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Abstract

In machine learning research, it is common to evaluate algorithms via their perfor-
mance on standard benchmark datasets. While a growing body of work establishes
guidelines for—and levies criticisms at—data and benchmarking practices in ma-
chine learning, comparatively less attention has been paid to the data repositories
where these datasets are stored, documented, and shared. In this paper, we analyze
the landscape of these benchmark data repositories and the role they can play in
improving benchmarking. This role includes addressing issues with both datasets
themselves (e.g., representational harms, construct validity) and the manner in
which evaluation is carried out using such datasets (e.g., overemphasis on a few
datasets and metrics, lack of reproducibility). To this end, we identify and discuss a
set of considerations surrounding the design and use of benchmark data repositories,
with a focus on improving benchmarking practices in machine learning.

1 Introduction

Evaluating machine learning (ML) algorithms on benchmark datasets is a central pillar of ML research.
This performance benchmarking facilitates direct comparison across different techniques, which is
important, for example, in the publication of research that introduces a novel method or for selecting
the most appropriate approach for a particular application [1–5]. Ideally, these benchmark datasets
serve as proxies for real-world tasks, so that performing well on the task represents meaningful
advancement toward some desired real-world ML capability [6–10]. Benchmarking can help quantify
progress on these tasks over time, and the availability of a well-studied, standard task evaluation
environment can be a critical first step before moving to real-world applications, especially in high-
stakes or expensive domains. In addition, evaluating with a benchmark dataset can be useful as a
sanity check when developing a new methodology, as well as for ML education and training [11, 12].

Early data repositories, such as the UCI ML Repository, arose to address the data needs that come
with ML benchmarking [13]. These repositories started as relatively small-scale efforts, but as the
field of ML has rapidly grown, they have become more sophisticated, supporting additional features
such as leaderboards comparing the benchmarked performance of ML models on a given dataset
[14–20]. ML data repositories are fundamentally different from traditional domain-specific data
repositories. For example, they tend to contain datasets from a wide variety of domains, and the
process of selecting a dataset is often less about a scientific or engineering application and more
about the compositional characteristics of the data and its associated tasks, for which a particular
class of methods is applicable, e.g., multivariate spatiotemporal or network datasets.
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Today, these ML data repositories—in particular, HuggingFace Datasets, Kaggle, OpenML, Papers
with Code Datasets, TensorFlow Datasets, and the UCI ML Repository—are widely used. However,
relatively little work has been devoted to understanding them and the specific factors involved in
their design. In this paper, we introduce the term benchmark data repository to describe repositories
that support the discovery and use of datasets for evaluating ML models (for brevity, we will use
benchmark repository in the remainder of the paper). Our focus is the role of benchmark repositories
in ML research, particularly the relationship between benchmark repositories and criticisms of
current data and benchmarking practices in ML.2 Each of Sections 2-6 reviews one of these issues,
progressing through the dataset lifecycle—from creation and development to documentation and
sharing to use and reuse for model evaluation [21–23]. For each criticism, we identify ways in
which benchmark repositories can be part of the solution, motivated by existing standards, observed
trends in the field, and examples from our experience as repository curators. We believe that these
recommendations will be useful both for the owners of benchmark repositories in designing and
improving their repositories, and more broadly to the creators and users of benchmark datasets in
determining how to store, document, and find data. To the best of our knowledge, this paper is the first
to define and establish best practices specifically for benchmark repositories, as well as to connect
the practices of benchmark repositories to ML and data repository practices in general.

2 Valuing Datasets as Research Contributions

Data work maintains a legacy of being under-valued and under-incentivized by the ML community
[6, 24–32], often regarded as an “engineering exercise” [33] or “operational” [26]. Several recent
initiatives, such as the NeurIPS Datasets and Benchmarks track3 and the Journal of Data-centric Ma-
chine Learning Research [34], have sought to change this pattern by providing peer-reviewed venues
for publishing papers on data contributions. In this section, we posit that benchmark repositories can
also help recognize datasets as intellectual contributions to the scholarly ecosystem by providing 1)
dataset citations, 2) “connection metadata,” and 3) dataset licenses. Reinforcing the value of data
work incentivizes dataset creators to pay greater care and attention during dataset development and
documentation—effects that propagate throughout the dataset lifecycle [24, 26, 27].

2.1 Dataset Citations and Metrics

For a dataset to operate in the ML ecosystem as a first-class research contribution, researchers must
be able to locate it and its metadata via a persistent stable URL (as is the norm with published
papers). In particular, the assignment of a persistent identifier (PID), such as a DOI, that can reliably
be used to access a dataset has been widely recommended by experts [32, 35–39]. However, ML
datasets and their documentation frequently lack PIDs and are often only available via GitHub or
personal/research group websites [32, 40, 41]. Repositories can help address this by minting DOIs
for submitted datasets (e.g., as Kaggle4 and HuggingFace Datasets5 do).

PIDs are the foundation of dataset citations, which give proper attribution to dataset creators, rather
than solely citing associated publications [36, 42–49]. In ML, however, datasets are often referred
to using combinations of names, descriptions, and associated papers, which can be challenging to
disambiguate [40]. In contrast, many data repositories already provide standardized dataset citations
that can be easily copied in a desired format (e.g., BibTeX) and include the minted DOI (Figure 1).
Beyond giving credit, citing a dataset enables researchers to track its usage throughout the literature,
which is particularly relevant in ML, e.g., for performance comparisons.

Furthermore, metrics such as the number of citations, number of views, or number of downloads
can help quantify data impact, highlighting the value of the dataset in terms of its contribution to
the ML community and potentially benefiting a variety of stakeholders (e.g., the researchers whose
work is being cited or funders assessing a return on investment [50–53]). Repositories can provide
the infrastructure for tracking these metrics of interest; for example, OpenML counts the number of

2While in this paper we focus on data used for model evaluation, we note that many of our points are also
relevant to pretraining data.

3https://neuripsconf.medium.com/announcing-the-neurips-2021-datasets-and-benchmarks-track-
644e27c1e66c

4https://www.kaggle.com/discussions/product-feedback/108594
5https://huggingface.co/blog/introducing-doi

2

86436https://doi.org/10.52202/079017-2744

https://neuripsconf.medium.com/announcing-the-neurips-2021-datasets-and-benchmarks-track-644e27c1e66c
https://neuripsconf.medium.com/announcing-the-neurips-2021-datasets-and-benchmarks-track-644e27c1e66c
https://www.kaggle.com/discussions/product-feedback/108594
https://huggingface.co/blog/introducing-doi


(a) HuggingFace [57] (b) Kaggle [58]

Figure 1: Examples of DOIs and citations in repositories.

(a) Papers with Code6 (b) UCI ML Repository [60]

Figure 2: Examples of connecting datasets to papers in repositories.

times a dataset has been used in experiment runs and the number of times it has been downloaded
[14]. Data organizations, such as Scholix, the Data Usage Metric Working Group and Project Counter
[54–56], are working towards more sophisticated frameworks for the provision of data metrics, and
benchmark repositories are in a prime position to foster collaborations with these efforts.

2.2 Connection Metadata

Repositories can also support the treatment of datasets as research contributions via connection
metadata, which connects a dataset to associated research entities (such as the dataset’s creators or
maintainers, publications, code, or other datasets) [59].

The dataset construction process is rife with consequential, “value-laden” decisions [8, 28, 29, 33].
The rationale behind these decisions may be described in an introductory paper: a publication that
combines the narrative style of an article with the technical description of a dataset and its design
process (also referred to as “data articles” [61] or “dataset descriptors”7). Introductory papers can
give the data a story beyond standardized documentation, providing useful context about the problem,
background on data collection procedures, and guidance about tasks for which the data have already
been used. When these papers are peer-reviewed, it can lend additional credibility to the dataset for
those considering it for re-use. Introductory papers can be included in benchmark repositories as a
standardized metadata field (Figure 2), raising the visibility of these important documents.

Repositories can also identify an individual who agrees to serve as a dataset’s point of contact:
someone responsible for answering questions about the dataset and addressing any issues. Ideally,
this person is also one of the dataset’s creators, as they are best equipped to answer questions about the
data and facilitate re-use [41, 62]. Although long-term data maintenance, and determining different
stakeholders’ responsibilities in that maintenance, remain challenging tasks [28, 63, 64], establishing
a point of contact can help prevent the development of a disconnect between a dataset and its creators,
which is not uncommon in ML [65–67]. By requiring that contact information for a responsible
individual be specified in metadata, repositories can encourage an ongoing connection between the
dataset, those who created it, and those who want to re-use it.

2.3 Dataset Licenses

It is widely recommended that datasets come with clear use guidance, often via a license [35, 39, 68].
These safeguards can help prevent the unintended use of data, an important part of respecting datasets
as intellectual contributions. Data repositories can include licenses as part of a dataset’s metadata.
They can also make selecting a license easier on dataset donors, e.g., by showing which licenses

6https://paperswithcode.com/dataset/imagenet
7https://www.nature.com/sdata/journal-information
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are popular, providing help text and links to the license language, or comparing the salient parts
of different popular licenses. For ML datasets in particular, licensing can be complicated (e.g., it
is ambiguous if models trained on a dataset count as “derivative work” [69]), and dataset licenses
commonly used in other domains may not effectively restrict data use in ML (e.g., training commercial
ML pipelines) [40, 70]. In addition, current licensing practices for ML datasets are often irregular,
conflicting, poorly documented, or over-permissive given the dataset content [71]; in one survey of
over 1800 text datasets, 69% had “unspecified” licenses on HuggingFace [72]. To help mitigate these
issues, benchmark repositories can encourage the use of licenses that were constructed with ML use
cases in mind, such as the Montreal Data License [69], or others, as more work is done in this area.

3 Addressing Issues with Dataset Content

Over the past decade or two, numerous issues with common benchmark datasets have been discov-
ered, including technical flaws such as labeling errors and annotation artifacts [5, 73–75], privacy
and copyright violations [40, 76–78], inclusions of hate speech or other harmful content [79, 80],
representational biases [77, 81–83], and miscellaneous ethical issues [40, 66, 84]. Without clear
documentation or careful data auditing, it is easy for these problems to go undiscovered well after a
dataset’s initial release and propagate harmful effects to downstream results [38, 78]. Further, even
once an issue is discovered, updating or deprecating a dataset can be ineffective [40, 75]. Benchmark
repositories can help detect and address dataset issues by collecting contextual metadata, performing
quality reviews, and supporting the revision and deprecation of datasets.

3.1 Contextual Metadata

Benchmark datasets are often disseminated without detailed information about their broader context
[9, 27, 28, 76, 85, 86]. By collecting contextual metadata, including information about a dataset’s
source, funding, collection, annotation, and preprocessing, benchmark repositories can illuminate the
assumptions and motivations of dataset creators and flag potential dataset issues [6, 7, 30, 87–89].
To this end, several standards and schemata that include contextual metadata have been established,
including Data Cards [90], datasheets for datasets [68], the Dataset Nutrition Label [91, 92], and the
FAIR principles [35]. Such metadata can help ML practitioners detect issues earlier [93]; several
“retrospective” datasheets for well-known datasets have demonstrated how contextual information
raises red flags and could have contributed to earlier detection of data issues [77, 94].

In particular, information about the source of a dataset can alert data users to privacy or consent
issues, representation biases, the potential for harmful content, or a mismatch with their target domain
[95, 96]. For example, multiple facial image datasets include mugshots or surveillance camera
footage [97–99]—raising red flags about the consent and privacy of the photographed individuals.
Another example is the NIST Face Recognition Vendor Test dataset, which was funded by the U.S.
Department of Homeland Security and contains data from the U.S. Mexican visa archive [100, 101].
In the use of this dataset for general facial recognition evaluation (e.g., [102]), its source and original
intent are cause for concern about its transferability [76]. Generally, understanding the origins of a
dataset can help ML researchers determine if it is appropriate for their use case, discouraging the use
of benchmarks that are poor proxies for the task they are supposedly evaluating [6, 7, 23, 87, 95].

Data selection, filtering, and annotation processes are important design decisions that can significantly
impact downstream performance [7, 38, 78, 103, 104]. One example is the systematic exclusion of
text authored by or about marginalized groups in large, web-scraped text datasets due to curation
and data filtering processes [29, 33, 38, 77]. Another pervasive issue is biased annotations, which
are often crowd-sourced [27, 38, 105–108], e.g., as have been documented in the ImageNet dataset
[7, 104]. However, these processes tend to be under-documented [29]; for instance, in a survey of
over 100 papers introducing computer vision datasets, 36.6% did not provide any description of the
human annotators; only 7.8% reported annotator demographics [32].

Clearly documenting data source, intent, collection, and processing procedures sheds light on these
dataset issues early on in the data lifecycle. However, dataset creators do not necessarily prioritize
metadata on their own [32, 41], and documentation is often scattered and unstandardized [76, 85, 93].
Benchmark repositories can work against this pattern by requiring dataset creators to provide detailed
documentation of contextual information (and making it easily accessible), e.g., via an accompanying
datasheet [68] and/or published introductory paper, which thoroughly describe a dataset’s context.
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Figure 3: The Statlog (German Credit Data) dataset [109], hosted by the UCI ML Repository, is a
sample of customer records from a German bank, with the task of classifying each individual as a
good or bad credit risk. In the repository documentation, 8 categorical variables have their levels
mixed up or incorrectly described (e.g., see attribute 15, the type of housing the debtor lives in, above).
Groemping [67] tracked down papers which describe the dataset’s origins [110–113] to construct a
proper code table. She donated the corrected dataset as the South German Credit dataset in 2019 [67]
but the original dataset from 1994 has nonetheless been widely used in ML research.

3.2 Quality Review

Ideally, quality issues with benchmark datasets and their metadata are detected early and corrected;
otherwise, these concerns should either be documented or used as a rationale to withdraw the dataset.
For example, datasets containing personally identifiable information should not be released [27] and
documentation errors (as in Figure 3) should be quickly amended. Benchmark repositories can help
identify these problems throughout the data lifecycle by (1) performing a pre-release quality review
[95] to catch issues before a dataset is shared, and (2) by serving as a centralized location to collect
users’ reports and concerns [75] to flag issues throughout a dataset’s use and reuse. With stringent
quality assurance, ML researchers can reliably look to a repository for high-quality datasets [38],
making it easier to avoid using unvalidated, problematic datasets for benchmarking.

Quality reviews can help counter the current lack of incentive for ML dataset creators to consider
ethical issues, which has been pointed to as a major contributor to the numerous ethical problems with
benchmark datasets [27]. For example, benchmark data collection often does not undergo institutional
ethical review [78]; in one survey [32], only 5 out of 100 papers introducing datasets with human
subjects mentioned an institutional review board (IRB) or equivalent ethical review. As a result there
has been a call for more intervention in data curation, involving curators who can focus on developing
conduct codes and ethical review processes rather than relying on dataset creators [27, 30, 33, 88].
It is an open question to what extent repositories should be involved in these decisions; several
popular repositories (e.g., Zenodo, Mendeley) view their role as only providing infrastructure and
not conducting any kind of data review. However, we posit that benchmark repositories are well-
positioned in the data pipeline to perform at least basic ethical checks and initiate a movement
towards interventionism. We point to the growing body of literature on ethical data curation for ML
[30, 78, 89, 95, 106, 114] as a starting point for the development of ethical review processes.

Conducting thorough quality assurance can be particularly difficult for benchmark repositories
because they typically host data from a variety of domains. In contrast, disciplinary repositories,
which specialize in a particular domain, often have a community of experts with the knowledge
to conduct quality reviews. We point to requiring peer-reviewed introductory papers as a potential
step in this direction, as the publishing venue may be able to perform more targeted reviews, and an
increasing number of venues also incorporate ethical reviews.8 Repositories could also outsource
reviews for datasets via a network of experts such as the Data Curation Network.9

3.3 Dataset Revision and Deprecation

Although quality review can help catch serious issues before the release of a dataset, inevitably, some
datasets will need to be updated, corrected, or deprecated. As a centralized data source, benchmark
repositories can help support the revision and deprecation of datasets.

Benchmark repositories can support dataset revision by documenting data versions and connecting
each dataset to a responsible point of contact. When different versions of a dataset are not clearly
associated with unique version numbers, differing versions may be used interchangeably [117, 118]
(e.g., as in Figure 4). Repositories can enforce versioning by assigning a new version number
whenever a data file is changed. Documentation of the revision, including what was changed or

8e.g., https://medium.com/@icml2024pc/ethics-review-at-icml-e3b4ce1afd54,https://neurips.cc/public/EthicsGuidelines
9https://datacurationnetwork.org
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(a) The original data for the 35th,
38th, and 90th iris flowers.

(b) An alternative version of the data
with the petal length of the 90th
flower incorrect.

(c) An alternative version of the data
with erroneous entries for the 35th
and 38th flowers.

Figure 4: The Iris dataset from the UCI ML Repository is widely used for evaluating clustering
and classification algorithms [115]. Each observation corresponds to an iris flower, including sepal
and petal measurements and its specific species (out of three classes). After years of use, it was
discovered that there were multiple different widely-publicized versions of this dataset, with differing
measurements for certain observations. Consequently, the reported performances of classification
models on Iris (across a large number of published papers) are not necessarily comparable [116].

Figure 5: The Papers with Code dataset page for the deprecated Tiny Images dataset.

removed and a rationale for the changes, should also be provided [32, 95]. In addition, by associating
datasets with a responsible point of contact (see Section 2.2), repositories can help streamline the
resolution of questions or issues regarding a dataset.

Repositories can also support the deprecation of datasets. Currently, there is no standardized process
for dataset deprecation: creators often withdraw their dataset without an explanation of why it was
withdrawn or explicit instructions not to use the dataset (or other post-deprecation protocols). For
example, in [75]’s case study of six high-profile dataset retractions, three (MS-Celeb-1M, Duke
MTMC, and HRT Transgender) did not provide any reason for the dataset’s removal. Moreover,
deprecation reports are posted in a scattered, decentralized manner via news articles, conference
papers, or researcher or lab websites [75]. Ultimately, it can be unclear to researchers if a dataset is
acceptable to use; it is not uncommon for datasets to remain in use after their deprecation, including in
published, peer-reviewed papers [7, 40, 75]. To mitigate this, benchmark repositories can (1) establish
a process for deprecating a dataset, in which its creators submit a standardized report, detailing the
reasons for deprecation and post-deprecation protocols, and (2) maintain a page connected to the
dataset DOI (see Section 2.1) with the deprecation report and original metadata [119]. If a deprecation
report is clearly displayed in the same place where a dataset was available, it clarifies to researchers
(and reviewers) that the dataset should not be used (e.g., see Figure 5).

4 Promoting Data Usability and Reproducibility

Recent work has pointed to a need for improved (re)usability of data [28, 122] and reproducibility of
benchmarked results [123–127] in ML. When a dataset lacks clear metadata, it can lead to critical
misunderstandings in the reuse phase of its lifecycle (as in Figure 6). Unambiguous metadata are also
a necessary foundation for benchmark reproducibility, ensuring that data are used in the same way
across evaluations. Benchmark reproducibility is critical for ML research: it enables the verification
of published results, provides a starting point for experimentation and follow-up work, and makes
contributions easier for others to use, potentially increasing research impact [5, 128, 129]. Benchmark
repositories can support usability and reproducibility with the metadata they require and provide to
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Figure 6: The BUPA Liver Disorders dataset is a popular classification benchmark from the UCI ML
Repository [120]. Each row contains information on an individual’s consumption of alcoholic drinks
and their results on several blood tests targeting alcohol-related liver issues; the intended task is to
predict alcohol consumption based on these test results. The last column of the dataset is an indicator,
added by the dataset creators, intended to split the rows into training and test sets; however, the data
documentation did not clearly explain the meaning of each column. It was subsequently found that
many highly-cited papers using this dataset had mistakenly treated this last column as the class label,
producing “meaningless results” [121].

users [130, 131], particularly compositional and task-specific metadata (in addition to responsible
points of contact and dataset versions—see Sections 2.2 and 3.3 [123]).

If repositories include benchmarked results alongside datasets (discussed further in Section 5), they
can further support reproducibility by collecting and providing metadata about the benchmarked
results themselves [123].

4.1 Compositional and Task Metadata

Datasets are more usable for ML researchers when accompanied by metadata describing the dataset
composition and relevant tasks [35, 39, 132–134]. These metadata help expedite onboarding for a
new dataset [41, 135], prevent misunderstandings, and promote data reproducibility [7, 136–139].

Compositional metadata describe the makeup of a dataset, e.g., for tabular datasets, what each
instance represents, descriptions of each feature, the total number of rows and columns, the dataset
label or target, the presence of missing data, and recommended data splits [68, 140]. When this
information is clear, datasets are more interoperable, meaning they can be more easily processed and
incorporated into different workflows [35, 135]. For example, a researcher might want to evaluate an
existing model on a new dataset; if this dataset has detailed compositional metadata, the researcher
can quickly and easily determine which columns they need to use and what preprocessing is required.
If this metadata follows a standardized schema (e.g., Croissant [122]), model evaluation may even be
done automatically or semi-automatically.

Task metadata include the intended or appropriate ML tasks for a dataset (e.g., image classification
or time-series prediction) and specialized metadata relevant to those tasks (e.g., for human [78] or
medical [136] image, NLP [141], or ecological [139] data). As an example, HuggingFace Datasets
[17], which specializes in NLP data, collects metadata on language and multilinguality, text creation,
and fine-grained NLP tasks (e.g., sentiment classification, multiple-choice question answering, or
word sense disambiguation). Such specialized metadata make it easy for ML practitioners to find and
use data that fit a specific application.

Thus, to improve data usability and benchmark reproducibility, repositories can require that data
donors provide high-quality compositional and task metadata, including specialized task metadata,
where appropriate [132]. Repositories can also help streamline metadata creation processes, which
donors can find overwhelming or time-consuming [41, 142], e.g., with adaptive metadata collection,
auto-filling or updating basic fields [41], or supplementary training and tools [143]. We note that
to some extent, the responsibility to provide accurate and complete metadata ultimately falls on
the data donor. However, repositories can reduce the risk of incorrect, incomplete, or manipulated
documentation by enforcing metadata schemata, using quality review processes, and providing
user-friendly metadata creation tools—taking some of this burden from the donors themselves.
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4.2 Benchmark Metadata

In ML benchmarking, implementation details such as software dependencies, random seeds, and
hyperparameter values can have a significant impact on results [5, 124, 144], as can the details of
metric computation, including data splits, metric definitions, and aggregation of results [5, 15]. Thus,
clearly documenting this benchmark metadata is critical for reproducibility [123, 145]. Beyond
validating results, the ability to replicate an analysis facilitates “hands-on” experimentation with
benchmarked models on a given dataset, enabling researchers to test potential modifications, perform
additional evaluations, or debug other models [128, 146]. To this end, if a repository displays a
particular benchmarked result for a dataset, they should ensure that specific details on all settings
and hyperparameter values used to obtain that result are available [123]. The software environments,
dependencies, code, and data files necessary to re-run analyses should also be documented and
accessible [41, 117, 128, 147–149]. By ensuring that detailed metadata on a dataset’s content,
composition, task, and benchmarked results are available, repositories can provide ML practitioners
with a holistic understanding of the benchmark [41, 150].

5 Encouraging Holistic Evaluation

It has become common practice to tabulate benchmarked metrics for different ML methods with a
dataset leaderboard; several benchmark repositories offer leaderboard features, including Kaggle [18]
and Papers with Code.10 Leaderboarding has become predominant in ML evaluation, and state-of-the-
art performance is a key factor in peer review processes [5, 151]. However, this leaderboard culture has
been criticized for a “near singular” focus on the incremental improvement of a narrow set of metrics
(e.g., classification accuracy) [7, 152]. Such fixation on a specific metric is unlikely to yield broadly
applicable results and can stifle the growth of new, diverse ideas [5–7, 151]. Further, as measures of
uncertainty are seldom incorporated, seemingly record-breaking performance improvements are not
always statistically significant [151, 153, 154] (e.g., a review of the MS MARCO leaderboard found
no significant difference in performance between the top three models [155]). In this paper, we refrain
from taking a stance on whether benchmark repositories should include leaderboards. However, as
several repositories currently act as centralized purveyors of leaderboards, we briefly discuss how
they can promote more comprehensive evaluation, helping address problems with benchmarking that
manifest later in the dataset lifecycle.

5.1 Analysis Beyond Single Metrics

Recent work on best practices for ML benchmarking recommends evaluating performance more
holistically [6, 7, 156, 157]. This could include a variety of metrics, capturing model size and
complexity, energy consumption, inference latency, and the amount of data used [1, 3, 5, 152,
158, 159]. Additional in-depth assessment—such as error analysis or disaggregated evaluations—
can provide a more nuanced portrait of model behavior, capturing bias, fairness, or robustness
[6–8, 106, 160]. Thus, to enhance their leaderboards, benchmark repositories can include this sort of
comprehensive information on model performance. In addition to incentivizing progress in a number
of dimensions, this approach reflects that the ideal model is context-dependent, enabling practitioners
to choose a model based on the criteria most relevant to their use case [5, 7, 8, 158].

5.2 Metric Uncertainty

Metrics shown without any measure of uncertainty can prompt fallacious conclusions, e.g., that
one model performs definitively better than another. Instead, including uncertainty makes these
benchmarked results more informative [1, 161], and a growing body of methodologies has developed
for estimating uncertainty, computing confidence intervals, and performing statistical significance
testing in the context of model comparison [5, 144, 155, 162–164]. In light of this, several guidelines
for ML evaluation call for the inclusion of variance, uncertainty, and statistical significance in model
analysis [87, 95, 106, 151, 165]. Repositories with leaderboards can support this movement by
enforcing the reporting of uncertainty alongside point estimates of metrics.

10e.g., https://paperswithcode.com/sota/image-classification-on-cifar-10
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6 Diversifying Benchmark Datasets

Benchmarking for a particular type of ML model is often concentrated on a limited set of datasets and
tasks [6, 8, 23]. This lack of diversity can encourage overfitting to a specific benchmark dataset (e.g.,
via random seed or hyperparameter fishing) [165, 166]. Over-adaptation also happens at a macro
level over time, as new models leverage tricks and strategies from earlier work [5, 87]. Moreover,
these benchmarks are often not directly relevant to the real-world behavior they are evaluating—
for example, the GLUE benchmark [167] has been commonly used to evaluate natural language
understanding, but it is mainly comprised of sequence matching tasks [5]. As a result, there is often a
disconnect between benchmarked performance and real-world model behavior [10, 87, 168]. Thus,
the overrepresentation of specific tasks, data types, and test datasets can ultimately bias long-term
research directions [5, 6, 8] and limit the generalizability of model evaluations [9, 95, 106, 169].
To fight these patterns of overfitting and overuse, repositories can support the discovery and use of
diverse, relevant, and continuously evolving datasets.

6.1 Living Datasets

To hinder the overfitting of models to a specific test set, leaderboards can evaluate submitted models
on a private, hitherto unused test set [170–172] (e.g., as done by Kaggle) or on out-of-distribution
data [151, 173]. Extending this principle, leaderboards can also support “living” or evolving datasets,
to which dataset creators continuously add new examples or tasks and remove outdated or erroneous
examples. While this means that the benchmarked performances of two models evaluated at two
different points in time may not be directly comparable (and data versioning, as discussed in Section
3.3, is critical), robust models will generally outperform those using a specific trick or artifact as
evaluations are repeated over time [5]. These living datasets also track the real-world evolution
of data—for instance, in the context of autonomous driving, new types of vehicles appear on the
roads [38]—which static benchmark datasets fail to capture [75]. By evaluating models on living
datasets, repositories can help shift focus away from a specific static set of examples, de-incentivizing
overfitting and helping bridge the gap between benchmarked and real-world performance.

6.2 Dataset Discoverability

When choosing benchmark datasets for evaluating an algorithm, it has become the default to select
the same datasets already used in the literature [9, 76]. Often, however, there also exists a plethora of
other high-quality datasets that could have been used but did not win the “benchmark lottery” [5]
and were left undiscovered. To support dataset discoverability, existing standards emphasize the
importance of standardized, rich metadata [39, 132, 133], which enable searching for datasets via
keywords, filtering, and controlled vocabularies [174].

For benchmark repositories, this search is often task-driven: ML practitioners need to find datasets for
which a certain type of model is applicable, based on compositional properties and relevant tasks (see
Section 4.1). Thus, to improve benchmark dataset discovery, repositories can support search based
on compositional and task metadata [33, 41, 130]—for example, the UCI ML Repository’s search
functionality includes a filter for classification, regression, clustering, or other datasets. Overall,
by promoting the discovery and use of a more diverse set of evaluation datasets, repositories can
build a barrier to the over-representation of specific benchmark tasks or datasets and encourage more
generalizable model evaluation.

7 Discussion and Conclusion

7.1 Key Takeaways

A common thread throughout the criticisms of ML data and benchmarking practices we discuss
in this paper is a need for the intervention of a third party—separate from dataset creators and
users—in addressing these issues [5–7, 26–28, 31–33, 41, 75, 78, 95, 132]. While improving the
state of ML evaluation will be a community effort, involving the efforts of conferences and journals,
policymakers, nonprofit organizations, and individual practitioners [27], in this paper we posit that
benchmark repositories can play a major role in this effort, instigating far-reaching changes to the
culture surrounding datasets and benchmarking in ML. We summarize our key takeaways as follows.
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• Repositories can highlight the status of datasets as valuable scholarly contributions.

• Repositories are well-positioned in the data pipeline to address issues with dataset content.

• Repositories can facilitate data reuse and benchmark reproducibility by ensuring salient
metadata is provided for datasets (and, if applicable, benchmark evaluations).

• Repositories with leaderboard features can enforce best practices for model evaluation.

• Repositories can provide a platform for discovering new, relevant, high-quality datasets,
counteracting the overuse of a small set of standard benchmark datasets.

7.2 Limitations

The long-term feasibility and impact of our suggestions are predicated upon larger shifts in community
norms and attitudes about data-centric work, which will rely upon proper incentivization, an open
challenge in the ML community [24, 27, 28]. We discuss here potential incentives for both individual
researchers and repositories—although incentives for other actors (e.g., universities, companies,
publishers) are also worth exploring.

A key incentive for researchers to become involved in repository efforts is funding; this is becoming
more available as agencies such as the U.S. National Institutes of Health (NIH) and National Science
Foundation (NSF) pay increasing attention to the data-sharing ecosystem.11 For example, the
NSF’s program for Community Infrastructure for Research in Computer and Information Science
and Engineering explicitly calls out funding support for data repositories,12 and the U.S. National
Artificial Intelligence Research Resource Task Force identifies repositories as important to their goal
of “Strengthening and Democratizing the U.S. Artificial Intelligence Innovation Ecosystem” [135].

To incentivize dataset reviewers, repositories could follow the model of “volunteer journals” such
as the Journal of Machine Learning Research. These public journals demonstrate how high-quality
shared resources can be developed through dedicated volunteer efforts, offering inspiration for a
parallel system of oversight, reviewing, and maintenance for repositories. For example, similar to the
role of Action or Associate Editors (AEs) in these journals, repositories could have a set of curators
who are responsible for identifying relevant experts to review a dataset. By framing data curation and
review as an academic service in the same vein as more traditional editorial roles, repositories could
help incentivize participation in the review process.

Further work is also needed to determine how to incentivize repositories themselves to enforce best
practices (e.g., requiring data donors to select a license or provide task metadata). One potential
avenue is to establish standards for benchmark repositories, building upon standards for data reposito-
ries in general, such as CoreTrustSeal.13 Establishing standards or repository certification processes
will be most effective if the ML community cultivates an expectation that such requirements are met
(e.g., as in archival settings [27]).

Though we may draw useful inspiration from these ideas, it remains unclear what incentivization
strategies will work best to spur large-scale buy-in from repositories, dataset creators, and dataset
users in implementing and maintaining best practices.

7.3 Looking Ahead

Going forward, we hope that a growing appreciation of data work will permeate the ML community,
serving as a catalyst for investment into data infrastructure in ML and broader researcher involvement
in data repositories. In light of this, we believe the ideas in this paper lay a foundation for further
discussion and research about how benchmark repositories can be utilized, and improved, for better
benchmarking in ML.

11https://grants.nih.gov/grants/guide/notice-files/NOT-OD-21-013.html
12https://new.nsf.gov/funding/opportunities/circ-community-infrastructure-research-computer-

information/nsf23-589/solicitation
13https://www.coretrustseal.org/
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