
How many classifiers do we need?

Hyunsuk Kim
Department of Statistics

University of California, Berkeley
hyskim7@berkeley.edu

Liam Hodgkinson
School of Mathematics and Statistics
University of Melbourne, Australia
lhodgkinson@unimelb.edu.au

Ryan Theisen
Harmonic Discovery

ryan@harmonicdiscovery.com

Michael W. Mahoney
ICSI, LBNL, and Dept. of Statistics
University of California, Berkeley
mmahoney@stat.berkeley.edu

Abstract

As performance gains through scaling data and/or model size experience diminish-
ing returns, it is becoming increasingly popular to turn to ensembling, where the
predictions of multiple models are combined to improve accuracy. In this paper, we
provide a detailed analysis of how the disagreement and the polarization (a notion
we introduce and define in this paper) among classifiers relate to the performance
gain achieved by aggregating individual classifiers, for majority vote strategies
in classification tasks. We address these questions in the following ways. (1) An
upper bound for polarization is derived, and we propose what we call a neural
polarization law: most interpolating neural network models are 4/3-polarized. Our
empirical results not only support this conjecture but also show that polarization
is nearly constant for a dataset, regardless of hyperparameters or architectures of
classifiers. (2) The error rate of the majority vote classifier is considered under
restricted entropy conditions, and we present a tight upper bound that indicates
that the disagreement is linearly correlated with the error rate, and that the slope
is linear in the polarization. (3) We prove results for the asymptotic behavior of
the disagreement in terms of the number of classifiers, which we show can help in
predicting the performance for a larger number of classifiers from that of a smaller
number. Our theoretical findings are supported by empirical results on several
image classification tasks with various types of neural networks.

1 Introduction
As performance gains through scaling data and/or model size experience diminishing returns, it
is becoming increasingly popular to turn to ensembling, where the predictions of multiple models
are combined, both to improve accuracy and to form more robust conclusions than any individual
model alone can provide. In some cases, ensembling can produce substantial benefits, particularly
when increasing model size becomes prohibitive. In particular, for large neural network models,
deep ensembles [LPB17] are especially popular. These ensembles consist of independently trained
models on the same dataset, often using the same hyperparameters, but starting from different
initializations.

The cost of producing new classifiers can be steep, and it is often unclear whether the additional
performance gains are worth the cost. Assuming that constructing two or three classifiers is relatively
cheap, procedures capable of deciding whether to continue producing more classifiers are needed.
To do so requires a precise understanding of how to predict ensemble performance. Of particular
interest are majority vote strategies in classification tasks, noting that regression tasks can also be
formulated in this way by clustering outputs. In this case, one of the most effective avenues for
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predicting performance is the disagreement [JNBK22, BJRK22]: measuring the degree to which
classifiers provide different conclusions over a given dataset. Disagreement is concrete, easy to
compute, and strongly linearly correlated with majority vote prediction accuracy, leading to its use
in many applications. However, a priori, the precise linear relationship between disagreement and
accuracy is unclear, preventing the use of disagreement for predicting ensemble performance.

Our goal in this paper is to go beyond disagreement-based analysis to provide a more quantitative
understanding of the number of classifiers one should use to achieve a desired level of performance
in modern practical applications, in particular for neural network models. In more detail, our
contributions are as follows.

(i) We introduce and define the concept of polarization, a notion that measures the higher-
order dispersity of the error rates at each data point, and which indicates how polarized the
ensemble is relative to the ground truth. We state and prove an upper bound for polarization
(Theorem 1). Inspired by the theorem, we propose what we call a neural polarization law
(Conjecture 1): most interpolating (Definition 2) neural network models are 4/3-polarized. We
provide empirical results supporting the conjecture (Figures 1 and 2).

(ii) Using the notion of polarization, we develop a refined set of bounds on the majority vote
test error rate. For one, we provide a sharpened bound for any ensembles with a finite
number of classifiers (Corollary 1). For the other, we offer a new, tighter bound under an
additional condition on the entropy of the ensemble (Theorem 4). We provide empirical results
that demonstrate our new bounds perform significantly better than the existing bounds on the
majority vote test error (Figure 3).

(iii) The asymptotic behavior of the majority vote error rate is determined as the number of
classifiers increases (Theorem 5). Consequently, we show that we can predict the performance
for a larger number of classifiers from that of a smaller number. We provide empirical results
that show such predictions are accurate across various pairs of model architecture and dataset
(Figure 4).

In Section 2, we define the notations that will be used throughout the paper, and we introduce upper
bounds for the error rate of the majority vote from previous work. The next three sections are the main
part of the paper. In Section 3, we introduce the notion of polarization, ηρ, which plays a fundamental
role in relating the majority vote error rate to average error rate and disagreement. We explore the
properties of the polarization and present empirical results that corroborate our claims. In Section
4, we present tight upper bounds for the error rate of the majority vote for ensembles that satisfy
certain conditions; and in Section 5, we prove how disagreement behaves in terms of the number of
classifiers. All of these ingredients are put together to estimate the error rate of the majority vote for
a large number of classifiers using information from only three sampled classifiers. In Section 6, we
provide a brief discussion and conclusion. Additional material is presented in the appendices.

2 Preliminaries
In this section, we introduce notation that we use throughout the paper, and we summarise previous
work on the performance of the majority vote error rate.

2.1 Notations
We focus on K-class classification problems, with features X ∈ X , labels Y ∈ [K] = {1, 2, ...,K}
and feature-label pairs (X,Y ) ∼ D. A classifier h : X → [K] is a function that maps a feature to
a label. We define the error rate of a single classifier h, and the disagreement and the tandem loss
[MLIS20] between two classifiers, h and h′, as the following:

Error rate : L(h) = ED[1(h(X) ̸= Y )]

Disagreement : D(h, h′) = ED[1(h(X) ̸= h′(X))]

Tandem loss : L(h, h′) = ED[1(h(X) ̸= Y )1(h′(X) ̸= Y )],

where the expectation ED is used to denote E(X,Y )∼D. Next, we consider a distribution of classifiers,
ρ, which may be viewed as an ensemble of classifiers. This distribution can represent a variety of
different cases. Examples include: (1) a discrete distribution over finite number of hi, e.g., a weighted
sum of hi; and (2) a distribution over a parametric family hθ, e.g., a distribution of classifiers resulting
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from one or multiple trained neural networks. Given the ensemble ρ, the (weighted) majority vote
hMV
ρ : X → [K] is defined as

hMV
ρ (x) = argmax

y∈[K]

Eρ[1(h(x) = y)].

Again, Eρ denotes Eh∼ρ, and we use Eρ,Eρ2 ,Pρ for Eh∼ρ,E(h,h′)∼ρ2 ,Ph∼ρ, respectively, through-
out the paper. In this sense, Eρ[L(h)] represents the average error rate under a distribution of
classifiers ρ and Eρ2 [D(h, h′)] represents the average disagreement between classifiers under ρ.
Hereafter, we refer to Eρ[L(h)], Eρ2 [D(h, h′)], and L(hMV

ρ ) as the average error rate, the disagree-
ment, and the majority vote error rate, respectively, with

L(hMV
ρ ) = ED[1(h

MV
ρ (X) ̸= Y )].

Lastly, we define the point-wise error rate, Wρ(X,Y ), which will serve a very important role in this
paper (for clarity, we will denote Wρ(X,Y ) by Wρ unless otherwise necessary):

Wρ(X,Y ) = Eρ[1(h(X) ̸= Y )]. (1)

2.2 Bounds on the majority vote error rate
The simplest relationship between the majority vote error L(hMV

ρ ) and the average error rate Eρ[L(h)]
was introduced in [McA98]. It states that the error in the majority vote classifier cannot exceed twice
the average error rate:

L(hMV
ρ ) ≤ 2Eρ[L(h)] (2)

A simple proof for this relationship can be found in [MLIS20] using Markov’s inequality. Although
(2) does not provide useful information in practice, it is worth noting that this bound is, in fact, tight.
There exist pathological examples where hMV

ρ exhibits twice the average error rate (see Appendix C
in [TKY+24]). This suggests that we can hardly obtain a useful or tighter bound by relying on only
the “first-order” term, Eρ[L(h)].

Accordingly, more recent work constructed bounds in terms of “second-order” quantities,
Eρ2 [L(h, h′)] and Eρ2 [D(h, h′)]. In particular, [LMRR17] and [MLIS20] designed a so-called
C-bound using the Chebyshev-Cantelli inequality, establishing that, if Eρ[L(h)] < 1/2, then

L(hMV
ρ ) ≤

Eρ2 [L(h, h′)]− Eρ[L(h)]
2

Eρ2 [L(h, h′)]− Eρ[L(h)] +
1
4

. (3)

As an alternative approach, [MLIS20] incorporated the disagreement Eρ2 [D(h, h′)] into the bound
as well, albeit restricted to the binary classification problem, to obtain:

L(hMV
ρ ) ≤ 4Eρ[L(h)]− 2Eρ2 [D(h, h′)]. (4)

While (3) and (4) may be tighter in some cases, once again, there do exist pathological examples
where this bound is as uninformative as the first-order bound (2). Motivated by these weak results,
[TKY+24] take a new approach by restricting ρ to be a “good ensemble,” and introducing the
competence condition (see Definition 3 in our Appendix A). Informally, competent ensembles are
those where it is more likely—in average across the data—that more classifiers are correct than not.
Based on this notion, [TKY+24] prove that competent ensembles are guaranteed to have weighted
majority vote error smaller than the weighted average error of individual classifiers:

L(hMV
ρ ) ≤ Eρ[L(h)]. (5)

That is, the majority vote classifier is always beneficial. Moreover, [TKY+24] proves that any
competent ensemble ρ of K-class classifiers satisfy the following inequality.

L(hMV
ρ ) ≤ 4(K − 1)

K

(
Eρ[L(h)]−

1

2
Eρ2 [D(h, h′)]

)
. (6)

We defer further discussion of competence to Appendix A, where we introduce simple cases for
which competence does not hold. In these cases, we show how one can overcome this issue so that
the bounds (5) and (6) still hold. In particular, in Appendix A.3, we provide an example to show the
bound (6) is tight.
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3 The Polarization of an Ensemble
In this section, we introduce a new quantity, ηρ, which we refer to as the polarization of an ensemble
ρ. First, we provide examples as to what this quantity represents and draw a connection to previous
studies. Then, we present theoretical and empirical results that show this quantity plays a fundamental
role in relating the majority vote error rate to average error rate and disagreement. In Theorem 1, we
prove an upper bound for the polarization ηρ, which highlights a fundamental relationship between
the polarization and the constant 4

3 . Inspired from the theorem, we propose Conjecture 1 which we
call a neural polarization law. Figures 1 and 2 present empirical results on an image recognition task
that corroborates the conjecture.

We start by defining the polarization of an ensemble. In essence, the polarization is an improved
(smaller) coefficient on the Markov’s inequality on PD(Wρ > 0.5), where Wρ is the point-wise error
rate defined as equation (1). It measures how much the ensemble is “polarized” from the truth, with
consideration of the distribution of Wρ.

Definition 1 (POLARIZATION). An ensemble ρ is η-polarized if

η ED[W
2
ρ ] ≥ PD(Wρ > 1/2). (7)

The polarization of an ensemble ρ is

ηρ :=
PD(Wρ > 1/2)

ED[W 2
ρ ]

, (8)

which is the smallest value of η satisfies inequality (7).

Note that the polarization always takes a value in [0, 4], due to the positivity constraint and Markov’s
inequality. Also note that ensemble ρ with polarization ηρ is η-polarized for any η ≥ ηρ.

To understand better what this quantity represents, consider the following examples. The first example
demonstrates that polarization increases as the majority vote becomes more polarized from the truth,
while the second example demonstrates how polarization increases when the constituent classifiers
are more evenly split.

Example 1. Consider an ensemble ρ where 75% of classifiers output Label 1 with probability one,
and the other 25% classifiers output Label 2 with probability one.

- Case 1. The true label is Label 1 for the whole data.
In this case, the majority vote in ρ results in zero error rate. The point-wise error rate Wρ is 0.25
on the entire dataset, and thus PD(Wρ > 0.5) = 0. The polarization ηρ is 0.

- Case 2. The true label is Label 1 for half of the data and is Label 2 for the other half.
In this case, the majority vote is only correct for half of the data. The point-wise error rate Wρ is
0.25 for this half, and is 0.75 for the other half. The polarization ηρ is 0.5/0.3125 = 1.6.

- Case 3. The true label is Label 2 for the whole data.
In this case, the majority vote in ρ is wrong on every data point. The point-wise error rate Wρ is
0.75 on the entire dataset and thus PD(Wρ > 0.5) = 1. The polarization ηρ is 1/0.3125 = 3.2.

Example 2. Now consider an ensemble ρ of which 51% of classifiers always output Label 1, and
the other 49% classifiers always output Label 2.

- Case 1. The polarization ηρ is now 0, the same as in Example 1.

- Case 2. The polarization ηρ is 0.5/0.2501 ≈ 2, which is larger than 1.6 in Example 1.

- Case 3. The polarization ηρ is now 1/0.2501 ≈ 4 , which is larger than 3.2 in Example 1.

In addition, the following proposition draws a connection between polarization and the competence
condition mentioned in Section 2.2. It states that the polarization of competent ensembles cannot be
very large. The proof is deferred to Appendix A.2.

Proposition 1. Competent ensembles are 2-polarized.

Now we delve more into this new quantity. We introduce Theorem 1, which establishes (by means
of concentration inequalities) an upper bound on the polarization ηρ. The proof of Theorem 1 is
deferred to Appendix B.1.

4

86461https://doi.org/10.52202/079017-2745



Figure 1: Polarizations ηρ obtained from ResNet18 trained on CIFAR-10 with various sets of
hyper-parameters tested on (a) an out-of-sample CIFAR-10 and (b) an out-of-distribution dataset,
CIFAR-10.1. Red dashed line indicates y = 4/3, a suggested value of polarization appears in
Theorem 1 and Conjecture 1.

Theorem 1. Let {(Xi, Yi)}mi=1 be independent and identically distributed samples from D that are
independent of an ensemble ρ. Then the polarization of the ensemble, ηρ, satisfies

ηρ ≤ max

4

3
,


√

3
8m log 1

δ +
√

3
8m log 1

δ + 4SP

2S

2
 , (9)

with probability at least 1− δ, where S = 1
m

∑m
i=1 W

2
ρ (Xi, Yi) and P = 1

m

∑m
i=1 1(Wρ(Xi, Yi) >

1/2).f

Surprisingly, in practice, ηρ = 4
3 appears to be a good choice for a wide variety of cases. See

Figure 1 and Figure 2, which show the polarization ηρ obtained from VGG11 [SZ14], DenseNet40
[HLVDMW17], ResNet18, ResNet50 and ResNet101 [HZRS16] trained on CIFAR-10 [Kri09] with
various hyperparameters choices. The trend does not deviate even when evaluated on an out-of-
distribution dataset, CIFAR-10.1 [RRSS18, TFF08]. For more details on these empirical results, see
Appendix C.

Remark. We emphasize that values for ηρ that are larger than 4
3 does not contradict Theorem 1.

This happens when the non-constant second term in (9) is larger than 4
3 , which is often the case for

classifiers which are not interpolating (or, indeed, that underfit or perform poorly).

Definition 2 (INTERPOLATING, [BHMM19]). A classifier is interpolating if it achieves an accuracy
of 100% on the training data.

Putting Theorem 1 and the consistent empirical trend shown in Figure 2(b) together, we propose the
following conjecture.

Conjecture 1 (NEURAL POLARIZATION LAW). The polarization of ensembles comprised of inde-
pendently trained interpolating neural networks is smaller than 4

3 .

4 Entropy-Restricted Ensembles
In this section, we first present an upper bound on the majority vote error rate, L(hMV

ρ ), in Theorem 2,
using our notion of polarization ηρ which we introduced and defined in the previous section. Then,
we present Theorems 3 and 4 which are the main elements in obtaining tighter upper bounds on
L(hMV

ρ ). Figure 3 shows our proposed bound offers a significant improvement over state-of-the-art
results. The new upper bounds are inspired from the fact that classifier prediction probabilities tend to
concentrate on a small number of labels, rather than be uniformly spread over all the possible labels.

5
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Figure 2: Polarization ηρ obtained (a) from various architectures trained on CIFAR-10 and (b) only
from interpolating classifiers trained on various datasets. Red dashed line indicates y = 4/3. In
subplot (b), we observe that the polarization of all interpolating models expect one are smaller than
4/3, which aligns with Conjecture 1.

This is analogous to the phenomenon of neural collapse [Kot22]. As an example, in the context
of a computer vision model, when presented with a photo of a dog, one might expect that a large
portion of reasonable models might classify the photo as an animal other than a dog, but not as a car
or an airplane.

We start by stating an upper bound on the majority vote error, L(hMV
ρ ) as a function of polarization

ηρ. This upper bound is tighter (smaller) than the previous bound in inequality (6) when the
polarization is lower than 2, which is the case for competent ensembles. The proof is deferred to
Appendix B.2.

Theorem 2. For an ensemble ρ of K-class classifiers,

L(hMV
ρ ) ≤ 2ηρ(K − 1)

K

(
Eρ[L(h)]−

1

2
Eρ2 [D(h, h′)]

)
,

where ηρ is the polarization of the ensemble ρ.

Based on the upper bound stated in Theorem 2, we add a restriction on the entropy of constituent
classifiers to obtain Theorem 3. The theorem provides a tighter scalable bound that does not have
explicit dependency on the total number of labels, with a small cost in terms of the entropy of
constituent classifiers. The proof of Theorem 3 is deferred to Appendix B.3.

Theorem 3. Let ρ be any η-polarized ensemble of K-class classifiers that satisfies Pρ(h(x) /∈
A(x)) ≤ ∆, where y ∈ A(x) ⊂ [K] and |A(x)| ≤ M , for all data points (x, y) ∈ D. Then, we have

L(hMV
ρ ) ≤ 2η(M−1)

M

[(
1 +

∆

M−1

)
Eρ[L(h)]−

1

2
Eρ2 [D(h, h′)]

]
.

While Theorem 3 might provide a tighter bound than prior work, coming up with pairs (M,∆) that
satisfy the constraint is not an easy task. This is not an issue for a discrete ensemble, however. If ρ
is a discrete distribution of N classifiers, then we observe that the assumption of Theorem 3 must
always hold with (M,∆) = (N+1, 0). We state this as the following corollary.

Corollary 1 (FINITE ENSEMBLE). For an ensemble ρ that is a weighted sum of N classifiers, we
have

L(hMV
ρ ) ≤ 2ηρN

N+1

(
Eρ[L(h)]−

1

2
Eρ2 [D(h, h′)]

)
, (10)

where ηρ is the polarization of the ensemble ρ.

6
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Figure 3: Comparing our new bound from Corollary 1 (colored black), which is the right hand
side of inequality (10), with bounds from previous studies. Green corresponds to the C-bound in
inequality (3), and blue corresponds to the right hand side of inequality (6). ResNet18, ResNet50,
ResNet101 models with various sets of hyperparameters are trained on CIFAR-10 then tested on (a)
the out-of-sample CIFAR-10, (b) an out-of-distribution dataset, CIFAR-10.1.

See Figure 3, which provides empirical results that compare the bound in Corollary 1 with the
C-bound in inequality (3), and with inequality (6) proposed in [TKY+24]. We can observe that the
new bound in Corollary 1 is strictly tighter than the others. For more details on these empirical results,
see Appendix C.

Although the bound in Corollary 1 is tighter than the bounds from previous studies, it’s still not tight
enough to use it as an estimator for L(hMV

ρ ). In the following theorem, we use a stronger condition on
the entropy of an ensemble to obtain a tighter bound. The proof is deferred to Appendix B.4.

Theorem 4. For any η-polarized ensemble ρ that satisfies

1

2
ED
[
Pρ2 (h(X) ̸= Y, h′(X) ̸= Y, h(X) ̸= h′(X))

]
≤ εED [Pρ (h(X) ̸= Y )] , (11)

we have

L(hMV
ρ ) ≤ η

[
(1 + ε)Eρ[L(h)]−

1

2
Eρ2 [D(h, h′)]

]
.

The condition (11) can be rephrased as follows: compared to the error Pρ(h(x) ̸= y), the entropy of
the distribution of wrong predictions is small, and it is concentrated on a small number of labels. A
potential problem is that one must know or estimate the smallest possible value of ε in advance. At
least, we can prove that ε = K−2

2(K−1) always satisfies the condition (11) for an ensemble of K-class
classifiers. The proof is deferred to Appendix B.4.

Corollary 2. For any η-polarized ensemble ρ of K-class classifiers, we have

L(hMV
ρ ) ≤ η

[(
1 +

K−2

2(K−1)

)
Eρ[L(h)]−

1

2
Eρ2 [D(h, h′)]

]
.

Naturally, this ε is not good enough for our goal. We discuss more on how to estimate the smallest
possible value of ε in the following section.

5 A Universal Law for Ensembling
In this section, our goal is to predict the majority vote error rate of an ensemble with large number of
classifiers by just using information we can obtain from an ensemble with a small number, e.g., three,

7
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of classifiers. Among the elements in the bound in Theorem 4,

η

[
(1 + ε)Eρ[L(h)]−

1

2
Eρ2 [D(h, h′)]

]
,

we plug in η = 4
3 as a result of Theorem 1; and since Eρ[L(h)] is invariant to the number of classifiers,

it remains to predict the behavior of Eρ2 [D(h, h′)] and the smallest possible value of ε, ερ =
ED[Pρ2(h(X )̸=Y,h′(X) ̸=Y,h(X )̸=h′(X))]

2ED[Pρ(h(X )̸=Y )] . Since the denominator ED [Pρ (h(X) ̸= Y )] = Eρ[L(h)]

is invariant to the number of classifiers, and the numerator resembles the disagreement between
classifiers, ερ is expected to follow a similar pattern as Eρ2 [D(h, h′)]. Note that the numerator of ερ
has the same form as the disagreement, differing by only one less label. Both are V -statistics that can
be expressed as a multiple of a U -statistic, as shown in equation (12). In the next theorem, we show
that the disagreement for a finite number of classifiers can be expressed as the sum of a hyperbolic
curve and an unbiased random walk. Here, [x] denotes the greatest integer less than or equal to x and
D[0, 1] is the Skorokhod space on [0, 1] (see Appendix B.5).

Theorem 5. Let ρN denote an empirical distribution of N independent classifiers {hi}Ni=1 sampled
from a distribution ρ and σ2

1 = Varh∼ρ(Eh′∼ρPD(h(X) ̸= h′(X))). Then, there exists D∞ > 0
such that

E(h,h′)∼ρ2
N
[D(h, h′)] =

(
1− 1

N

)(
D∞ +

2√
N

ZN

)
,

where EZN = 0, VarZN → σ2
1 and {

√
t

σ1
Z[Nt]}t∈[0,1] converges weakly to a standard Wiener process

in D[0, 1] as N → ∞.

Proof. Let Φ(hi, hj) = PD(hi(X) ̸= hj(X)). We observe that

N2

N(N−1)
E(h,h′)∼ρ2

N
[D(h, h′)] =

1

N(N−1)

N∑
i,j=1

PD(hi(X) ̸= hj(X))

=
1

N(N−1)

N∑
i,j=1

Φ(hi, hj) =
Φ: symmetric
Φ(hi,hi)=0

2

N(N−1)

∑
1≤i<j≤N

Φ(hi, hj) =: UN , (12)

which is a U -statistic with the kernel function Φ. Let Φ0 = E(h,h′)∼ρ2Φ(h, h′).

The invariance principle of U -statistics (Theorem 7 in Appendix B.5) states that the process ξN =

(ξN (t), t ∈ [0, 1]), defined by ξN ( k
N ) = k

2
√

Nσ2
1

(Uk−Φ0) and ξN (t) = ξN ( [Nt]
N ), converges weakly

to a standard Wiener process in D[0, 1] as N →∞, since σ2
1 = Varh∼ρEh′∼ρΦ(h, h

′). Therefore,
UN converges in probability as N→∞ to D∞ := Φ0.

Letting ZN =σ1ξN (1)=
√
N
2 (UN−D∞), we can express UN as UN =D∞+ 2√

N
ZN , with EZN =0

and VarZN →σ2
1 . Since

√
t

σ1
Z[Nt]=

√
Nt
[Nt] ξN ( [Nt]

N )=
√

Nt
[Nt] ξN (t), it follows by Slutsky’s Theorem

that {
√
t

σ1
Z[Nt]}t∈[0,1] converges weakly to a standard Wiener process in D[0, 1] as N→∞.

Theorem 5 suggests that the disagreement within N classifiers, Eρ2
N
[D(h, h′)], can be approximated

as N−1
N D∞. From the disagreement within M(≪N) classifiers, D∞ can be approximated as

M
M−1Eρ2

M
[D(h, h′)], and therefore we get

Eρ2
N
[D(h, h′)] ≈ N − 1

N
· M

M − 1
Eρ2

M
[D(h, h′)]. (13)

Assume that we have three classifiers sampled from ρ. We denote the average error rate, the
disagreement, and the ερ from these three classifiers by E3[L(h)], E3[D(h, h′)], and ε3, respectively.
Then, from Theorem 4 and approximation (13) (which applies to both disagreement and ερ), we

8
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Figure 4: Comparing the estimated (extrapolated) majority vote error rates in equation (14) (blue-
dashed lines) and (15) (orange-dashed lines) with the true majority vote error (green solid line) for
each number of classifiers. The solid sky-blue line corresponds to the average error rate of constituent
classifiers. Subplots (a1), (b), (c), (d), (e) show the results from different pairs of (classification
model, dataset). Subplot (a2) overlays the right hand side of inequality (3) (C-bound, colored red)
and inequality (6) ([TKY+24] bound, colored purple) on the subplot (a1). These two quantities from
previous studies are much larger compared to the average error rate. We see the same pattern for
other (architecture, dataset) pairs, which we therefore omit from the plot. For more details on these
empirical results, see Appendix C.

estimate the majority vote error rate of N classifiers from ρ as the following:

L(hMV
ρ ) ⪅

4

3

[(
1 +

N − 1

N
· 3
2
· ε3
)

E3[L(h)]−
N − 1

N
· 3
2
· 1
2
E3[D(h, h′)]

]
=

4

3

[
E3[L(h)] +

3(N − 1)

2N

(
ε3E3[L(h)]−

1

2
E3[D(h, h′)]

)]
. (14)

Alternatively, we can use the polarization measured from three classifiers, η3, instead of η = 4
3 , to

obtain:

L(hMV
ρ ) = η3

[
E3[L(h)] +

3(N − 1)

2N

(
ε3E3[L(h)]−

1

2
E3[D(h, h′)]

)]
. (15)

Figure 4 presents empirical results that compare the estimated (extrapolated) majority vote error rates
in equations (14) and (15) with the true majority vote error for each number of classifiers. ResNet18
models are tested on four different dataset: CIFAR-10, CIFAR-10.1, Fashion-MNIST [XRV17]
and Kuzushiji-MNIST [CBIK+18] where the models are trained on the corresponding train data.
MobileNet [How17] is trained and tested on the MNIST [Den12] dataset. Not only do the estimators
show significant improvement compared to the bounds introduced in Section 2.2, we observe that the
estimators are very close to the actual majority vote error rate; and thus the estimators have practical
usages, unlike the bounds from previous studies. In Figure 4(a2), existing bounds (3) and (6) are
much larger compared to the average error rate. This is also the case for (architecture, dataset) pairs
of other subplots.
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6 Discussion and Conclusion
This work addresses the question: how does the majority vote error rate change according to the
number of classifiers? While this is an age-old question, it is one that has received renewed interest in
recent years. On the journey to answering the question, we introduce several new ideas of independent
interest. (1) We introduced the polarization ηρ, of an ensemble of classifiers. This notion plays an
important role throughout this paper and appears in every upper bound presented. Although Theorem 1
gives some insight into polarization, our conjectured neural polarization law (Conjecture 1) is yet to
be proved or disproved, and it provides an exciting avenue for future work. (2) We proposed two
classes of ensembles whose entropy is restricted in different ways. Without these constraints, there
will always be examples that saturate even the least useful majority vote error bounds. We believe that
accurately describing how models behave in terms of the entropy of their output is key to precisely
characterizing the behavior of majority vote, and likely other ensembling methods.

Throughout this paper, we have theoretically and empirically demonstrated that polarization is
fairly invariant to the hyperparameters and architecture of classifiers. We also proved a tight bound
for majority vote error, under an assumption with another quantity ε, and we presented how the
components of this tight bound behave according to the number of classifiers. Altogether, we have
sharpened bounds on the majority vote error to the extent that we are able to identify the trend of
majority vote error rate in terms of number of classifiers.

We close with one final remark regarding the metrics used to evaluate an ensemble. Majority vote
error rate is the most common and popular metric used to measure the performance of an ensemble.
However, it seems unlikely that a practitioner would consider an ensemble to have performed
adequately if the majority vote conclusion was correct, but was only reached by a relatively small
fraction of the classifiers. With the advent of large language models, it is worth considering whether
the majority vote error rate is still as valuable. The natural alternative in this regard is the probability
Pρ(Wρ > 1/2), that is, the probability that at least half of the classifiers agree on the correct answer.
This quantity is especially well-behaved, and it frequently appears in our proofs. (Indeed, every
bound presented in this work serves as an upper bound for Pρ(Wρ > 1/2).) We conjecture that this
quantity is useful much more generally.

Acknowledgements. We would like to thank the DOE, IARPA, NSF, and ONR for providing partial
support of this work.
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A More discussion on competence
In this section, we delve more into the competence condition that was introduced in [TKY+24].
We explore in which cases the competence condition might not work and how to overcome these
issues. We discuss a few milder versions of competence that are enough for bounds (5) and (6) to
hold. Then we discuss how to check whether these weaker competence conditions hold in practice,
with or without a separate validation set. We start by formally stating the original competence
condition.

Definition 3 (Competence, [TKY+24]). The ensemble ρ is competent if for every 0 ≤ t ≤ 1/2,

PD(Wρ ∈ [t, 1/2)) ≥ PD(Wρ ∈ [1/2, 1− t]). (16)

A.1 Cases when competence fails
One tricky part in the definition of competence is that it requires inequality (16) to hold for every
0 ≤ t ≤ 1/2. In case t = 1/2, the inequality becomes

0 ≥ PD(Wρ = 1/2).

This is not a significant issue in the case that ρ is a continuous distribution over classifiers, e.g., a Bayes
posterior or a distribution over a parametric family hθ, as {Wρ = 1/2} would be a measure-zero set.
In the case that ρ is a discrete distribution over finite number of classifiers, however, PD(Wρ = 1/2)
is likely to be a positive quantity, in which case it can violate the competence condition.

That being said, {(x, y) | Wρ(x, y) = 1/2} represent tricky data points that deserves separate
attention. This event can be divided into two cases: 1) all the classifiers that incorrectly made a
prediction output the same label; or 2) incorrect predictions consist of multiple labels so that the
majority vote outputs the true label. Among these two possibilities, the first case is troublesome. We
denote such data points by TIE(ρ,D):

TIE(ρ,D) :=

{(x, y) | Pρ(1(h(x) = j)) = Pρ(1(h(x) = y)) = 1/2 for true label y and an incorrect label j}.

In this case, the true label and an incorrect label are chosen by exactly the same ρ−weights of
classifiers. An easy way to resolve this issue is to slightly tweak the weights. For instance, if ρ is an
equally weighted sum of two classifiers, we can change each of their weights to be (1/2+ ϵ, 1/2− ϵ),
instead of (1/2, 1/2). This change may seem manipulative, but it corresponds to a deterministic
tie-breaking rule which prioritizes one classifier over the other, which is a commonly used tie-
breaking rule.

Definition 4 (Tie-free ensemble). An ensemble is tie-free if PD(TIE(ρ,D)) = 0.

Proposition 2. An ensemble with a deterministic tie-breaking rule is tie-free.

With such tweak to make the set TIE(ρ,D) to be an empty set or a measure-zero set, we present a
slightly milder condition that is enough for the bounds (5) and (6) to still hold.

Definition 5 (Semi-competence). The ensemble ρ is semi-competent if for every 0 ≤ t < 1/2,

P (Wρ ∈ [t, 1/2]) ≥ P(Wρ ∈ (1/2, 1− t]). (17)

Note that inequality (17) is a strictly weaker condition than inequality (16), and hence competence
implies semi-competence. The converse is not true. An ensemble is semi-competent even if the point-
wise error Wρ(X,Y ) = 1/2 on every data points, but such an ensemble is not competent.

Theorem 6. For a tie-free ensemble and semi-competent ensemble ρ, L(hMV
ρ ) ≤ Eρ[L(h)] and

L(hMV
ρ ) ≤ 4(K − 1)

K

(
Eρ[L(h)]−

1

2
Eρ2 [D(h, h′)]

)
holds in K-class classification setting.

We provide the proof as a separate subsection below.
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A.2 Proof of Theorem 6 and Proposition 1
We start with the following lemma, which is a semi-competence version of Lemma 2
from [TKY+24].

Lemma 1. For a semi-competent ensemble ρ and any increasing function g satisfying g(0) = 0,

ED[g(Wρ)1Wρ≤1/2] ≥ ED[g(W̃ρ)1W̃ρ<1/2
],

where W̃ρ = 1−Wρ.

Proof. For every x ∈ [0, 1], it holds that

PD(Wρ1Wρ≤1/2 ≥ x) = PD(Wρ ∈ [x, 1/2])1x≤1/2,

PD(W̃ρ1W̃ρ<1/2
≥ x) = PD(W̃ρ ∈ [x, 1/2))1x≤1/2 = PD(Wρ ∈ (1/2, 1− x])1x≤1/2.

From the definition of semi-competence, this implies that PD(Wρ1Wρ≤1/2 ≥ x) ≥
PD(W̃ρ1W̃ρ<1/2

≥ x) for every x ∈ [0, 1]. Using the fact that g(x1x≤c) = g(x)1x≤c for any
increasing function g with g(0) = 0, we obtain

PD(h(Wρ)1Wρ≤1/2 ≥ x) ≥ PD(h(W̃ρ)1W̃ρ<1/2
≥ x).

Putting these together with a well-known equality EX =
∫∞
0

P(X ≥ x)dx for a non-negative
random variable X proves the lemma.

Now we use Lemma 1 and Theorem 2 to prove Theorem 6.

Proof of Theorem 6. Applying Lemma 1 with g(x) = 2x2 gives,

ED[2W
2
ρ1Wρ≤1/2] ≥ ED[2W̃ρ

2
1
W̃ρ<1/2

] = ED[(2− 4Wρ + 2W 2
ρ )1Wρ>1/2]. (18)

Putting this together with the following decomposition of ED[2W
2
ρ ] shows that the ensemble ρ is

2-polarized:

ED[2W
2
ρ ] ≥ ED[2W

2
ρ1Wρ>1/2] + ED[2W

2
ρ1Wρ≤1/2]

≥
(18)

ED[2W
2
ρ1Wρ>1/2] + ED[(2− 4Wρ + 2W 2

ρ )1Wρ>1/2]

≥ ED[(1− 2Wρ)
21Wρ>1/2] + PD(Wρ > 1/2)

≥ PD(Wρ > 1/2).

(19)

Therefore, applying Theorem 2 with constant η = 2 concludes the proof.

We also state the following proof of Proposition 1 for completeness.

Proof of Proposition 1. Inequality (19) with Lemma 3 proves the proposition.

A.3 Example that the bound (6) is tight
Here, we provide a combination of (ρ,D) of which L(hMV

ρ ) is arbitrarily close to the bound.

Consider, for each feature x, that exactly (1 − ϵ) fraction of classifiers predict the correct label,
and that the remaining ϵ fraction of classifiers predict a wrong label. In this case, L(hMV

ρ ) = 0,
Eρ[L(h)] = ϵ, and Eρ2 [D(h, h′)] = 2ϵ(1− ϵ). Hence, the upper bound (6) is 4(K−1)

K ϵ2, which can
be arbitrarily close to 0.
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B Proofs of our main results
In this section, we provide proofs for our main results.

B.1 Proof of Theorem 1
We start with the following lemma which shows the concentration of a linear combination of W 2

ρ and
1(Wρ > 1/2).

Lemma 2. For sampled data points {(Xi, Yi)}mi=1 ∼ D, define Z2 :=
∑m

i=1 W
2
ρ (Xi, Yi) and

Z0 :=
∑m

i=1 1(Wρ(Xi, Yi) > 1/2). The ensemble ρ is η-polarized with probability at least 1− δ if

1

m
(ηZ2 − Z0) >

√
max{ 3η

4 , 1}
2m

log
1

δ
. (20)

Proof. Let Z2i = W 2
ρ (Xi, Yi) and Z0i = 1(Wρ(Xi, Yi) > 1/2). Observe that η Z2i − Z0i always

takes a value between [η4−1,max{η
4 , η−1}] since Wρ(Xi, Yi) ∈ [0, 1]. This implies that ηZ2i−Z0is

are i.i.d. sub-Gaussian random variable with parameter σ = max{ 3η
4 , 1}/2.

By letting A2 = E[ηW 2
ρ − 1(Wρ ≥ 1/2)] and using the Hoeffding’s inequality, we obtain

1

m
(ηZ2 − Z0)−A2 ≤

√
max{ 3η

4 , 1}
2m

log
1

δ

with probability at least 1− δ.

Therefore, ρ is η-polarized with probability at least 1− δ if

1

m
(ηZ2 − Z0) >

√
max{ 3η

4 , 1}
2m

log
1

δ
.

Now we use Lemma 2 to prove Theorem 1.

Proof of Theorem 1. Observe that S = 1
mZ2, P = 1

mZ0, and thus 1
m (ηZ2 − Z0) = ηS − P . For

η ≥ 4
3 , the lower bound in Lemma 2 is simply

√
3η
8m log 1

δ , and the inequality (20) can be viewed as
a quadratic inequality in terms of

√
η. From quadratic formula, we know that

if
√
η >

√
3η
8m log 1

δ +
√

3η
8m log 1

δ + 4SP

2S
, then ηS − P −

√
3η

8m
log

1

δ
> 0.

Putting this together with Lemma 2 proves the theorem:

η ≥ max

4

3
,


√

3
8m log 1

δ +
√

3
8m log 1

δ + 4SP

2S

2
 (21)

⇒ ηS − P >

√
3η

8m
log

1

δ
⇒

Lemma2
ρ is η-polarized w.p. 1− δ,

and thus the polarization ηρ, the smallest η such that ρ is η-polarized, is upper bounded by the right
hand side of inequality (21).

B.2 Proof of Theorem 2
We start by proving the following lemma which relates the error rate of the majority vote, L(hMV

ρ ),
with the point-wise error rate, Wρ, using Markov’s inequality. In general, L(hMV

ρ ) ≤ PD(Wρ ≥ 1/2)
is true for any ensemble ρ. We prove a tighter version of this. The difference between the two can be
non-negligible when dealing with an ensemble with finite number of classifiers. Refer to Appendix
A.1 and Definition 4 for more details regarding this difference and tie-free ensembles.
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Lemma 3. For a tie-free ensemble ρ, we have the inequality L(hMV
ρ ) ≤ PD(Wρ > 1/2).

Proof. For given feature x, Wρ ≤ 1/2 implies that more than or exactly ρ−weighted half of the
classifiers outputs the true label. Since the ensemble ρ is tie-free, hMV

ρ outputs the true label if
Wρ ≤ 1/2. Therefore, {(x, y) | Wρ(x, y) ≤ 1/2} ⊂ {(x, y) | hMV

ρ (x) = y}. Applying PD on the
both sides proves the lemma.

The following lemma appears as Lemma 2 in [MLIS20]. This lemma draws the connection between
the point-wise error rate, Wρ and the tandem loss, Eρ2 [L(h, h′)].

Lemma 4. The equality ED[Wρ
2] = Eρ2 [L(h, h′)] holds.

The next lemma appears as Lemma 4 in [TKY+24]. This lemma provides an upper bound on the
tandem loss, Eρ2 [L(h, h′)], in terms of the average error rate, Eρ[L(h)], and the average disagreement,
Eρ2 [D(h, h′)].

Lemma 5. For the K-class problem,

Eρ2 [L(h, h′)] ≤ 2(K − 1)

K

(
Eρ[L(h)]−

1

2
Eρ2 [D(h, h′)]

)
.

Now we use these results to prove Theorem 2.

Proof of Theorem 2. Putting Lemmas 3, 4, and 5 and the definition of the polarization together proves
the theorem:

L(hMV
ρ ) ≤

Lemma 3
PD(Wρ > 1/2) ≤

polarization
ηρ ED[W

2
ρ ]

=
Lemma 4

ηρ Eρ2 [L(h, h′)] =
Lemma 5

2ηρ(K − 1)

K

(
Eh[L(h)]−

1

2
Eh,h′ [D(h, h′)]

)
.

B.3 Proof of Theorem 3
We start with a lemma which is a corollary of Newton’s inequality.

Lemma 6. For any collection of probabilities p1, . . . , pn, the following inequality holds.

∑
1≤i<j≤n

pipj ≤ n− 1

2n

(
n∑

i=1

pi

)2

.

Proof. Newton’s inequality states that

e2(
n
2

) ≤
(e1
n

)2
where e1 =

n∑
i=1

pi and e2 =
∑

1≤i<j≤n

pi pj .

Rearranging the terms gives the lemma.

Now we use this and the previous lemmas to prove Theorem 3.

Proof of Theorem 3. From Lemma 3, Lemma 4, and the definition of η-polarized ensemble, we have
the following relationship between L(hMV

ρ ) and Eρ2 [L(h, h′)]:

L(hMV
ρ ) ≤

Lem. 3
PD(Wρ > 1/2) ≤

η-polarized
η ED[Wρ

2] =
Lemma 4

η Eρ2 [L(h, h′)]. (22)

From this, it suffices to prove that hα Eρ2 [L(h, h′)] is smaller than the upper bound in the theorem.
First, observe the following decomposition of Eρ2 [L(h, h′)]:

Eρ2 [L(h, h′)] = ED
[
Pρ(h(X) ̸= Y )2

]
= ED

[
Pρ(h(X) ̸= Y )− Pρ2(h(X) ̸= Y, h′(X) = Y )

]
.

(23)
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For any predictor mapping into K classes, let y denote the true label for an input x. Now we derive
a lower bound of Pρ2(h(X) ̸= Y, h′(X) = Y ) using the following decomposition of Pρ2(h(x) ̸=
h′(x)):

1

2
Pρ2(h(x) ̸= h′(x))

= Pρ2(h(x) ̸= y, h′(x) = y) +
∑

i/∈A(x)
j∈A(x)\{y}

pipj ,+
∑

i,j∈A(x)\{y}
i<j

pipj +
∑

i,j /∈A(x)
i<j

pipj ,

where pi := pi(x) = Pρ(h(x) = i). We let ∆x := Pρ(h(x) /∈ A(x)) and apply Lemma 6 to the last
two terms:
1

2
Pρ2(h(x) ̸= h′(x))

= Pρ2(h(x) ̸= y, h′(x) = y) + ∆x(1−pY −∆x) +
∑

i,j∈A(x)\{y}
i<j

pipj +
∑

i,j /∈A(x)
i<j

pipj

≤
Lemma 6

Pρ2(h(x) ̸= y, h′(x) = y) + ∆x(1−py−∆x) +
M−2

2(M−1)
(1−py−∆x)

2 +
K−M−1

2(K−M)
∆2

x.

Rearranging the terms and plugging 1−pY = Pρ(h(x) ̸= y) gives

Pρ2(h(x) ̸= y, h′(x) = y)

≥ 1

2
Pρ2(h(x) ̸= h′(x))− ∆x

M−1
Pρ(h(x) ̸= y)− M−2

2(M−1)
Pρ(h(x) ̸= y)2

+
K−1

2(K−M)(M−1)
∆2

x

≥ 1

2
Pρ2(h(x) ̸= h′(x))− ∆x

M−1
Pρ(h(x) ̸= y)− M−2

2(M−1)
Pρ(h(x) ̸= y)2

≥ 1

2
Pρ2(h(x) ̸= h′(x))− ∆

M−1
Pρ(h(x) ̸= y)− M−2

2(M−1)
Pρ(h(x) ̸= y)2,

where the last inequality comes from the condition ∆x := Pρ(h(x) /∈ A(x)) ≤ ∆. Putting this
together with the equality (23) gives

ED
[
Pρ(h(X) ̸= Y )2

]
≤
(
1 +

∆

M−1

)
ED [Pρ(h(X) ̸= Y )]− 1

2
ED
[
Pρ2(h(X) ̸= h′(X))

]
+

M−2

2(M−1)
ED
[
Pρ(h(X) ̸= Y )2

]
,

which implies

Eρ2 [L(h, h′)] = ED
[
Pρ(h(X) ̸= Y )2

]
≤ 2(M−1)

M

[(
1 +

∆

M−1

)
ED [Pρ(h(X) ̸= Y )]− 1

2
ED
[
Pρ2(h(X) ̸= h′(X))

]]
=

2(M−1)

M

[(
1 +

∆

M−1

)
Eρ[L(h)]−

1

2
Eρ2 [D(h, h′)]

]
.

Combining this with inequality (22) concludes the proof.

B.4 Proof of Theorem 4 and Corollary 2
First, we prove Theorem 4 by decomposing the point-wise disagreement between constituent classi-
fiers.

Proof of Theorem 4. The following decomposition of Pρ2(h(x) ̸= h′(x)) holds:

1

2
Pρ2(h(x) ̸= h′(x)) = Pρ2(h(x) ̸= y, h′(x) = y) +

1

2
Pρ2(h(x) ̸= y, h′(x) = y, h(x) ̸= h′(x)).
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Applying ED to both sides and using the given condition (11), we obtain,

1

2
ED[Pρ2(h(X) ̸= h′(X))] ≤ ED

[
Pρ2(h(X) ̸= Y, h′(X) = Y )

]
+ εED[Pρ(h(X) ̸= Y )].

The left hand side equals 1
2Eρ2 [D(h, h′)], and the second term on the right hand side is simply

εEρ[L(h)]. Hence, the inequality above can be rephrased as follows:

1

2
Eρ2 [D(h, h′)]− εEρ[L(h)] ≤ ED

[
Pρ2(h(X) ̸= Y, h′(X) = Y )

]
. (24)

Putting this together with the inequality (22) and the equality (23), gives

L(hMV
ρ ) ≤

Ineq.22
η Eρ2 [L(h, h′)] =

Eq.23
η ED

[
Pρ(h(X) ̸= Y )− Pρ2(h(X) ̸= Y, h′(X) = Y )

]
= η

[
Eρ[L(h)]− ED

[
Pρ2(h(X) ̸= Y, h′(X) = Y )

]]
≤

Ineq.24
η

[
(1 + ε)Eρ[L(h)]−

1

2
Eρ2 [D(h, h′)]

]
.

Next, we use Lemma 6 to prove Corollary 2.

Proof of Corollary 2. Let pi := Pρ(h(x) = i) for i ∈ [K], and let y = K be the true label, without
loss of generality. Then, we observe

Pρ2 (h(X) ̸= Y, h′(X) ̸= Y, h(X) ̸= h′(X)) =

K−1∑
i,j=1
i̸=j

pipj and Pρ (h(X) ̸= Y ) =

K−1∑
i=1

pi.

Lemma 6 gives us the following:∑
1≤i̸=j≤K−1 pipj

2
∑

1≤i≤K−1 pi
≤
∑

1≤i ̸=j≤K−1 pipj

2(
∑

1≤i≤K−1 pi)
2
≤
∑

1≤i<j≤K−1 pipj

(
∑

1≤i≤K−1 pi)
2

≤
Lemma 6

K−2

2(K−1)
,

where the first inequality used the fact that
∑K−1

i=1 pi ≤ 1. Thus, ε = K−2
2(K−1) satisfies the condition

(11), and the result follows from Theorem 4.

B.5 Invariance principle of U -statistics
In this subsection, we state the invariance principle of U -statistics, which plays a main role in the
proof of Theorem 5. We note that this is a special case of an approximation of random walks
(Theorem 23.14 in [Kal21]) combined with functional central limit theorem (Donsker’s theorem).
Here, D[0, 1] is the Skorokhod space on [0, 1], which is the space of all real-valued right-continuous
functions on [0, 1] equipped with the Skorokhod metric/topology (see Section 14 in [Bil13]).

Theorem 7 (Theorem 5.2.1 in [KB13]). Define a U -statistic Uk =
(
k
2

)−1∑
1≤i<j≤k Φ(hi, hj),

the expectation of the kernel Φ as Φ0 = E(h,h′)∼ρ2Φ(h, h′) and the first-coordinate variance
σ2
1 = Varh∼ρ(g1(h)), where g1(h) = Eh′∼ρΦ(h

′, h). Let ξn = (ξn(t), t ∈ [0, 1]), where

ξn

(
k

n

)
=

k(Uk − Φ0)

2
√

nσ2
1

for k = 0, 1, ..., n− 1,

and ξn(t) = ξn([nt]/n), with [x] denoting the greatest integer less than or equal to x. Then, ξn
converges weakly in D[0, 1] to a standard Wiener process as n → ∞.

C Details on our empirical results
In this section, we provide additional details on our empirical results.
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C.1 Trained classifiers
On CIFAR-10 [Kri09] train set with size 50, 000, the following models were trained with 100 epochs,
learning rate starting with 0.05. For models trained with learning rate decay, we used learning rate
0.005 after epoch 50, and used 0.0005 after epoch 75. For following models, 5 classifiers are trained
for each hyperparameter combination. Five classifiers differ in weight initialization and vary due to
the randomized batches used during training.

• ResNet18, every combination (width, batch size) of

- Width:4, 8, 16, 32, 64, 128

- Batch size: 16, 128, 256, 1024, with learning rate decay
Additional batch size of 64, 180, 364 for without learning rate decay

• ResNet50, ResNet101, every combination (width, batch size) of

- Width:8, 16

- Batch size: 64, 256, without learning rate decay

• VGG11, every combination (width, batch size) of

- Width:16, 64

- Batch size: 64, 256, without learning rate decay

• DenseNet40, every combination (width, batch size) of

- Width:5, 12, 40

- Batch size: 64, 256, without learning rate decay

For models in Figure 4, more than 5 classifiers were trained. The classifiers differ in weight
initialization and vary due to the randomized batches used during training.

• ResNet18 on CIFAR-10, width 16 and batch size 64 without learning rate decay (20 classi-
fiers)

The models below are trained with learning rate 0.05, momentum 0.9 and weight decay 5e-4
with cosine annealing.

• MobileNet on MNIST, batch size 128 (10 classifiers)

• ResNet18 on FMNIST, width 48 and batch size 128 (10 classifiers)

• ResNet18 on KMNIST, every combination of widths and batch sizes below (8 classifiers
each)

- Width: 48, 64

- Batch size: 32, 64, 128

C.2 Majority vote and tie-free
For an ensemble with N classifiers, we generated N uniformly-distributed random numbers
e1, ..., eN ∈ [0, 0.0001]. Then used ( 1

N + e1, ...
1
N + eN ) after normalization as weights for each

classifier. This guarantees the ensemble to be tie-free.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Main claims made in the abstract and introduction accurately reflect the paper’s
contribution and scope.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the difficulties in estimating certain quantities we are working with.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.

• The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We provided the proof as clearly as possible.

Guidelines:

• The answer NA means that the paper does not include theoretical results.

• All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

• All assumptions should be clearly stated or referenced in the statement of any theorems.

• The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Details are provided in Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.

• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
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the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]

Justification: Most of the experiments are straightforward to reproduce.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Details are provided in Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

• The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance
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Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes] .

Justification: We repeated the same procedure across various models and hyperparameter
choices.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: The experiment requires no additional time beyond training each classifier.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
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Justification: The research conducted in this paper conforms with the NeurIPS Code of
Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Not applicable.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Not applicable.

Guidelines:

• The answer NA means that the paper poses no such risks.

• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.
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• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All assets used in the paper are properly credited.

Guidelines:

• The answer NA means that the paper does not use existing assets.

• The authors should cite the original paper that produced the code package or dataset.

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: Not applicable.

Guidelines:

• The answer NA means that the paper does not release new assets.

• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
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Justification: Not applicable.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Not applicable.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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