
Brain-JEPA: Brain Dynamics Foundation Model
with Gradient Positioning and Spatiotemporal Masking

Zijian Dong∗, Ruilin Li∗, Yilei Wu, Thuan Tinh Nguyen, Joanna Su Xian Chong, Fang Ji,

Nathanael Ren Jie Tong, Christopher Li Hsian Chen, Juan Helen Zhou†

zijian.dong@u.nus.edu, {li.rl, helen.zhou}@nus.edu.sg

National University of Singapore

Abstract

We introduce Brain-JEPA, a brain dynamics foundation model with the Joint-
Embedding Predictive Architecture (JEPA). This pioneering model achieves
state-of-the-art performance in demographic prediction, disease diagnosis/prognosis,
and trait prediction through fine-tuning. Furthermore, it excels in off-the-shelf
evaluations (e.g., linear probing) and demonstrates superior generalizability across
different ethnic groups, surpassing the previous large model for brain activity
significantly. Brain-JEPA incorporates two innovative techniques: Brain Gradient
Positioning and Spatiotemporal Masking. Brain Gradient Positioning introduces
a functional coordinate system for brain functional parcellation, enhancing the
positional encoding of different Regions of Interest (ROIs). Spatiotemporal Masking,
tailored to the unique characteristics of fMRI data, addresses the challenge of het-
erogeneous time-series patches. These methodologies enhance model performance
and advance our understanding of the neural circuits underlying cognition. Overall,
Brain-JEPA is paving the way to address pivotal questions of building brain func-
tional coordinate system and masking brain activity at the AI-neuroscience interface,
and setting a potentially new paradigm in brain activity analysis through downstream
adaptation. Code is available at: https://github.com/Eric-LRL/Brain-JEPA.

1 Introduction

Understanding large-scale brain activity data is crucial for deciphering the complex mechanisms
underlying cognitive processes and human behavior. Functional magnetic resonance imaging (fMRI)
captures blood-oxygen-level dependent (BOLD) signals that reflect regional brain activity. It emerges
as an indispensable tool in neuroscience for identifying the neural bases of cognitive processes [1, 2, 3].
Deep learning approaches have been developed for fMRI analysis, improving brain disease diagnosis
and deepening insights into cognition and behavior [4, 5, 6, 7, 8, 9, 10, 11, 12, 13]. Despite notable
advances, these task-specific models suffer from limited generalizability and adaptability to other
tasks. In addition, they fail to leverage the vast amounts of unlabeled fMRI data available [14, 15].

Artificial intelligence (AI) is experiencing a paradigm shift from task-specific training to building
foundation models that are trained on extensive data using self-supervision at scale [16]. Unlike the
models with singular functions, foundation models can be adapted to a diverse array of downstream
tasks. Large language models such as GPT [17] and LLaMA [18] have shown significant potential in
natural language processing, with expansive applications in healthcare, biomedicine, and beyond [16].
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In the field of fMRI time series analysis, brain language model (brainLM) is one of the most representa-
tive foundation models [14]. It is a masked autoencoder (MAE) [19] trained to reconstruct masked fMRI
time series. However, as an indirect measure of neuronal activity, the BOLD signal has a relatively low
signal-to-noise ratio (SNR), which is influenced by a mixture of factors and distorted by non-neuronal
fluctuations [20]. Filling every bit of the fMRI time series as in brainLM can hinder the model’s ability
to distinguish between noise and actual signals. This can result in either amplifying noise or missing
critical subtle variations in brain activity. Unlike natural images, which have high information density
with structures such as edges and colors, fMRI data has spatiotemporally sparser signals distributed
across brain volumes without clear boundaries, making it difficult to accurately reconstruct signal of
masked regions of interest (ROIs). Furthermore, it has been widely shown that masked pretraining
in generative architectures such as MAE leads to suboptimal performance in off-the-shelf evaluations
(e.g., linear probing) [21]. Because of that, BrainLM requires computationally intensive end-to-end
finetuning, with a three-layer MLP attached to the pretrained encoder, to achieve optimal perfor-
mance. Furthermore, the absence of comparisons with state-of-the-art methods for downstream task
performance and the focus only on Caucasian cohorts limit BrainLM’s applicability in clinical settings.

Therefore, rather than focusing on the original brain activity time series, the inherent noise and
sparse information density of fMRI lead us to explore the latent space of fMRI time series extracted
from a strong encoder (e.g., Vision Transformer (ViT) [22]). It potentially offers a higher SNR
after "compression", achieving a greater level of abstraction that captures subtle yet crucial patterns
[23]. Recently, Imaged-based Joint-Embedding Predictive Architecture (I-JEPA) has been proposed
as a non-generative architecture for self-supervised learning from images [21]. It predicts the
representations of various target blocks rather than reconstructing the masked input like MAE during
pretraining. By predicting representations in the latent space, I-JEPA enhances the semantic quality
of learned representations and boosts scalability and efficiency.

Training a brain dynamics foundation model using a JEPA-like architecture might offer advantages
over the MAE approach. However, the distinct spatiotemporal characteristics of fMRI data make
direct application of the JEPA architecture suboptimal: 1 Positional embeddings in transformer play
a crucial role by incorporating information about the order or position of tokens in the input data (e.g.,
the order of different words in a sentence or the locations of pixels in an image) [24]. However, there
is no such natural "order" for different ROIs across the 3D brain volume in fMRI. BrainLM utilizes
anatomical positions to label each ROI [14], yet it does not account for brain functional parcellation,
where nearby anatomical ROIs might exhibit rather different brain activation patterns represented
by a lack of local coherence in fMRI data [25]. 2 I-JEPA employs a random multi-block selection
of context and target. However, unlike images, fMRI presents complex patterns across both spatial
and temporal domains. Given the smaller sample size and sparser information density in fMRI datasets
compared to datasets like ImageNet [26], learning in fMRI requires a stronger inductive bias. This
would enhance the efficiency of training models by better capturing the underlying patterns specific to
brain activity. Given the unique challenges presented by fMRI data, there is a pressing need to develop
a functinal coordinate system and a tailored masking strategy for large-scale pretraining on fMRI data.

These neglected yet crucial questions of developing a functional coordinate system and a masking
strategy for large-scale pretraining with fMRI data, lie at the intersection of AI and neuroscience,
highlighting important interdisciplinary challenges.

To address these gaps, here we introduce Brain-JEPA, a brain dynamics foundation model with the
Joint-Embedding Predictive Architecture (JEPA). Instead of reconstructing masked inputs during
pretraining, Brain-JEPA predicts abstract representations of sampled targets from the observation.
We propose two innovative techniques to enhance model performance and address key questions in
AI for neuroscience: First, Brain Gradient Positioning provides a brain functional coordinate system
for positional embedding of brain functional parcellation (Section 3.1). Second, Spatiotemporal
Masking offers a tailored masking strategy for the heterogeneous time-series patches inherent in
fMRI (Section 3.2). Moreover, in downstream experiments, our proposed Brain-JEPA achieves
state-of-the-art results in demographic prediction, disease diagnosis/prognosis, and trait prediction
through fine-tuning. It also excels in off-the-shelf evaluations (e.g., linear probing), and shows superior
generalizability across different ethnic groups. Brain-JEPA enhances brain activity analysis and
deepens our understanding of critical AI-neuroscience questions related to constructing functional
coordinate systems and developing spatiotemporal masking strategies.
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Figure 1: Brain-JEPA. With a Vision Transformer (ViT) as the observation encoder fθ, Brain-JEPA
employs a single observation block to predict the representations of target blocks. (1) The input
fMRI data is initially segmented into patches for subsequent processing. (2) Through Spatiotemporal
Masking, the input data—excluding the observation block—is divided into three distinct regions:
Cross-ROI (α), Cross-Time (β), and Double-Cross (γ). The target blocks are sampled from different
regions separately. (3) A narrower ViT, serving as the predictor gϕ, takes the output sx from fθ. It
predicts the representations of a target block ŝry conditioned on positional embedding (brain gradient
positioning for ROI locations and sine and cosine functions for temporal positioning). (4) These
predicted representations align with those sry from the target encoder fθ, whose parameters are
incrementally updated through an Exponential Moving Average (EMA) of the observation encoder’s
parameters.

2 Related Work

Task-specific Models for fMRI (state-of-the-art). SVR and MLP have been used in fMRI analysis,
utilizing Pearson correlation matrices derived from fMRI time series as input [8, 9]. Deep learning
models have substantially advanced fMRI analysis in recent years. BrainNetCNN [6] introduces a
convolutional neural network (CNN) with specialized convolutional filters tailored for brain network.
BrainGNN [5] utilizes ROI-aware graph neural networks (GNNs) to effectively harness functional
brain network information, incorporating a pooling operator to highlight key ROIs. More recently,
Brain network transformer (BNT) [4] employs transformer encoders to generate embeddings for ROIs
based on Pearson correlation matrices, alongside a readout layer designed to identify clusters within
the brain. Swift [27] applies Swin Transformer architecture [28] to process brain functional data. As
noted in Section 1, these task-specific models have limited generalizability and adaptability across
different tasks, and fail to utilize extensive unlabeled fMRI data.

The fMRI Foundation Model. BrainLM [14] stands out as the first fMRI foundation model,
employing MAE for self-supervised pretraining of fMRI data. In this approach, fMRI time series
are treated as images and patchified. The training goal is to reconstruct the masked patches of the
time series. As outlined in Section 1, BrainLM exhibits several limitations: 1) Direct reconstruction
of masked input may not be suitable for inherently noisy data with low information density, such
as fMRI. It complicates the differentiation between noise and signal, making it difficult to capture
underlying patterns. 2) Generative architectures like MAE result in suboptimal performance in linear
probing, a critical method for evaluating learned representations. 3) The absence of comparisons with
state-of-the-art models and evaluations limited to Caucasian cohorts restricts its broader applicability.
BrainMass [29], a concurrent work in large-scale self-supervised learning for neuroimaging, focuses
on brain network analysis rather than brain dynamics, distinguishing it from our research.
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3 Method

In this section, we outline the methodology of Brain-JEPA. Instead of reconstructing masked patches of
fMRI time series, Brain-JEPA operates in the latent space, as depicted in Figure 1. With the observation
block excluded, the input data is divided into three non-overlapping regions: Cross-Time (α), Cross-
ROI (β), and Double-Cross (γ). This division forces the model to engage in forecasting time series,
generalizing across unseen ROIs, and predicting time series for unseen ROIs. Section 3.1 details the
Brain Gradient Positioning we proposed, which encodes the functional relationships among different
ROIs, serving as a brain functional coordinate system in the brain’s functional organization. In Section
3.2, we introduce Spatiotemporal Masking, which injects a strong inductive bias during the masking
process, leading to faster convergence during pretraining and superior performance in downstream tasks.

3.1 Brain Gradient Positioning

Gradient Positioning

Colour Projection 
(B) Brain Gradient Space(A) Brain Surface Space

Figure 2: Brain gradient positioning. Brain cortical
regions are situated in the top 3 gradient axes and colored
based on their positions. These colors are then projected
back into the brain surface.

We propose Brain Gradient Positioning,
which provides a brain functional coordi-
nates system based on the functional con-
nectivity gradient. Positional embeddings
are crucial in transformer architectures, as
they encode information about the posi-
tions of tokens in a sequence. These em-
beddings can be implemented using fixed
sine and cosine functions across various fre-
quencies [24] or through learnable embed-
dings that adapt during training [30]. How-
ever, the integration of positional informa-
tion into fMRI time series has long been ne-
glected. FMRI data, incorporating complex
spatiotemporal information, requires sepa-
rate consideration of its temporal and spatial
domains. The temporal domain, represent-
ing timesteps during scanning, is well-suited for conventional sine and cosine positional embeddings,
as the time series in each ROI is sequentially ordered by time. However, this method is not appropriate
for the spatial domain, where ROIs across brain volumes lack a simple, inherent order, making sine and
cosine embeddings unsuitable for capturing spatial relationships. Anatomical locations of ROIs offer an
alternative to sine and cosine functions [14] but fall short in capturing functional parcellation. Spatially
adjacent ROIs can exhibit significantly different brain activation patterns, reflecting the inherent lack
of local coherence in fMRI data [25].

The functional connectivity gradient is a continuous measure that captures the functional relations
among different ROIs. Each attribute in the gradient represents an axis in the latent space of brain
regions and networks. The relative distance between different ROIs indicates the similarity in their
connectivity (i.e., shorter distance means higher similarity in connectivity). The concept of a spatial
gradient as conceptualized by Mesulam in 1998 entailed a synaptic hierarchy that supports cognitive
processes [31]. Recent studies have built upon this concept, revealing that brain networks in adult
humans and macaques exhibit linear distributions across different gradient axes [32]. Using this
methodology, it has been shown that these gradients reflect the functional changes related to age
[33, 34, 35, 36, 37], cognition [37, 38] and brain diseases [35, 39, 40]. These gradients together provide
a framework to assess the relationship between brain regions based on their relative positioning across
different gradient axes.

Before deriving the gradients, we first calculate a non-negative affinity matrix A(i,j) (a graph Lapla-
cian) as follows:

A(i,j)=1− 1

π
cos−1(

cic
T
j

∥ci∥∥cj∥
) (1)

where ci and cj represents the features (functional connectivity) across the ROI i and j, respectively.
Gradients are then derived using diffusion map [41, 42], a nonlinear dimension reduction method used
to identify the underlying manifold structure of the data. We can obtain the diffusion matrix Lδ and the
diffusion operator M δ from A as follows:
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M δ=D−1Lδ,Lδ=D− 1
δAD− 1

δ (2)

where D is the degree matrix of A. Here δ is set to 0.5 to maintain the global relations between ROIs
in the embedding space.

Finally, we can compute the eigenvectors and eigenvalues of M δ, and stack the column vectors to
formulate the diffusion map Φt∈Rn×m (nROIs in total, withm gradients for each) at time t and the
gradient matrix G with the same dimension:

Φt=[λt1ψ1,λ
t
2ψ2,...,λ

t
mψm],G=[ψ1,ψ2,...,ψm] (3)

where λk are the eigenvalues and ψk are the corresponding eigenvectors (gradients) of the graph
Laplacian. The parameter t represents the diffusion time, which controls the scale of the diffusion
process. Here we estimated the eigenvalues λk at time t by dividing it by 1−λk to enhance robustness
against noisy eigenvalues.

In Brain-JEPA, we leverage G as the spatial positioning of ROIs. Specifically, the gradient G∈Rn×m

is transformed into Ĝ∈Rn×d/2 through a trainable linear layer, where d represents the embedding
dimension of the ViT backbone. The predefined temporal positioningT ∈Rn×d/2 is obtained using sine
and cosine functions [43]. The final positional embedding can then be formulated asP =[T ,Ĝ]∈Rn×d.
Figure 2 provides a visualization of the top 3 gradients in Euclidean space with each ROI color coded by
their locations. As shown, the brain gradient positioning reflects functional network architecture, such
as the somatomotor, default mode and visual networks, consistent with previous literature [32, 37].

3.2 Spatiotemporal Masking

Observation. Brain-JEPA aims to predict representations of multiple target blocks based on the
representation of a single observation block. For an input fMRI time series, the temporal signal for
each parcel is divided into patches after shuffling ROIs, each containing p time points (dash boxes in
Figure 1). The observation block x is obtained by randomly sampling a block within the range {ηo

R,
ηo
T }. ηo

R specifies the range ratio along the ROI dimension, and ηo
T pertains to the timestep patches

(10 in total). Subsequently, x is fed through the observation encoder fθ, generating a corresponding
patch-level representation sx:

sx={sxj
}j∈Bx

(4)

where Bx represents the mask associated with the observation block x, sxj is the representation of the
jth patch.

Targets. Given a single observation, the model is trained to predict other parts of the fMRI within
the latent space. Random sampling of targets like MAE [19] might allow the model to learn shortcuts
(e.g., interpolation of time series) or rely heavily on simpler, more frequent patterns in the data, which
could limit its generalizability. It is crucial to recognize that patches in fMRI vary spatially depending
on the positions in their brain functional organization, and temporally regarding brain states and task
conditions. The nonlinear relationship among brain networks further complicates the interactions
between different brain patches.

As shown in Figure 1, we categorize the remaining parts (with the observation excluded) into three
distinct and non-overlapping regions: Cross-ROI (α), Cross-Time (β), and Double-Cross (γ). For
targets in the α and β regions, the model should generalize the observation across different ROIs
spatially or timesteps temporally. For targets in the γ regions, which are the most challenging, the
model should generalize to unseen ROIs at unencountered timesteps. We randomly sampleK blocks
from each of the three types of regions as targets, forcing the model to handle a variety of prediction
tasks with a stronger inductive bias. We denote the mask corresponding of the region r (r∈{α,β,γ})
as Br

y .

Overlapped sampling. It has been shown in [21] that a sufficiently large dynamic range of masking
ratio could benefit pretraining. To effectively adjust the observation-to-input ratio during pretraining,
we implement an overlapped sampling strategy that allows for a flexible, rather than fixed, ratio. When
sampling the target block sry from region r, for r=α or β, we sample the target from the union of the
observation mask and region r mask; while for r=γ, we directly sample the target from the γ region
mask. Formally, the overlapped sampling strategy is defined as:

sαy ∼Bx∪Bα
y , s

β
y ∼Bx∪Bβ

y , s
γ
y ∼Bγ

y (5)
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Afterwards, part of the observation region might overlap with some α and β targets. We remove any
ROIs in the observation that overlap with the α targets. Additionally, we eliminate all timesteps for
ROIs that show overlap with the β targets. Refer to Table 6 for the block sizes.

Training. Given the output sx from the observation encoder fθ, the predictor gϕ is trained to predict
the three kinds of targets sry conditioned on the positional embedding P (Figure 1). The training loss L
is the averageL2 distance between sry and its corresponding prediction:

L=
1

3K

∑
r

∥∥ŝry−sry
∥∥2
2
, ŝry=gϕ(sx|P ) (6)

4 Experiments

4.1 Datasets

We leveraged the large-scale public dataset - UK Biobank (UKB) [44, 45] for the self-supervised
pretraining of Brain-JEPA. It includes resting-state fMRI recordings with medical records from 40,162
participants aged 44 to 83. Multi-site recordings were acquired with the temporal resolution of 0.735s.
We allocated 80% of this dataset for pretraining (of which we calculated the group-level gradients as
well), with the 20% held-out for downstream evaluation (internal tasks of age and sex prediction).

We used three datasets for external evaluation: HCP-Aging, as a segment of the public Human
Connectome Project (HCP) [46], includes resting-state fMRI from 656 healthy elderly participants.
It was used to predict traits (Neuroticism and Flanker score) and demographics (age and sex). The
Alzheimer’s Disease Neuroimaging Initiative (ADNI) [47] was used for the early diagnosis and
prognosis of neurodegenerative diseases, with fMRI from 189 participants for normal control (NC) v.s.
mild cognitive impairment (MCI) classification, and 100 cognitively normal participants for amyloid
positive v.s. negative classification. Moreover, to assess generalizability across different ethnic groups
and real-world clinical applications, we included resting-state fMRI of Asian participants recruited by
Memory, Ageing and Cognition Centre (MACC), with 539 participants for NC v.s. MCI classification.
More details of the downstream tasks performed can be found in the Appendix A.

All fMRI data was parcellated into n=450 ROIs, using Schaefer-400 [48] for cortical regions and
Tian-Scale III [49] for subcortical regions. Robust scaling was implemented by subtracting the median
and dividing by the interquartile range, calculated across participants for each ROI [14]. Our default
input size is 160 timesteps for each of the 450 ROIs (i.e., 450×160). UKB and HCP-Aging used multi-
band acquisition with a high temporal resolution (TR ≈0.7 seconds), while ADNI and MACC used
single-band acquisition with a lower resolution (TR≈2 seconds). To ensure consistency across datasets,
we standardized the temporal resolution by downsampling the multi-band data using a temporal stride
of 3, aligning the TR of all datasets to approximately 2 seconds. During the fine-tuning and linear
probing stage, all the downstream datasets were divided into a 6:2:2 ratio for training, validation, and
testing.

4.2 Implementation details

For Brain-JEPA pretraining, we utilized ViT architectures for the observation encoder, target encoder,
and predictor. We employed FlashAttention [50, 51] in our self-attention implementation to improve
computational efficiency and reduce memory usage. Balancing the trade-off between data quantity and
the model complexity, we experimented with ViT-Small (ViT-S) (22M), ViT-Base (ViT-B) (86M), and
ViT-Large (ViT-L) (307M) for the observation encoder. For predictor, it is designed as a lightweight
(narrow) ViT. Specifically, the predictor has the same architecture as the corresponding observation
encoder, differing only in embedding dimension and depth. For the ViT-S and ViT-B observation
encoders, the predictor has a depth of 6 and embedding dimensions of 192 and 384, respectively. The
ViT-L observation encoder uses a predictor with a depth of 12 and an embedding dimension of 384.
Brain-JEPA is pretrained without a [cls] token. For evaluation, we used the target encoder and average
pooled its output to generate a global fMRI representation. The main results in Section 4.3, along with
the analysis in Section 4.5, 4.6 and 4.7 were all based on ViT-B pre-trained for 300 epochs. Refer to
Appendix B for optimization and masking details.
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Table 1: Internal tasks of age and sex prediction on UKB 20% held-out. The mean (standard deviation)
of Mean Squared Error (MSE), Pearson Correlation (ρ), and/or Accuracy (ACC), F1 score across 5
independent runs is reported. ↑: the higher, the better; ↓: the lower, the better. The best results are in
bold, with * denoting significant improvement over previous approaches (p<0.05).

Methods
Age Sex

MSE ↓ ρ ↑ ACC(%) ↑ F1(%) ↑
BrainNetCNN [6] 0.985 (0.027) 0.225 (0.015) 77.86 (0.98) 78.17 (0.86)

BrainGNN [5] 0.931 (0.038) 0.332 (0.015) 77.31 (0.33) 79.23 (0.31)

BNT [4] 0.863 (0.031) 0.447 (0.017) 80.78 (0.40) 82.42 (0.36)

TFS† 0.812 (0.023) 0.487 (0.011) 82.60 (0.59) 83.00 (0.01)

BrainLM [14] 0.612 (0.041) 0.632 (0.020) 86.47 (0.74) 86.84 (0.43)

Brain-JEPA 0.501* (0.034) 0.718* (0.021) 88.17* (0.06) 88.58* (0.11)

† Trained-From-Scratched.

Table 2: External tasks of demographics and trait prediction on HCP-Aging.

Methods
Age Sex Neuroticism Flanker

MSE ↓ ρ ↑ ACC (%) ↑ F1 (%) ↑ MSE ↓ ρ ↑ MSE ↓ ρ ↑
BrainNetCNN [6] 0.462 (.017) 0.611 (.023) 71.16 (0.88) 72.23 (0.92) 1.201 (.097) 0.096 (.006) 1.045 (.036) 0.201 (.018)

BrainGNN [5] 0.423 (.015) 0.672 (.024) 72.7 (0.54) 74.09 (0.67) 1.183(.096) 0.098 (.007) 0.982 (.043) 0.309 (.062)

BNT [4] 0.414 (.035) 0.731 (.057) 72.41 (1.09) 73.68 (1.11) 1.199 (.091) 0.101 (.005) 0.997 (.037) 0.307 (.026)

BrainLM [14] 0.331 (.018) 0.832 (.028) 74.39 (1.55) 77.51 (1.13) 0.942 (.082) 0.231 (.012) 0.971 (.054) 0.318 (.048)

Brain-JEPA 0.298 (.017) 0.844 (.030) 81.52* (1.03) 84.26* (0.82) 0.897* (.055) 0.307* (.006) 0.972 (.038) 0.406* (.027)

Table 3: External tasks of brain disease diagnosis and prognosis on ADNI and MACC.

Methods
NC/MCI Amyloid aβ+ve/−ve NC/MCI (Asian)

ACC(%) ↑ F1(%) ↑ ACC(%) ↑ F1(%) ↑ ACC(%) ↑ F1(%) ↑
BrainNetCNN [6] 60.00 (3.51) 64.72 (3.18) 59.00 (2.00) 59.43 (1.14) 57.32 (4.45) 53.92 (4.25)

BrainGNN [5] 67.40 (2.93) 71.42 (2.87) 57.00 (4.00) 62.61 (3.48) 59.79 (2.35) 55.69 (2.29)

BNT [4] 78.90 (4.12) 83.14 (3.58) 62.00 (2.45) 59.53 (0.58) 62.06 (3.88) 60.45 (4.52)

BrainLM [14] 75.79 (1.05) 85.66 (1.27) 67.00 (7.48) 68.82 (8.48) 61.65 (3.35) 60.26 (3.03)

Brain-JEPA 76.84 (1.05) 86.32 (0.54) 71.00* (4.90) 75.97* (3.93) 65.98* (2.84) 64.67* (2.61)

4.3 Main results

Table 1, 2, and 3 compare Brain-JEPA with the existing deep learning models for fMRI analysis and
foundation model BrainLM. We select the three deep learning baselines because they not only represent
the previous state-of-the-art in fMRI analysis but also exemplify diverse model types: convolutional
neural network (CNN)-based BrainNetCNN [6], graph neural network (GNN)-based BrainGNN [5],
and transformer-based BNT [4]. For a fair comparison, both Brain-JEPA and BrainLM utilized a ViT-B
backbone and were fine-tuned for downstream tasks (Section 4.4 will discuss performance scaling
with different model sizes, and Section 4.5 will examine linear probing comparisons between the two
models). BrainLM utilized [cls] token for downstream evaluation.

The results show that Brain-JEPA achieves state-of-the-art performance in various downstream tasks
on both the unseen data from the same pretrained cohort and other independent datasets. Brain-JEPA
effectively captures fundamental demographic information such as age and sex, cognitive/personality
variance (Neuroticism and Flanker), and disease-related patterns for neurodegenerative diseases.
Notably, Brain-JEPA demonstrates superior performance in classifying NC/MCI in Asian ethnic
groups — one of the most challenging tasks for early diagnosis and prognosis of Alzheimer’s Disease
(AD) — even though it was trained exclusively on the Caucasian cohort. Please refer to C.1 for
additional results on more datasets and comparisons with more baselines.
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Figure 3: Performance scaling of the model sizes.
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Figure 4: Fine-tuning v.s. linear probing.

4.4 Performance scaling

Figure 3 presents the performance of Brain-JEPA across various model sizes, using ViT-S, ViT-B, and
ViT-L as backbones. The results demonstrate that the larger model configuration consistently achieves
better performance. Specifically, there is a clear trend of increasing accuracy/correlation with larger
models, with Brain-JEPA using ViT-L consistently achieving the best performance. We also studies the
scaling property with respect to dataset size, please refer to C.2 for additional results.

4.5 Linear probing

BrainLM initially showcases its performance improvements through fine-tuning, complemented by
an attached MLP [14]. However, to effectively assess the representations learned during pretraining,
off-the-shelf evaluations such as linear probing are essential. As depicted in Figure 4, Brain-JEPA
consistently outperforms BrainLM in linear probing and exhibits a smaller performance decline from
fine-tuning to linear probing. This highlights the robustness and higher level of abstraction in the
representations learned by Brain-JEPA.

4.6 Ablation study
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(HCP-Aging)
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(ADNI)
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74.74%

Sine and cosine Anatomical locations Brain Gradient Positioning

Figure 5: Comparisons of spatial positional
embedding (For the first task, refer to the left
y axis for the Pearson’s Correlation, with the
right y axis accuracy for the last two tasks).

We first compared Brain-JEPA with its ablated ver-
sions, employing sine and cosine functions [43] and
anatomical locations [14] for ROI spatial positioning,
as shown in Figure 5. Brain Gradient Positioning
demonstrates superior performance over these two
baseline methods. It indicates that Brain Gradient Po-
sitioning facilitates natural and accurate placement of
brain functional parcellations, enhancing the learning
of brain dynamics. Next, we assessed the effectiveness
of our proposed Spatiotemporal Masking by compar-
ing Brain-JEPA, pretrained over various numbers of
epochs, to its ablated counterpart that utilizes standard
multi-block sampling of targets [21]. This compari-
son, illustrated in Figure 6, highlights that not only does our proposed masking technique yield superior
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Figure 6: Comparisons of masking strategies.

performance, but it also introduces a stronger inductive bias leading to a more efficient pretraining.
Notably, Brain-JEPA achieves or even surpasses the peak performance of the ablated version, which
was pretrained for 300 epochs, with significantly fewer epochs—only 100, 200, and 50 respectively.
For more ablation results regarding architectures and the number of gradient components, please refer
to C.3.

4.7 Interpretation
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Figure 7: Attention across different brain networks for NC/MCI classification.

With the Schaefer functional atlas [48], the brain network is categorized into seven distinct sub-
networks: the control network (CN), the default mode network (DMN), the dorsal attention network
(DAN), the limbic network (LN), the salience ventral attention network (SAN), the somatomotor
network (SMN), and the visual network (VN). To assess whether Brain-JEPA has captured the brain
functional organization, we calculate the network-level attention for NC/MCI classification. For each
ROI, we first average the self-attention across its 10 patches. Next, we average the values of the ROIs
within each sub-network and normalize them to obtain the network-level attention distribution. As
shown in Figure 7, we found consistent patterns across both Caucasian and Asian ethnic groups, with
the model highlighting the critical roles of the DMN, CN, SAN, and LN in cognitive impairment,
consistent with previous literature [52, 53, 54].

5 Conclusion

In this study, we developed Brain-JEPA, a brain dynamics foundation model based on the Joint-
Embedding Predictive Architecture (JEPA). Brain-JEPA predicts abstract representations of sampled
targets from observations during the pretraining stage. Utilizing Brain Gradient Positioning, Brain-
JEPA encodes brain functional organization more naturally and accurately. With Spatiotemporal
Masking, it effectively handles heterogeneous patches in fMRI time series. Brain-JEPA fosters
generalizable and highly abstract representations of fMRI, achieving state-of-the-art performance
across various tasks, including demographic prediction, trait prediction, and disease diagnosis and
prognosis across different cohorts and ethnic groups. Our study provides new insights into applying
large-scale self-supervised learning to brain activity modelling and contributes to addressing key
questions in AI for neuroscience.
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6 Limitation and future work

We acknowledge several limitations in our study, which also serve as inspirations for future research: 1)
Larger models: Due to limited computing resources, we have not tested larger models like ViT-H. We
expect that larger models could further improve performance. 2) More diverse datasets: A more diverse
brain recording dataset for pretraining, including different ethnicity cohorts collected from various
sites, scanning protocols, behavioral tasks, and disease groups, could enhance the generalizability
and robustness of the representations learned by the model. 3) Fine-grained interpretation: More
thorough interpretation can be achieved through the attention mechanism, such as comparing cortical
and subcortical regions, identifying salient ROIs and critical timesteps. This would enable more
nuanced and complex spatiotemporal interpretations. 4) Multi-modal integration: Brain-JEPA sets
a potential foundation for integrating multimodal brain activity data such as MEG and EEG or even
brain structure data like T1-weighted MRI. The integration could enhance our understanding of brain
structure, function, and their links to human behavior and mental disorders. Please refer to Appendix D
for the broader impact of Brain-JEPA.
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A Task Details

A.1 Neuroticism

Neuroticism is a personality trait linked to negative emotions and is one of the Big Five personality traits.
People who score high in neuroticism tend to experience negative feelings more frequently than others
[55]. The HCP uses the 60-question version of the NEO-FFI Short Form (ages 16+) questionnaire,
which provides a quick, reliable, and accurate assessment of the Big Five personality traits: neuroticism,
extraversion, openness, agreeableness, and conscientiousness. More detailed information can be found
in the Lifespan HCP 2.0 Data Release Appendix 2: Details and References for Behavioral & Clinical
Instruments.

A.2 Flanker

The Flanker task is designed to assess both attention and inhibitory control in participants [56]. It
involves the participant focusing on a central stimulus while ignoring adjacent stimuli, which are either
fish for ages 3-7 or arrows for ages 8-85. Sometimes the central stimulus points in the same direction as
the flanking stimuli (congruent) and sometimes in the opposite direction (incongruent). For participants
aged 8-85, the task consists of twenty trials and takes about three minutes to complete. More detailed
information can be found in the Lifespan HCP 2.0 Data Release Appendix 2: Details and References
for Behavioral & Clinical Instruments.

A.3 NC/MCI

For the ADNI dataset [47], the criteria for NC was as follows: 1) No subjective memory complaints, 2)
preserved activities of daily living and cognitive function, 3) Mini-mental state examination (MMSE)
score of between 24 to 30 inclusive, 4) Clinical Dementia Rating (CDR) score of 0, and 5) education-
adjusted score on delayed recall of one paragraph from Wechsler Memory Scale Logical Memory
II of >=3 for 0-7 years of education, >= 5 for 8-15 years of education, and >= 9 for >=16 years of
education. The criteria for MCI was as follows: 1) significant subjective memory complaints reported
by the participant, clinician or informant, 2) not significantly impaired in other cognitively domains, 3)
essentially preserved activities of daily living and does not meet criteria for diagnosis of dementia, 4)
MMSE score of between 24 to 30 inclusive, 5) CDR score of 0.5, and 6) education-adjusted score on
delayed recall of one paragraph from Wechsler Memory Scale Logical Memory II of 3-6 for 0-7 years
of education, 5-9 for 8-15 years of education, and 9-11 for >=16 years of education [57].

For the Asian disease cohort, all participants completed a locally validated neuropsychological test
battery, which assessed seven domains: executive function, attention, language, visuomotor speed,
verbal memory, and visual memory. Impairment in a particular domain was defined as failing at
least half of the individual tests in a domain, and failure in an individual test was determined using
education-adjusted cut-offs of 1.5 standard deviations below established normal means. NC was
defined as having no impairment in all cognitive domains on the neuropsychological test battery, while
MCI was defined as having an impairment in at least one cognitive domain of the neuropsychological
test battery. Detailed descriptions of the neuropsychological assessments and diagnostic criteria are
described in previous work which will be added upon acceptance.

A.4 Amyloid +/-

Participants from the ADNI cohort were also classified as amyloid positive or amyloid negative, using
a threshold of global [18F]-Florbetapir amyloid PET SUVR >= 1.11 to define amyloid positivity [57].

B Additional Implementation Details

Optimization for pre-training. The default settings are detailed in Table 4. We initialized all
transformer blocks using the Xavier uniform method, as described in [19]. The pre-training process
utilized four A100 GPUs, each with 40GB of memory.

Optimization for downstream tasks. The default settings for end-to-end fine-tuning and linear
probing are detailed in Table 5. For fine-tuning, following [19], we applied layer-wise lr decay [58].
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Table 4: Pre-training settings. GAS: Gradient accumulation steps; BS: Batch size
config value
optimizer AdamW [60]
optimizer momentum β1,β2=0.9,0.999
learning rate schedule warmup cosine schedule [21]
start learning rate 5×10−5

learning rate 1×10−3

final learning rate 1×10−6

weight decay schedule cosine weight decay schedule [21]
weight decay 0.04
final weight decay 0.4
EMA momentum schedule linear [21]
EMA start momentum 0.996
EMA final momentum 1
total batch size 4 GPUs × 8 GAS × 16 BS
warmup epochs 40
patch size p 16
dimension of gradient vectorm 30
training epochs 300

Table 5: Settings of end-to-end fine-tuning and linear probe.
config value of FT value of LP
optimizer AdamW LARS [61]
optimizer momentum (0.9, 0.999) 0.9
learning rate schedule cosine decay [19] cosine decay
base learning rate 0.001 0.01
weight decay 0.05 N.A.
layer-wise lr decay 0.75 N.A.
batch size 16 64
warmup epochs 0 0
training epochs 50 50

Table 6: Hyperparameters for spatiotemporal masking.

Region Mask ratio
observation block {ηo

R, ηo
T }={(0.84, 1.0), (0.84, 1.0)}

target α {ηαR, ηαT }={(0.45, 0.6), (0.2, 0.6)}
target β {ηβR, ηβT }={(0.15, 0.3), (0.0, 0.4)}
target γ {ηγR, ηγT }={(0.15, 0.3), (0.0, 0.4)}

For linear probing, we incorporated an additional BatchNorm layer [59] before the linear head, as per
[19].

Masking. The range ratios for obtaining the observation block and three target blocks introduced in
Section 3.2 are presented in Tables 6. ηab denotes the mask range along the b dimension for the a block.
We setK=1 which is the number of randomly sampled blocks in three target regions.

C Additional Results

C.1 Results on additional baselines and datasets

We incorporated more baseline results for downstream tasks on external datasets in Tables 7-8, including
commonly used SVM/SVR [62] and recent self-supervised learning methods. It is observed that Brain-
JEPA outperforms these models on most tasks. We note that for the compared baselines, BrainMass
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[29] is a concurrent work. Additionally, CSM [63] and SwiFT [27] are not time series models; CSM
utilizes text-like representations, while SwiFT operates on raw fMRI data.

Table 7: Results of additional baselines on HCP-aging.

Methods
Age Sex

MSE ↓ ρ ↑ ACC (%) ↑ F1 (%) ↑
SVM/SVR 0.586 (.019) 0.699 (.022) 76.67 (1.88) 80.82 (1.15)

BrainMass 0.396 (.002) 0.831 (.014) 74.09 (3.87) 75.78 (3.37)

CSM 0.409 (.012) 0.733 (.023) 74.85 (1.11) 76.23 (0.37)

SwiFT 0.341 (.007) 0.755 (.063) 73.48 (2.20) 74.65 (2.32)

Brain-JEPA 0.298 (.017) 0.844 (.030) 81.52 (1.03) 84.26 (0.82)

Table 8: Results of additional baselines on ADNI.

Methods
NC/MCI Amyloid aβ+ve/−ve

ACC (%) ↑ F1 (%) ↑ ACC (%) ↑ F1 (%) ↑
SVM/SVR 64.21 (5.16) 73.06 (4.71) 62.00 (4.00) 63.84 (5.44)

BrainMass 74.21 (5.10) 81.36 (3.56) 68.00 (7.48) 69.29 (8.96)

CSM 68.42 (4.99) 76.74 (4.54) 63.00 (9.80) 65.89 (9.79)

SwiFT 73.16 (5.31) 80.46 (4.16) 65.00 (6.32) 67.79 (6.38)

Brain-JEPA 76.84 (1.05) 86.32 (0.54) 71.00 (4.90) 75.97 (3.93)

To further demonstrate the diversity of our downstream applications, we conducted additional experi-
ments using two aging-related public datasets: OASIS-3 and CamCAN, for AD conversion prediction
in MCI participants and depression diagnosis, respectively. The results are shown in Table 9. By
applying Brain-JEPA to five downstream datasets across eight distinct tasks totally, we have demon-
strated its versatility in a wider range of applications compared to the existing models. Specifically,
Brain-JEPA excels in demographic prediction, trait prediction, and disease diagnosis and prognosis.
This stands in contrast to experiments done in BrainLM, which is limited to demographic and clinical
score prediction, and BrainMass, which focuses solely on disease diagnosis and prognosis.

Table 9: AD conversion prediction and depression diagnosis on OASIS-3 and CamCAN datasets.

Methods
OASIS-3 CamCAN

AD Conversion Depression

ACC (%) ↑ F1 (%) ↑ ACC (%) ↑ F1 (%) ↑
SVM/SVR 56.00 (2.81) 52.05 (1.66) 63.64 (3.07) 56.79 (2.32)

BrainNetCNN 62.00 (2.45) 59.53 (0.58) 62.73 (4.45) 56.85 (4.47)

BrainGNN 59.00 (2.00) 56.53 (4.34) 63.64 (4.98) 56.68 (3.26)

BNT 68.00 (8.72) 64.73 (11.29) 65.45 (4.64) 55.32 (8.67)

BrainLM 65.00 (7.75) 62.67 (9.04) 70.00 (6.17) 64.18 (3.82)

BrainMass 67.00 (6.00) 66.53 (6.95) 70.91 (2.23) 63.56 (2.93)

CSM 61.00 (4.90) 61.97 (5.49) 64.55 (4.45) 56.08 (6.23)

SwiFT 65.00 (6.32) 66.80 (4.12) 69.09 (6.68) 61.78 (9.26)

Brain-JEPA 69.00 (7.35) 67.32 (7.92) 72.73 (2.87) 67.45 (1.57)

C.2 Scaling properties with respect to dataset size.

We compared the performance of Brain-JEPA trained with varying portions of the UKB pretraining
dataset: 25%, 50%, 75%, and 100%. As shown in Table 10, the performance improves as the dataset
size increases, highlighting the scalability of Brain-JEPA in relation to the pretraining dataset size.
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Table 10: Ablation on different dataset size for pretraining.

Percentage
HCP-Aging ADNI

Age Sex NC/MCI
ρ ↑ ACC (%) ↑ ACC (%) ↑

25% 0.659 (.043) 68.03 (1.21) 67.89 (9.18)

50% 0.768 (.012) 74.24 (1.36) 71.05 (3.86)

75% 0.813 (.015) 77.42 (2.00) 74.74 (4.88)

100% 0.844 (.030) 81.52 (1.03) 76.84 (1.05)

C.3 Additional ablations

Architectures/Frameworks. To thoroughly compare the performance between JEPA with anatomical
locations (AL) and BrainLM (MAE-based), we extended our comparison to include all the tasks except
for the three in the main content, as well as two newly added datasets, OASIS-3 and CamCAN. The
results shown in Table 11, demonstrates that JEPA with AL outperforms BrainLM in seven out of
eleven tasks, demonstrating the superiority of prediction in latent space. For the tasks where BrainLM
performs better, it is likely that JEPA requires gradient positioning for precise ROI placement to achieve
optimal performance. In future work, we will further investigate the possible interactions between the
self-supervised learning framework and brain gradient positioning.

Table 11: Ablation on position embedding.

Methods
UKB HCP-Aging

Age Sex Neurotism Flanker

ρ ↑ ACC (%) ↑ ρ ↑ ρ ↑
BrainLM 0.632 (0.020) 86.47 (0.74) 0.231 (.012) 0.318 (.048)

Brain-JEPA w AL 0.686 (0.013) 84.11 (0.50) 0.267 (.003) 0.374 (.022)

Methods
ADNI MACC OASIS-3 CamCAN

Amy+/- NC/MCI AD Conversion Depression

ACC (%) ↑ ACC (%) ↑ ACC (%) ↑ ACC (%) ↑
BrainLM 67.00 (7.48) 61.65 (3.35) 65.00 (7.75) 70.00 (6.17)

Brain-JEPA w AL 65.00 (6.32) 64.33 (1.80) 67.00 (4.00) 71.82 (6.03)

We further compared Brain-JEPA without JEPA architecture (i.e., BrainLM with contributions) to
Brain-JEPA. As shown in Table 12, Brain-JEPA (JEPA framework) outperforms BrainLM (MAE
framework) with contributions consistently, demonstrating the superiority of JEPA framework.

Table 12: Comparisons of different frameworks.

Methods
HCP-Aging ADNI

Age Sex Amy+/-
ρ ↑ ACC (%) ↑ ACC (%) ↑

BrainLM 0.832 (.028) 74.39 (1.55) 67.00 (7.48)

BrainLM w contributions 0.838 (.014) 76.36 (2.58) 70.00 (11.40)

JEPA w contributions 0.844 (.030) 81.52 (1.03) 71.00 (4.90)

The number of gradient components. We compared the model performance between 3-dimensional
(3-dim) and 30-dim brain gradient positioning, shown in Table 13. The 30-dim model consistently
outperformed the 3-dim model by a large margin. This indicates that higher-dimensional brain gradients
may encapsulate finer-grained information on brain network organization, which benefits the learning
of brain dynamics.
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Table 13: Comparison of different number of gradient components.

Methods
HCP-Aging ADNI

Age Sex Amy+/-
ρ ↑ ACC (%) ↑ ACC (%) ↑

3-dim brain gradient 0.819 (.003) 76.96 (1.77) 67.00 (6.00)

30-dim brain gradient 0.844 (.030) 81.52 (1.03) 71.00 (4.90)

D Broader Impact

The introduction of Brain-JEPA marks a significant advancement in the interdisciplinary field of AI
and neuroscience, particularly in the brain activity analysis. An assessment of the broader impact of
this model has across various dimensions:

D.1 Neuroscience and medical advancements

Brain-JEPA’s capabilities in demographic prediction, disease diagnosis, and prognosis could revolution-
ize how neurological disorders are diagnosed and treated. This may lead to earlier detection and more
personalized therapeutic interventions, potentially improving outcomes for patients with conditions
like AD, schizophrenia, or autism spectrum disorders. Furthermore, the model’s innovative techniques,
including Brain Gradient Positioning and Spatiotemporal Masking, offer new ways to understand the
brain’s functional organization. This could lead to breakthroughs in identifying how various cognitive
processes are mapped in the brain, aiding in both basic science and clinical applications. On the
other hand, by effectively predicting various traits, Brain-JEPA can aid in the study of the genetic and
environmental influences on behavior and cognitive functions. This can enhance our understanding of
the neural underpinnings of psychological traits and disorders.

D.2 Technological impact

Brain-JEPA sets a new standard in AI’s application to complex brain activity data with a novel
brain functional coordinate system and masking strategy, which could spur further innovations and
applications of AI across different sub-fields of neuroscience. Furthermore, the model’s success in
performing well across different ethnic groups indicate potential for broad applications in diverse
global settings, which is crucial for building inclusive and unbiased AI systems.

D.3 Ethical and social considerations

Ensuring the confidentiality and integrity of patient data while using such advanced AI systems is
paramount. While Brain-JEPA has shown superior performance across different tasks, continuous
monitoring for potential biases is essential, especially as the model is scaled and deployed in varied
clinical settings. Besides, the deployment of advanced technologies like Brain-JEPA could exacerbate
existing disparities in healthcare access unless carefully managed. Ensuring that these technologies
benefit all segments of the population equally is critical.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Refer to Section 1 for our contributions and scope.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made
in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or NA
answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Refer to Section 6 for the discussion of limitation and future work.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only
tested on a few datasets or with a few runs. In general, empirical results often depend on
implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be used
reliably to provide closed captions for online lectures because it fails to handle technical
jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and
how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an important
role in developing norms that preserve the integrity of the community. Reviewers will be
specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?

Answer: [NA]
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Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they

appear in the supplemental material, the authors are encouraged to provide a short proof
sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have provided detailed information about the datasets in Section 4.1 and
Appendix A. The implementation details are presented in Section 4.2 and Appendix B. The
model checkpoints and anonymized code are provided in supplementary material with clear
instructions in the readme file.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of whether
the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct the
dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the
case of closed-source models, it may be that access to the model is limited in some
way (e.g., to registered users), but it should be possible for other researchers to have
some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instructions
to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: We have provided model checkpoints and code in supplementary material with
a readme file. The links to the publicly available datasets are provided.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have provided detailed information about the datasets in Section 4.1 and
Appendix A. We have also provided the implementation details and hyperparameters in
Section 4.2 and Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All main results in Table 1, 2, and 3 contain mean and standard deviation from
5 independent runs. The statistical significance of the experiments has been shown with *
denoting significant improvement with p<0.05

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the
main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call
to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of

the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?

Answer: [Yes]

Justification: We provide the computer resources in Section 4.2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or

cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than

the experiments reported in the paper (e.g., preliminary or failed experiments that didn’t
make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The proposed research conforms with the Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special considera-

tion due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?

Answer: [Yes]

Justification: Refer to Section D for potential positive societal impacts and negative societal
impacts of Brain-JEPA.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional
or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best faith
effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The original papers that produced the code package or dataset are all properly
cited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The details of the dataset/code/model have been provided in 4.1, 4.2 and
Appendix B, with the codes in supplementary materials.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well
as details about compensation (if any)?

Answer: [NA]

Justification: The datasets of human subjects used in this paper are either publicly available or
from previous work which will be cited upon acceptance.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution)
were obtained?

Answer: [NA]

Justification: The datasets of human subjects used in this paper are either publicly available or
from previous work which will be cited upon acceptance.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

25

86072 https://doi.org/10.52202/079017-2732

paperswithcode.com/datasets


• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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