenarios, the goal revolves around transitioning from one committee (i.e., a
subset of products, movies, games, or routes) to another through minimal, incremental changes,
ensuring a balance between introducing new elements and maintaining overall user satisfaction. In
other words, we need to ensure that the consecutive committees in the transition are close to each
other, both in their content and optimality wrt. the initial committee.

Our contributions. We propose a model of multi-winner reconfiguration and study its computational
complexity. We focus on four multi-winner voting rules for approval preferences: Chamberlin-
Courant (CC), Proportional Approval Voting (PAV), Approval Voting (AV), and Satisfaction Approval
Voting (SAV). We find that while for the first two rules determining whether a reconfiguration path
exists is PSPACE-complete, for the latter two a reconfiguration path always exists. We further
investigate the parameterized complexity for CC and PAV by looking at several canonical parameters:
the number m of alternatives, the number n of voters, the committee size k, the maximum number b
of approved alternatives per voter, and the length ℓ of a shortest reconfiguration path (if it exists).
The parameters n, m and k are natural input parameters that are already studied in the original
multi-winner determination problem. The parameter b can be considered as a structural and distance
to tractability parameter: For b = 1, all studied voting rules are equivalent to AV, so by Theorem 1,
the reconfiguration problem can be solved in polynomial time. Thus, it is natural to ask whether the
problem is polynomial-time solvable for each constant b. Finally, by our reduction, the PSPACE-
hardness arises because a shortest reconfiguration path could be of unbounded length. Note that for
bounded length ℓ the problem is in NP, see Proposition 2. In real-world applications, one may need to
reconfigure committees timely, so it is natural to assume that ℓ is small. We summarize our findings
as follows (also see Table 1); For a brief definition of the relevant parameterized complexity classes
see Section 2:

(i) The problem is fixed-parameter tractable (FPT) wrt. m. Under CC it is also FPT wrt. n.
(ii) While the problem is in XP wrt. n (resp. k). it remains NP-hard even for constant value b+ ℓ.

The XP result for k is essentially tight since it remains W[2]-hard under CC (resp. W[1]-hard
under PAV).

(iii) Combining n with any other single parameter always yields an FPT algorithm.

Due to space constraints, proofs of the results and additional materials marked with (⋆) are deferred
to the appendix.

Related Work. Reconfiguration of puzzles and games has been of interest to mathematicians
already since the 19th century (Johnson and Story, 1879). Since the early 2000s, reconfiguration
has attracted increasing attention in the fields of computational geometry (Connelly et al., 2003;
Aichholzer et al., 2015; Alamdari et al., 2017), graph theory (Ito et al., 2011; Bonsma, 2013),
constraint satisfaction (Gopalan et al., 2006), and quantum complexity theory (Gharibian and Sikora,
2018). For graph problems, there are in general three types of reconfigurations between feasible
solutions: token addition and removal (TAR; in each step one can either remove or add a vertex),
token jumping (TJ; in each step one can replace a vertex with another vertex), and token sliding (TS;
in each step one can replace a vertex with another adjacent vertex). Our multi-winner reconfiguration
problem generalizes the TJ model in the sense that we allow replacement of more than one alternative
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Table 1: (Parameterized) complexity results obtained in our paper. We omit the results for AV and SAV
as reconfiguration under both rules is polynomial-time solvable (see Theorem 1). Both PSPACE-hardness
and W[1]-hardness hold even if each voter approves of at most two alternatives, i.e., b = 2. Except for the
NP-hardness for constant b+ ℓ, all hardness results hold even if (δc, δs) = (1, 0).

Parameter CC PAV
In general PSPACE-c [T2] PSPACE-c [T2]
m FPT [P3] FPT [P3]
n FPT [T4] ?, XP –,[P4]
k W[2]-h, XP [T5], [P3] W[1]-h, XP [T2], [P3]
b+ ℓ NP-h [P2] NP-h [P2]
k+ ℓ W[2]-h, XP [T5], [P3] W[1]-h, XP [T2], [P3]
b+ k+ ℓ W[1]-h [T2] W[1]-h [T2]
n+ b FPT [T4] FPT [P5]
n+ k FPT [T4] FPT [P4]
n+ ℓ FPT [T4] FPT [T3]

in each step. For a general introduction to reconfiguration and how it differs from various similar
problems such as local search (Ahuja et al., 2002), reoptimization (Schieber et al., 2018), and
incremental problems (Bredereck et al., 2020a), we refer to the surveys by van den Heuvel (2013)
and Nishimura (2018). Ito et al. (2014), Mouawad et al.. (2016), and Bodlaender et al. (2021)
studied the parameterized complexity of various reconfiguration problems such as independent set
and dominating set reconfiguration. They considered the length of the path as well as a bound
on the size of the solutions as parameters. Notably, Bodlaender et al. claimed that dominating set
reconfiguration via TJ is W[2]-hard wrt. the solution size and the reconfiguration path by wrongly
referring to the TAR model. This is in general not correct as the two models are not equivalent. We
correct this by providing a direct parameterized reduction from the dominating set problem (see
Proposition 6).

Reconfiguration in computational social choice as a topic has recently gained traction, with Igarashi
et al. (2024) introducing the concept of reconfiguration to fair division. Ito et al. (2022) introduced a
similar framework to reconfiguration to fair matchings.

Multi-winner elections are a topic of great interest in computational decision theory. For a general
introduction to multi-winner elections, see for example the work of Faliszewski et al. (2017). For
further methods and topics on multi-winner elections with approval preferences we refer to a recent
book by Lackner and Skowron (2023). In this work, we will only consider approval preferences.

Reconfiguration is related to the model of “one problem, successive solutions” by Boehmer and
Niedermeier (2021) where the goal is to select a sequence of desirable solutions. Bredereck et
al. (2020c) introduced and studied this model for multi-winner election where each alternative in
the committee must remain in office a consecutive amount of times. Our reconfiguration problem is
different from theirs in two ways: First, we aim at a sequence of committees starting from an initial
committee and ending at a target committee such that the intermediate committees are “close” to
each other. Second, we do not require that an alternative appears for a limited number of times.

2 Preliminaries

Given a non-negative integer t ∈ N, let [t] denote the set {1, . . . , t}. Given two subsets X and Y , we
use X∆Y to denote the symmetric difference between X and Y , i.e., X∆Y = (X \ Y ) ∪ (Y \X).

Parameterized Complexity. Let Π denote a decision problem and k a parameter. We say that Π is
fixed-parameter tractable (FPT) wrt. k if there exists an algorithm that decides every instance I of Π
in f(k) · |I|O(1) time (we say the algorithm runs in FPT time), where f is a computable function that
solely depends on k. We say that Π is in XP wrt. k if there exists an algorithm that decides every
instance I of Π in |I|f(k) time, where f is a computable function that solely depends on k. In the
same way NP-hard problems are unlikely to be in P, problems which are W[1]- or W[2]-hard wrt. k
are unlikely to be FPT wrt. k. Similarly to showing NP-hardness, we show W[1]- and W[2]-hardness
through FPT time reductions, where the new parameter must be a function of the original one.
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As examples, INDEPENDENT SET wrt. solution size and DOMINATING SET wrt. solution size are
W[1]-hard and W[2]-hard, respectively. For more details we refer to Cygan et al. (2015).

Approval profiles and types. An approval preference profile (profile for short) is a triple P =
(C, V,R), where C denotes a set of m alternatives, V a set of n voters with V = {v1, . . . , vn}, and R
a collection R = (A1, . . . ,An) of non-empty subsets of C such that Ai consists of all alternatives
that voter vi approves of, i ∈ [n]. Unless stated otherwise, we use P to denote a profile of the
form (C, V,R). We say that two alternatives a and b are of the same type if they are approved by the
same voters. We call any subset of alternatives a committee.

Score-based multi-winner voting rules. A score-based (multi-winner) voting rule λ (voting
rule for short) takes as input a profile P and a number k, and assigns to each size-k commit-
tee W a score SCλ(P,W ). The committees with maximum score are winning committees. The
score SCλ(P,W ) measures the satisfaction of the voters towards committee W . Note that we will
omit the profile P and the subscript λ if it is clear from the context. We say that a voting rule is
neutral if the outcome does not depend on the names of the alternatives. This implies that if two
alternatives are of the same type, then replacing one alternative with the other does not change the
outcome. We consider four score-based voting rules, all of which are neutral:

The Chamberlin-Courant (CC) rule selects a size-k committee that maximizes the number of voters
who approve of at least one alternative in the committee. Formally, W is winning under CC if it
maximizes SCCC(W ) = |{vi ∈ V : Ai ∩W ̸= ∅}|.
The Proportional Approval Voting (PAV) rule uses h(x) =

∑x
j=1

1
j to denote the partial sum of

the first x elements of the harmonic sequence. A size-k committee W is winning under PAV if it
maximizes SCPAV(W ) =

∑
vi∈V h(|Ai ∩W |).

The Approval Voting (AV) (resp. Satisfaction Approval Voting (SAV)) rule selects a size-k com-
mittee that maximizes the sum of approving voters (resp. the weighted sum of approving voters).
Formally, the score of an alternative a is defined as SCAV(a) = |{vi ∈ V | a ∈ Ai}| (resp.
SCSAV(a) =

∑
vi∈V s.t. a∈Ai

1
|Ai| ). Committee W is winning under AV (resp. SAV) if it maximizes

SCAV(W ) =
∑

a∈W SCAV(a) (resp. SCSAV(W ) =
∑

a∈W SCSAV(a)).

Reconfiguration of committees. Let P be a profile and λ a voting rule. Given a number d, we
say that two committees W and W ′ are d-adjacent if |W \W ′| ≤ d and |W ′ \W | ≤ d. For two
numbers δc ≥ 1 and δs ≥ 0, we call a sequence of committees W0, . . . ,Wt a (δc, δs)-reconfiguration
path (reconfiguration path for short) for (P, λ) if for all i ∈ [t] the following holds:

(C1) |Wi−1| = |Wi|;
(C2) Wi−1 and Wi are δc-adjacent;
(C3) The score difference of W0 and Wi is bounded by δs, i.e., SCλ(W0)− SCλ(Wi) ≤ δs.
Remark 1. Note that the reconfiguration path requires closeness (C2–C3) between committees of
the same size (C1). This is essential, as closeness captures the incremental yet necessary changes
necessary in various applications, like evolving content in streaming services or adjusting product
line-ups in retail stores, while fixing the committee size (C1) mirrors practical limitations like pre-set
numbers of movie slots in streaming catalogs or specific shelf capacities in retail stores.

By convention, the length of a reconfiguration path is defined as the number of committees on the
path minus one.
Example 1. Let C = [4] and V = {v1, v2, v3, v4} with approval preferences A1 = {1, 2},A2 =
{2, 3},A3 = {3, 4} and A4 = {1, 4}. Let k = 2. Under both CC and PAV we have two size-2
committees with maximum score of 4: W = {1, 3} and W ′ = {2, 4}. For δc = δs = 1 and under
CC, there is a (δc, δs)-reconfiguration path between W and W ′ of length two, e.g., (W, {1, 2},W ′).
The same path is also a (1, 1

2 )-reconfiguration path under PAV since SCPAV({1, 2}) = 31
2 .

Problem definition. Now, we define our reconfiguration problem.

λ-MULTI-WINNER RECONFIGURATION (λ-MR)
Input: A profile P , a committee size k, two numbers δc ≥ 1 and δs ≥ 0, and two size-k
committees W ̸= W ′ with SCλ(W )− SCλ(W

′) ≤ δs.
Question: Does there exist a sequence (W0, . . . ,Wt) of committees which is a (δc, δs)-
reconfiguration path for (P, λ) such that W0 = W and Wt = W ′?
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u{1,3}u{2,4} u{1,3}

u{1,2}u{1,4}

u{2,4}

u{3,4} u{2,3}

Figure 1: Reconfiguration graphs for Example 2 with δs = 0 (Left), and with δs = 1 under CC or δs = 1
2

under
PAV (Right).

Remark 2. Note that we require that the input satisfies δc ≥ 1, W ̸= W ′, and SCλ(W )−SCλ(W
′) ≤

δs, as otherwise either there is always a reconfiguration path (when W = W ′) or none (when δc < 1
and W ̸= W ′, or SCλ(W ) − SCλ(W

′) > δs). Moreover, we intentionally do not restrict the
committees to be optimal (i.e., winning). This choice allows for a more realistic representation of
scenarios where optimal solutions are not immediate or feasible, thereby enhancing the practical
relevance of our study.

For the restricted variant where the committees on the reconfiguration path must be optimal (i.e., W
and W ′ are winning and δs = 0) and δc = 1, we write λ-MR0. We will see that all intractability
results except Proposition 2 already hold for the restricted case while all algorithmic results hold for
the general case.

Reconfiguration graphs. Let I = (P, k, δc, δs,W,W ′) be an instance of λ-MR with P = (C =
[m], V,R) being a profile and λ a score-based voting rule. We construct a reconfiguration graph
GR = (V R, ER) for I as follows. Let V R = {uC′ | C ′ ⊆ C s.t. |C ′| = k and SCλ(P,W ) −
SCλ(P, C ′) ≤ δs} be the vertex set of GR such that each vertex corresponds to a size-k committee
whose score is at most δs lower than the score of W . For each pair uW1

, uW2
of vertices , we create

an edge {uW1
, uW2

} if the corresponding two committees W1 and W2 are δc-adjacent.

Remark 3. Note that |V R| ≤
(
m
k

)
since only committees of size k are relevant. We can compute V R

in time
(
m
k

)
· T(P, λ), where T(P, λ) denotes the time to compute the score of a committee under

rule λ. The number of edges of GR is bounded above by
(
m
k

)2
, so the reconfiguration graph can be

constructed in time O(
(
m
k

)2
+
(
m
k

)
· T(P, λ)). By construction, if δs = 0, and both W and W ′ are

winning committees, then for each pair of connected vertices uW1 and uW2 , there exists a one-to-one
correspondence between all (uW1 , uW2)-paths in GR and all (δc, δs)-reconfiguration paths for W1

and W2.
Example 2. Let us consider the instance given in Example 1. If δs = 0, then the vertex set of the
reconfiguration graph GR is V R = {u{1,3}, u{2,4}} since {1, 3} and {2, 4} are the only two winning
committees. Because |{1, 3}∆{2, 4}| = 4, if δc = 1, there is no path between uW and uW ′ and
hence no reconfiguration path from W to W ′ exists. See the LHS of Figure 1 for an illustration.

If δs = 1 (under CC) or δs = 1
2 (under PAV), then V R contains vertices for all size-2 committees of C.

There are four possible length-2 paths between u{1,3} and u{2,4}, for example (u{1,3}, u{1,2}, u{2,4}).
See the RHS of Figure 1 for an illustration. Note that the length of a shortest path between any two
committees W,W ′ is at least

⌈
|W∆W ′|

2 δc

⌉
; any edge on the reconfiguration will remove (resp. add) at

most δc alternatives from W \W ′ (resp. W ′ \W ).

3 Complexity Results

In this section, we consider the computational and parameterized complexity of λ-MR.

Computational Complexity. It is straightforward that λ-MR is in PSPACE due to an observation by
Ito et al. (2011).
Proposition 1. For each λ of the four considered voting rule, λ-MR is in PSPACE.

Proof. It suffices to show that λ-MR is contained in NPSPACE since PSPACE = NPSPACE (Savitch,
1970). Moreover, as observed by Ito et al. (2011), to show that the reconfiguration version of a
problem is in NPSPACE, one only needs to show that the underlying problem is in NP. In our case,
we need to show that the following two problems can be verified in polynomial time: (1) Does a
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given committee satisfy a given score-bound? (2) Are two given committees δc-adjacent? For the
sake of completeness, we provide a detailed proof for λ-MR. We first define a decision variant of
the multi-winner determination problem. In λ-MULTI-WINNER SCORE, we are given a profile P ,
a committee size k, and a number s, and ask whether there exists a size-k committee W such that
SCλ(W ) ≥ s.

Note that since the score of a committee under each considered rule λ can be computed in polynomial
time, λ-MULTI-WINNER SCORE is in NP. Since NP ⊆ PSPACE, given an instance (P,W,W ′, δc, δs)
of λ-MR we can enumerate all size-k committees U with SCλ(P,W )− SCλ(P, U) ≤ δs in PSPACE.
Then, we can iteratively non-deterministically choose a size-k committee W ′′ that is δc-adjacent to the
current committee and has SCλ(P,W )− SCλ(P,W ′′) ≤ δs. The problem is thus in NPSPACE.

The following result implies that AV- and SAV-MR are easy. This is because both rules are based on
additive scoring functions, so we can greedily exchange alternatives from the symmetric difference
between the initial and target committees.
Theorem 1. Every instance of AV-MR (resp. SAV-MR) admits a reconfiguration path. Moreover,
a shortest one can be computed in polynomial time and has length ⌈ |W\W ′|

δc
⌉ = ⌈ |W∆W ′|

2 δc
⌉.

Proof. Let λ ∈ {AV, SAV} and I = (P, k, δs, δc, λ,W,W ′) denote an instance of λ-MR. As
already discussed, we will greedily exchange alternatives from W∆W ′. The correctness is based on
the following claims:

Claim 1.1. Let W1 and W2 be two size-k committees, and a = argmaxc∈W2\W1
SCλ(c) and

b = argminc∈W1\W2
SCλ(c). Then, SCλ(

(
W1 ∪ {a}

)
\ {b}) ≥ min{SCλ(W1), SCλ(W2)}.

Proof. We distinguish between two cases. Case (1) SCλ(a) ≥ SCλ(b); Case (2) SCλ(a) < SCλ(b).

For Case (1), due to the additivity of the voting rule the statement follows: SCλ(W1 ∪ {a} \ {b}) =
SCλ(W1) + SCλ(a)− SCλ(b) ≥ SCλ(W1) ≥ min{SCλ(W1), SCλ(W2)}.

For Case (2), by the choice of a and b, we infer that SCλ(c) < SCλ(d) for all c ∈ W2 \W1 and all
d ∈ W1 \W2. We now enumerate the elements in W2 \W1 in the order a1, . . . , at so that ai ≥ ai+1

holds for all i ∈ [t− 1]. Similarly, we enumerate W1 \W2 in the order b1, . . . , bt so that bi ≥ bi+1

holds for all i ∈ [t − 1]. Note that in these orderings we have a = a1 and b = bt. Using this
enumeration we can now show the statement:

SCλ(W1 ∪ {a} \ {b}) = SCλ(W1) + SCλ(a)− SCλ(b)
= SCλ(W1 ∩W2) +

∑
i∈[t] SCλ(bi) + SCλ(a)− SCλ(b)

= SCλ(W1 ∩W2) +
∑

i∈[t−1] SCλ(bi) + SCλ(a)
≥ SCλ(W1 ∩W2) +

∑
i∈[t−1] SCλ(ai) + SCλ(a)

≥ SCλ(W1 ∩W2) +
∑

i∈[t] SCλ(1i) = SCλ(W2) (of Claim 1.1) ⋄

By Claim 1.1, we can iteratively replace the lowest scoring alternative in W \W ′ with the highest
scoring alternative in W ′ \W , while ensuring the overall score is at least min{SCλ(W ), SCλ(W

′)}.
Since SCλ(W ) ≤ SCλ(W

′) + δs per definition, we obtain a valid reconfiguration path in polynomial
time. For δc = 1, such a path has a shortest possible length |W \W ′|. For δc > 1, we can take the
same path, but skip δc −1 many committees in each step. This leads to a path of length ⌈ |W\W ′|

δc
⌉.

Note that a shorter path cannot exist.

Example 3. We illustrate the greedy approach behind the proof of Theorem 1 on the following
example under AV: Let C = [6] and V = {v1, . . . , v14} with approval preferences A1 = · · · = A5 =
{1, 2, 3, 4}, A6 = A7 = A8 = {3, 4, 6}, A9 = A10 = {2, 5}, and A11 = · · · = A14 = {1, 5, 6}. We
have the following scores for each of the alternatives: SC(1) = 9, SC(2) = 7, SC(3) = SC(4) = 8,
SC(5) = 6 and SC(6) = 7. Let k = 3, δc = 1, δs = 5, W = {1, 3, 4}, and W ′ = {2, 5, 6}. Note that
W is a winning committee with SC(W ) = 25 and SC(W ′) = 20.

We now proceed with generating the reconfiguration path. We start with W0 = W . Alternative 6 is
the highest scoring alternative in W ′ \W0, while alternative 4 (or 3) the lowest scoring alternative in
W0 \W ′. Therefore, we generate W1 = {1, 3, 6} by exchanging 4 with 6. Using the same procedure,
we compute W2 = {1, 2, 6}, and finally W3 = {2, 5, 6} = W ′. It is straightforward to check that
(W0 = W,W1,W2,W3 = W ′) is a (1, 5)-reconfiguration path.
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In contrast to AV and SAV, the next theorem shows that CC- and PAV-MR are computationally
difficult. The idea is to reduce from the PSPACE-complete and W[1]-hard problem INDEPENDENT
SET RECONFIGURATION VIA TOKEN JUMPING (ISR-TJ) (Ito et al., 2014), by adapting from the
reduction of Aziz et al. (2015) for CC and PAV.

Theorem 2 (⋆). For all λ ∈ {CC, PAV}, λ-MR0 (and hence λ-MR) are PSPACE-complete. More-
over, they are PSPACE-hard and W[1]-hard wrt. k+ ℓ, even if (δc, δs, b) = (1, 0, 2).

We observe that the reduction of Ito et al. (2011) can be used to show that a generalized variant
of ISR-TJ where in each step more than one vertex can be exchanged is NP-hard for constant path
length. Hence, we obtain the following hardness for our problem as well.

Proposition 2 (⋆). For all λ ∈ {CC, PAV}, λ-MR remains NP-hard even if b = ℓ = 2, and for
constant ℓ, it is in NP.

Parameterized Complexity. Next, we focus on the parameterized complexity for CC and PAV wrt.
a few selected parameters. The most intuitive ones are the number m of alternatives, the number n of
voters, and the committee size k.

Proposition 3. For all score-based multi-winner voting rules λ such that the score of a committee
can be computed in polynomial time, λ-MR is solvable in m2k · (n+m)O(1) time, and hence FPT
wrt. m and in XP wrt. k. Furthermore a shortest path can be computed in the same time.

Proof. Let I = (P, k, δc, δs,W,W ′) be an instance of λ-MR. We operate on the reconfiguration
graph GR of I . As noted in Remark 3, the number of edges in GR is bounded above by

(
m
k

)2 ≤
m2k ≤ m2m, and hence GR can be constructed in

(
m
k

)2 · (n +m)O(1) time. Since determining a
shortest path between two vertices can be done in time linear in the number of edges of the graph, we
can determine a shortest-length (uW , uW ′)-path in GR in m2k · (n+m)O(1) time, which is FPT wrt.
m and in XP wrt. k, as desired.

Yang and Wang (2023) show that PAV-MULTI-WINNER SCORE can be solved in FPT time wrt. n
via a specific integer linear programming (ILP) formulation called Integer Programming With Simple
Piecewise Linear Transformation (IPWSPLT) that can encode convex constraints.1 It is not clear how
to extend their approach to the reconfiguration variant because the length ℓ of a shortest reconfiguration
path may be unbounded. However, we can extend their approach to obtain an FPT result wrt. n+ ℓ.

Theorem 3 (⋆). PAV-MR is FPT wrt. n+ ℓ.

Proof sketch. As said, we extend the IPWSPLT by Yang and Wang (2023). Briefly put, IPWSPLT is
an ILP extension that allows for piecewise concave or convex functions to be used (Bredereck et al.,
2020b). We construct ℓ many copies of the IPWSPLT formulation and combine them with additional
constraints to model the exchanges. Similarly to their approach, we utilize the fact that alternatives
of the same type are interchangeable when considering the score of a committee. We then split the
alternatives of each type into 4 groups: Alternatives that are in W ∩ W ′, W \ W ′, W ′ \ W , and
C \ (W ∪W ′). We add variables that keep track of the number of alternatives of each group from
each type. By keeping track of these numbers along the steps of the reconfiguration path we ensure
that the symmetric difference between two intermediate committees is at most 2 δc and that the final
committee in the reconfiguration path is the target committee. We ensure that the total number of
variables and constraints are in O(2n · ℓ). This yields an FPT algorithm wrt. n+ ℓ since an IPWSPLT
instance can be solved in time O(n̂2.5n̂+o(n̂) · (|I|+ pmax)) (Bredereck et al., 2020b), where n̂ is the
number of integer variables, |I| is the size of the encoding of the instance, and pmax is the maximum
number of pieces of a piecewise-linear convex/concave function. Since in our IPWSPLT formulation
the number n̂ of variables and the size of the encoding |I| are in O(2n · ℓ), the FPT result follows.
The precise formulation and the proof are deferred to Appendix B.3.

The next results are based on either brute-force searching all possible reconfiguration paths or
bounding the size of the reconfiguration graph.

1ILP with convex constraints was shown to be FPT wrt. n before the introduction of IPWSPLT by Grötschel
et al. (1988), but we use IPWSPLT to keep the terminology consistent with Yang and Wang.
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Figure 2: Illustration for the proof of Lemma 1. Left: Case 1; Right: Case 2.

Proposition 4 (⋆). For all score-based voting rules λ such that the score of a committee can be
computed in polynomial time, the following holds:

(i) λ-MR is solvable in m2 δc ·ℓ · (n+m)O(1) time, and hence in XP wrt. ℓ for constant δc.
(ii) If λ is additionally neutral, then λ-MR is solvable in k2k · (2n + 2)2k · (n+m)O(1) time and

(k+ 1)4·2
n

(n+m)O(1) time and a shortest reconfiguration path can be found in the same time.
Thus, it is FPT wrt. n+ k and in XP wrt. n.

For CC, the following lemma shows that for a large enough committee size k there is always a
reconfiguration path: The score of each committee is determined by at most n relevant alternatives
since each voter contributes a score of at most one. Due to this, we can find a shortest path if the
symmetric difference between W and W ′ is very large (Case (i)), by only exchanging the alternatives
in the symmetric difference. Otherwise (Case (ii)), we can still find a path in polynomial time by also
exchanging alternatives that are shared by both W and W ′.
Lemma 1. For every instance of CC-MR with k ≥ 2n there exists a reconfiguration path between W
and W ′. Moreover,

(i) If |W \W ′| ≥ 2n, then we can find a shortest one in polynomial time.
(ii) If |W \W ′| < 2n, then we can find one with length at most ⌈ 2n

δc
⌉ in polynomial time.

Proof. Let I = (P, k, δc, δs,W,W ′) denote an instance of CC-MR. We first consider the case
when δc = 1 and show how to adapt the proof for δc ≥ 2 at the end. First, observe that we can
always find a size-n committee of W (resp. W ′) with score at least SC(W ) (resp. SC(W ′)). Hence,
the idea is to find a size-n committee A ⊆ W (resp. B ⊆ W ′) such that SC(A) = SC(W ) (resp.
SC(B) = SC(W ′)) and perform exchanges to obtain a committee that contains A ∪ B, and then
switch out alternatives that are not contained in W ′. Note that A and B can be found in polynomial
time by iteratively deleting “redundant” alternatives from W and W ′, respectively. To show the
statement, we distinguish between two cases. Figure 2 illustrates the constructions used in the proofs.

Case 1: |W \W ′| ≥ 2n or |W \ (W ′ ∪ A)| ≥ |B \W |. Note that the first condition implies the
second condition since |A| = n = |B|. To implement the exchange idea, let X ⊆ W \ (W ′ ∪ A)
be an arbitrary committee of |B \W | alternatives. We divide the exchanges into two parts. In the
first part, we step-by-step exchange all alternatives from X with all alternatives from B \W . It is
straightforward to verify that every committee obtained until now has score at least SC(W ) because
it always contains A, and the last committee obtained has score at least SC(W ′) since it contains B.
In the second part, we step-by-step exchange the remaining alternatives from W \ (W ′ ∪X) with
the remaining alternatives from W ′ \ (W ∪B). It is straightforward to verify that every committee
obtained in the second part has score at least SC(W ′) ≥ SC(W )−δs since it contains B.The exchange
sequence yields a reconfiguration path of shortest length ⌈|W∆W ′|/2⌉. If δc ≥ 2, then we take every
δc-th element on the path, including W and W ′. All these committees have score at least SC(W )− δs
by construction and the path is of the shortest possible length ⌈|W∆W ′|/(2 δc)⌉.

Case 2: |W \W ′| < 2n and |W \ (W ′ ∪A)| < |B \W |. We proceed in three parts. For the sake of
brevity, let W1 = W\(W ′∪A) and let B1 ⊆ B\W denote a committee of |W1| alternatives arbitrarily
chosen from B\W . First, we step-by-step exchange the alternatives in W1 with the alternatives in B1.
Afterwards, we select a committee X ⊆ (W ∩W ′)\(A∪B) of |B \W |−|W1| arbitrary alternatives,
and step-by-step exchange the alternatives in X with the remaining alternatives in (B \W )\B1. Note
that this is possible since |(W ∩W ′) \ (A∪B)| ≥ |W ∩W ′| − |A|+ |A \W ′| − |B|+ |B \W | =
|W |−|W \W ′|−|A|+ |A\W ′|−|B|+ |B \W | ≥ −|W1|+ |B \W |; the last inequality holds since
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|W1| = |W \ (W ′ ∪ A)| = |W \W ′| − |A \W ′| and |W | ≥ 2n ≥ |A|+ |B|. So far, we perform
|B \ W | ≤ n exchanges, where all intermediate committees contain A and the final committee
additionally contains B. Thus, they all have score at least SC(W ). The only alternatives from W \W ′

that remain in the most recently obtained committee are those alternatives in A \W ′. Thus, in the
third part, we step-by-step exchange all alternatives in A \W ′ with the alternatives in W ′ that are not
yet in the most recent committee; they are precisely in X ∪ (W ′ \ (W ∪B)). Since all committees
obtained in the third part contain B, each of them has score SC(W ′) ≥ SC(W )− δs. The number of
exchanges in the last part is |A \W ′| ≤ n, and overall we have performed at most 2n exchanges.
Similarly to the first case, if δc ≥ 2, then the number of exchanges reduces to ⌈2n/ δc⌉.

Combining Lemma 1 with Proposition 4(ii) yields an FPT result (wrt. n) for CC.

Theorem 4 (⋆). CC-MR is FPT wrt. n and a shortest reconfiguration path can be found in FPT time
wrt. n.

Proof. We distinguish between two cases. If k < 2n, then we use Proposition 4(ii) to solve CC-MR
and find a shortest path in FPT-time wrt. n. Otherwise, by Lemma 1, we can in polynomial time find
a reconfiguration path that either has minimum length (when |W \W ′| ≥ 2n) or has length at most
⌈ 2n
δc
⌉ (when |W \W ′| < 2n). This proves the first part of the statement.

To show the second part of the statement we only need to consider the case when k ≥ 2n and
|W \W ′| < 2n as the other cases are already covered by the above reasoning and by Lemma 1(i). In
the case of k ≥ 2n and |W \W ′| < 2n, by Lemma 1(ii), there is always a reconfiguration path of
length at most ⌈ 2n

δc
⌉. This implies that a shortest path can exchange at most 4n many alternatives.

Since CC is neutral, any two alternatives of the same type are “interchangeable” on the path. Hence,
we only need to keep track of at most 4n alternatives for each type of alternative. Note that all
alternatives in the symmetric difference W∆W ′ must be among these tracked alternatives. There
are in total at most 4n · 2n many alternatives that are relevant for the exchanges. Thus, we can use
a simple branching algorithm to search for a shortest reconfiguration path by branching over all
possibilities of selecting 2 δs alternatives from at most 4n2n relevant ones to exchange in each step.

It remains to analyze the running time. In the case where k < 2n, the time needed to compute
a shortest path is still 2n4n · (2n + 2)4n · (n + m)O(1) per Proposition 4(ii). For k ≥ 2n and
|W \W ′| ≥ 2n a shortest path can be found in polynomial time per Lemma 1(i).

We now consider the case of k ≥ 2n and |W \ W ′| < 2n. Before looking at the running time,
we describe the branching algorithm more precisely. We note that we can assume δc < 2n, as
otherwise there is a path of length one that is obviously a shortest path. Recall that due to CC being
neutral, it suffices to keep track of 4n alternatives of each type since by Lemma 1(ii) the maximum
number of alternatives that are exchanged on a shortest path is 4n. Let X denote a set consisting of
min(4n, |Ct|) alternatives of each type t ∈ T , including all alternatives from W∆W ′. This implies
that |X| ≤ 4n2n. As we know that the reconfiguration path has length at most ℓ ≤ ⌈2n/ δc⌉, we can
solve this problem by branching over all possible exchanges using alternatives in X with depth ℓ. For
each step i ∈ [ℓ], we branch over all pairs of two sets X1

i , X
2
i ⊆ X with |X1

i | ≤ δc and |X2
i | ≤ δc

that shall correspond to the set of alternatives in Wi−1 \ Wi and Wi \ Wi−1, respectively. Then,
using these exchanges, we can compute all committees on each branch and check whether they yield
a desired reconfiguration path. By checking all branches we can then find a shortest path.

Finally, we compute the running time of the branching algorithm. A single step has |X|δc · |X|δc =
|X|2 δc many branches and there are at most ⌈ 2n

δc
⌉ steps. That means the branching algorithm has a

running time of |X|2 δc ℓ ≤ |X|2 δc⌈ 2n
δc

⌉ ≤ |X|4n+2 δc ≤ (4n · 2n)8n.

By observing that there are not too many different alternatives (wrt. n+ b), we obtain the following
FPT result.

Proposition 5 (⋆). For all neutral and score-based multi-winner voting rules λ such that the score of
a committee can be computed in polynomial time, λ-MR is solvable in 22bn(n+m)O(1) time, and
hence FPT wrt. n+ b.

Finally, we prove that the committee size k combined with the path length ℓ is unlikely to yield
FPT-algorithms by showing W[2]-hardness. We reduce from the problem of DOMINATING SET
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RECONFIGURATION VIA TOKEN JUMPING (DSR-TJ). In DSR-TJ, we are given a graph G =

(V,E), two non-negative integers h and ℓ̂, and two size-h dominating sets Vs and Vt of G, and we
ask whether there exists a sequence V0, . . . , Vℓ̂ of size-h dominating set such that V0 = Vs, Vℓ̂ = Vt

and |Vi∆Vi+1| ≤ 2 for all 0 ≤ i ≤ ℓ̂− 1. Recall that a dominating set of a graph is a subset V ′ of
vertices whose neighborhood covers the whole vertex set of the graph, i.e., each vertex not from V ′ is
adjacent to at least one vertex in V ′. Bodlaender et al. (2021) claimed that Mouawad et al. (2016)
showed that DSR-TJ is W[2]-hard wrt. (h, ℓ̂), where h denotes the size of any dominating set (DS for
short) on the path and ℓ̂ the length of a shortest DS reconfiguration path (if it exists). The reduction
given by Mouawad et al., however, only works for the TAR but not the TJ variant. The reason is that
in their created instance, the size h′ of the initial DS is smaller than h, so the size of any intermediate
dominating set could be larger than h′ while this is not possible for the TJ variant. Below, we modify
their reduction and show hardness for the TJ variant.
Proposition 6 (⋆). DSR-TJ is W[2]-hard wrt. h+ ℓ̂.

We obtain the same hardness for the CC rule by adapting the reduction by Betzler et al. (2013).
Theorem 5. CC-MR0 (and hence CC-MR) are W[2]-hard wrt. k+ ℓ.

Proof. It suffices to show W[2]-hardness for CC-MR0. To achieve this, we provide a parameterized
reduction from the W[2]-hard DSR-TJ problem (see Proposition 6) to CC-MR0, i.e., CC-MR where
δs = 0 and δc = 1.

Let (G, h, ℓ̂, Vs, Vt) be an instance of DSR-TJ, where G is an undirected graph, Vs and Vt are the
initial and target dominating sets, respectively, h = |Vs| = |Vt|, and ℓ̂ denotes the length bound on
the reconfiguration path (if it exists).

We define k = h and create a preference profile as follows. For each vertex vi ∈ V (G), create

– one vertex-alternative ci, and
– one vertex-voter ui that approves of ci and the alternatives corresponding to the neighbors of vi in
G. Formally, the approval set of voter ui is Ai = {ci} ∪ {cj | {vi, vj} ∈ E(G)}.

Let P = (C, V,R) denote the created profile. The total number of voters in this instance is |V (G)|.
To complete the construction, let the initial and target committees be W = {ci | vi ∈ Vs} and
W ′ = {ci | vi ∈ Vt}. Note that the score of W (resp. W ′) is |V (G)| since Vs (resp. Vt) is a
dominating set. It is straightforward to see that every size-h dominating set of G corresponds to a size-
k committee with score at least |V (G)|. The correctness of the construction follows immediately.

4 Conclusion

We introduced a framework for reconfiguring committees in multi-winner elections for four prominent
committee election rules: CC, PAV, AV, and SAV, and systematically studied the (parameterized)
complexity of the problem. We left open whether our reconfiguration problem under PAV is FPT wrt.
the number n of voters.

Our framework can be directly applied to other score-based rules, such as the Monroe rule (Monroe,
1995), even for linear preferences. For non-score-based rules, we may adapt by either restricting
the reconfiguration path to winning committees or introducing a measure that captures closeness to
optimality.

Our preliminary experimental investigations (see Appendix C) indicate that for most randomly gener-
ated committees, a reconfiguration path not only exists but can also be efficiently determined using a
straightforward heuristic. This finding opens a promising avenue for future research: determining the
specific structures within the data that ensure the existence of a reconfiguration path, and whether it
is possible to develop FPT algorithms leveraging these structures.

The concept of reconfiguration extends beyond the multi-winner election settings explored here or
the fair division setting explored by Igarashi et al. (2024). Many other social choice frameworks
remain unexplored in this context, such as stable matching (Gale and Shapley, 1962) or coalition
formation (Drèze and Greenberg, 1980). Investigating these could provide useful insights into the
algorithmic principles of varied decision-making processes.
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Supplementary Material for the Paper “Multi-Winner
Reconfiguration”

A Additional Material for Section 2

Parameters. In this work we additionally look at the problems through the lens of parameterized
complexity using the following parameters: the number m of alternatives, the number n of voters,
the committee size k, the maximum number b of approved alternatives per voter and the length ℓ of a
shortest reconfiguration path (if it exists).

B Additional Material for Section 3

Independent Set Reconfiguration Definition

Ito et al. (2014) show that the following reconfiguration is W[1]-hard wrt. the number of tokens (i.e.,
the size of any independent set on the path).

INDEPENDENT SET RECONFIGURATION VIA TOKEN JUMPING (ISR-TJ)
Input: A graph G, two non-negative integers h and ℓ̂, and two independent sets Is, It of size h.
Question: Does there exist a sequence I0, . . . , Iℓ̂ of size-h independent sets of G such that
I0 = Is, Iℓ̂ = It, and |Ii∆Ii+1| ≤ 2 holds for all 0 ≤ i ≤ ℓ̂− 1?

An independent set of a graph is a subset of vertices such that no two of them are adjacent.

B.1 Proof of Theorem 2

Theorem 2 (⋆). For all λ ∈ {CC, PAV}, λ-MR0 (and hence λ-MR) are PSPACE-complete. More-
over, they are PSPACE-hard and W[1]-hard wrt. k+ ℓ, even if (δc, δs, b) = (1, 0, 2).

Proof. Since PSPACE-membership follows from Proposition 1, we only need to focus on the hardness
results. We show W[1]-hardness and PSPACE-hardness by reducing from ISR-TJ (see above for
the definition). Ito et al. (2014) show that ISR-TJ is both PSPACE-complete and W[1]-hard wrt. to
h. We observe that the reduction is simultaneously a polynomial and W[1]-hardness reduction wrt.
h+ ℓ̂ because a shortest reconfiguration path has length 2h in their construction. Hence, if we can
provide a polynomial-time reduction for CC-MR0 and PAV-MR0 such that the committee size and
the path length are h and ℓ̂, respectively, then we obtain W[1]-hardness in the statement.

Let (G, h, Is, It) be an instance of ISR-TJ. We create an instance of CC-MR0 and PAV-MR0 with
committee size k = h. For each vertex vi ∈ V (G), let deg(vi) denote the degree of vertex vi in G.
Further let deg(G) := maxvi∈V (G) deg(vi) denote the maximum degree of graph G.

– For each vertex vi ∈ V (G), we create a vertex-alternative ci and (deg(G)−deg(vi))-many private
dummy voters {d1i , . . . , d

deg(G)−deg(vi)
i } that only approve ci.

– For each edge {vi, vj} ∈ E(G), we create one edge-voter u{i,j} that approves only ci and cj .

Let P denote the created profile with C = {ci | vi ∈ V (G)} and V = {dzi | vi ∈ V (G), z ∈
[deg(G) − deg(vi)]} ∪ {ui,j | {vi, vj} ∈ E(G)}. The total number of voters created is |V | =
deg(G) · |V (G)|. To complete the construction, let the initial and target committees be W = {ci |
vi ∈ Is} and W ′ = {ci | vi ∈ It}, the size of the independent set h = k, and the length of a
reconfiguration path ℓ = 2h = 2k.

For the sake of brevity, define a bijection f : 2V (G) → 2C with f(V ′) = {ci | vi ∈ V ′} between
the vertex subsets and the committees. We present a one-to-one correspondence between the size-h
independent sets in G and size-h committees with score of at least deg(G)·k in the created PAV-MR0-
and CC-MR0-instance.

Claim 5.1. V ′ is a size-h independent set if and only if f(V ′) is a size-h committee of score at least
deg(G) · k under CC as well as PAV.
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Proof. The “only if” part is straightforward: For each size-h independent set V ′ we have that the
alternatives in f(V ′) are approved by deg(G) ·k voters. Among them deg(G) ·k−

∑
vi∈f(V ′) deg(vi)

voters are private voters and
∑

vi∈f(V ′) deg(vi) voters are the edge-voters of the edges incident to
V ′. Each of these deg(G) · k edge-voters approves exactly one alternative in f(V ′) since V ′ is an
independent set. Thus SCPAV(W ) = SCCC(W ) = deg(G) · k.

For the “if” part, let W ′′ denote a size-h committee with score ≥ deg(G) ·k. We claim that f−1(W ′′)
is a size-h independent set. Clearly |f−1(W ′′)| = h, so we only need to show that no edge is incident
to more than one vertex in f−1(W ′′). Let E1 = {{vi, vj} ∈ E(G) : |{vi, vj} ∩ f−1(W ′′)| = 1}
and E2 = {{vi, vj} ∈ E(G) : |{vi, vj} ∩ f−1(W ′′)| = 2} denote the set of edges that are incident
to exactly one vertex in f−1(W ′′) and the set of edges that are incident to two vertices in f−1(W ′′),
respectively. Then, by the handshaking lemma, we have that

|E1|+ 2|E2| =
∑

ci∈W ′′

deg(vi). (1)

For CC, we have that deg(G) · k = SCCC(W
′′) =

∑
ci∈W ′′

(
deg(G) − deg(vi)

)
+ |E1| + |E2|,

which implies that |E1| + |E2| =
∑

ci∈W ′′ deg(v) since k = h. Together with (1), we obtain that
|E2| = 0, meaning that no edge is incident to more than one vertex in f−1(W ′′), as desired.

As for PAV, since deg(G)·k = SCPAV(W
′′) =

∑
ci∈W ′′

(
deg(G)−deg(vi)

)
+|E1|+(1+1/2)|E2|,

we infer that |E1| + (1 + 1/2)|E2| =
∑

ci∈W ′′ deg(v). Similarly to the previous case, by (1), we
obtain that |E2| = 0, meaning that no edge is incident to more than one vertex in f−1(W ′′), as
desired. (of Claim 5.1) ⋄

By Claim 5.1, it is straightforward to verify that a sequence (Is, . . . , It) of vertex subsets is a
size-h independent set reconfiguration path if and only if (W = f(Is), . . . ,W

′ = f(It)) is a (1, 0)-
reconfiguration for CC-MR and PAV-MR. This concludes the proof for the PSPACE-hardness since
the reduction is a polynomial time reduction.

Note that in our construction each voter approved of at most 2 alternatives. This means the PSPACE-
hardness remains even if the ballot size is bounded by 2.

It remains to show the W[1]-hardness wrt. the committee size k and the path length ℓ. As the
committee size k is equal to the size h of the independent set, each committee on the reconfiguration
path directly corresponds to an independent set on the reconfiguration path of the independent sets of
size h and the shortest path is of length at most 2h (Ito et al., 2014), it follows that both PAV-MR0

and CC-MR0 are W[1]-hard wrt. the path length ℓ and the committee size k. This concludes the
proof.

B.2 Proof of Proposition 2

Proposition 2 (⋆). For all λ ∈ {CC, PAV}, λ-MR remains NP-hard even if b = ℓ = 2, and for
constant ℓ, it is in NP.

Proof. As already mentioned, the reduction of Ito et al. (2011) can be used to show NP-hardness
for the case when we may allow for more than one token to be moved at once. In other words, it
is NP-hard to decide whether one can reconfigure from one independent set Is of size h to another
independent set It of h via an intermediate step. Hence, by using the same reduction as for Theorem 2,
we obtain the result from the statement.

As for constant path length ℓ, we can guess a sequence of constantly many committees which in total
has polynomial size and check in polynomial time whether it is a valid reconfiguration path. This
proves containment in NP.

B.3 Continuation of the proof of Theorem 3

Theorem 3 (⋆). PAV-MR is FPT wrt. n+ ℓ.

We first introduce some notations and concepts that are useful for the IPWSPLT formulation. For
each type t of alternative, let Ct denote the set consisting of all alternatives with type t. Let T denote
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the set of types of alternatives that exist in a given preference profile P . Further, let A(t) denote the
set of voters that approve of alternatives of type t. We say that two committees C1 and C2 are in the
same equivalence class (class for short) if for each type t, the number of alternatives with type t in C1

is the same as that in C2. We partition the set Ct of alternatives of type t into four subsets as follows:
X1

t = Ct∩(W \W ′), X2
t = Ct∩(W ∩W ′), X3

t = Ct∩(W ′ \W ), and X4
t = Ct∩(C \(W ′∪W )). In

other words, X1
t , X2

t , X3
t , and X4

t denote the set consisting of all alternatives of type t that are from
the set W \W ′, the intersection W ∩W ′, the other set W ′ \W , and not in W ∪W ′, respectively.

We now describe the variables and constraints used in the IPWSPLT. We use IPWSPLT rather than a
regular ILP because it is not clear how to compute the scores under PAV with just ILP.

Variables. The following variables will be used:

– An integer variable x1
t,j for each t ∈ T and each j ∈ {0, . . . , ℓ}. This variable stores the number

of alternatives in X1
t in the j-th committee of the reconfiguration graph.

– An integer variable x2
t,j for each t ∈ T and each j ∈ {0, . . . , ℓ}. This variable stores the number

of alternatives in X2
t in the j-th committee of the reconfiguration graph.

– An integer variable x3
t,j for each t ∈ T and each j ∈ {0, . . . , ℓ}. This variable stores the number

of alternatives in X3
t in the j-th committee of the reconfiguration graph.

– An integer variable x4
t,j for each t ∈ T and each j ∈ {0, . . . , ℓ}. This variable stores the number

of alternatives in X4
t in the j-th committee of the reconfiguration graph.

– An integer variable yz,z
′

(t,j−1),(t′,j) for each z, z′ ∈ [4], j ∈ [ℓ] and t, t′ ∈ T . This variable stores
the number of alternatives that were part of the group represented by xz

t,j−1 that were replaced by
alternatives in the group xz′

t′,j in the step from Wj−1 to Wj .
– An integer variable xv,j for each voter v ∈ V and each step j ∈ {0, . . . , ℓ}. This variable stores

how many alternatives voter v approves of in committee Wj .

We use the same piecewise linear concave function f : R≥0 → R≥0 as Yang and Wang. We set
f(0) = 0 and for every positive integer x we set f(x) =

∑x
i=1

1
i . Then for each real positive

non-integer x we choose y ∈ N such that y = ⌊x⌋ and set f(x) = f(y)+(x−y) · (f(y+1)−f(y)).

Constraints. We add the following constraints:

(1) For each z ∈ [4], we fix xz
t,0 and xz

t,ℓ to be the correct values for W and W ′, i.e., x1
t,0 = |X1

t |,
x2
t,0 = x2

t,ℓ = |X2
t |, x3

t,0 = x4
t,0 = x1

t,ℓ = x4
t,ℓ = 0, and x3

t,ℓ = |X3
t |.

(2) For each j ∈ [ℓ], we add constraint
∑

z,z′∈[4]
t,t′∈T

yz,z
′

(t,j−1),(t′,j) ≤ δc. These constraints ensure that

the symmetric difference between concurrent committees in the reconfiguration path observes
the bound.

(3) For each (j, t, z) ∈ {0, . . . , ℓ} × T × [4], we add constraint xz
t,j ≤ |Xz

t |. These constraints
ensure that the class of committee used in an intermediary result exists, i.e., we do not use more
alternatives of a type in a committee than possible.

(4) For each (j, t, z) ∈ [ℓ] × T × [4], we add a constraint xz
t,j−1 ≥

∑
t′∈T
z′∈[4]

yz,z
′

(t,j−1),(t′,j). Theses

constraints are added so that it is not possible to switch out alternatives that are not in the
committee.

(5) For each (j, t, z) ∈ [ℓ]×T ×[4], we add a constraint xz
t,j = xz

t,j−1+
∑

z′∈[4],t′∈T yz
′,z

(t′,j−1),(t′,j)−∑
z′∈[4],t′∈T yz,z

′

(t,j−1),(t′,j). These constraints ensure that the number of alternatives in each group
is as described after the exchanges.

(6) For each j ∈ {0, . . . , ℓ}, we add constraint
∑

t∈T ,z∈[4] x
z
t,j = k. This constraint ensures that

each committees of the reconfiguration path has size k.
(7) For each v ∈ V and i ∈ [ℓ] we add a constraint xv,i =

∑
t : v∈A(t),z∈[4] x

z
t,j . These constraints

link the number of alternatives of each type with the number of alternatives each voter approves
of.

(8) For every j ∈ [ℓ] we add a constraint
∑

v∈V f(xv,j) ≥ SCPAV(P,W ) − δs. These constraints
ensure that each committee in the reconfiguration has a high enough score.

The number of variables and constraints are both O(2n · ℓ) and the function f consists of at k linear
parts and hence this IPWSPLT can be solved in FPT time wrt. n+ ℓ. Note that the constraints (3)-(8)
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are the constraints used by Yang and Wang for the ℓ committees on the reconfiguration graph.

We now show that the constructed IPWSPLT feasibility instance is a yes-instance if and only if there
exists a reconfiguration path of at most length ℓ between the given committees W and W ′.

The if part is straightforward: Let W0, . . . ,Wℓ be a (δc, δs)-reconfiguration path for (P, λ). For every
t ∈ T , j ∈ {0, . . . , ℓ}, we set the variable xz

t,j to be the number of alternatives in Wi that are also
in the set represented by Xz

t , i.e., |Wi ∩Xz
t |. We additionally set for every z, z′ ∈ [4] the variable

yz,z
′

(t,j−1),(t′,j) to be the number of alternatives of type t that were replaced by alternatives of type t′

between the committees Wj−1 and Wj . Constraint (5) is thus satisfied by construction. As these
variables describe a valid committee, the constraints (6)-(8) are satisfied, as shown by Wang and
Yang. Constraint (1) is satisfied, as W0 = W and Wℓ = W ′. Constraint (2) is satisfied because the
symmetric difference is upper bounded by 2 δc. Constraint (3) must be satisfied, as it is not possible
to have more alternatives of any type in the solution then there are in total. Similarly constraint (4)
must be satisfied, as we can only switch out alternatives from groups that were previously in the
solution.

The only-if part follows similarly: We iteratively create the committees Wj for every j ∈ [ℓ]. Note
that W0 = W and Wℓ = W ′ are already fixed. Suppose the committees W1, . . . ,Wj have been
created and fulfill our conditions. We then create Wj+1. For each variable yz,z

′

(t,j),(t′,j+1), we replace
that many alternatives that are in Wj and belong to the group |Xz

t | with alternatives that are not in Wj

and belong to |Xz′

t′ |. After this process, we have replaced at most δc many alternatives with δc many
other alternatives due to Constraint (2), and therefore the symmetric difference is upper bounded
by 2 δc. The resulting committee must exist because Constraint (3) ensures that each group in each
type of alternatives does not appear more often in a committee then possible and Constraint (4)
ensures that only existing alternatives were switched out. Constraint (6) ensures that the committee
has size k. Constraint (7) counts the number of alternatives voters approve and with Constraint (8)
ensures that the score is sufficiently high. As this reasoning holds for every j ∈ [ℓ], the generated
W0, . . . ,Wℓ is a (δc, δs)-reconfiguration path from W to W ′, as required.

Therefore it is possible to find a path between two committees using the IPWSPLT feasibility
formulation.

B.4 Proof of Proposition 4

Proposition 4 (⋆). For all score-based voting rules λ such that the score of a committee can be
computed in polynomial time, the following holds:

(i) λ-MR is solvable in m2 δc ·ℓ · (n+m)O(1) time, and hence in XP wrt. ℓ for constant δc.
(ii) If λ is additionally neutral, then λ-MR is solvable in k2k · (2n + 2)2k · (n+m)O(1) time and

(k+ 1)4·2
n

(n+m)O(1) time and a shortest reconfiguration path can be found in the same time.
Thus, it is FPT wrt. n+ k and in XP wrt. n.

Proof. For Statement (i), we observe that in each reconfiguration step we exchange at most δc
alternatives with at most δc other alternatives. This gives us

(
m
δc

)2
possible different exchanges. Since

for a yes-instance we have at most ℓ steps in the reconfiguration path, we have (
(
m
δc

)2
)ℓ = m2 δc ·ℓ

possible different reconfiguration sequences. Since the score of a committee can be computed in
polynomial time, we can check for every sequence whether it is a (δc, δs)-reconfiguration path
from W to W ′ in m2 δc ·ℓ · (n+m)O(1) time.

The proof idea for Statement (ii) is to group alternatives of the same type, keep only a bounded
number of alternatives for each type and then generate a reconfiguration graph of bounded size. To
this end, we enumerate the types as 1, . . . , 2n. Let T denote the set of types of alternatives that exist
in a given preference profile P . We define Ct to be the set consisting of all alternatives with type t for
t ∈ T . We will analyze the running times one by one: Generally, let P = (C, V,R) be a preference
profile and I = (P, k, δc, δs,W,W ′) an instance of λ-MR.

For the first part of Statement (ii), we observe that every committee on a reconfiguration path contains
at most k alternatives of each type. Therefore, apart from the alternatives that appear in W ∪W ′, we
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may remove all but k many alternatives of each type from the instance. Let us call the set of kept
alternatives V̂ . This means that we only need to keep at most 2k+k ·2n = k(2n+2) alternatives. We
can construct a restricted reconfiguration graph of the remaining alternatives and determine a shortest
path between uW and uW ′ in time (

(
k(2n+2)

k

)
)2 · (n+m)O(1) = (k(2n + 2))2k · (n+m)O(1).

A uW -uW ′ path of length ℓ′ in the restricted reconfiguration graph corresponds to a (δc, δs)-
reconfiguration path of length ℓ′, as the committees corresponding to the vertices on the path form a
(δc, δs)-reconfiguration path in I . Next assume we have a (δc, δs)-reconfiguration path (W0, . . . ,Wℓ′),
where W = W0 and W ′ = Wℓ′ , of length ℓ′ in I . We will show that there is a uW -uW ′ path of length
at most ℓ′ in the restricted reconfiguration graph. Let us iteratively construct the path uŴ1

, . . . , uŴℓ′
.

We show that in each step the following two conditions hold for j ∈ {0, . . . , ℓ′}:

(C1) Wℓ′ ∩ (W ∪W ′) = Ŵℓ′ ∩ (W ∪W ′), i.e., an alternative from W ∪W ′ is in Wℓ′ if and only
if it is in Ŵℓ′ , and

(C2) for every alternative type t ∈ T , it holds that |(Wj∩Ct)\(W ∪W ′)| = |(Ŵj∩Ct)\(W ∪W ′)|,
i.e, for every type, the number of alternatives of that type is the same in both W and W ′,
discounting the alternatives in the initial and goal committees.

From these two conditions it follows clearly that SC(Ŵj) = SC(Wj) for every j ∈ {0, . . . , t}. Since
all alternatives in W ∪W ′ are retained, the first vertex in the path is uW and the last uW ′ . Assume
we have created vertices uŴ0

, . . . , uŴj
so that Ŵ0, . . . , Ŵj satisfy the conditions. We construct the

committee Ŵj+1 from Ŵj as follows:

(i) We remove the alternatives in (Wj \Wj+1) ∩ (W ∪W ′).
(ii) We add the alternatives in (Wj+1 \Wj) ∩ (W ∪W ′).

(iii) For every type t ∈ T such that d := |Wj \ (W ∪W ′)| − |Wj+1 \ (W ∪W ′)| > 0, we remove
arbitrary d alternatives of type t from Ŵj \ (W ∪W ′).

(iv) For every type t ∈ T such that d := |Wj+1 \ (W ∪W ′)| − |Wj \ (W ∪W ′)| > 0, we add
arbitrary d alternatives of type t from (V̂ ∩ Ct \ Ŵj) \ (W ∪W ′).

We show that these exchanges, if possible to perform, enforce that Ŵj+1 satisfies the two conditions
(C1) and (C2) we set to prove. The first two exchanges guarantee (C1), as they remove and add the
corresponding alternatives to Ŵj+1. The last two guarantee (C2), as they remove and add alternatives
of the same type as are removed and from Wj to Wj+1. It is obvious that Exchanges (i) and (ii)
can be performed. Similarly, Exchange (iii) is clearly possible as we remove alternatives that are
necessarily in the committee. To see that we can always perform Exchange (iv), recall that V̂ contains
d̂t := min(k, |Ct ∩ C \ (W ∪W ′)|) alternatives of type t. No committee may contain more than d̂t
many alternatives of Ct \ (W ∪W ′), so this exchange is also safe. It is also clear we will always add
at most |Wj \Wj+1| alternatives and remove at most |Wj+1 \Wj | alternatives, so Ŵj and Ŵj+1

are δc-adjacent, and thus uŴj
and uŴj+1

are adjacent. This concludes the proof of the first part of
Statement (ii).

For the second part of Statement (ii), we observe that there can be at most k alternatives of each type
in a committee, so we can upper-bound the number of committees we need to track to (k+ 1)2·2

n

:
We associate each size-k committee U ⊆ C, with two length 22n vectors with non-negative entries
such that for all U ⊆ C, t ∈ T ,

f(U)[t] := |(Ct ∩ U) \W ′| and g(U)[t] := |(Ct ∩ U) ∩W ′|.

The vector f(U)[t] is the number of alternatives of type t in the committee without W ′, and g(U)[t]
is the number of alternatives of type t in the committee that are also in W ′. For these pairs of
vectors we define δc-adjacency in the following way: Let (f(W1), g(W1)) and (f(W2), g(W2)) be
the pairs of vectors representing two committees W 1 and W 2. We say that (f(W1), g(W1)) and
(f(W2), g(W2)) are δc-adjacent if

∑
t∈T |f(W1)[t]− f(W2)[t]|+ |g(W1)[t]− g(W2)[t]| ≤ 2 δc.

It is clear there are at most (k + 1)2·2
n

possible ordered pairs of vectors f and g. For each such
ordered pair of vectors we consider it relevant if there is a corresponding size-k committee, i.e., there
are enough alternatives of each type in both W ′ and C \ W ′ and the score of such a committee
is at least SC(W ) − δs. Note that the scores of any two committees with the same corresponding
ordered pairs of vectors must be equal because we are considering a neutral voting rule. Let

18

85916https://doi.org/10.52202/079017-2728



V̂ := {(f(U), g(U)) | U ⊆ C, SC(W )− δs ≥ SC(U), |U | = k} be the set of ordered pairs of vectors
that are relevant. We construct a restricted reconfiguration graph Ĝ whose vertices are V̂ , where
there is an edge between two pairs of vectors if and only if they are δc-adjacent. Such a graph takes
(k + 1)4·2

n

(n+m)O(1) time to construct.

We proceed to show that there is a (δc, δs)-reconfiguration path of length ℓ′ between W and W ′ if
and only if there is a path in Ĝ between (f(W ), g(W )) and (f(W ′), g(W ′)) of length at most ℓ′.

Assume there is a (δc, δs)-reconfiguration path (W0, . . . ,Wℓ′), where W0 = W and Wℓ′ = W ′,
of length ℓ′. For every Wj , j ∈ {0, . . . , ℓ′}, we construct (f(Wj), g(Wj)) as previously described.
We know that (f(Wj), g(Wj)) must be contained in V̂ by construction. It is easy to observe that
if |Wj∆Wj+1| ≤ 2 δc, then

∑
t∈T |f(Wj)[t]− f(Wj+1)[t]|+ |g(Wj)[t]− g(Wj+1)[t]| ≤ 2 δc and

the two vectors are δc-adjacent.

Assume there is a path in Ĝ between (f(W ), g(W )) and (f(W ′), g(W ′)) of length at most ℓ′. We
construct a reconfiguration path (W0, . . . ,Wℓ′) such that W0 = W , Wℓ′ = W ′ and for every
j ∈ {0, . . . , ℓ′}, t ∈ T , it holds that f(Wj)[t] = |(Ct∩Wj)\W ′| and g(Wj)[t] = |(Ct∩Wj)∩W ′|.
We set W0 := W . Assuming we have constructed committees W0, . . . ,Wj for some j ∈ {0, . . . , ℓ′−
1} so that the above conditions are satisfied, we construct the next committee Wj+1 as follows:

(i) For every type t ∈ T , if f(Wj+1)[t] − f(Wj)[t] > 0, then we add arbitrary f(Wj+1)[t] −
f(Wj)[t] many alternatives from (Ct \Wj) \W ′ to Wj .

(ii) For every type t ∈ T , if f(Wj)[t] − f(Wj+1)[t] > 0, then we remove arbitrary f(Wj)[t] −
f(Wj+1)[t] many alternatives from (Wj ∩ Ct) \W ′ from Wj .

(iii) For every type t ∈ T , if g(Wj+1)[t] − g(Wj)[t] > 0, then we add arbitrary g(Wj+1)[t] −
g(Wj)[t] many alternatives from (Ct \Wj) ∩W ′ to Wj .

(iv) For every type t ∈ T , if g(Wj)[t] − g(Wj+1)[t] > 0, then we remove arbitrary g(Wj)[t] −
g(Wj+1)[t] many alternatives from (Wj ∩ Ct) ∩W ′ from Wj .

It is easy to see that if these exchanges can be performed, then f(Wj+1)[t] = |(Ct ∩Wj+1) \W ′|
and g(Wj+1)[t] = |(Ct ∩ Wj+1) ∩ W ′| must hold. We can perform Exchanges (i) and (iii), as
per construction, there must be enough alternatives of the selected type t in (Wj ∩ Ct) \ W ′ and
(Wj∩Ct)∩W ′. Similarly Exchanges (ii) and (iv) can be performed, because there must be sufficiently
many alternatives in (Ct \W ′) \Wj and (Ct ∩W ′) \Wj , because otherwise Wj+1 could not exist in
the reconfiguration path. Additionally, because W⃗j and W⃗j+1 are δc-adjacent, the committees Wj and
Wj+1 must also be δc-adjacent, as the number of additions and removals in (i)–(iv) is upper-bounded
by

∑
t∈T |f(Wj)[t]− f(Wj+1)[t]|+ |g(Wj)[t]− g(Wj+1)[t]| ≤ 2 δc. The score of Wj+1 must be

sufficient because otherwise (f(Wj+1), g(Wj+1)) would not be on the path.

To see that Wℓ′ = W ′, it is enough to observe that W ′ is the only committee U ⊆ C such that
f(U)[t] = |(Ct ∩W ′) \W ′| = 0 and g(U)[t] = |(Ct ∩W ′) ∩W ′| = |Ct ∩W ′| for every t ∈ T .
Thus we have that Wℓ′ = W ′.

The FPT (resp. XP) statement follows directly from the time of constructing Ĝ and searching for a
shortest path.

B.5 Proof of Proposition 5

Proposition 5 (⋆). For all neutral and score-based multi-winner voting rules λ such that the score of
a committee can be computed in polynomial time, λ-MR is solvable in 22bn(n+m)O(1) time, and
hence FPT wrt. n+ b.

Proof. Let P = (C = [m], V,R) be a preference profile and I = (P, k, δc, δs,W,W ′) an instance
of λ-MR. As every voter approves at most b alternatives, the number of alternatives that are approved
by at least one voter is at most bn. Let Ĉ = ∪i∈V Ai denote the set of alternatives that are approved
by at least one voter. Then |Ĉ| ≤ bn We call these alternatives relevant and the rest of the alternatives
irrelevant.

For every two size-k committees W1,W2 such that W1 ∩ Ĉ = W2 ∩ Ĉ, there is a reconfiguration
path from W1 to W2 by swapping the irrelevant alternatives one by one. This is true because the
irrelevant alternatives are not approved by any voter and λ is neutral, so their identity does not affect
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the score of the committee. We can use this observation to create a modified reconfiguration graph
where we disregard the information concerning the identity of irrelevant alternatives.

We create a modified reconfiguration graph ĜR. The vertices are all at most size-k committees
of Ĉ such that, possibly together with some irrelevant alternatives, they could be committees on a
reconfiguration path. Formally, the set of vertices of ĜR is

V (ĜR) ={uC′ | C ′ ⊆ Ĉ s.t. |C ′| ≤ k ∧ SCλ(W )− SCλ(C
′ ∪ Ŵ ) ≤ δs

for some Ŵ ⊆ C \ Ĉ with |Ŵ | = k − |C|}.

Since |Ĉ| ≤ bn, we have that |V (ĜR)| ≤ 2bn. There is an edge between two vertices uW1 and uW2 if
there are two committees containing W1 and W2 as their relevant alternatives, which are δc-adjacent.
Formally uW1 and uW2 are adjacent if |W1 \W2| ≤ δc and |W2 \W1| ≤ δc. The number of edges
of GR, i.e., |V (GR)|2 is bounded above by (2bn)2. Similarly to the proof of Proposition 3, we can
search for a path from uW∩Ĉ to uW ′∩Ĉ in 22bn · (n+m)O(1) time.

Finally, we show that there exists a path from uW∩Ĉ to uW ′∩Ĉ in the modified reconfiguration graph
if and only if there exists a (δc, δs)-reconfiguration path for I .

For the if direction, let W0, . . . ,Wt with W0 = W and Wt = W ′ be a reconfiguration path. For
each committee Wi on the path there must exist a vertex uWi∩Ĉ . Since |Wi \ Wi+1| ≤ δc and
|Wi+1 \Wi| ≤ δc it follows that |(Wi+1 ∩ Ĉ) \ (Wi ∩ Ĉ)| ≤ δc and |(Wi ∩ Ĉ) \ (Wi+1 ∩ Ĉ)| ≤ δc.
Therefore it follows that uW1∩Ĉ , . . . , uWt∩Ĉ is a path in the modified reconfiguration graph.

For the only-if direction, we first note that irrelevant alternatives can be exchanged with other
irrelevant alternatives without changing the score. We order the irrelevant alternatives in an arbitrary
but fixed way such that the irrelevant alternatives in W are before all other irrelevant alternatives. Let
uV0

, . . . , uVt
be a path in the reconfiguration graph such that V0 = W ∩ Ĉ and Vt = W ′∩ Ĉ. We will

now iteratively build a reconfiguration path. We set W0 = W . Let W0, . . . ,Wi be the committees
corresponding to the first i vertices on the path. We create Wi+1 in the following way:

If |Vi| = |Vi+1|, then we set Wi+1 = Wi \ (Vi \ Vi+1) ∪ (Vi+1 \ Vi). In this case |Wi+1| = |Wi|,
|Wi+1 \ Wi| = |Vi+1 \ Vi| ≤ δc, and |Wi \ Wi+1| = |Vi \ Vi+1| ≤ δc. Therefore this is a valid
reconfiguration step.

If |Vi| > |Vi+1|, then let I be the |Vi|−|Vi+1| many irrelevant alternatives with the lowest index which
are not in Wi. We then set Wi+1 = Wi \ (Vi \ Vi+1) ∪ (Vi+1 \ Vi) ∪ I . In this case |Wi+1| = |Wi|
and due to this |Wi+1 \Wi| = |Wi \Wi+1|. As |Wi \Wi+1| = |Vi \ Vi+1| ≤ δc, this is also a valid
reconfiguration step.

In the last case that |Vi| < |Vi+1|, let I be the |Vi+1| − |Vi| many irrelevant alternatives with the
highest index which are in Wi. We then set Wi+1 = (Wi \ I) \ (Vi \Vi+1)∪ (Vi+1 \Vi). In this case
|Wi+1| = |Wi| and due to this |Wi+1 \Wi| = |Wi \Wi+1|. As |Wi \Wi+1| = |Vi+1 \ Vi| ≤ δc,
this is also a valid reconfiguration step.

It is easy to see that the obtained uVi+1
is in the reconfiguration graph, as SC(Vi+1 ∪ (Wi+1 \ Ĉ)) =

SC(Wi+1) ≥ SC(W )− δs.

By repeating this process, we get a reconfiguration path from W to a committee Wt which satisfies
Wt ∩ Ĉ = W ′ ∩ Ĉ. Therefore the alternatives in Wt∆W ′ are only irrelevant alternatives. We
can greedily exchange these alternatives to obtain a reconfiguration path from Wt to W ′, thereby
completing our proof.

B.6 Proof of Proposition 6

Proposition 6 (⋆). DSR-TJ is W[2]-hard wrt. h+ ℓ̂.

Proof. We provide a parameterized reduction from the W[2]-complete DOMINATING SET prob-
lem (Downey and Fellows, 2013) which is adapted from the one of Mouawad et al. (2016). We will
point out the differences in the reduction.
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DOMINATING SET (DS)
Input: A graph Ĝ and a non-negative integer h.
Question: Does Ĝ admit a dominating set of size h?

We first show the construction and then the correctness. Note that in our construction, the size of the
dominating set as well as the length of a shortest reconfiguration path in the reduced instance will be
linearly bounded by h.

Construction. Let (Ĝ, h) be a DS instance with V̂ = {u1, . . . , un̂} being the vertex set of G. The
graph G of the created instance of DSR-TJ consists of two independent graphs H1 and H2.

The first graph H1 consists of h+4 cliques (i.e., complete subgraphs), each of size h+3 (rather than
h+ 2-cliques consisting of h+ 1 vertices as in the original reduction of Mouawad et al.). We refer to
these cliques as C0, . . . , Ch+3. We furthermore label the vertices in each clique Ci as vi,1, . . . , vi,h+3.
Finally, we add to H1 the following edges E′ = {{v0,i, vz,i} | ∀ i, z ∈ [h + 3]}. In other words,
we make each vertex in C0 adjacent to the vertex in each other clique Cz (z ∈ [h + 3]) that have
the same second index. Therefore, each vertex in each of the cliques C1, . . . , Ch+3 is adjacent to a
vertex in C0, with no two vertices from the same clique Cz being adjacent to the same vertex in C0.

The second graph H2 is the same as the one in the original reduction. It consists of h+ 2 copies of
the original graph Ĝ which we label as G0 = (V1, E1), . . . , Gh+1 = (Vh+1, Eh+1). For each z ∈
{0, . . . , h+1}, let wz,1, . . . , wz,|V | denote the vertices in Gi. We add to H2 the following edges E′′ =

{{w0,i, wz,j} | i, j ∈ [n], z ∈ [h + 1] s.t. {ui, uj} ∈ E(Ĝ) ∨ i = j}. In other words, we make
each vertex w0,i ∈ G0 adjacent to the copies of its neighbors in G0 and to its copies w1,i, . . . , wh+1,i

in G1, . . . , Gh+1.

Finally, we add to H2 a set D of h + 2 dummy vertices d0, . . . , dh+1 and edges that connect the
copied graphs, one for each copy. For every z ∈ {0, . . . , h+ 1}, we make dz adjacent to all vertices
in Gz and all vertices in G0.

We define the initial and target dominating sets as Vs = V (C0) ∪ D ∪ {w1,1, . . . , w1,h} and
Vt = {vi,i | i ∈ [h+ 3]} ∪D ∪ {w1,1, . . . , w1,h}, respectively. Note that the set {w1,1, . . . , w1,h} is
not necessary to dominate the vertices in the created graph, but is needed to maintain the size bound;
it can be replaced with an arbitrary but fixed vertex subset of V (G0) of size h. We use this subset for
ease of reasoning.

To complete the construction, we define the size bound ĥ = 3h + 5 and ℓ = 4h + 5. Clearly, the
construction can be done in polynomial time and |Vs| = |Vt| = ĥ.

Correctness. We show that (G, h) admits a size-h dominating set if and only if the constructed
instance has a length-ℓ reconfiguration path between Vs and Vt. For the “only if” part, let U ′ denote
a size-h dominating set of Ĝ. We first exchange the h vertices w1,z , z ∈ [h], one-by-one with the
vertices from the copies corresponding to V ′, i.e., {w1,i | ui ∈ U ′}. Afterwards, we exchange
each dummy vertex from D with a distinct vertex vz,z , z ∈ [h+ 2]. Next, we exchange one vertex
from V (C0) with vertex vh+3,h+3. Note that now the remaining vertices from the clique C0 are
not necessary to dominate the vertices in the created graph anymore. Thus, we can exchange the
remaining h+ 2 vertices from the clique C0 with the h+ 2 dummies from D, one-by-one, reaching
the target dominating set. The length of the reconfiguration path is h+h+2+h+3 = 3h+5 = ℓ.

For the “if” part, assume that the constructed instance admits a length-ℓ reconfiguration path be-
tween Vs and Vt. We aim to show that on the reconfiguration path there must be a dominating set
of H1 ∪H2 containing a size-h subset which corresponds to a dominating set of Ĝ. We recall an
observation by Mouawad et al. that for h+ 4 cliques, each of size h+ 3, and connected as described
in their construction, they need h+ 3 additional vertices on that graph in order to be able to switch
from the dominating set consisting of V (C0) to the dominating set {vi,i | i ∈ [h+ 2]} via TAR, as
one needs to dominate all vertices from Cz , z ∈ [h+ 3], before removing any vertex from C0.

We show similarly that for the TJ variant we can only afford to have h vertices to dominate all vertices
from H2 in order to “save up” h+2 to exchange for the vertices from {vz,z | z ∈ [h+2]}. To achieve
this, we claim that for each dominating set X on the reconfiguration path which does not contain all
vertices from the clique C0, i.e., |X ∩ V (C0)| ̸= |V (C0)|, it must hold that |V (Cz) ∈ X| ≥ 1 for
every z ∈ [h+2]. Let v0,i be a vertex that is not included in X . Then, in order to dominate all vertices
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Figure 3: Left: The dependency of the median time to find a reconfiguration path to the number of voters n on
Netflix data. Right: The dependency of the median time to find a reconfiguration path to the radius of Manhattan
data.

Figure 4: Left: CC, Right: PAV. The dependency of a median time to find a reconfiguration path to p under
(p-ϕ)-Resampling data, measured in seconds.

from {vz,i | z ∈ [h+ 3]}, we need a vertex from each clique Cz , as claimed. Since no vertex in C0

is contained in Vt, in order to reconfigure from Vs to Vt, there must be an intermediate dominating
set X ′ where one vertex from V (C0) is missing and at least one vertex from each clique Cz is present.
This means that X ′ contains h+ 3 + h+ 2 = 2h+ 5 vertices from the first graph H1. By the size
bound ĥ = 3h + 5, we need h vertices to dominate the second graph H2. By construction, this is
possible only if it corresponds to a size-h dominating set of the input graph Ĝ. This concludes the “if”
part and the correctness proof.

C Experimental Research

In this section, we present some preliminary research on how easy reconfiguration paths are to
find in practice. We discover that reconfiguration paths almost always exist and can be found quite
efficiently. We use both real-life (Netflix Prize data (Netflix, 2006)) and synthetic data (geometric
and (p-ϕ)-resampling).

C.1 Setup and Heuristic

We perform the experiments for both CC and PAV and committee sizes k ∈ {3, 4, 5}.

For each instance-rule-k-combination, we create 100 random committees. We order them by score,
then pick and pair the 20 best ones. This way we obtain random but still reasonably well-scoring
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Table 2: Netflix data: Median, average, and variance of the running time, and the number of committee pairs.
The data is only taken on the committee pairs that did not time out, except the total number of committee pairs.
The proportion of timeouts is in Table 3. Timeout 60s.

k = 3 k = 4 k = 5
Rule n Med. Avg. σ2 # Pairs Med. Avg. σ2 # Pairs Med. Avg. σ2 # Pairs

CC

0 - 999 0.01 0.02 0.00 9020 0.07 0.07 0.00 9020 0.40 0.41 0.04 9020
1000 - 1999 0.02 0.03 0.00 2650 0.10 0.10 0.00 2650 0.51 0.50 0.05 2650
2000 - 2999 0.03 0.03 0.00 980 0.11 0.11 0.00 980 0.54 0.52 0.05 980
3000 - 3999 0.03 0.04 0.00 1190 0.13 0.14 0.00 1190 0.61 0.63 0.07 1190
4000 - 4999 0.04 0.04 0.00 1170 0.15 0.16 0.00 1170 0.69 0.72 0.09 1170
5000 - 5999 0.04 0.05 0.00 720 0.19 0.20 0.01 720 0.88 0.94 0.16 720
6000 - 6999 0.05 0.06 0.00 680 0.21 0.23 0.01 680 0.95 1.04 0.24 680
7000 - 7999 0.06 0.08 0.00 830 0.25 0.28 0.02 830 1.15 1.31 1.01 830
8000 - 8999 0.07 0.08 0.00 860 0.26 0.29 0.02 860 1.22 1.40 0.61 860
9000 - 9999 0.08 0.09 0.00 590 0.29 0.31 0.02 600 1.31 1.52 1.70 600

10000 - 10999 0.09 0.12 0.04 560 0.33 0.42 0.56 560 1.46 1.93 9.34 560
11000 - 11999 0.09 0.11 0.01 430 0.36 0.40 0.04 430 1.63 1.80 0.86 430
12000 - 12999 0.11 0.18 0.21 430 0.42 0.56 1.04 430 1.94 2.34 7.09 430
13000 - 13999 0.12 0.14 0.01 340 0.45 0.49 0.05 350 2.09 2.18 1.18 350
14000 - 14999 0.13 0.15 0.01 220 0.52 0.57 0.07 220 2.22 2.34 1.42 220
15000 - 15999 0.13 0.16 0.01 300 0.55 0.60 0.08 300 2.75 2.76 2.05 300
16000 - 16999 0.13 0.14 0.00 190 0.47 0.51 0.06 190 2.26 2.37 1.45 190
17000 - 17999 0.13 0.32 1.50 220 0.51 0.99 6.14 220 2.30 3.21 29.32 220
18000 - 18999 0.13 0.21 0.11 100 0.47 0.53 0.09 100 2.05 2.27 1.02 100
19000 - 19999 0.14 0.16 0.01 20 0.47 0.49 0.02 20 2.76 2.96 0.91 20

20000 - 0.25 0.32 0.06 30 0.70 1.21 2.44 30 3.42 5.31 23.19 30

PAV

0 - 999 0.02 0.02 0.00 9020 0.07 0.08 0.00 9020 0.31 0.41 0.12 9020
1000 - 1999 0.03 0.03 0.00 2650 0.12 0.13 0.02 2650 0.46 0.57 0.41 2650
2000 - 2999 0.03 0.04 0.00 980 0.14 0.14 0.00 980 0.52 0.60 0.10 980
3000 - 3999 0.04 0.05 0.00 1190 0.16 0.18 0.01 1190 0.76 0.83 0.23 1190
4000 - 4999 0.05 0.06 0.00 1170 0.19 0.21 0.01 1170 0.90 0.99 0.37 1170
5000 - 5999 0.06 0.07 0.00 720 0.24 0.27 0.02 720 1.21 1.39 0.66 720
6000 - 6999 0.07 0.08 0.00 680 0.29 0.33 0.03 680 1.43 1.63 0.89 680
7000 - 7999 0.09 0.10 0.00 830 0.35 0.43 0.09 830 1.70 2.10 2.24 830
8000 - 8999 0.10 0.12 0.01 860 0.40 0.48 0.12 860 1.93 2.39 3.19 860
9000 - 9999 0.10 0.13 0.02 590 0.44 0.53 0.13 600 2.13 2.58 4.40 600

10000 - 10999 0.12 0.17 0.05 560 0.50 0.71 2.01 560 2.33 3.07 17.26 560
11000 - 11999 0.13 0.16 0.02 430 0.52 0.63 0.15 430 2.72 3.16 3.64 430
12000 - 12999 0.16 0.26 0.22 430 0.68 1.05 6.15 430 3.09 3.77 9.49 430
13000 - 13999 0.17 0.20 0.02 340 0.71 0.84 0.27 350 3.51 4.02 6.83 350
14000 - 14999 0.19 0.24 0.03 220 0.81 0.95 0.35 220 4.01 5.12 14.54 220
15000 - 15999 0.19 0.24 0.03 300 0.86 1.02 0.37 300 4.86 5.59 13.46 300
16000 - 16999 0.18 0.22 0.02 190 0.77 0.90 0.28 190 4.12 4.71 10.21 190
17000 - 17999 0.20 0.64 8.75 220 0.79 1.99 36.48 220 3.88 5.41 38.97 220
18000 - 18999 0.18 0.28 0.07 100 0.69 0.86 0.32 100 3.68 4.10 7.14 100
19000 - 19999 0.20 0.21 0.01 20 0.94 1.00 0.20 20 3.97 4.31 6.65 20

20000 - 0.28 0.39 0.08 30 1.31 2.65 7.23 30 6.21 10.69 102.87 30

committees. If the number of alternatives is too small to obtain 100 random committees, we skip the
instance. For each pair, we choose the lower scoring committee as the starting committee W , the
higher scoring as the goal committee W ′, and set δs = 0 and δc = 1.

To find a reconfiguration path, we create an initial set S := W ∪W ′. We create the reconfiguration
graph that only uses the alternatives in S. We use Python and our modification of the abcvoting
library (Lackner et al., 2023) to find all the committees that use alternatives in S and whose score is at
least SC(W ). If there is no W -W ′ path in this graph, we add the alternative with the highest number
of approvals outside of S to S, and add the sufficiently high-scoring committees within S that contain
this alternative to the reconfiguration graph. We repeat this until we either find a reconfiguration path,
show there is no path, or time out.

The experiments are run on Python 3.10.12. Additionally we use for example the following Python
libraries: abcvoting version 2.8.0, Gurobipy version 10.0.2 and Networkx version 3.1. A complete
list of all the dependencies is in the supplementary material. We modify the abcvoting library to be
able to compute all committees whose score is at least some percentage of the optimal score. The
experiments are run on Ubuntu 22.04.2 with 3.8 GB of RAM, CPU of the virtual machine “Intel
Xeon (Cascadelake), 2x 1-Core”, on a host with “Intel Xeon Gold 5215, 2x 10-Core”.

We set the timeout for finding the reconfiguration path to 60 seconds.
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Table 3: Netflix data: The proportion of timeout pairs. Timeout 60s.

k = 3 k = 4 k = 5
n CC PAV CC PAV CC PAV

0 - 999 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %
1000 - 1999 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %
2000 - 2999 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %
3000 - 3999 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %
4000 - 4999 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %
5000 - 5999 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %
6000 - 6999 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %
7000 - 7999 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %
8000 - 8999 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %
9000 - 9999 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %

10000 - 10999 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.2 %
11000 - 11999 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %
12000 - 12999 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.2 %
13000 - 13999 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %
14000 - 14999 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %
15000 - 15999 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %
16000 - 16999 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %
17000 - 17999 0.0 % 0.0 % 0.0 % 0.5 % 1.4 % 1.8 %
18000 - 18999 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %
19000 - 19999 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %

20000 - 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %

Table 4: Manhattan data: Median, average, and variance of the running time. The data is only taken on the
committee pairs that did not time out. The proportion of timeouts is in Table 5. Timeout 60s. There are 100
instances for each radius.

k = 3 k = 4 k = 5
Rule Radius Med. Avg. σ2 Med. Avg. σ2 Med. Avg. σ2

CC

0.1 0.01 0.01 0.00 0.04 0.03 0.00 0.14 0.14 0.01
0.2 0.01 0.02 0.02 0.06 0.08 0.15 0.23 0.27 0.03
0.3 0.02 0.04 0.04 0.09 0.11 0.01 0.35 0.40 0.07
0.4 0.03 0.16 0.77 0.13 0.22 1.05 0.43 0.51 1.19
0.5 0.03 0.32 2.02 0.15 0.31 2.74 0.44 0.50 0.09
0.6 0.03 0.32 4.80 0.12 0.18 1.88 0.34 0.40 0.07
0.7 0.02 0.14 2.27 0.10 0.10 0.00 0.54 0.52 0.06

PAV

0.1 0.01 0.01 0.00 0.04 0.04 0.00 0.17 0.16 0.01
0.2 0.02 0.03 0.00 0.11 0.11 0.00 0.45 0.52 0.14
0.3 0.06 0.06 0.00 0.31 0.35 0.22 1.73 1.92 1.61
0.4 0.11 0.12 0.05 0.78 0.79 0.18 4.54 4.89 8.87
0.5 0.17 0.20 0.14 1.28 1.26 0.36 7.64 7.86 19.70
0.6 0.26 0.30 1.65 1.85 1.78 0.63 12.44 11.73 33.98
0.7 0.27 0.28 0.02 2.04 1.98 0.68 13.38 12.12 34.25

Table 5: Manhattan data: The proportion of timeout pairs. Timeout 60s.

k = 3 k = 4 k = 5
Radius CC PAV CC PAV CC PAV

0.1 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %
0.2 0.0 % 0.0 % 0.2 % 0.0 % 0.0 % 0.0 %
0.3 0.0 % 0.0 % 0.2 % 0.0 % 0.0 % 0.0 %
0.4 0.0 % 0.0 % 0.0 % 0.1 % 0.1 % 0.0 %
0.5 0.0 % 0.0 % 0.1 % 0.1 % 0.1 % 0.0 %
0.6 0.2 % 0.0 % 0.1 % 0.0 % 0.0 % 0.0 %
0.7 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %
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Table 6: Resampling data: Median, average, and variance of the running time. The data is only taken on the
committee pairs that did not time out. The proportion of timeouts is in Table 7. Timeout 60s. There are 100
instances for each (p-ϕ)-pair.

k = 3 k = 4 k = 5
Rule p ϕ Med. Avg. σ2 Med. Avg. σ2 Med. Avg. σ2

CC

0.05

0.25 0.01 0.02 0.00 0.02 0.09 0.01 0.23 0.42 0.18
0.5 0.01 0.02 0.00 0.05 0.07 0.00 0.37 0.42 0.13

0.75 0.01 0.02 0.00 0.07 0.06 0.00 0.37 0.34 0.06
1 0.01 0.02 0.00 0.06 0.06 0.00 0.28 0.30 0.03

0.25

0.25 0.05 0.06 0.00 0.21 0.21 0.01 0.89 0.95 0.40
0.5 0.08 0.08 0.00 0.25 0.24 0.01 0.97 0.98 0.30

0.75 0.08 0.07 0.00 0.23 0.22 0.01 1.01 0.98 0.25
1 0.07 0.23 2.59 0.23 0.28 0.67 0.98 0.98 0.30

0.5

0.25 0.03 0.03 0.00 0.14 0.14 0.00 0.70 0.81 0.22
0.5 0.06 0.13 0.62 0.18 0.22 0.02 0.63 0.74 0.18

0.75 0.11 0.20 0.72 0.26 0.44 5.82 0.64 0.77 0.28
1 0.10 1.15 22.22 0.26 1.06 24.11 0.60 0.79 5.25

0.75

0.25 0.04 0.03 0.00 0.18 0.15 0.00 0.56 0.82 0.20
0.5 0.03 0.03 0.00 0.20 0.17 0.01 1.07 0.94 0.23

0.75 0.03 0.09 1.47 0.19 0.17 0.00 1.24 1.00 0.22
1 0.02 0.14 0.31 0.19 0.18 0.01 1.15 0.96 0.20

PAV

0.05

0.25 0.01 0.04 0.00 0.07 0.17 0.08 0.48 0.92 2.61
0.5 0.02 0.03 0.00 0.08 0.10 0.01 0.42 0.55 0.31

0.75 0.02 0.02 0.00 0.09 0.08 0.00 0.32 0.32 0.06
1 0.02 0.02 0.00 0.07 0.07 0.00 0.25 0.25 0.02

0.25

0.25 0.34 0.39 0.10 2.27 2.09 1.27 9.45 9.34 28.37
0.5 0.24 0.27 0.04 1.66 1.71 1.05 9.25 10.37 43.26

0.75 0.17 0.18 0.01 1.02 1.07 0.39 7.64 7.60 22.35
1 0.16 0.16 0.01 0.97 0.96 0.55 6.43 5.99 9.71

0.5

0.25 0.27 0.35 0.07 2.45 2.34 1.42 11.92 10.62 24.53
0.5 0.45 0.43 0.05 3.26 3.00 1.62 17.87 15.87 44.97

0.75 0.45 0.44 0.05 3.26 3.02 1.41 18.95 16.69 46.51
1 0.39 0.39 0.16 3.25 2.99 1.57 17.20 15.72 58.93

0.75

0.25 0.10 0.10 0.00 0.57 0.56 0.05 3.57 3.56 5.53
0.5 0.21 0.20 0.01 1.39 1.30 0.24 8.55 7.61 10.59

0.75 0.29 0.29 0.02 1.97 1.83 0.49 11.68 10.33 19.17
1 0.36 0.34 0.03 2.50 2.30 0.85 13.80 12.06 26.80

Table 7: Resampling data: The proportion of timeout pairs. Timeout 60s.

k = 3 k = 4 k = 5
p ϕ CC PAV CC PAV CC PAV

0.05

0.25 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %
0.5 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %

0.75 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %
1 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %

0.25

0.25 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %
0.5 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %

0.75 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %
1 0.1 % 0.0 % 0.4 % 0.0 % 0.4 % 0.0 %

0.5

0.25 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %
0.5 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %

0.75 0.0 % 0.0 % 0.8 % 0.0 % 0.1 % 0.0 %
1 0.3 % 0.1 % 1.6 % 0.1 % 0.8 % 0.0 %

0.75

0.25 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %
0.5 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %

0.75 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %
1 0.0 % 0.1 % 0.0 % 0.0 % 0.0 % 0.0 %
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C.1.1 Data Preprocessing

Netflix data. Netflix data contains ratings for 17770 movies from 480189 users.The ratings contain
the date of the rating and an integer score from the range [1, 5]. To create approval preferences, we
interpret a rating lower than 2 or a lack of a rating as disapproval, and a rating of at least 3 as approval.
To make multiple elections, we divide the ratings by date. There are in total 2180 days.

We turn the ratings into approval votes and divide them by dates. To make the instances smaller,
for each day, we remove all the movies that got fewer than 5% of the number of approvals of the
most popular movie of the day. We also ignore each day with fewer than 10 voters (i.e., users) or 5
alternatives (i.e., movies). In the end 2162 instances remain.

Synthetic data. In all synthetic instances, we have n = 100 voters and m = 100 alternatives.
However, if either a voter does not approve of any alternatives or an alternative is approved by
no voter, then it is removed from the instance. As a result, some instances have fewer voters or
alternatives. We create two different types of data sets.

The first type uses geometric (Manhattan) preferences: We choose the locations of both voters and
alternatives uniformly at random in [0, 1] × [0, 1]. We fix a radius r, and each voter approves the
alternatives that are within distance r from him according to the metric given by the ℓ1-norm. We use
the values {0.1, 0.2, . . . , 0.7} for r and create 100 instances for every value of r.

The second type uses (p-ϕ)-resampling model (Szufa et al., 2022). In this model the variable p
is the probability that a voter approves of an alternative, and ϕ ∈ [0, 1] controls how dissimilar
the voters are to each other; the higher ϕ, the less similar the voters are. We use values (p, ϕ) ∈
{0.05, 0.25, 0.5, 0.75} × {0.25, 0.5, 0.75, 1}, and create 100 instances for every combination.

More formally, we first create a central vote that consists of ⌊p ·m⌋ randomly selected alternatives.
The central vote disapproves all other alternatives. For every voter-alternative pair (vi, ci), the voter vi
takes his opinion on ci from the central vote with probability 1−ϕ and with probability ϕ “resamples”
his opinion on ci: He approves ci with probability p.

C.2 Evaluation

The median running times of the instances that did not time out are presented in Figure 3 and Figure 4.
More detailed data is presented in Tables 2 to 7.

Overall we discover that finding a reconfiguration path is relatively fast in practice, and CC is
noticeably faster than PAV. Despite our timeout being only 60 seconds, less than 0.03% of the
committee pairs time out. More detailed breakdown of timeouts can be found in Tables 3, 5 and 7.

Of the pairs that did not time out, all but three pairs of committees admit a reconfiguration path. The
three pairs in question were all from Manhattan data with radius 0.6 and k = 3. We must however
note that it is rather difficult to show non-existence of reconfiguration path, because it requires in
theory creating the whole reconfiguration graph, whose size is in O(mk).

Median running times for Netflix data, divided by the number of voters, are presented in Figure 3[Left].
More detailed information is available in Tables 2 and 3. The effect of the number of voters is
surprisingly small.

Median running times of Manhattan data, divided by different values of p and ϕ, are presented in
Figure 3[Right], and more detailed information in Tables 4 and 5. The larger the radius, i.e., the more
alternatives the voters approve, the harder PAV appears to be.

Median running times of (p-ϕ)-resampling data, divided by different values of p and ϕ, are presented
in Figure 4, and more detailed information in Tables 6 and 7. The effect of ϕ to the running time
appear to be rather moderate, although we can see from Table 7 that the timeouts are most frequent
when ϕ is high, i.e., the votes are dissimilar. We see from Figure 4[Right] that under PAV the approval
probability p has a clear effect on the running time: p = 0.5 has the highest running time, with the
times decreasing further away. The problem appears easier when the alternatives either approve a few
or almost all alternatives.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: All computational complexity claims made in the abstract and introduction are
backed up by the main body of the paper. To the best of our knowledge we are the first to
introduce the framework presented in the paper.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We make it clear that our experimental research is only preliminary, and should
be only used as a suggestion of interesting future research directions. Otherwise, our work
is only theoretical.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: All of our results have complete proofs either in the main paper or the appendix.
The guidelines are followed.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The setup is described in detail in Appendix C. The dependencies are described.
All the code is included in the code appendix. The datasets are either provided by us, or
in the case of Netflix data, can be derived from publicly available data using our code or
description. The appendix contains also a description of the hardware we use.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code and the synthetic data are included in the supplementary material.
The raw Netflix data, which is not ours, is available at Netflix (2006). Code and description
of the preprocessing are included in the supplementary material and Appendix C.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The parameters for the creation of the synthetic data are described, as are the
parameters of the reconfiguration path we are looking for (committee size, δs, δc). This
information is not included in the main paper, because the experiments are only preliminary,
and we do not make wide claims based on them.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
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Justification: We do not make claims of the significance of our results, as the research is
only expressed as preliminary observation that requires further research. However, we do
report the variance in Appendix C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The resources are provided in Appendix C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our research has no societal or human impact. All datasets and code are
credited and their licenses described.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

30

85928https://doi.org/10.52202/079017-2728

https://neurips.cc/public/EthicsGuidelines


Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There is no societal impact.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: There is no such risk. All data is either synthetic or derived from a public
dataset.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: abcvoting library and the Netflix data are cited, and their licenses are available
there. abcvoting library uses MIT license and Netflix data its own license, which is described
in its references Netflix (2006).
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Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We include a documentation of the synthetic instances we created in the
supplementary material.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: There is no crowdsourcing or human experiments.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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Answer: [NA]
Justification: There is no crowdsourcing or research on human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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