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Abstract

Bilevel optimization deals with nested problems in which a leader takes the first
decision to minimize their objective function while accounting for a follower’s
best-response reaction. Constrained bilevel problems with integer variables are par-
ticularly notorious for their hardness. While exact solvers have been proposed for
mixed-integer linear bilevel optimization, they tend to scale poorly with problem
size and are hard to generalize to the non-linear case. On the other hand, problem-
specific algorithms (exact and heuristic) are limited in scope. Under a data-driven
setting in which similar instances of a bilevel problem are solved routinely, our
proposed framework, NEUR2BILO, embeds a neural network approximation of
the leader’s or follower’s value function, trained via supervised regression, into
an easy-to-solve mixed-integer program. NEUR2BILO serves as a heuristic that
produces high-quality solutions extremely fast for four applications with linear and
non-linear objectives and pure and mixed-integer variables.

1 Introduction

A motivating application. Consider the following discrete network design problem (DNDP) [47,
48]. A transportation planning authority seeks to minimize the average travel time on a road network
represented by a directed graph of nodes N and links A1 by investing in constructing a set of roads
(i.e., links) from a set of options A2, subject to a budget B. The planner knows the number of vehicles
that travel between any origin-destination (O-D) pair of nodes. A good selection of links should
take into account the drivers’ reactions to this decision. One common assumption is that drivers will
optimize their O-D paths such that a user equilibrium is reached. This is known as Wardrop’s second
principle in the traffic assignment literature, an equilibrium in which “no driver can unilaterally
reduce their travel costs by shifting to another route” [41]. This is in contrast to the system optimum,
an equilibrium in which a central planner dictates each driver’s route, an unrealistic assumption that
would not require bilevel modeling. A link cost function is used to model the travel time on an edge
as a function of traffic. Let cij ∈ R+ be the capacity (vehicles per hour (vph)) of a link and Tij ∈ R+

the free-flow travel time (i.e., travel time on the link without congestion). The US Bureau of Public
Roads uses the following widely accepted formula to model the travel time t(yij) on a link used
by yij vehicles per hour: t(yij) = Tij(1 + 0.15(yij/cij)

4). As the traffic yij grows to exceed the
capacity cij , a large quartic increase in travel time is incurred [41].

Bilevel optimization (BiLO) [4] models the DNDP and many problems in which an agent (the leader)
makes decisions that minimize their cost function subject to another agent’s (the follower’s) best
response. In the DNDP, the leader is the transportation planner and the follower is the population of
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drivers, giving rise to the following optimization problem

min
x∈{0,1}|A2|,y

∑
(i,j)∈A

yijt(yij)

s.t.
∑

(i,j)∈A2

gijxij ≤ B,

y ∈ argmin
y′∈R|A|

+

∑
(i,j)∈A

∫ y′
ij

0

tij(v)dv

s.t. y′ is a valid network flow,

xij = 0 =⇒ y′ij = 0,

where A2 ∩ A1 = ∅, A = A1 ∪ A2. The leader minimizes the total travel time across all links
subject to a budget constraint and the followers’ equilibrium which is expressed as a network flow on
the graph augmented by the leader’s selected edges that satisfies O-D demands; the integral in the
follower’s objective models the desired equilibrium and evaluates to Tijy

′
ij +

0.15Tij

5c4ij

(
y′ij

)5
.

Going beyond the DNDP, Dempe [16] lists more than 70 applications of BiLO ranging from pricing
in electricity markets (leader is an electricity-supplying retailer that sets the price to maximize profit,
followers are consumers who react accordingly to satisfy their demands [60]) to interdiction problems
in security settings (leader inspects a budgeted subset of nodes on a road network, follower selects a
path such that they evade inspection [56]).

Scope of this work. We are interested in mixed-integer non-linear bilevel optimization problems,
simply referred to hereafter as bilevel optimization or BiLO, a very general class of bilevel problems
where all constraints and objectives may involve non-linear terms and integer variables. At a high
level, we have identified three limitations of existing computational methods for BiLO:

1. The state-of-the-art exact solvers of Fischetti et al. [24] and Tahernejad et al. [53] are limited to
mixed-integer bilevel linear problems and do not scale well. When high-quality solutions to
large-scale problems are sought after, such exact solvers may be prohibitively slow.

2. Specialized algorithms, heuristic or exact, do not generalize beyond the single problem they
were designed for. For instance, the state-of-the-art exact Knapsack Interdiction solver [57] only
works for a single knapsack constraint and fails with two or more, a significant limitation even if
one is strictly interested in knapsack-type problems.

3. Existing methods, exact or heuristic, generic or specialized, are not designed for the “data-driven
algorithm design” setting [3] in which similar instances are routinely solved and the goal is to
construct generalizable high-efficiency algorithms that leverage historical data.

NEUR2BILO (for Neural Bilevel Optimization) is a learning-based framework for bilevel optimization
that deals with these issues simultaneously. The following observations make NEUR2BILO possible:

1. Data collection is “easy”: For a fixed decision of the leader’s, the optimal value of the follower
can be computed by an appropriate (single-level) solver (e.g., for mixed-integer programming
(MIP) or convex programming), enabling the collection of samples of the form: (leader’s
decision, follower’s value, leader’s value).

2. Offline learning in the data-driven setting: While obtaining data online may be prohibitive,
access to historical training instances affords us the ability to construct, offline, a large dataset
of samples that can then serve as the basis for learning an approximate value function using
supervised regression. The output of this training is a regressor mapping a pair consisting of an
instance and a leader’s decision to an estimated follower or leader value.

3. MIP embeddings of neural networks: If the regressor is MIP-representable, e.g., a feedforward
ReLU neural network or a decision tree, it is possible to use a MIP solver to find the leader’s
decision that minimizes the regressor’s output. This MIP, which includes any leader constraints,
thus serves as an approximate single-level surrogate of the original bilevel problem instance.

4. Follower constraints via the value function reformulation: The final ingredient of
the NEUR2BILO recipe is to include any of the follower’s constraints, some of which may
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involve leader variables. This makes the surrogate problem a heuristic version of the well-known
value function reformulation (VFR) in BiLO. The VFR transforms a bilevel problem into a
single-level one, assuming that one can represent the follower’s value (as a function of the
leader’s decision) compactly. This is typically impossible as the value function may require an
exponential number of constraints, a bottleneck that is circumvented by our small (approximate)
regression models.

5. Theoretical guarantees: For interdiction problems, a class of BiLO problems that attract much
attention, NEUR2BILO solutions have a constant, additive absolute optimality gap which mainly
depends on the prediction accuracy of the regression model.

Through a series of experiments on (i) the bilevel knapsack interdiction problem, (ii) the “critical
node problem” from network security, (iii) a donor-recipient healthcare problem, and (iv) the DNDP,
we will show that NEUR2BILO is easy to train and produces, very quickly, heuristic solutions that
are competitive with state-of-the-art methods.

2 Background

Bilevel optimization (BiLO) deals with hierarchical problems where the leader (or upper-level)
problem decides on x ∈ X and parameterizes the follower (or lower-level) problem that decides on
y ∈ Y; the sets X and Y represent the domains of the variables (continuous, mixed-integer, or pure
integer). Both problems have their own objectives and constraints, resulting in the following model:

min
x∈X ,y

F (x,y) (1a)

s.t. G(x,y) ≥ 0, (1b)

y ∈ argmax
y′∈Y

{f(x,y′) : g(x,y′) ≥ 0}, (1c)

where we consider the general mixed-integer non-linear case with F, f : X ×Y → R, G : X ×Y →
Rm1 , and g : X × Y → Rm2 non-linear functions of the upper-level x and lower-level variables y.

The applicability of exact (i.e., global) approaches critically depends on the nature of the lower-level
problem. A continuous lower-level problem admits a single-level reformulation that leverages the
Karush-Kuhn-Tucker (KKT) conditions as constraints on y. For linear programs in the lower level,
strong duality conditions can be used in the same way. Solving a BiLO problem with integers in the
lower level necessitates more sophisticated methods such as branch and cut [17, 24] along with some
assumptions: DeNegre and Ralphs [17] do not allow for coupling constraints (i.e., G(x,y) = G(x))
and both methods do not allow continuous upper-level variables to appear in the linking constraints
(g(x,y)). Other approaches, such as Benders decomposition, are also applicable [25]. Gümüş and
Floudas [29] propose single-level reformulations of mixed-integer non-linear BiLO problems using
polyhedral theory, an approach that only works for small problems. Later, “branch-and-sandwich”
methods were proposed [33, 45] where bounds on both levels’ value functions are used to compute
an optimal solution. Algorithms for non-linear BiLO generally do not scale well. Kleinert et al. [32]
survey more exact methods.

Assumptions. In what follows, we make the following standard assumptions:

1. Either (i) the follower’s problem has a feasible solution for each x ∈ X , or (ii) there are no
coupling constraints in the leader’s problem, i.e., G(x,y) = G(x);

2. The optimal follower value is always attained by a feasible solution [see 5, Section 7.2].

Value function reformulation. We consider the so-called optimistic setting: if the follower has
multiple optima for a given decision of the leader’s, the one that optimizes the leader’s objective is
implemented. We can then rewrite problem (1) using the value function reformulation (VFR):

min
x∈X ,y∈Y

F (x,y) (2a)

s.t. G(x,y) ≥ 0, (2b)
g(x,y) ≥ 0, (2c)
f(x,y) ≥ Φ(x), (2d)

3

86690 https://doi.org/10.52202/079017-2752



with the optimal lower-level value function defined as

Φ(x) = max
y∈Y
{f(x,y) : g(x,y) ≥ 0}. (3)

Lozano and Smith [39] used this formulation to construct an exact algorithm (without any public
code) for solving mixed-integer non-linear BiLO problems with purely integer upper-level variables.
Sinha et al. [50, 51, 52] propose a family of evolutionary heuristics for continuous non-linear BiLO
problems that approximate the optimal value function by using quadratic and Kriging (i.e., a function
interpolation method) approximations. Taking it one step further, Beykal et al. [9] extend the
framework of the previous authors to handle mixed-integer variables in the lower level.

3 Methodology

NEUR2BILO refers to two learning-based single-level reformulations for general BiLO problems.
The reformulations rely on representing the thorny nested structure of a BiLO problem with a trained
regression model that predicts either the upper-level or lower-level value functions. Appendix B
includes pseudocode for data collection, training, and model deployment.

3.1 NEUR2BILO

Upper-level approximation. The obvious bottleneck in solving BiLO problems is their nested
structure. One rather straightforward way of circumventing this difficulty is to get rid of the lower
level altogether in the formulation, but predict its optimal value. Namely, we predict the optimal
upper-level objective value function as

NNu(x; Θ) ≈ F (x,y⋆), (4)

where Θ are the weights of a neural network, F the objective function of the leader (2b), and y⋆ an
optimal solution to the lower level problem (3). To train such a model, one can sample x from X ,
solve (3) to obtain an optimal lower-level solution y⋆, and subsequently compute a label F (x,y⋆).
We can then model the single-level problem as

min
x∈X

NNu(x; Θ) s.t. G(x) ≥ 0, (5)

where we only optimize for x and thus dismiss the lower-level constraints and objective function.
A trained feedforward neural network NNu(·; Θ) with ReLU activations can be represented as a
mixed-integer linear program (MILP) [22], where now the input (and output) of the network are
decision variables. With this representation, Problem (5) becomes a single-level problem and can be
solved using an off-the-shelf MIP solver. Note that linear and decision tree-based models also admit
MILP representations [38].

This reformulation is similar to the approach by Bagloee et al. [2], wherein the upper-level value
function is predicted using linear regression. Our method differs in that it is not iterative and does
not require the use of “no-good cuts” (which avoid reappearing solutions x). As such, our method is
extremely efficient as will be shown experimentally.

The formulation of (5) only allows for problem classes that do not have coupling constraints, i.e.,
G(x,y) = G(x). Moreover, the feasibility of a solution x in the original BiLO problem is not
guaranteed, an issue that will be addressed later in this section (see Bilevel feasibility.).

Lower-level approximation. This method makes use of the VFR (2). The VFR moves the nested
complexity of a BiLO to constraint (2d), where the right-hand side is the optimal value of the
lower-level problem, parameterized by x. We introduce a learning-based VFR in which Φ(x) is
approximated by a regression model with parameters Θ:

NNl(x; Θ) ≈ Φ(x). (6)

Both NNl and NNu take in a leader’s decision as input and require solving the follower (3) for data
generation. By replacing Φ(x) with NNl(x; Θ) in (2d) and introducing a slack variable s ∈ R+, the
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surrogate VFR reads as:

min
x∈X ,y∈Y

s≥0

F (x,y) + λs (7a)

s.t. G(x,y) ≥ 0, (7b)
g(x,y) ≥ 0, (7c)

f(x,y) ≥ NNl(x; Θ)− s. (7d)

All follower and leader constraints of the original BiLO problem are part of Problem (7). However,
without the slack variable s, the problem could become infeasible due to inaccurate predictions by
the neural network. This happens when NNl(x; Θ) strictly overestimates the follower’s optimal value
for each x. In this case, there does not exist a follower decision for which Constraint (7d) is satisfied.
A value of s > 0 can be used to make Constraint (7d) satisfiable at a cost of λs in the objective,
guaranteeing feasibility.

Bilevel feasibility. Given a solution x⋆ or a solution pair (x⋆, ỹ) returned by our upper- or lower-
level approximations, respectively, we would like to produce a lower-level solution y⋆ such that
(x⋆,y⋆) is bilevel-feasible, i.e., it satisfies the original BiLO in (1). The following procedure achieves
this goal:

1. Compute the follower’s optimal value under x⋆, Φ(x⋆), by solving (3).
2. Compute a bilevel-feasible follower solution y⋆ by solving problem (2) with fixed x⋆ and the

right-hand side of (2d) set to Φ(x⋆), a constant. Return (x⋆,y⋆).

If only Assumption 1(i) is satisfied, then only the lower-level approximation is applicable and this
procedure guarantees an optimistic bilevel-feasible solution for it. If only Assumption 1(ii) is satisfied,
then this procedure can detect in Step 1 that an upper-level approximation’s solution x⋆ does not
admit a follower solution, i.e., that it is infeasible, or calculates a feasible y⋆ if one exists in Step
2. If both Assumptions 1(i) and 1(ii) are satisfied simultaneously, then this procedure guarantees an
optimistic bilevel-feasible solution for either approximation.

Upper- v.s. lower-level level approximation. Here, we note two important trade-offs between the
upper- and lower-level approximations.

– Generality: Example C.1 in Appendix C shows that under Assumption 1(ii), it may happen that
solving the upper-level approximation problem variant (5) returns an infeasible solution while
the lower-level variant (7) does not.

– Scalability: The upper-level approximation has fewer variables and constraints than its lower-
level counterpart as it does not represent the follower’s problem directly. For problems in which
the lower-level problem is large, e.g., necessitating constraints for each node and link to enforce
a network flow in the follower solution as in the DNDP from the introduction, this property
makes the upper-level approximation easier to solve, possibly at a sacrifice in final solution
quality. This tradeoff will be assessed experimentally.

Limitations. Since NEUR2BILO is in essence a learning-based heuristic, it does not guarantee an
optimal solution to the bilevel problem. However, it guarantees a feasible solution with the lower-level
approximation and can only give an infeasible solution while using the upper-level approximation
when only Assumption 1(ii) is satisfied. Moreover, as will be shown in Section 3.3, the performance
of NEUR2BILO depends on the regression error, which is generally the case when integrating
machine learning in optimization algorithms. Empirically, we note that the prediction error achieved
on every problem is very low (see Appendix K.3).

3.2 Model architecture

For ease of notation in previous sections, all regression models take as input the upper-level decision
variables. However, in our experiments, we leverage instance information as well to train a single
model that can be deployed on a family of instances. This is done by leveraging information such as
coefficients in the objective and constraints for each problem.
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For the model’s architecture, the general principle deployed is to first explicitly represent or learn
instance-based features. The second is to combine instance-based features with (leader) decision
variable information to make predictions.

The overall architecture can be summarized as the following set of operations. Fix a particular
instance of a BiLO problem and let n be the number of leader variables, fi a vector of features
for each leader variable xi (independently of the variable’s value), and h(xi) a feature map that
describes the ith leader variable for a specific value of that variable. The functions Ψs,Ψd, and Ψv

are neural networks with appropriate input-output dimensions. The vector Θ includes all learnable
parameters of networks Ψs,Ψd, and Ψv. The functions SUM, CONCAT, and AGGREGATE sum up
a set of vectors, concatenate two vectors into a single column vector, and aggregate a set of scalar
values (e.g., by another neural network or simply summing them up), respectively. Our final objective
value predictions are then given by the following sequence of steps:

1. Embedding the set of variable features {fi} using a set-based architecture, e.g., the same network
Ψd, summing up the resulting n variable embeddings, then passing the resulting vector to
network Ψs, yielding a vector we refer to as the INSTANCEEMBEDDING:

INSTANCEEMBEDDING = Ψs(SUM({Ψd(fi)}ni=1)).

This is akin to the DeepSets approach of Zaheer et al. [58]. However, note that this step can
alternatively be done via a feedforward or graph neural network depending on the problem
structure.

2. Conditional on a specific assignment of values to the leader’s decision vector x, a per-variable
embedding is computed by network Ψv to allow for interactions between the INSTANCEEM-
BEDDING and the specific assignment of variable i as represented by h(xi):

VARIABLEEMBEDDING(i) = Ψv(CONCAT(h(xi), INSTANCEEMBEDDING)).

3. The final value prediction for either of our approximations aggregates the variable embeddings
possibly after passing them through a function gi:

NN(x; Θ) = AGGREGATE({gi(VARIABLEEMBEDDING(i))}ni=1).

For example, if the follower’s objective is a linear function and VARIABLEEMBEDDING(i) is a
scalar, then it is useful to use the variable’s known objective function coefficient di here, i.e.:
gi(VARIABLEEMBEDDING(i)) = di ·VARIABLEEMBEDDING(i). The final step is to aggregate
the per-variable gi(·) outputs, e.g., by a summation for linear or separable objective functions.

NEUR2BILO is largely agnostic to the learning model utilized as long as it is MILP-representable. In
our experiments, we primarily focus on neural networks, but for some problems also explore the use
of gradient-boosted trees. More details on the specific architectures for each problem can be found in
Appendix K.1.

3.3 Approximation guarantees

Lower-level approximation. Next, we present an approximation guarantee for the lower-level
approximation with NNl(x; Θ). Appendix D includes the complete proofs.

Since the prediction of the neural network is only an approximation of the true optimal value
of the follower’s problem Φ(x), NEUR2BILO may return sub-optimal solutions for the original
problem (1). We derive approximation guarantees for a specific setup that appears in interdiction
problems: the leader and the follower have the same objective function (i.e., f(x,y) = F (x,y) for
all x ∈ X ,y ∈ Y), and Assumption 1(i) holds. Consider a neural network that approximates the
optimal value of the follower’s problem up to an absolute error of α > 0, i.e.,

|NNl(x; Θ)− Φ(x)| ≤ α for all x ∈ X . (8)
Furthermore, we define the parameter ∆ as the maximum difference f(x,y)− f(x,y′) ≥ 0 over all
x ∈ X ,y,y′ ∈ Y such that no ỹ ∈ Y exists which has function value f(x,y) > f(x, ỹ) > f(x,y′).
We can bound the approximation guarantee of the lower-level NEUR2BILO as follows:
Theorem 3.1. If the leader and the follower have the same objective function and λ > 1,
NEUR2BILO returns a feasible solution (x⋆,y⋆) for Problem (1) with objective value

f(x⋆,y⋆) ≤ opt + 3α+
2

λ
∆,

where opt is the optimal value of (1) and λ the penalty term in (7a) .
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Upper-level approximation. As Example C.1 shows, it may happen that the upper-level surrogate
problem (5) returns an infeasible solution and hence no approximation guarantee can be derived in
this case. However, in the case where all leader solutions are feasible and the neural network predicts
for every x ∈ X an upper-level objective value that deviates at most α > 0 from the true one, then
the returned solution trivially approximates the true optimal value with an absolute error of at most
2α. This follows since the worst that can happen is that the objective value of the optimal solution
is overestimated by α while a solution with objective value opt + 2α is underestimated by α and
hence has the same predicted value as the optimal solution. Problem (5) then may return the latter
sub-optimal solution.

4 Experimental Setup

Benchmark problems and their characteristics are summarized in Table 1; their MIP formulations
are deferred to Appendix E and brief descriptions follow:

– Knapsack interdiction (KIP) [10]: The leader interdicts a subset of at most k items and the
follower solves a knapsack problem over the remaining (non-interdicted) items. The leader aims
to minimize the follower’s (maximization) objective.

– Critical node problem (CNP) [18, 11]: This problem regards the protection (by the leader) of
resources in a network against malicious follower attacks. It has applications in the protection
of computer networks against cyberattacks as demonstrated by Dragotto et al. [18].

– Donor-recipient problem (DRP) [27]: This problem relates to the donations given by certain
agencies to countries in need of, e.g., healthcare projects. The leader (the donor agency) decides
on which proportion of the cost, per project, to subsidize, whereas the follower (a country)
decides which projects it implements.

– Discrete network design problem (DNDP) [47]: This is the problem described in Section 1.
We build on the work of Rey [47] who provided benchmark instances for the transportation
network of Sioux Falls, South Dakota, and an implementation of the state-of-the-art method
of Fontaine and Minner [25]. This network and corresponding instances are representative of
the state of the DNDP in the literature.

Leader Follower
Problem x Obj. Cons. y Obj. Cons.

KIP (↓↑) B Lin Lin B Lin Lin
CNP (↑↑) B BLin Lin B BLin Lin
DRP (↑↑) C Lin Lin MI Lin BLin
DNDP (↓↑) B NLin Lin C NLin Lin

Table 1: Problem class characteristics. All problems have a single budget constraint in the leader; for
the follower, the DNDP has network flow constraints whereas other problems have a knapsack con-
straint. The arrows refer to minimization (↓) or maximization (↑) in leader and follower, respectively.
B = Binary, C = Continuous, MI = Mixed-Integer, Lin = Linear, BLin = Bilinear, NLin = Non-Linear.

Baselines. As mentioned previously, the branch-and-cut (B&C) algorithm by Fischetti et al. [24] is
considered to be state-of-the-art for solving mixed-integer linear BiLO. The method is applicable
if the continuous variables of the leader do not appear in the follower’s constraints. Both KIP and
CNP meet these assumptions. This algorithm will act as the baseline for these problems. For DRP,
we compare against the results produced by an algorithm in the branch-and-cut paradigm (B&C+)
from Ghatkar et al. [27]. For DNDP, the follower’s problem only has continuous variables, so the
baseline is a method based on KKT conditions (MKKT) [25]. Of the learning-based approaches for
BiLO, we compare against Zhou et al. [59], given the generality of their approach and the availability
of source code. NEUR2BILO decisively outperforms this method on KIP, finding solutions with
10-100× smaller mean relative error roughly 1000× faster; full results are deferred to Appendix F.

Data collection & Training. For each problem class, data is collected by sampling feasible leader
decisions x and then solving Φ(x) to compute either the upper- or lower-level objectives as labels.
We then train regression models to minimize the least-squares error on the training samples. Typically,
data collection and training take less than one hour, a negligible cost given that for larger instances
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baseline methods require more time per instance. Additionally, the same trained model can be used
on multiple unseen test instances. We report times for data collection and training in Appendix K.2.

Evaluation & Setup. For evaluation in KIP, CNP, and DRP, all solving was limited to 1 hour. For
DNDP, we consider a more limited-time regime, wherein we compare NEUR2BILO at 5 seconds
against the baseline at 5, 10, and 30 seconds. For all problems, we evaluate both the lower- and upper-
level approximations with neural networks, namely NNl and NNu, respectively. For NNl we set λ = 1
for all results presented in the main paper. Details of the computing setup are provided in Appendix J.
Our code and data are available at https://github.com/khalil-research/Neur2BiLO.

5 Experimental Results

We summarize the results as measured by average solution times and mean relative errors (MREs).
The relative error on a given instance is computed as 100 · |objA−objbest|

|objbest| , where objA is the value of
the solution found by methodA and objbest is the best-known objective value for that instance. These
results are reported in Table 2. More detailed results and box-plots of the distributions of relative
errors are in Appendices G and H. Our experimental design answers the following questions:

Q1: Can NEUR2BILO find high-quality solutions quickly on classical interdiction problems?
Table 2 compares NEUR2BILO to the B&C algorithm of Fischetti et al. [24]. NEUR2BILO terminates
in 1-2% of the time required by B&C on the smaller (n ≤ 30) well-studied KIP instances of Tang
et al. [54]. However, when the instance size increases to n = 100, both NNl and NNu find much
better solutions than NEUR2BILO in roughly 30 seconds, even when B&C runs for the full hour.
Furthermore, Table 4 in Appendix G shows that B&C requires 10 to 1, 000× more time than NNl or
NNu to find equally good solutions. In addition, the best solutions found by B&C at the termination
times of NNl or NNu are generally worse, even for small instances.

Q2: Do these computational results extend to non-linear and more challenging BiLO problems?
Interdiction problems such as the KIP are well-studied but are only a small subset of BiLO. We will
shift attention to the more practical problems, starting with the CNP (Table 2). CNP includes terms
that are bilinear (i.e., z = xy) in the upper- and lower-level variables, resulting in a much more
challenging problem for general-purpose B&C. In this case, both NNl and NNu tend to outperform
B&C as the problem size increases. In addition, the results on incumbents reported in Table 5 in
Appendix G are as good, if not even stronger than those of KIP.

Secondly, we discuss DRP (Table 6 in Appendix G). For DRP, we evaluate on the most challenging
instances from Ghahtarani et al. [26], all of which have gaps of ∼ 50% at a 1-hour time limit with
B&C+, a specialized B&C-based algorithm. Here NNu performs remarkably well: it finds the
best-known solutions on every single instance in roughly ∼ 0.1 seconds at an average improvement
in solution quality of 26% over B&C+.

Q3: How does NEUR2BILO perform on BiLO problems with complex constraints? Given
that NEUR2BILO has strong performance on benchmarks with budget constraints, the next obvious
question is whether it can be applied to BiLO problems that have complex constraints. To answer
this, we will refer to the results in Table 2 for the DNDP. In this setting, we focus on a limited-time
regime wherein we compare NEUR2BILO with a 5-second time limit to MKKT at time limits 5, 10,
and 30 seconds. NNu can achieve high-quality solutions much faster than any other method with
only a minor sacrifice in solution quality, making it a great candidate for domains where interactive
decision-making is needed (e.g., what-if analysis of various candidate roads, budgets, etc.).

NNl, on the other hand, takes longer than NNu but computes solutions that are more competitive
with the baseline, the latter requiring 5× more time. We suspect that the better solution quality from
NNl is due to its explicit modeling of feasible lower-level decisions that “align” with the predictions,
whereas NNu may simply extrapolate poorly. In terms of computing time, one computational burden
for NNl is the requirement to model the non-linear upper- and lower-level objectives, which requires a
piece-wise linear approximation based on Fontaine and Minner [25], a step that introduces additional
variables and constraints. Appendix G includes results for DNDP with gradient-boosted trees (GBT),
demonstrating that other learning models are directly applicable and, in some cases, may even lead to
better solution quality, faster optimization, and simpler implementation.
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Knapsack Interdiction Problem

# Items Interdiction NNl NNu G-VFA B&C
(n) Budget (k) MRE Time MRE Time MRE Time MRE Time

18 5 1.48 0.59 1.48 0.34 1.82 0.14 0.00 9.55
18 9 1.51 0.59 1.51 0.43 3.97 0.22 0.00 5.81
18 14 0.00 0.22 0.00 0.17 64.22 0.03 0.00 0.39
20 5 0.41 0.62 0.41 0.45 2.19 0.25 0.00 23.18
20 10 0.99 0.66 0.99 0.58 0.99 0.36 0.00 10.27
20 15 3.57 0.32 3.57 0.19 23.39 0.02 0.00 0.94
22 6 0.71 0.19 0.71 0.18 0.42 0.18 0.00 42.30
22 11 1.01 0.28 1.01 0.28 1.08 0.33 0.00 16.26
22 17 14.43 0.24 14.43 0.15 14.43 0.13 0.00 0.68
25 7 0.44 2.66 0.44 2.42 0.44 0.64 0.00 137.96
25 13 1.42 2.75 1.42 2.79 3.85 1.24 0.00 48.43
25 19 2.49 0.48 2.49 0.38 2.49 0.13 0.00 1.77
28 7 0.39 0.67 0.39 0.74 0.26 0.62 0.00 309.18
28 14 0.75 2.10 0.75 1.45 1.37 1.29 0.00 120.74
28 21 1.14 0.45 1.14 0.49 3.16 0.31 0.00 4.92
30 8 0.00 1.54 0.00 1.54 0.43 0.97 0.00 792.44
30 15 0.49 3.64 0.49 3.06 0.75 1.35 0.00 187.23
30 23 2.29 1.08 2.29 0.73 4.48 0.25 0.00 5.65

100 25 0.93 10.02 0.93 8.40 0.00 4.19 8.09 3,600.40
100 50 0.96 51.68 0.96 49.28 0.04 53.74 8.96 3,600.44
100 75 0.08 24.69 0.08 23.78 0.12 35.27 5.87 3,600.52

Avg. n ≤ 30 1.86 1.06 1.86 0.91 7.21 0.47 0.00 95.43
Avg. n = 100 0.66 28.80 0.66 27.15 0.05 31.07 7.64 3,600.45

Critical Node Problem

# Nodes NNl NNu B&C
(|V |) MRE Time MRE Time MRE Time

10 3.20 0.04 2.75 0.02 1.01 4.24
25 2.60 0.23 1.77 0.05 0.73 3,244.20
50 1.42 0.38 0.98 0.10 0.67 3,600.30

100 1.12 0.48 0.56 0.42 1.79 3,600.65
300 2.01 1.12 0.33 0.83 2.32 3,600.54
500 1.33 1.69 0.45 1.19 2.47 3,600.80

Average 1.95 0.66 1.14 0.43 1.50 2,941.79

Discrete Network Design Problem

NNl NNu MKKT
# Edges Budget MRE Time MRE Time MRE-5 MRE-10 MRE-30

10 0.25 1.21 2.95 0.36 0.01 5.78 0.51 0.10
10 0.5 0.73 3.35 1.22 0.01 6.47 2.17 0.00
10 0.75 0.47 2.80 1.32 0.00 5.80 0.02 0.06
20 0.25 6.05 5.02 2.64 0.02 7.78 5.12 0.85
20 0.5 1.01 4.91 4.36 0.03 6.00 2.52 0.64
20 0.75 0.85 4.47 0.91 0.01 7.87 0.22 0.11

Average 1.72 3.92 1.80 0.01 6.62 1.76 0.29

Table 2: Mean relative error (MRE) and solving times for KIP, CNP, and DNDP. For KIP with n ≤ 30,
we directly evaluate on the 180 instances (10 per size) of Tang et al. [54]; each value is the average
over 10 instances. For n = 100, our evaluation instances (100 per size) are generated using the
same procedure of Tang et al. [54]. The no-learning baseline G-VFA is a VFR using the follower’s
greedy solution as lower-level value function approximation. For CNP, each row is averaged over
300 instances that are randomly sampled using the procedure described in Dragotto et al. [18]. For
DNDP, each row is averaged over 10 instances from Rey [47]. The budget is a fraction of the total
cost of all 30 possible candidate links; see Appendix K.2 for more details.

Q4: Can approximations derived from heuristics be useful? We now refer back to KIP and
focus on the greedy value function approximation (G-VFA), a KIP-specific approximation that relies
on the fact that greedy algorithms are typically good for 1-dimensional knapsack problems. Namely,
the heuristic is based on ordering the items with their value-to-weight ratio [15] and is used as the
knapsack solution in the follower problem, while still being parameterized by x. This heuristic
is embedded in a single-level problem as this heuristic is MILP-representable [see 1]; we note
that we are not aware of uses in the literature of this approximation and it may be of independent
interest. Generally, G-VFA performs quite well, and in some cases outperforms NNl and NNu,
but there are clear cases where NNl and NNu outperform G-VFA demonstrating that learning is
beneficial. In addition, heuristics like G-VFA can be utilized to compute features for NNl and NNu.
For KIP, the inclusion of these features derived from G-VFA strongly improves the results (see
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Table 10 in Appendix I.3). This demonstrates that there is value in leveraging any problem-specific
MILP-representable heuristics as features for learning.

Q5: How does λ affect NNl? Table 9 in Appendix I.2 shows that a slack penalty of λ = 0.1
improves the performance of NNl on some instances for DNDP, compared to the λ = 1 reported
in Table 2, indicating that tuning over λ might be beneficial. As an alternative to adding slack, one
can even dampen predictions of the value function to allow more flexibility using the empirical error
observed during training; see Table 8 in Appendix I.1.

6 Related Work

Learning for bilevel optimization. Besides the approaches of Sinha et al. [50, 51, 52] and Beykal
et al. [9] discussed in Section 2, other learning-based methods have been introduced to solve BiLO
problems. Bagloee et al. [2] present a heuristic for DNDP which uses a linear prediction of the leader’s
objective function. An iterative algorithm refines the prediction with new solutions, terminating
after a pre-determined number of iterations. Chan et al. [13] propose to simultaneously optimize
the parameters of a learning model for a subset of followers in a large-scale cycling network design
problem. Here, only non-parametric or linear models are utilized as optimizing more sophisticated
learning models is generally challenging with MILP-based optimization. Molan and Schmidt [42]
make use of a neural network to predict the follower variables. The authors assume a setting with
a black-box follower’s problem, no coupling constraints, and continuous leader variables. Another
learning-based heuristic is proposed by Kwon et al. [35] for a bilevel knapsack problem. This approach
is knapsack-specific and requires a sophisticated, GPU-based, problem-specific graph neural network
for which no code is publicly available. Zhou et al. [59] propose a learning-based algorithm for binary
bilevel problems which, similar to our approach, predicts the optimal value function and develops a
single-level reformulation based on the trained model. They propose using a graph neural network
and an input-supermodular neural network, both of which can only be trained on a single instance
rather than learning across classes of instances as NEUR2BILO does. NEUR2BILO significantly
outperforms this method as shown in Appendix F. For continuous unconstrained bilevel optimization,
a substantially different setting, many methods have been proposed recently due to interest in solving
nested problems in machine learning (e.g., hyperparameter tuning and meta-learning) [37].

Data-driven optimization. The integration of a trained machine learning model into a MIP is a vital
element of NEUR2BILO. This is possible due to MILP formulations of neural networks [14, 22, 49],
and of other predictors like decision trees [38, 8]. These methods have become easily applicable
due to open software implementations [7, 12, 40, 55] and the gurobi-machinelearning library.
One such application is constraint learning [21]. More similar to our setting are the approaches in
[19, 20, 34] for predicting value functions of other nested problems such as two-stage stochastic and
robust optimization. Our method caters to the specificities of BiLO, particularly in the lower-level
approximation which performs well in highly-constrained BiLO settings such as the DNDP, has
approximation guarantees based on the error of the predictive model, and computational results
on problems with non-linear interactions between the variables in each stage of the optimization
problem; these aspects distinguish NEUR2BILO from prior work.

7 Conclusion

In both its upper- and lower-level instantiations, NEUR2BILO finds high-quality solutions in a
few milliseconds or seconds across four benchmarks that span applications in interdiction, network
security, healthcare, and transportation planning. In fact, we are not aware of any bilevel optimization
method which has been evaluated across such a diverse range of problems as existing methods make
stricter assumptions that limit their applicability. NEUR2BILO models are generic, easy to train, and
accommodating of problem-specific heuristics as features. One limitation of our experiments is that
they lack a problem that involves coupling constraints in (1b). We could not identify benchmark
problems with this property in the literature, but exploring this setting would be valuable. Of future
interest are potential extensions to bilevel stochastic optimization [6], robust optimization with
decision-dependent uncertainty [28] (a special case of BiLO), and multi-level problems beyond two
levels, e.g. [36].
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[6] Yasmine Beck, Ivana Ljubić, and Martin Schmidt. A survey on bilevel optimization under
uncertainty. European Journal of Operational Research, 2023.

[7] David Bergman, Teng Huang, Philip Brooks, Andrea Lodi, and Arvind U Raghunathan. JANOS:
an integrated predictive and prescriptive modeling framework. INFORMS Journal on Computing,
34(2):807–816, 2022.

[8] Dimitris Bertsimas, Jack Dunn, and Yuchen Wang. Near-optimal nonlinear regression trees.
Operations Research Letters, 49(2):201–206, 2021.

[9] Burcu Beykal, Styliani Avraamidou, Ioannis PE Pistikopoulos, Melis Onel, and Efstratios N
Pistikopoulos. Domino: Data-driven optimization of bi-level mixed-integer nonlinear problems.
Journal of Global Optimization, 78:1–36, 2020.

[10] Alberto Caprara, Margarida Carvalho, Andrea Lodi, and Gerhard J Woeginger. Bilevel knapsack
with interdiction constraints. INFORMS Journal on Computing, 28(2):319–333, 2016.

[11] Margarida Carvalho, Gabriele Dragotto, Andrea Lodi, and Sriram Sankaranarayanan. Integer
programming games: a gentle computational overview. In Tutorials in Operations Research: Ad-
vancing the Frontiers of OR/MS: From Methodologies to Applications, pages 31–51. INFORMS,
2023.

[12] Francesco Ceccon, Jordan Jalving, Joshua Haddad, Alexander Thebelt, Calvin Tsay, Carl D
Laird, and Ruth Misener. OMLT: Optimization & machine learning toolkit. arXiv preprint
arXiv:2202.02414, 2022.

[13] Timothy CY Chan, Bo Lin, and Shoshanna Saxe. A machine learning approach to solving
large bilevel and stochastic programs: Application to cycling network design. arXiv preprint
arXiv:2209.09404, 2022.

[14] Chih-Hong Cheng, Georg Nührenberg, and Harald Ruess. Maximum resilience of artificial
neural networks. In International Symposium on Automated Technology for Verification and
Analysis, pages 251–268. Springer, 2017.

[15] George B Dantzig. Discrete-variable extremum problems. Operations research, 5(2):266–288,
1957.

[16] Stephan Dempe. Bilevel optimization: theory, algorithms, applications and a bibliography.
Bilevel Optimization: Advances and Next Challenges, pages 581–672, 2020.

11

86698 https://doi.org/10.52202/079017-2752



[17] Scott T DeNegre and Ted K Ralphs. A branch-and-cut algorithm for integer bilevel linear
programs. In Operations research and cyber-infrastructure, pages 65–78. Springer, 2009.

[18] Gabriele Dragotto, Amine Boukhtouta, Andrea Lodi, and Mehdi Taobane. The critical node
game, 2023.

[19] Justin Dumouchelle, Rahul Patel, Elias B Khalil, and Merve Bodur. Neur2SP: Neural two-stage
stochastic programming. Advances in Neural Information Processing Systems, 35, 2022.

[20] Justin Dumouchelle, Esther Julien, Jannis Kurtz, and Elias Boutros Khalil. Neur2RO: Neural
two-stage robust optimization. In The Twelfth International Conference on Learning Represen-
tations, 2024.

[21] Adejuyigbe O Fajemisin, Donato Maragno, and Dick den Hertog. Optimization with constraint
learning: a framework and survey. European Journal of Operational Research, 2023.

[22] Matteo Fischetti and Jason Jo. Deep neural networks and mixed integer linear optimization.
Constraints, 23(3):296–309, 2018.
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Adejuyigbe O Fajemisin. Mixed-integer optimization with constraint learning. Operations
Research, 2023.

[41] Tom V Mathew and KV Krishna Rao. Introduction to transportation engineering, traffic
assignment. Lecture notes, 2006.

[42] Ioana Molan and Martin Schmidt. Using neural networks to solve linear bilevel problems with
unknown lower level. Optimization Letters, pages 1–21, 2023.

[43] Alec Morton, Ashwin Arulselvan, and Ranjeeta Thomas. Allocation rules for global donors.
Journal of health economics, 58:67–75, 2018.

[44] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An imperative style, high-
performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-
Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems 32,
pages 8024–8035. Curran Associates, Inc., 2019. http://papers.neurips.cc/paper/9015-pytorch-
an-imperative-style-high-performance-deep-learning-library.pdf.
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A Impact Statement

Bilevel optimization has been used to model attacker-defender situations, which could be used in
defense or similar political contexts. We have attempted to cover more socially beneficial healthcare
and transportation planning applications but duly acknowledge that our methods could be applied in
rather nefarious domains. That being said, there remain many domains that could benefit from our
work and that are widely beneficial, such as in the management of energy systems.

B NEUR2BILO Pseudocode

Here, we outline pseudocode for NEUR2BILO. Algorithm 1 presents the pseudocode for data
collection and training. Algorithm 2 presents the pseudocode for optimization. Following Algorithm 2,
the objective is computed via the bilevel feasibility procedure detailed in Section 3.1. Note that data
collection can be done once to collect labels for both the upper- and lower-level approximations.
Additionally, a single trained model may be (and is in our experiments) evaluated across multiple test
instances.

Algorithm 1 NEUR2BILO Data Collection and Training

Data Collection
D ← {}
for i = 1 to number of instances to sample do
P ← sampled instance. Note that P is defined by F (·), G(·), f(·), g(·),Y , and X . For most
BiLO problems, these functions are defined by the constraint and objective coefficients
for j = 1 to number of decisions per-instance do

x← sampled upper-level decision
y⋆ ← argmaxy∈Y{f(x,y) : g(x,y) ≥ 0}
Add (P,x, F (x,y⋆), f(x,y⋆)) to D

end for
end for
return D

Training
if approximating upper-level then

Train regressor (NNu) with features (P,x) and label (F (·)) from dataset D
else if approximating lower-level then

Train regressor (NNl) with the features (P,x) and label (f(·)) from dataset D
end if
return NNu or NNl

Algorithm 2 NEUR2BILO Optimization

Input: Evaluation instance P ′, trained model NNu/NNu. Note that the trained model (NNu/NNu)
is used on multiple evaluation instances.
if approximating upper-level then
x⋆ ← upper-level solution from the upper-level approximation (Equation (5))

else if approximating lower-level then
x⋆ ← upper-level solution from the lower-level approximation (Equation (7))

end if
return x⋆
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C Example Comparing the Upper- and Lower-level Approximations

Example C.1. Consider the problem

min
x∈{0,1}

y

s.t. y ∈ argmax
y∈{0,1}

{y : 2x+ y ≤ 1} .

Solution x = 1 makes the follower’s problem infeasible. For solution x = 0, the optimal follower
solution is y = 1 leading to the optimal value 1. Assume that the same trained neural network is used
in both approaches; this is possible since leader and follower have the same objective functions. If
it predicts NN(0) = 2 and NN(1) = 0, then the upper-level approximation problem (5) will return
x = 1 which is infeasible whereas the lower-level approximation (7) correctly returns x = 0.

D Proofs for Approximation Guarantees

This section includes the full analysis of the derived approximation guarantee in Section 3.3 for the
lower-level approximation with NNl(x; Θ).

Recall that we look at a specific setup for which we derive approximation guarantees: the leader and
the follower have the same objective function (i.e., f(x,y) = F (x,y) for all x ∈ X ,y ∈ Y), we
assume that Assumption 1(i) holds and that the neural network approximates the optimal value of the
follower’s problem up to an absolute error of α > 0, i.e.,

|NNl(x; Θ)− Φ(x)| ≤ α for all x ∈ X . (9)

We furthermore define the parameter ∆ as the maximum difference of functions values f(x,y)−
f(x,y′) ≥ 0 over all x ∈ X ,y,y′ ∈ Y such that no ỹ ∈ Y exists which has function value
f(x,y) > f(x, ỹ) > f(x,y′). Note that ∆ can be strictly larger than zero if the follower decisions
are integer.

For a fixed x ∈ X , y⋆
NN(x) denotes an optimal solution of (7). Furthermore, for any given y ∈ Y we

denote by s⋆(x,y) an optimal slack-value in Problem (7) if the upper- and lower-level variables are
fixed to x and y, respectively.

Observation D.1. For any x ∈ X and y ∈ Y we have

s⋆(x,y) = max{0,NNl(x; Θ)− f(x,y)}.

Lemma D.2. Assume the leader and the follower have the same objective function and λ > 1. Then,
for any given x ∈ X the following conditions hold for the optimal follower solution y⋆

NN(x) of
Problem (7):

– If NNl(x; Θ) ≥ Φ(x), then f(x,y⋆
NN(x)) = Φ(x), i.e., (x,y⋆

NN(x)) is feasible for the
original bilevel problem.

– If NNl(x; Θ) < Φ(x), then NNl(x; Θ)− 1
λ∆ ≤ f(x,y⋆

NN(x)) ≤ Φ(x).

Proof. Case 1: Let x ∈ X for which it holds NNl(x; Θ) ≥ Φ(x) and assume the opposite of the
statement is true, i.e., for the optimal reaction y⋆NN(x) in (7) it holds that Φ(x) > f(x,y⋆

NN(x)).
Since λ > 0 and due to Constraint (7d) the optimal slack value for solution x in Problem (7) is
s⋆(x,y) = NNl(x; Θ)− f(x,y). Assume y⋆(x) is the optimal follower reaction in (2) for x, then
it holds that:

f(x,y⋆
NN(x)) + λs⋆(x,y⋆

NN(x))

= f(x,y⋆
NN(x)) + λ

(
NNl(x; Θ)− f(x,y⋆

NN(x))
)

> f(x,y⋆
NN(x)) + λ

(
NNl(x; Θ)− f(x,y⋆

NN(x))
)
+ (λ− 1) (f(x,y⋆

NN(x))− f(x,y⋆(x)))

= f(x,y⋆(x)) + λ
(
NNl(x; Θ)− f(x,y⋆(x))

)
= f(x,y⋆(x)) + λs⋆(x,y⋆(x))
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where the first inequality follows since λ > 1 and f(x,y⋆(x)) = Φ(x) > f(x,y⋆
NN(x)) and the

latter equality follows from NNl(x; Θ) ≥ Φ(x) = f(x,y⋆(x)). The latter result shows that the
solution (x,y⋆(x)) has a strictly better objective value in the surrogate problem (7) than (x,y⋆

NN(x))
which contradicts the optimality of (x,y⋆

NN(x)).

Case 2: Let x ∈ X be a leader’s decision for which NNl(x; Θ) < Φ(x) and assume the opposite of the
statement, i.e., for the optimal reaction y⋆

NN(x) in (7) it holds that NNl(x; Θ)− 1
λ∆ > f(x,y⋆

NN(x)).
Hence the optimal slack value in (7) is

s⋆(x,y⋆
NN(x)) = NNl(x; Θ)− f(x,y⋆

NN(x)) >
1

λ
∆. (10)

First, assume there exists another feasible solution ȳ(x) for Problem (7) with

f(x,y⋆
NN(x)) < f(x, ȳ(x)) < NNl(x; Θ)

then solution (x, ȳ(x)) has a strictly better objective value than (x,y⋆
NN(x)) in (7) since increasing

the value of f by δ decreases the value of the slack variable by δ which results in a better objective
value since λ > 1, which contradicts the optimality of (x,y⋆

NN(x)).

Second, assume there exists no other feasible solution ȳ(x) for Problem (7) with

f(x,y⋆
NN(x)) < f(x, ȳ(x)) < NNl(x; Θ).

Then there must exists a feasible solution ȳ(x) with f(x, ȳ(x)) ≥ NNl(x; Θ) and

f(x, ȳ(x))− f(x,y⋆
NN(x)) ≤ ∆, (11)

by definition of ∆. In this case, we have

f(x,y⋆
NN(x)) + λs⋆(x,y⋆

NN(x))− f(x, ȳ(x))− λs⋆(x, ȳ(x))

= f(x,y⋆
NN(x)) + λs⋆(x,y⋆

NN(x))− f(x, ȳ(x))

> f(x,y⋆
NN(x)) + ∆− f(x, ȳ(x)) ≥ −∆+∆ = 0,

where the first equality follows since s⋆(x, ȳ(x)) = 0, the first inequality follows from (10) and the
last inequality follows from (11). In summary, the latter results show that there exists a solution
(x, ȳ(x)) for (7) which has strictly better objective value than (x,y⋆

NN(x)) which is a contradiction.

Note that the inequality f(x,y⋆
NN(x)) ≤ Φ(x) follows directly from the definiton of Φ(x).

The latter lemma states, that if the neural network is overestimating the follower value for a solution
x ∈ X , then the surrogate problem (7) still selects an optimal follower response. However, if the
neural network underestimates the value, it may happen that the surrogate problem chooses a follower
response for which the objective value either is larger than the true value or differs by at most 1

λ∆.
Note that the latter term can be controlled by increasing the penalty λ.

By applying Lemma D.2 we can bound the approximation guarantee of the lower-level NEUR2BILO.

Theorem 3.1. If the leader and the follower have the same objective function and λ > 1,
NEUR2BILO returns a feasible solution (x⋆,y⋆) for Problem (1) with objective value

f(x⋆,y⋆) ≤ opt + 3α+
2

λ
∆,

where opt is the optimal value of (1) and λ the penalty term in (7a) .

Proof. Let (x⋆
NN,y

⋆
NN) be an optimal solution of the surrogate problem (7). By Lemma D.2 and by

definition (8) it follows that

Φ(x⋆
NN) ≥ f(x⋆

NN,y
⋆
NN) ≥ NNl(x⋆

NN; Θ)− 1

λ
∆

≥ Φ(x⋆
NN)− α− 1

λ
∆.

(12)

Following the three steps presented in Section 3.1, NEUR2BILO returns a feasible solution (x⋆,y⋆)
for Problem (2) where x⋆ = x⋆

NN and f(x⋆,y⋆) = Φ(x⋆). Hence the following holds:

f(x⋆,y⋆) = Φ(x⋆) ≤ f(x⋆,y⋆
NN) + α+

1

λ
∆. (13)
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Assume (x⋆⋆,y⋆⋆) is an optimal bilevel solution of Problem (1) and y⋆⋆
NN the optimal follower

response in the surrogate problem (7). Then we have

f(x⋆,y⋆
NN) + s∗(x⋆,y⋆

NN) ≤ f(x⋆⋆,y⋆⋆
NN) + s∗(x⋆⋆,y⋆⋆

NN)

since (x⋆
NN,y

⋆
NN) is an optimal solution of (7) with objective value given by (7a). From the latter

inequality we obtain

f(x⋆,y⋆
NN) ≤ f(x⋆⋆, y⋆⋆NN) + s∗(x⋆⋆,y⋆⋆

NN)− s∗(x⋆,y⋆
NN)

≤ f(x⋆⋆,y⋆⋆) + s∗(x⋆⋆,y⋆⋆
NN)

≤ f(x⋆⋆,y⋆⋆) + NNl(x⋆⋆; Θ)− f(x⋆⋆,y⋆⋆
NN)

≤ f(x⋆⋆,y⋆⋆) + Φ(x⋆⋆) + α− (Φ(x⋆⋆)− α− 1

λ
∆)

= opt + 2α+
1

λ
∆

where the second inequality follows from s∗(x⋆,y⋆
NN) ≥ 0 and y⋆⋆ being an optimal follower

solution for x⋆⋆. The third inequality follows from Observation D.1 and the fourth inequality follows
from (8) and from (12) applied to x⋆⋆.

Together with (13), this completes the proof.

E Problem Formulations

E.1 Knapsack interdiction

The bilevel knapsack problem with interdiction constraints as described in Tang et al. [54] is given by

min
x∈{0,1}n,y

n∑
i=1

piyi

s.t.
n∑

i=1

xi ≤ k,

y ∈ argmax
y′∈{0,1}n

n∑
i=1

piy
′
i

s.t.
n∑

i=1

aiy
′
i ≤ b,

y′i + xi ≤ 1, i ∈ [n],

where x are the leader’s variables and y are that of the follower. The leader decides to interdict (a
maximum of k) items of the knapsack solved in the follower’s problem with n the number of items,
pi the profits, ai the weight of item i, respectively, and the budget of the knapsack is denoted by b.

E.2 Critical node problem

The critical node problem is described in Carvalho et al. [11] as follows

max
x∈{0,1}n,y

n∑
i=1

(
pdi
(
(1− xi)(1− yi) + ηxiyi + ϵxi(1− yi) + δ(1− xi)yi

))
s.t.

n∑
i=1

dixi ≤ D,

y ∈ argmax
y′∈{0,1}n

n∑
i=1

(
pai
(
− γ(1− xi)(1− y′i) + (1− xi)y

′
i + (1− η)xiy

′
i

))
s.t.

n∑
i=1

aiy
′
i ≤ A,
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where x and y are the leader’s and follower’s variables, respectively. Here, x denotes the decisions of
the leader (defender) who selects which nodes to deploy resources to defend a set of nodes, while y
are the decisions for the follower (attacker) for which nodes to attack. di and ai are the costs for the
xi and yi, respectively. D and A are the budgets for the defender and attacker, respectively. In this
problem, the bilinearity arises in the objectives of both the leader and follower, which results in four
outcomes for each possible combination of defending and attacking a node i. The first outcome arises
when both the leader and follower do not select the node. In this case, the leader receives the full
profit, pdi , and the follower pays an opportunity cost of −γpai for not attacking an undefended node.
Second is a successful attack, wherein the leader receives a reduced profit of δpdi and the follower
receives the full profit pai . Third is a mitigated attack, wherein the leader receives a profit of ηpdi for a
degradation in operations, while the follower receives a profit of (1 − η)pai for a mitigated attack.
Fourth is a mitigation without an attack, wherein the leader receives a profit ϵpdi for a degradation in
operations, while the follower receives a profit of 0 for a mitigated attack.

E.3 Donor-recipient problem

The donor-recipient problem as described in Ghatkar et al. [27], and introduced in Morton et al. [43],
is formulated as

max
x∈[0,1]n,y,y0

n∑
i=1

wiyi

s.t.
n∑

i=1

cixi ≤ Bd,

(y, y0) ∈ argmax
y′∈{0,1}n,y′

0∈[0,1]

n∑
i=1

viy
′
i + v0y

′
0

s.t.
n∑

i=1

(ci − cixi)y
′
i + c0y

′
0 ≤ Br,

where the leader’s decisions x represent those of the donor and the follower’s decisions (y, y0) the
ones of the recipient. The profit of project i is given as wi for the leader and vi for the follower,
the cost as ci, and the budget of the leader, resp. follower, as Bd and Br. Next to the projects, the
recipient can allocate its budget to external projects, for which the profit is given as v0 and the cost c0.

E.4 Discrete network design problem

We use the standard formulation from Section 1 following the computational benchmarking study
of Rey [47] and the code provided by the author 2.

F Comparison to the Learning-Based Approach of Zhou et al. [59]

This section compares our approach to a recent learning-based approach from Zhou et al. [59] based
on code provided by the author 3. We specifically compare the input-supermodular neural network
(ISNN), i.e., the best-performing model from Zhou et al. [59]. Their approach requires sampling and
training for each instance, which is reflected in the time, whereas the model for NNl and NNu can
be trained once and evaluated across multiple instances, so the data collection and training time are
excluded. We also restrict ISNN to run for one iteration given Zhou et al. [59] report very minimal
improvements when increasing the number of iterations. Moreover, one iteration requires the least
amount of time. Table 3 reports the MRE and time for each method for the knapsack instances from
Tang et al. [54]. Generally, we can see a significant improvement over ISNN in both computing time
and MRE.

2https://github.com/davidrey123/DNDP/
3https://github.com/bozlamberth/LearnBilevel/
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n k ISNN NNl NNu G-VFA B&C
MRE Time MRE Time MRE Time MRE Time MRE Time

18 5 10.50 254.35 1.48 0.59 1.48 0.34 1.82 0.14 0.00 9.55
18 9 46.50 227.49 1.51 0.59 1.51 0.43 3.97 0.22 0.00 5.81
18 14 302.10 217.62 0.00 0.22 0.00 0.17 64.22 0.03 0.00 0.39
20 5 8.56 262.01 0.41 0.62 0.41 0.45 2.19 0.25 0.00 23.18
20 10 54.07 236.74 0.99 0.66 0.99 0.58 0.99 0.36 0.00 10.27
20 15 447.29 229.41 3.57 0.32 3.57 0.19 23.39 0.02 0.00 0.94
22 6 17.32 266.55 0.71 0.19 0.71 0.18 0.42 0.18 0.00 42.30
22 11 66.24 247.97 1.01 0.28 1.01 0.28 1.08 0.33 0.00 16.26
22 17 485.75 241.61 14.43 0.24 14.43 0.15 14.43 0.13 0.00 0.68
25 7 14.75 280.71 0.44 2.66 0.44 2.42 0.44 0.64 0.00 137.96
25 13 61.57 264.09 1.42 2.75 1.42 2.79 3.85 1.24 0.00 48.43
25 19 424.92 262.04 2.49 0.48 2.49 0.38 2.49 0.13 0.00 1.77
28 7 19.17 297.44 0.39 0.67 0.39 0.74 0.26 0.62 0.00 309.18
28 14 73.61 286.02 0.75 2.10 0.75 1.45 1.37 1.29 0.00 120.74
28 21 423.15 279.51 1.14 0.45 1.14 0.49 3.16 0.31 0.00 4.92
30 8 21.01 305.67 0.00 1.54 0.00 1.54 0.43 0.97 0.00 792.44
30 15 68.19 295.92 0.49 3.64 0.49 3.06 0.75 1.35 0.00 187.23
30 23 416.03 290.94 2.29 1.08 2.29 0.73 4.48 0.25 0.00 5.65
Average [54] 164.49 263.67 1.86 1.06 1.86 0.91 7.21 0.47 0.00 95.43

Table 3: Comparison to ISNN from Zhou et al. [59] on the knapsack interdiction problem. n and k
denote the number of items and the interdiction budget, respectively. We directly evaluate on the 180
instances (10 per size) of Tang et al. [54]; each value is the average over 10 instances. We compare
the upper- and lower-level approximations, as well as the no-learning baseline (G-VFA) and the exact
algorithm (B&C).

G Objective & Incumbent Results

This section reports the more detailed information related to the objective values for each problem.
Objective results for each problem are given in Tables 4-7. In addition, for KIP and CNP, as the solver
from Fischetti et al. [23] provides easily accessible incumbent solutions, we include two additional
metrics.

– The first metric “Solver Time Ratio" measures the time it takes the solver to obtain an
equally good (or better) incumbent solution, divided by the solving time of the respective
approximation. The number in brackets to the right indicates the number of instances for
which the solver finds an equivalent solution.

– The second metric “Solver Relative Error at Time" measures the relative error of the best
solution found by the solver compared to the respective approximation. The value in brackets
to the right indicates the number of instances for which the solver finds an incumbent before
the approximation is done solving.

n k Objective Mean Relative Error (%) Solving Time Solver Time Ratio Solver Relative Error at Time
NNl NNu G-VFA B&C NNl NNu G-VFA B&C NNl NNu G-VFA B&C NNl NNu G-VFA NNl NNu G-VFA

18 5 308.30 308.30 309.20 303.50 1.48 1.48 1.82 0.00 0.59 0.34 0.14 9.55 24.48 (10) 35.86 (10) 177.39 (10) - (0) - (0) - (0)
18 9 145.60 145.60 149.10 143.40 1.51 1.51 3.97 0.00 0.59 0.43 0.22 5.81 12.31 (10) 18.52 (10) 73.49 (10) - (0) - (0) - (0)
18 14 31.00 31.00 51.40 31.00 0.00 0.00 64.22 0.00 0.22 0.17 0.03 0.39 1.87 (10) 2.86 (10) 31.9 (10) 44.0 (2) 41.5 (2) - (0)
20 5 390.30 390.30 397.60 388.50 0.41 0.41 2.19 0.00 0.62 0.45 0.25 23.18 50.68 (10) 65.56 (10) 420.04 (10) - (0) - (0) - (0)
20 10 165.40 165.40 165.40 163.70 0.99 0.99 0.99 0.00 0.66 0.58 0.36 10.27 18.39 (10) 22.03 (10) 80.0 (10) - (0) - (0) - (0)
20 15 33.40 33.40 41.90 31.40 3.57 3.57 23.39 0.00 0.32 0.19 0.02 0.94 2.82 (10) 4.75 (10) 54.29 (10) - (0) - (0) - (0)
22 6 385.50 385.50 384.30 382.70 0.71 0.71 0.42 0.00 0.19 0.18 0.18 42.30 228.97 (10) 249.8 (10) 714.31 (10) - (0) - (0) - (0)
22 11 163.20 163.20 163.30 161.00 1.01 1.01 1.08 0.00 0.28 0.28 0.33 16.26 69.05 (10) 74.99 (10) 129.04 (10) - (0) - (0) - (0)
22 17 35.20 35.20 35.20 29.20 14.43 14.43 14.43 0.00 0.24 0.15 0.13 0.68 3.09 (10) 5.48 (10) 29.34 (10) 18.0 (1) - (0) - (0)
25 7 438.20 438.20 438.20 436.20 0.44 0.44 0.44 0.00 2.66 2.42 0.64 137.96 58.27 (10) 61.24 (10) 1102.38 (10) 28.69 (2) 28.69 (2) 28.69 (2)
25 13 194.90 194.90 199.90 191.50 1.42 1.42 3.85 0.00 2.75 2.79 1.24 48.43 21.14 (10) 25.13 (10) 67.86 (10) - (0) - (0) - (0)
25 19 43.30 43.30 43.30 41.80 2.49 2.49 2.49 0.00 0.48 0.38 0.13 1.77 3.98 (10) 4.81 (10) 38.29 (10) - (0) - (0) - (0)
28 7 518.30 518.30 517.60 516.10 0.39 0.39 0.26 0.00 0.67 0.74 0.62 309.18 671.57 (10) 518.35 (10) 1033.45 (10) 29.28 (8) 29.28 (8) 29.48 (8)
28 14 224.90 224.90 226.80 223.40 0.75 0.75 1.37 0.00 2.10 1.45 1.29 120.74 59.99 (10) 84.36 (10) 120.05 (10) 19.84 (2) 19.84 (2) 16.14 (2)
28 21 46.70 46.70 48.20 46.20 1.14 1.14 3.16 0.00 0.45 0.49 0.31 4.92 12.95 (10) 11.66 (10) 38.98 (10) - (0) - (0) - (0)
30 8 536.30 536.30 538.70 536.30 0.00 0.00 0.43 0.00 1.54 1.54 0.97 792.44 497.06 (10) 455.29 (10) 1924.47 (10) 27.07 (10) 27.07 (10) 26.58 (10)
30 15 231.20 231.20 231.90 230.00 0.49 0.49 0.75 0.00 3.64 3.06 1.35 187.23 56.14 (10) 66.07 (10) 254.88 (10) 86.11 (6) 86.11 (6) 85.19 (6)
30 23 49.00 49.00 50.40 47.50 2.29 2.29 4.48 0.00 1.08 0.73 0.25 5.65 7.5 (10) 8.79 (10) 48.27 (10) - (0) - (0) - (0)

100 25 2,164.71 2,164.69 2,145.07 2,318.99 0.93 0.93 0.00 8.09 10.02 8.40 4.19 3,600.40 - (0) - (0) - (0) 34.36 (100) 34.99 (100) 37.93 (100)
100 50 965.37 965.37 956.76 1,043.71 0.96 0.96 0.04 8.96 51.68 49.28 53.74 3,600.44 23.56 (5) 26.24 (5) - (0) 59.36 (100) 60.81 (100) 60.48 (100)
100 75 245.01 245.01 245.08 259.95 0.08 0.08 0.12 5.87 24.69 23.78 35.27 3,600.52 133.35 (4) 152.72 (4) 138.07 (5) 177.01 (100) 196.86 (100) 193.94 (100)

Table 4: KIP objective and incumbent results. Each row averaged over 10 instances, except for
n = 100, which is average over 100 instances. NNl and NNu specify the lower- and upper-level
approximations respectively. All times in seconds.
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|V | Objective Mean Relative Error (%) Times Solver Time Ratio Solver Relative Error at Time
NNl NNu B&C NNl NNu B&C NNl NNu B&C NNl NNu NNl NNu

10 224.47 225.10 228.63 3.20 2.75 1.01 1.69 1.19 3,600.80 136.66 (288) 191.34 (289) 269.0 (1) - (0)
25 562.72 566.23 572.51 2.60 1.77 0.73 1.69 1.19 3,600.80 736.84 (275) 3934.02 (271) 2.22 (248) 2.57 (124)
50 1,139.27 1,143.95 1,148.17 1.42 0.98 0.67 1.69 1.19 3,600.80 718.74 (225) 3840.41 (183) 1.94 (295) 3.17 (190)
100 2,285.15 2,297.47 2,272.30 1.12 0.56 1.79 1.69 1.19 3,600.80 645.37 (131) 926.6 (90) 2.4 (283) 2.96 (278)
300 6,781.91 6,882.42 6,755.07 2.01 0.33 2.32 1.69 1.19 3,600.80 41.65 (166) 167.38 (47) 1.49 (245) 2.65 (243)
500 11,348.60 11,439.25 11,208.43 1.33 0.45 2.47 1.69 1.19 3,600.80 106.9 (83) 99.48 (15) 1.51 (206) 2.45 (205)

Table 5: CNP objective and incumbent results. Each row averaged over 300 instances. All times in
seconds.

Instance # Objective Relative Error (%) Times
NNl NNu B&C+ NNl NNu B&C+ NNl NNu B&C+

1 34,356.00 59,524.00 47,206.00 42.28 0.00 20.69 0.09 1.44 3,600.09
2 33,713.00 54,764.00 39,526.00 38.44 0.00 27.82 0.12 1.52 3,600.08
3 36,717.00 66,967.00 46,792.00 45.17 0.00 30.13 0.14 2.85 3,600.07
4 36,414.00 54,908.00 44,486.00 33.68 0.00 18.98 0.07 1.68 3,637.23
5 33,090.00 59,627.00 43,355.00 44.51 0.00 27.29 0.10 1.96 3,600.07
6 36,691.00 56,603.00 39,006.00 35.18 0.00 31.09 0.08 2.93 3,600.10
7 31,354.00 55,569.00 43,443.00 43.58 0.00 21.82 0.09 1.58 3,600.14
8 35,710.00 54,414.00 39,839.00 34.37 0.00 26.79 0.09 0.87 3,600.10
9 38,961.00 61,869.00 45,288.00 37.03 0.00 26.80 0.16 4.55 3,600.16
10 36,965.00 60,488.00 43,194.00 38.89 0.00 28.59 0.12 3.57 3,600.10

Averaged 35,397.10 58,473.30 43,213.50 39.31 0.00 26.00 0.11 2.30 3,603.82

Table 6: DRP objective results. Each row corresponds to a single instance from dataset 15, i.e., the
most challenging instances from Ghatkar et al. [27]. All times in seconds.

# of edges budget Objective Relative Error (%) Times
NNl NNu GBTl GBTu MKKT-5 MKKT-10 MKKT-30 NNl NNu GBTl GBTu MKKT-5 MKKT-10 MKKT-30 NNl NNu GBTl GBTu

10 0.25 6,201.25 6,145.27 6,214.37 6,147.02 6,484.98 6,155.69 6,129.65 1.21 0.36 1.43 0.38 5.78 0.51 0.10 2.95 0.01 3.19 0.09
10 0.5 5,532.92 5,557.28 5,531.27 5,640.77 5,849.03 5,618.41 5,492.23 0.73 1.22 0.72 2.74 6.47 2.17 0.00 3.35 0.01 3.66 0.07
10 0.75 5,202.82 5,246.29 5,211.07 5,225.02 5,477.72 5,179.39 5,181.30 0.47 1.32 0.63 0.91 5.80 0.02 0.06 2.80 0.00 3.02 0.06
20 0.25 5,478.52 5,272.98 5,272.07 5,210.07 5,535.14 5,423.02 5,180.67 6.05 2.64 2.38 1.41 7.78 5.12 0.85 5.02 0.02 5.02 0.23
20 0.5 4,347.58 4,490.04 4,356.47 4,390.52 4,563.35 4,416.83 4,330.21 1.01 4.36 1.22 2.02 6.00 2.52 0.64 4.91 0.03 5.02 0.21
20 0.75 4,084.19 4,085.09 4,061.68 4,135.70 4,363.00 4,057.72 4,053.02 0.85 0.91 0.32 2.14 7.87 0.22 0.11 4.47 0.01 4.69 0.13

Table 7: DNDP objective results. Each is averaged across 10 instances. All times in seconds.

H Distributional Results for Relative Error

I Ablation

I.1 Lower-level value function constraints

In this section, we present an ablation study comparing alternative types of value function approxima-
tion (VFA) for the lower-level approximation on the KIP. Namely, we compare the approach used the
the main paper, NNl, which utilizes a slack variable to ensure feasibility. In addition, we include NNn

which does not use a slack at all, and NNd, which uses the largest error in the validation set to scale
the prediction down. Table 8 reports objectives, relative errors, and solving times of each method.
In general, the solution quality of NNl slightly exceeds that of NNd, while NNn does significantly
worse. The latter results is unsurprising given that any underestimation will cause a loss of feasibility
for potentially high quality upper-level decisions. NNl is additionally generally the fastest to optimize
as well.

I.2 The effect of λ

In this section, we present results with λ = 0.1 for DNDP. Table 9 presents relative error and solving
times for this setting. Notably, this choice of λ tends to provide higher quality solutions than λ = 1,
as reported in the main paper in Table 2. Tuning this hyperparameter further can thus improve the
already strong numerical results reported for DNDP, and possibly other problems.

I.3 Greedy features for Knapsack

This section explores the impact of the use of greedy features on the KIP problem. We specifically
compare a model trained purely on the coefficients to a model trained on the coefficients with
additional features derived from KIP-specific greedy heuristics. From Table 10, there is a clear
advantage with the greedy features in terms of solution quality at the cost of increased solving time.

21

86708 https://doi.org/10.52202/079017-2752



n k Objective Mean Relative Error (%) Times
NNl NNd NNn NNl NNd NNn NNl NNd NNn

18 5 308.30 308.40 318.40 0.00 0.03 3.28 0.59 0.83 1.06
18 9 145.60 145.60 152.90 0.00 0.00 6.70 0.59 1.21 0.81
18 14 31.00 37.50 40.00 0.00 16.91 48.23 0.22 0.32 0.35
20 5 390.30 390.30 413.90 0.00 0.00 6.48 0.62 0.79 1.38
20 10 165.40 165.40 175.90 0.00 0.00 6.60 0.66 1.47 1.76
20 15 33.40 32.50 55.70 3.33 14.29 100.91 0.32 0.38 0.96
22 6 385.50 386.80 403.00 0.00 0.27 4.56 0.19 0.37 0.80
22 11 163.20 162.10 179.20 0.55 0.07 11.83 0.28 0.85 1.23
22 17 35.20 35.20 49.00 5.15 4.63 69.91 0.24 0.19 0.41
25 7 438.20 438.20 446.50 0.00 0.00 1.98 2.66 2.40 3.85
25 13 194.90 195.50 206.50 0.00 0.26 6.67 2.75 3.25 4.83
25 19 43.30 43.30 64.40 1.69 1.69 92.49 0.48 0.74 1.84
28 7 518.30 518.30 532.20 0.00 0.00 2.80 0.67 0.83 2.37
28 14 224.90 224.90 234.70 0.00 0.00 4.60 2.10 2.69 3.72
28 21 46.70 49.90 60.70 0.00 7.48 37.45 0.45 0.83 1.67
30 8 536.30 537.10 537.70 0.00 0.18 0.25 1.54 1.86 3.07
30 15 231.20 231.20 232.80 0.16 0.16 0.82 3.64 4.18 5.03
30 23 49.00 50.70 51.90 0.00 2.79 4.48 1.08 1.50 1.76

100 25 2,164.71 2,164.13 2,168.52 0.04 0.01 0.22 10.02 12.28 19.81
100 50 965.37 965.26 974.28 0.03 0.02 1.01 51.68 61.09 72.86
100 75 245.01 245.10 262.66 0.04 0.08 8.18 24.69 30.48 81.30

Table 8: KIP results comparing NNl, NNd, and NNn. Each row is an average over 10 instances,
except for n = 100, which is an average over 100 instances. All times in seconds.

# of edges budget NNl NNu GBTl GBTu MKKT
MRE Time MRE Time MRE Time MRE Time MRE-5 MRE-10 MRE-30

10 0.25 2.44 2.63 0.36 0.01 1.43 3.26 0.38 0.09 5.78 0.51 0.10
10 0.5 0.39 2.90 1.22 0.01 1.33 3.54 2.74 0.07 6.47 2.17 0.00
10 0.75 0.48 2.23 1.32 0.00 0.47 2.19 0.91 0.06 5.80 0.02 0.06
20 0.25 3.62 5.02 2.46 0.02 1.36 5.02 1.23 0.23 7.59 4.96 0.67
20 0.5 1.56 4.91 4.41 0.03 0.98 5.02 2.06 0.21 6.05 2.57 0.69
20 0.75 0.17 3.44 1.03 0.01 0.43 4.75 2.27 0.13 8.00 0.35 0.23

Average 1.44 3.52 1.80 0.01 1.00 3.96 1.60 0.13 6.61 1.76 0.29

Table 9: DNDP results for λ = 0.1. Each is averaged across 10 instances. NNl and GBTl are the
learning-based formulations with slack for the lower-level approximation. NNu and GBTu are the
learning-based formulations for the upper-level approximation.

n k Objective Mean Relative Error (%) Times
NNl greedy NNl no greedy NNl greedy NNl no greedy NNl greedy NNl no greedy

18 5 308.30 314.90 0.85 2.93 0.59 0.06
18 9 145.60 150.50 1.17 4.28 0.59 0.07
18 14 31.00 41.60 0.00 55.04 0.22 0.05
20 5 390.30 404.40 0.00 3.71 0.62 0.06
20 10 165.40 172.00 0.55 4.06 0.66 0.05
20 15 33.40 36.50 0.00 7.31 0.32 0.06
22 6 385.50 390.60 0.59 1.88 0.19 0.07
22 11 163.20 170.80 0.00 4.31 0.28 0.07
22 17 35.20 39.10 7.91 31.93 0.24 0.06
25 7 438.20 446.30 0.11 1.67 2.66 0.08
25 13 194.90 197.20 0.89 2.58 2.75 0.07
25 19 43.30 49.10 0.00 13.53 0.48 0.07
28 7 518.30 537.70 0.15 3.63 0.67 0.07
28 14 224.90 225.90 0.21 0.61 2.10 0.08
28 21 46.70 52.10 0.00 11.85 0.45 0.08
30 8 536.30 556.50 0.00 3.61 1.54 0.08
30 15 231.20 233.70 0.21 1.20 3.64 0.09
30 23 49.00 51.30 0.00 4.97 1.08 0.08

100 25 2,164.71 2,473.08 0.00 14.22 10.02 0.54
100 50 965.37 1,062.92 0.04 10.23 51.68 0.52
100 75 245.01 313.44 0.00 27.62 24.69 0.53

Table 10: KIP results comparing NNl with and without greedy-based features NNd. Each row
averaged over 10 instances, except for n = 100, which is an average over 100 instances. All times in
seconds.
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Figure 1: Box plot of relative errors for KIP with interdiction budget of k = n/4.
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Figure 2: Box plot of relative errors for KIP with interdiction budget of k = n/2.

J Computing Setup

The experiments for the benchmarks were run on a computing cluster with an Intel Xeon CPU
E5-2683 and Nvidia Tesla P100 GPU with 64GB of RAM (for training). Pytorch 2.0.1 [44] was
used for all neural network models and scikit-learn 1.4.0 was used for gradient-boosted trees in the
DNDP [46]. Gurobi 11.0.1 [30] was used as the MILP solver and gurobi-machinelearning 1.4.0 was
used to embed the learning models into MILPs.

K Machine Learning Details

K.1 Models, features, & hyperparameters

For all problems, we derive features that correspond to each upper-level decision variable, as well as
general instance features.

K.1.1 KIP, CNP, DRP

For KIP, CNP, DRP, we have n decisions in both the upper- and lower-level of the problems. For
the learning model, we utilize a set-based architecture [58], wherein we first represent the objective
and constraint coefficients for each upper-level and lower-level decision, independent of the decision
(fi). Each of these are passed through a feed-forward network with shared parameters (Ψd) to
compute an m-dimension embedding. The embeddings are then summed and passed through another
feed-forward network (Ψs) to compute the instance’s k-dimensional embedding. This instance
embedding is then concatenated with features related to the upper- and lower-level that are dependent
on the decision (h(xi)). The concatenated vector is passed through a feed-forward network with
shared parameters (Ψv) to predict n scalar values (i.e., one for each decision). The final prediction is
equal to the dot product of the n predictions with the objective function coefficients of the upper- or

23

86710 https://doi.org/10.52202/079017-2752



18 20 22 25 28 30 100
# Items

0

25

50

75

100

125

150

175

R
el

at
iv

e
E

rr
or

NNl

NNu

G-VFA
B&C

Figure 3: Box plot of relative errors for KIP with interdiction budget of k = 3n/4.
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Figure 4: Box plot of relative errors for CNP. B&C does not find any upper-level solutions for 2 of
the 300 instances of size |V | = 500, so these are excluded from the plot.

lower-level problem, depending on the type of value function approximation. This final step exploits
the separable nature of the objective functions in question as they can all be expressed as

∑n
i=1 cizi,

where ci is a known coefficient and zi is a decision variable or a function of a set of decision variables
with index i. The objectives for KIP, CNP, and DRP all satisfy this property. We leverage this
knowledge of the coefficients of separable objective functions as an inductive bias in the design of
the learning architecture to facilitate convergence to accurate models. The decision-dependent and
decision-independent features are summarized in Table 11.

One minor remark for KIP is that since it is an interdiction problem, we multiply the concatenated
vector, i.e., the input to Ψv, by (1 − xi) as a mask given that the follower cannot select the same
items as the leader.

For all instances, we do not perform systematic hyperparameter tuning. The sub-networks Ψd, Ψs,
Ψv are feed-forward networks with one hidden layer of dimension 128. The decision-independent
feature embedding dimension (m) is 64, and the instance embedding dimension (k) is 32. We use a
batch size of 32, a learning rate of 0.01, and Adam [31] as an optimizer.

K.1.2 DNDP

We train neural network models (one hidden layer, 16 neurons, a learning rate of 0.01 with
the Adam optimizer) and gradient-boosted trees (default scikit-learn hyperparameters, except for
n_estimators = 50). The inputs to these models are 30-dimensional binary vectors representing
the subset of links selected by the leader.

K.2 Data collection & training times

For KIP, CNP, DRP, we sample 1,000 instances according to the procedures specified in Tang et al.
[54], Dragotto et al. [18], and Ghatkar et al. [27], respectively. For each instance, we sample 100
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Figure 5: Box plot of relative errors for DNDP with 10 edges. MKKT-{5,10,30} corresponds to
MKKT run with each respective time limit.
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Figure 6: Box plot of relative errors for DNDP with 20 edges. MKKT-{5,10,30} corresponds to
MKKT run with each respective time limit.

Problem Type Features

KIP fi
pi/ai

maxi{pi/ai} , pi, ai, k/n, xdg
i , ydgi , objdg/n

h(xi) fi, xi, y
g
i

CNP fi
pd
i /di

maxi{pd
i /di}

, pa
i /ai

maxi{pa
i /ai} , di, ai, pai , pdi , γ, η, ϵ, δ, A, D

h(xi) fi, xi, −γ(1− xi), (1− xi), (1− η)xi

DRP fi
wi/ci

maxi{wi/ci} , vi/ci
maxi{ci/vi} , wi, vi, ci, Bd, Br

h(xi) fi, xi

Table 11: Features for KIP, CNP, and DRP. Most features are derived directly from the objective
and constraint coefficients, so refer to Appendix E for the definitions. For KIP, additional features
are computed using simple greedy heuristics. For the KIP DIF, we compute xdg

i , ydgi , objdg, which
correspond to a purely greedy strategy, i.e., the upper-level interdicts the k items with the largest
profit to cost ratio (pi/ai) and the lower-level decisions are the largest remaining highest profit to
cost ratio items. For h(xi) in KIP, we also include lower-level decisions based on G-VFA (ygi ).

upper-level decisions, i.e., 100,000 samples in total. Additionally, for KIP, CNP, DRP, the lower-level
problems are solved with 30 CPUs in parallel. For training, we train for 1,000 epochs. However,
if the validation mean absolute error does not improve in 200 iterations, we terminate early. Data
collection and training times are reported in Table 12.

For DNDP, we use the Sioux Falls transportation network provided by [47] along with the author’s
60 test instances. All instances use the same base network with different sets of candidate links to
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add and different budgets. There are 30 candidate links in total, and each test instance involves a
subset of 10 or 20 of these links. To construct a training set, we sample 1000 leader decisions by first
uniformly sampling an integer between 1 and 20, then uniformly sampling that many candidate links
out of the set of 30 options; samples with total cost exceeding 50% of the total cost of all 30 edges
are rejected as they are likely to exceed realistic budgets.

Problem Data Collection Training Time
Lower Upper

KIP (n = 18) 142.08 2576.43 -
KIP (n = 20) 172.65 4714.88 -
KIP (n = 22) 141.61 2346.20 -
KIP (n = 25) 170.30 4007.75 -
KIP (n = 28) 142.34 2684.80 -
KIP (n = 30) 168.91 1835.27 -
KIP (n = 100) 164.16 3467.26 -

CNP (|V | = 10) 1,397.58 1839.60 4670.87
CNP (|V | = 25) 1,522.32 2072.60 4841.31
CNP (|V | = 50) 1,823.16 2103.50 2963.64
CNP (|V | = 100) 1,872.07 1944.08 2931.43
CNP (|V | = 300) 3,662.89 3800.02 3598.04
CNP (|V | = 500) 4,742.06 2263.68 6214.35

DRP 1939.24 1768.82 1784.15

DNDP 1033.15 1.96 3.19

Table 12: Data collection and training times for all problems. Note that as KIP is an interdiction
problem, the same trained model can be used for the upper- and lower-level approximation, so we
simply leave the upper-level as - for this problem. All times in seconds.

K.3 Prediction error

For KIP, CNP, and DRP, we provide the Mean Absolute Error (MAE), as well as the Mean Absolute
Label (MAL) as a reference to access the prediction quality for the validation data in Table 13. The
table shows that models achieve a MAE of at most ∼ 1e−6 with a MAL ranging from 0.006 to 200
for all KIP, CNP, and DRP instances. For DNDP, both neural network and gradient-boosted tree
models achieve Mean Absolute Percentage Error (MAPE) ∼ 5%.

Problem Upper-Level Approximation Lower-Level Approximation
MAE MAL MAE MAL

KIP (n = 18) 5.05e−09 2.0992 - -
KIP (n = 20) 5.98e−09 2.5369 - -
KIP (n = 22) 4.00e−06 2.6933 - -
KIP (n = 25) 3.46e−10 3.0036 - -
KIP (n = 28) 1.48e−08 3.7327 - -
KIP (n = 30) 2.85e−08 3.7445 - -
KIP (n = 100) 1.21e−08 13.104 - -

CNP (|V | = 10) 1.35e−08 5.4606 6.74e−06 1.5272
CNP (|V | = 25) 1.22e−06 12.3452 1.09e−08 3.7224
CNP (|V | = 50) 1.23e−07 23.9687 4.77e−09 7.7536
CNP (|V | = 100) 4.33e−08 46.5468 3.97e−06 14.7491
CNP (|V | = 300) 1.83e−08 135.8972 2.54e−07 44.577
CNP (|V | = 500) 8.54e−08 222.3805 9.51e−08 76.212

DRP 2.51e−07 0.0062 7.82e−08 0.0703

DNDP 0.0292 0.4297 0.02504 0.4990

Table 13: Prediction errors for all problems. Note that as KIP is an interdiction problem, the same
trained model can be used for the upper- and lower-level approximation, so we simply leave the
lower-level as - for this problem.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The methodology and numerical results accurately validate the key methodolog-
ical contributions and computational performance discussed in the abstract and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Key limitations of NEUR2BILO are briefly discussed in Section 3. Any
assumptions are explicitly stated throughout the paper and appendices.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: Full theorems, assumptions, and complete proofs are provided in the appendix.
Important assumptions are mentioned in the main paper.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Yes, the paper provides sufficient detail for the methodology and the learning
models in the appendix. The code provided also include can be run to reproduce the results
in the paper, the trained models and test instances are also included.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Yes, all of the code and data are available here at https://github.com/
khalil-research/Neur2BiLO.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification:Yes, these details are included in detail in Appendix K.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Yes. While the main paper reports averages, full distributional information for
the main computational results is included in Appendix H.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: All computing information is discussed in Appendix J.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research does not involve human subjects. Given the nature of the paper,
there are no data-related concerns.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Yes, an impact statement is provided in the appendix. For the camera-ready
version of the paper, we will include this in the main paper, given the additional space
provided.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The released models do not have a high risk of misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The creators either own or properly credit all code/data/models.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
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13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: All assets (dataset/code/model) are available and anonymized.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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