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Abstract

Survival analysis is an important research topic with applications in healthcare,
business, and manufacturing. One essential tool in this area is the Cox proportional
hazards (CPH) model, which is widely used for its interpretability, flexibility, and
predictive performance. However, for modern data science challenges such as high
dimensionality (both n and p) and high feature correlations, current algorithms to
train the CPH model have drawbacks, preventing us from using the CPH model at
its full potential. The root cause is that the current algorithms, based on the Newton
method, have trouble converging due to vanishing second order derivatives when
outside the local region of the minimizer. To circumvent this problem, we propose
new optimization methods by constructing and minimizing surrogate functions that
exploit hidden mathematical structures of the CPH model. Our new methods are
easy to implement and ensure monotonic loss decrease and global convergence.
Empirically, we verify the computational efficiency of our methods. As a direct
application, we show how our optimization methods can be used to solve the
cardinality-constrained CPH problem, producing very sparse high-quality models
that were not previously practical to construct. We list several extensions that our
breakthrough enables, including optimization opportunities, theoretical questions
on CPH’s mathematical structure, as well as other CPH-related applications.

1 Introduction

Survival analysis, which studies time-to-event data, is an important research topic with a wide range
of real-world applications. In medicine, survival analysis has been employed to model when a patient
will die [44, 38, 10]. In business, it is useful for attrition prediction [30] (when an employees resigns)
and churn prediction [31] (when a customer unsubscribes), and in manufacturing, it is used to predict
when a physical system breaks down [42, 50]. A fundamental tool in analyzing such data is the Cox
proportional hazards (CPH) model [8], a linear model under the assumption that features have a
multiplicative effect on the risk of failure/event. Simple yet powerful, the CPH model has enjoyed
great popularity due to its modeling flexibility (when coupled with additive models [27, 28, 67, 11, 1]).
Moreover, in contrast to black box models, it is both interpretable and accurate.

However, with the advent of larger sample and feature spaces and more complex data, new challenges
arise in using the CPH model to its full potential. Ideally, practitioners want to produce CPH models
repeatedly, with feature engineering and preprocessing between iterations. Additionally, they want
the CPH model to identify important variables [64, 14], even in presence of highly correlated features.
However, current optimization methods for training the CPH model do not meet these needs. Current
algorithms [62, 22, 23, 54], based on the generic Newton’s method, are computationally intensive.
More importantly, due to both vanishing second-order derivatives [53] and the use of approximation
strategies that trade precision for efficiency, existing optimization methods have trouble converging,
either with the loss blowing up or the algorithm converging very slowly when we require the precision
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necessary to handle correlated variables. The latter issue is the core reason for incorrect variable
selection when features are highly correlated.

In this work, we propose new optimization methods to train the CPH model and show that there is
not necessarily a precision-efficiency tradeoff. Despite the CPH model being seemingly amenable
to classical optimization approaches such as coordinate descent, this has not been attempted for the
original CPH loss function due to its daunting complexity. However, through careful examination, we
show instead that the complexity of the CPH loss function is really a blessing, rather than a curse. We
discover hidden mathematical structures that allow us to design very efficient algorithms. We show
both the first and second-order derivatives at each coordinate can be computed exactly in linear time
complexity (O(n)). Moreover, we show both derivatives are Lipschitz-continuous by making novel
connections with the second and third central moment calculation in probability theory and statistics.
All these discoveries lead us to design algorithms that essentially minimize a quadratic surrogate
function and a cubic surrogate function, respectively. They are extremely easy to implement.

Empirically, we demonstrate the superior speed of our algorithms on large-scale datasets. In general,
ours are significantly faster than all existing methods and rapidly converge to optimal high-precision
solutions. Because our methods produce high-quality solutions, we apply them for variable selection
in challenging regimes where features are highly correlated. We solve difficult cardinality-constrained
CPH problems and produce models that are much sparser than the state-of-the-art methods.

In summary, our contributions are: (1) We find a critical flaw in the current optimization algorithms
for the CPH method by pinpointing that they converge slowly with low precision. Sometimes, the
loss does not converge and explodes. (2) To circumvent this issue, we propose novel algorithms that
minimize a quadratic and a cubic surrogate function, respectively, with guaranteed convergence and
loss descent at each iteration. The core novelty lies in discovering hidden mathematical structure,
which allows for an efficiency way (O(n)) of calculating the second-order partial derivatives exactly.
In addition, we show the first and second order partial derivatives are Lipschitz continuous. To
calculate these Lipschitz constants, we leverage second and third central moments from theoretical
statistics and probability theory. (3) Empirically, our method enjoys fast speed in training the loss
function and results in superior performance when solving cardinality-constrained problems.

Our work constitutes a methodological breakthrough in training CPH models. At the end of the
paper, we also discuss several exciting extensions and follow-up questions, showing how our new
perspectives and discoveries open doors to many new research opportunities.

2 Preliminaries

Given a time-to-event dataset of n samples with {xi, ti, δi}ni=1, where x ∈ Rp is the feature vector
with length p, ti ∈ R is the observation time, and δi ∈ {0, 1} is an indicator with 1 indicating that
a failure event has happened, the CPH model can be used to learn and predict the risk of failure,
commonly known as the hazard function in survival analysis. The CPH model predicts the hazard
hi(t) for sample i in a semiparametric way [62]. For review of related work, please see Appendix B.

hi(t) = h0(t)e
xT

i β, (1)

where h0(t) is a baseline hazard function shared by all samples, and β ∈ Rp is the parameter of
interest. The nice thing about the CPH model is that h0(t) cancels out if we look only at the ratio of
hazards of sample i vs. all remaining samples at time ti, i.e.,

hi(ti)∑
j∈Ri

hj(ti)
=

ex
T
i β∑

j∈Ri
ex

T
j β

, (2)

where Ri := {j | tj ≥ ti} is the set of indices whose observation time is greater than or equal to that
of sample i. Such ratios are also called partial likelihoods. To estimate the parameter of interest, β,
we maximize the joint partial likelihood of all samples with failure events, which can be written as

L(β) = Πi|δi=1
ex

T
i β∑

j∈Ri
ex

T
j β

. (3)

2

87713https://doi.org/10.52202/079017-2785



This is equivalent to minimizing the negative log partial likelihood [62], which is defined as

ℓ(β) = − logL(β) =

n∑
i=1

δi

log
∑

j∈Ri

ex
T
j β

− xT
i β

 . (4)

The loss function ℓ(β), while convex, is very mathematically involved. In addition to the double
sum, the inner summation over j is with respect to a different index set Ri, for each outer summation
index i. Such daunting complexity makes it difficult to employ first-order methods such as gradient
descent because we cannot easily pick the right step size for each iteration, which plays a crucial
role in practical running time. Therefore, past efforts have been focused on developing Newton-type
(second-order) methods, where the loss function is approximated by a second-order Taylor expansion:

ℓ(β +∆β) ≈ ℓ(β) +∇βℓ(β)
T∆β +

1

2
∆βT∇2

βℓ(β)∆β := f(∆β). (5)

The function f(∆β) can be minimized by solving a linear system: ∆β̂ = −(∇2
βℓ(β))

−1∇βℓ(β).
To reveal the computational nuances more explicitly, we use an intermediate variable η with η = Xβ.
Then we can rewrite the approximation function f(∆β) as:

f(∆β) = ℓ(β +∆β) ≈ ℓ(η) +∇ηℓ(η)
TX∆β +

1

2
∆βTXT∇2

ηℓ(η)X∆β. (6)

At each iteration, calculating the Hessian matrix ∇2
ηℓ(η) requires O(n2) complexity. Past methods

on the CPH model have resorted to various approximation strategies by replacing ∇2
ηℓ(η) with H(η)

to reduce the computational complexity:
1. Exact Newton H(η) = ∇2

ηℓ(η) # no approximation

2. Quasi Newton H(η)ij =

{
[∇2

ηℓ(η)]ii if i = j

0 otherwise
# ignore off-diagonal terms

3. Proximal Newton H(η) = diag(∇ηℓ(η) + δ), # diagonal upper bound on ∇2
ηℓ(η)

where diag(·) constructs a matrix with its diagonal equal to the input vector and other entries equal to
0. There are two major problems with the above approaches. One common problem is that the these
Newton-type methods inherently have trouble converging beyond the local region of minimizers
without backtrack line search [53]. We provide a concrete example to demonstrate this issue in the
experiment section. Ideally, we want to avoid backtracking because this increases the running time.
In contrast, our methods do not have this flaw and guarantee global convergence.

The other problem is that when the above approaches do converge to the optimal solutions, none
of them can converge with high precision fast enough (in a practical sense). The exact Newton’s
method [22] has a local quadratic convergence rate, but each iteration can take a long time. Quasi
Newton [62] and proximal Newton [51] 1 methods are computationally much cheaper to evaluate per
iteration, but they make less progress toward the optimal solution. In the next section, we show that,
by exploiting hidden mathematical structure, we can obtain the best of both worlds: cheap evaluation
per iteration and fast convergence with respect to the number of iterations.

3 Methodology

3.1 New Formulas for First, Second, and Third Order Partial Derivatives

As we have mentioned, the reason for the diagonal approximations of ∇2
ηℓ(η) is to reduce the

complexity of the mathematics and associated high computational cost. Here, we take a completely
different approach from past methods. First, we avoid making any approximations and embrace
the full Hessian matrix. Second, we bypass the intermediate step of calculating the Hessian in the
sample space η and focus on the Hessian in the feature space β. The involved mathematics may
already sound complicated, but we do not stop here. We apply these two ideas not only to the second
order partial derivatives but the third order partial derivatives as well. Although this seems like a
burdensome task, we show that the end result is very elegant and has an intuitive interpretation. Out
of complexity comes simplicity. We summarize the relevant results in the first following theorem:

1See the skglm tutorial at https://contrib.scikit-learn.org/skglm/tutorials/cox_datafit.
html#maths-cox-datafit.
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Theorem 3.1. For the CPH loss function defined in Equation (4), the first, second, and third order
partial derivatives with respect to coordinate l are:

1st order partial derivative:

∂ℓ(β)

∂βl
=

n∑
i=1

δi

(∑
k∈Ri

eηk∑
j∈Ri

eηj
Xkl

)
−

n∑
i=1

δiXil. (7)

2nd order partial derivative:

∂2ℓ(β)

∂β2
l

=

n∑
i=1

δi

∑
k∈Ri

eηk∑
j∈Ri

eηj
X2

kl −

(∑
k∈Ri

eηk∑
j∈Ri

eηj
Xkl

)2
 . (8)

3rd order partial derivative:

∂3ℓ(β)

∂β3
l

=

n∑
i=1

δi

[∑
k∈Ri

eηk∑
j∈Ri

eηj
X3

kl + 2

(∑
k∈Ri

eηk∑
j∈Ri

eηj
Xkl

)3

−3

(∑
k∈Ri

eηk∑
j∈Ri

eηj
X2

kl

)(∑
k∈Ri

eηk∑
j∈Ri

eηj
Xkl

)]
. (9)

The proof can be found in Appendix A. The first, second, and third order partial derivatives all have a
probabilistic interpretation. Notice that for any i, the coefficients in front of Xkl, X2

kl, and X3
kl are

nonnegative and sum up to 1, i.e., eηk/(
∑

j∈Ri
eηj ) ≥ 0 and

∑
k∈Ri

[eηk/(
∑

j∈Ri
eηj )] = 1. Then,

we can regard these coefficients as a discrete probability distribution. Thus, for Equation (8), the
term inside [·] resembles the variance or second order central moment formula: E[X2]− (E[X])2 =
E[(X − E[X])2]. For Equation (9), the term inside [·] resembles the skewness or third order central
moment formula: E[X3] + 2(E[X])3 − 3E[X2]E[X] = E[(X − E[X])3].

One may wonder whether for higher orders (order r ≥ 4), the relationship between the r-th order
partial derivative and r-th central moment still preserve. The answer is no and this can be easily
deduced from the following lemma. The proof can be found in Appendix A.

Lemma 3.2. Let us define Cr to be the r-th central moment with

Cr :=
∑
k∈Ri

eηk∑
j∈Ri

eηj

(
Xkl −

∑
k1∈Ri

eηk1∑
j∈Ri

eηj
Xk1l

)r

. (10)

Then we can calculate the partial derivative of Cr with respect to βl as:

∂

∂βl

(
Cr

)
= Cr+1 − r · C2 · Cr−1. (11)

From Lemma 3.2, we can see why the connection to central moment does not work for higher order
partial derivatives. If r = 2, the second term in Equation (11) disappears, i.e., Cr−1 = C1 = 0.
Therefore, we get ∂C2/∂βl = C3. However, for r ≥ 3, Cr−1 in general is not zero, so we cannot
extrapolate this pattern to higher order partial derivatives.

Theorem 3.1 forms the basis upon which we build everything else. These results are not only
mathematically interesting but also have significant implications for computation, which we elaborate
in the next two sections.

3.2 Time Complexity of First and Second Order Partial Derivative Calculation

From the connections to the second and third central moment, we have the following corollary
regarding the time complexity of calculating the first, second, and third order derivatives:

Corollary 3.3. For the CPH model, the time complexities to calculate ∂ℓ(β)
∂βl

and ∂2ℓ(β)
∂β2

l
are O(n) .

4
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This is a surprising result, especially for the second order partial derivatives. The intermediate
Hessian, ∇2

ηℓ(η), takes O(n2) to compute, so we would expect the second order partial derivative,
∂2ℓ(β)
∂β2

j
= eTj X

T∇2
ηℓ(η)Xej , would take O(n2) to compute as well. Yet, the time complexity is

just O(n). We use the first order partial derivative formula, Equation (7), as an example to explain
why this happens. We ignore the second term

∑n
i=1 δiXil because it is just a constant. The first term

in Equation (7) can be rewritten as:
n∑

i=1

δi

( ∑
k1∈Ri

eηk1∑
j∈Ri

eηj
Xk1l

)
=

n∑
i=1

δi

(∑
k1∈Ri

eηk1Xk1l∑
j∈Ri

eηj

)
. (12)

Let us focus on the numerator inside the parenthesis for now. For the entire sequence (i = 1, 2, ..., n)
of numerator terms, we can obtain all of them together at the cost of O(n) by performing reverse
cumulative summation. The same is true when we obtain the entire sequence of denominators.
Once we have all numerators and denominators, calculating the entire sequence of ratios inside the
parenthesis also costs O(n). Finally, multiplying each ratio with δi and summing up all these products
costs O(n) as well. Therefore, the computational cost to calculate the first order partial derivative is
O(n). We can apply the same idea to the second order partial derivative formula, Equation 8, to show
that the computational complexity is also O(n). Note that the reverse cumulative summation trick
has already been explored in [62] for calculating the diagonal of ∇2

ηℓ(η) in the sample space η, but
this trick has not been used to calculate the partial derivatives in the feature space β.

We will later see how this O(n) time complexity allows us to design a second order optimization
method whose evaluation cost per iteration is just as cheap as a first order optimization method.
Before we discuss that, let us continue and discuss another computational implication of Theorem 3.1.

3.3 Lipschitz-Continuity Property of First and Second Order Partial Derivatives

The connection to the central moment calculation allows us to conclude that the first and second
order partial derivatives are Lipschitz-continuous. Moreover, we can calculate these Lipschitz
constants explicitly. Recall that for a univariate function f(x), we say that the function is Lipschitz-
continuous [5] if there exists L ≥ 0 such that for any two points in the domain of f , i.e., x, y ∈ D(f),
we have |f(x)− f(y)| ≤ L|x− y|. The value L is called the Lipschitz constant for function f(·).
If the function is continuously differentiable, the previous definition is equivalent to the condition
where the first order derivative is bounded, |f ′(x)| ≤ L for any x ∈ R [5].

Not only can we say that the first and second order partial derivatives are Lipschitz-continuous, but
we can also calculate the Lipschitz constants explicitly. We summarize the results in the theorem
below. The proof can be found in Appendix A
Theorem 3.4. For the second order partial derivatives in Equation (8), its absolute values are
bounded by the following formula:

0 ≤ ∂2ℓ(η)

∂β2
l

≤ 1

4

n∑
i=1

δi
(
max
k1∈Ri

Xk1l − min
k1∈Ri

Xk1l

)2
(13)

For the third order partial derivatives in Equation (9), its absolute values are bounded by the following
formula: ∣∣∣∣∂3ℓ(η)

∂β3
l

∣∣∣∣ ≤ 1

6
√
3

n∑
i=1

δi

∣∣∣∣max
k1∈R1

Xk1l − min
k1∈R

Xk1l

∣∣∣∣3 (14)

The availability of these Lipschitz constants suggests that we might construct surrogate functions.

3.4 Quadratic and Cubic Surrogate Functions

We now have all the tools at hand to attack the original optimization problem. For a univariate
convex f(x), if we have access to L2, the Lipschitz constant for its first order derivative, then we can
construct the following quadratic surrogate function gx(·) [53]:

f(x+∆x) ≤ f(x) + f ′(x)∆x+
1

2
L2∆x2 =: gx(∆x). (15)

5
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If we have access to L3, the Lipschitz constant for its second order derivative, then we can construct
the following cubic surrogate function hx(·) [53]:

f(x+∆x) ≤ f(x) + f ′(x)∆x+
1

2
f ′′(x)∆x2 +

1

6
L3|∆x|3 =: hx(∆x) (16)

A nice thing about these surrogate functions is that their minimizers can be computed analytically:

argmin
∆x

gx(∆x) = − 1

L2
f ′(x) (17)

argmin
∆x

hx(∆x) = sgn(f ′(x)) ·
f ′′(x)−

√
(f ′′(x))2 + 2L3|f ′(x)|

L3
, (18)

where the function sgn(·) extracts the sign (+ or −) of the input. The analytical solution to the
quadratic surrogate function is well known, but the analytical solution to this cubic surrogate function
has not been well studied. We provide a derivation for Equation (18) in Appendix A.

Since these surrogate functions are convex and are upper bounds of the original functions, minimizing
them will lead to a decrease of the original function f(x) as well. This explains why our methods
ensure monotonic decrease in loss and guarantee global convergence. The final algorithms are very
easy to understand and can be thought of as coordinate descent-type methods. We anticipate these
core ideas can be applied to solve a wide range of problems related to the CPH model. In the next
subsection, we showcase two problems our algorithms can tackle.

3.5 Applications to Regularized and Constrained Problems

Regularized Problem The first problem is the regularized CPH problem whose penalty terms
are separable. The penalties that qualify for this category include LASSO [64], ElasticNet [72],
SCAD [15], MCP [68], etc. For the ℓ1-regularized problems, we can in fact find analytical solutions 2.

For the quadratic surrogate function, solving the ℓ1-regularized problem in Equation (15) is equivalent
to solving the following optimization problem (with a = f ′(x), b = L2, and c = x),

∆x̂ = argmin
∆x

a∆x+
1

2
b∆x2 + λ1|c+∆x|. (19)

The solution for the above problem is

∆x̂ =


−(a− λ1)/b if bc− a < −λ1

−(a+ λ1)/b if bc− a > λ1

−c otherwise.
(20)

For the cubic surrogate function, solving the ℓ1-regularized problem of Equation (16) is equivalent to
solving the following optimization problem (with a = f ′(x), b = f ′′(x), c = L3, and d = x):

∆x̂ = argmin
∆x

a∆x+
1

2
b∆x2 +

1

6
c|x|3 + λ1|d+∆x|, (21)

whose solution is:

∆x̂ =


sgn(d)

(
−b+

√
b2 − 2c(sgn(d)a+ λ1)

)
/c if sgn(d)a+ λ1 ≤ 0

sgn(d)
(
b+

√
b2 + 2c(sgn(d)a− λ1)

)
/c if sgn(d)(a− bd)− 1

2cd
2 > λ1

sgn(d)
(
b+

√
b2 + 2c(sgn(d)a+ λ1)

)
/c if sgn(d)(a− bd)− 1

2cd
2 < −λ1

−d otherwise.

(22)

Equation (20) is well known in a slightly different format. Equation (22) has not been well studied in
the past. We provide derivations for both in Appendix A.

2For the ElasticNet problem where the penalty is λ1∥·∥1 + λ2∥·∥22, we can also easily obtain analytical
solutions. The trick is to absorb the first and second order derivatives into the coefficients of the surrogate
functions and only have a λ1∥·∥ penalty.

6
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Constrained Problem The second problem is the cardinality-constrained CPH problem. Recently,
the beam search framework (a combination of the beam search method [66] from natural language
processing and generalized orthogonal matching pursuit [13]) has shown promise in finding near opti-
mal solutions for a class of l0-constrained nonconvex problems, including sparse ridge regression [47]
and sparse logistic regression [48].

Similar to the generalized orthogonal matching pursuit algorithm, we expand our support (starting
from an empty set) by adding one feature at a time until the cardinality is satisfied. However, instead
of selecting features based on partial derivatives, we select features based on which coefficient, if
optimized, can result in the largest decrease of the loss function. After the feature is added into
the support, we fine-tune all nonzero coefficients in the support. Additionally, during each support
expansion step, we select multiple feature candidate instead of the best one, similar to the core idea
in beam search. We use our coordinate descent methods to solve the feature selection step and the
coefficient fine-tuning step.

Although the beam search framework has already been proposed for other cardinality-constrained
problems, it cannot be applied directly to the CPH model without our coordinate descent methods to
select features, especially in the highly correlated settings.

4 Experiments

We test the effectiveness of our optimization methods on both synthetic and real-world datasets. We
run experiments for both regularized and constrained problems mentioned in Section 3.5. Our main
objectives are: 1) When minimizing the same objective functions, how fast can our methods converge
to the optimal solutions when compared with all existing optimization methods for the CPH model?
2) When coupled with the beam search framework, how well can our methods help with variable
selection when compared with the state-of-the-arts methods, especially for challenging scenarios
where features are highly correlated?

4.1 Accessing How Fast Our Methods Converge to Optimal Solutions

We compare our methods (one based on the quadratic surrogate function and the other based on the
cubic surrogate function) with the existing optimization methods outlined in Section 2: exact Newton
method, the quasi Newton method, and the proximal Newton method. We run on both ℓ2-regularized
CPH problems and ℓ1 + ℓ2-regularized CPH problems. The choices of these regularizations are:
λ2 = {0, 1} and λ2 = {1, 5}. The coefficients are all initialized to be 0. In the main paper, we show
results on the Flchain dataset in Figure 1. More results on other datasets can be found in Appendix D.
During each iteration, the baseline methods [62, 51] optimize all coefficients at once, whereas our
methods optimize coefficients sequentially with respect to the original loss function. To assess the
per-iteration convergence rate, we plot the CPH loss against the number of iterations. To assess the
practical running speed, we plot the CPH loss against the overall time elapsed (wall clock). From the
left two plots of loss vs. number of iterations, we see that the Newton-type baselines sometimes have
losses that blow up or increase during the initial phase of optimization. This is a common problem of
Newton’s method. Our methods are the only ones with monotonically decreasing loss curves. This is
the main reason why only our method can be used for the beam search framework in the variable
selection experiments. From the right two plots of loss vs. overall time elapsed, we can see that our
methods are significantly faster than the baselines. This is due to the fact that both our first and
second order partial derivatives are very cheap to compute (with time complexity O(n)), as we have
explained in Section 3.2.

4.2 Accessing How Well Our Methods Perform Variable Selection

We compare our method with both Cox-based methods and other model classes. For Cox-based
models, we run on both synthetic datasets and real-world datasets. For other model classes, we only
run on the real-world datasets. To assess how well different methods select important variables,
features are highly correlated in all datasets. Synthetic datasets are generated with high correlation
level, ρ = 0.9. For each continuous feature on the real-world datasets, we perform binary thresholding
for preprocessing [49] to obtain many one-hot encoded binary features. This preprocessing step result
in highly correlated features on which it is challenging to perform variable selection. We use the

7
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Figure 1: Efficiency experiments on the first fold of the Flchain dataset. a) The left two plots are
on the ℓ2-regularized problem with λ2 = 1. For all Newton-type methods, the losses blow up when
regularization is weak. In contrast, our methods (quadratic and cubic surrogates) ensure monotonic
decrease of losses. b) The right two plots are on the ℓ1 + ℓ2–regularized problem with λ1 = 1 and
λ2 = 5. The exact Newton method cannot be directly applied, so we compare only with quasi
Newton [62] and proximal Newton [51] methods, which have losses that increase at the beginning.
Our methods are significantly faster than both baselines. Because the evaluation cost per iteration is
very cheap for our methods, we are significantly faster in terms of wall clock time (see the difference
between the third and fourth plots). See Appendix D for results on other datasets.

Figure 2: Variable selection on synthetic datasets with high correlation (correlation level ρ = 0.9).
From left to right, the sample sizes are 1200, 1000, and 800, respectively. The F1 score (the higher
the better) is closely related to the support recovery rate. On the left two plots, we can see our method
recovers the true variables significantly better than other methods (100% recovery rate on the left
plot; true support size is 15). As the sample size decreases, the F1 score decreases for all methods.

following metrics to evaluate our solution qualities: CPH loss, CIndex, and IBS. On the synthetic
datasets where we know the true coefficients, we also calculate the F1 score. We perform 5-fold cross
validation and report the mean and standard deviation of different metrics on both the training and
test sets. For details about the experimental setup, please see Appendix C. For Cox-based methods,
we compare our method with Coxnet, Abess, and Adaptive Lasso.

Results on the synthetic datasets are shown in Figure 2. We plot support size vs F1 score. The F1
score is closely related to the support recovery rate. Our method performs significantly better than
the baselines. In particular, on the leftmost plot with 1200 samples, our method is the only one to
achieve 100% recovery rate; the true support size is 15 and we recover all 15 features with a model
of size 15. Results for the Employee Attrition dataset are shown in Figure 3. We plot support size vs.
CIndex and support size vs. IBS. Similar to the trend on the synthetic datasets, our method performs
significantly better than the baselines in terms of both metrics. Lastly, we compare our method with
other model classes on the Dialysis dataset. The results are shown in Figure 4. We plot support
size vs. CIndex and support size vs. IBS. The results indicate that other model classes are prone to
overfitting on the training sets. Our method achieves the best accuracy-sparsity tradeoff. We are able
to obtain solutions with the smallest number of coefficients without losing predictive performance.
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Figure 3: Variable selection on the Employee Attrition dataset. We show support size vs. CIndex
(left two plots, the higher the better) and support size vs. IBS score (right two plots, the lower the
better). We compare our method with Cox-based sparse learning methods. For both metrics, our
method is significantly better than other baselines.

Figure 4: Variable selection on the Dialysis dataset. We show support size vs. CIndex (left two
plots, the higher the better) and support size vs. IBS score (right two plots, the lower the better). We
compare our method with other model classes. For both metrics, our method obtains solutions that
are significantly sparser than other model classes without losing accuracy on the test sets. Other
model classes are prone to overfitting on the training sets.

All these results demonstrate the superior sparse learning capability of our method. For more results,
with all baselines on all datasets, please see Appendix D.

Limitations of FastSurvival Our work focuses on efficient training and effective variable selection
of the CPH model. Other model classes, such as trees, random forests, and neural networks, have
their own unique merits in capturing complex patterns when the linear (or in our case, additive) model
assumption is not satisfied. Another limitation is using the CPH model itself, since its assumptions
do not always hold. Handling this question is out of scope for this work.

5 Conclusion and Future Outlook

We presented new optimization methods to train the Cox proportional hazards (CPH) model by con-
structing and minimizing either a quadratic or a cubic surrogate function. We achieve computational
efficiency by exploiting the hidden mathematical structures discovered for the CPH model. Our
algorithms are able to train the model significantly faster than previous approaches while avoiding
the issue of loss explosion. Furthermore, when applied to the variable selection problem, our method
can produce solutions with much fewer parameters while maintaining predictive performance. There
are many possible extensions to build upon this work. On the optimization side, it will be interest-
ing to see whether we can derive analytical solutions for other types of regularizers mentioned in
Section 3.5. On the theoretical side, questions remain whether higher order partial derivatives are
Lipschitz-continuous and how to compute these Lipschitz constants. On the application side, we can
apply our method to solve the CPH models with time-varying features [16], stratifications [40], and
feature interactions [45].
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Code Availability

Implementations of FastSurvival discussed in this paper are available at https://github.com/
jiachangliu/FastSurvival.
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A Derivations and Proofs

A.1 First, Second, and Third Order Partial Derivatives

The derivation for the first order partial derivative is shown in Section A.1.1. The derivation for the
second order partial derivative is shown in Section A.1.2. The derivation for the third order partial
derivative is shown in Section A.1.3.

A.1.1 First Order Partial Derivative

We want to show that

∂ℓ(β)

∂βl
=

n∑
i=1

δi

(∑
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eηk∑
j∈Ri

eηj
Xkl

)
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i=1

δiXil.

∂ℓ(β)

∂βl
=

∂ℓ(η)

∂βl

=
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k1=1

∂ℓ(η)

∂ηk1

∂ηk1

∂βl
# apply chain rule from calculus
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because Ri is a set of indices whose time is greater than or equal to yi
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A.1.2 Second Order Partial Derivative

We want to show that
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≥yi(∑

j∈Ri
eηj
)2 )XklXk2l

]
# divide the fraction into two parts
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=

n∑
i=1

δi

[ n∑
k2=1

∑
k∈Ri

( eηk1k=k2∑
j∈Ri

eηj
XklXk2l −

eηkeηk21yk2
≥yi(∑

j∈Ri
eηj
)2 XklXk2l

)]
# distribute XklXk2l inside (·)

=

n∑
i=1

δi

[∑
k∈Ri

n∑
k2=1

( eηk1k=k2∑
j∈Ri

eηj
XklXk2l −

eηkeηk21yk2
≥yi(∑

j∈Ri
eηj
)2 XklXk2l

)]
# exchange summation orders; sum over k2 and then k

=

n∑
i=1

δi

[∑
k∈Ri

( n∑
k2=1

eηk1k=k2∑
j∈Ri

eηj
XklXk2l −

n∑
k2=1

eηkeηk21yk2
≥yi(∑

j∈Ri
eηj
)2 XklXk2l

)]
# distribute

∑n
k2=1 inside (·)

=

n∑
i=1

δi

[∑
k∈Ri

( eηk∑
j∈Ri

eηj
X2

kl −
∑

k2∈Ri

eηkeηk2(∑
j∈Ri

eηj
)2XklXk2l

)]
#

for the first term, only k2 = k is left because of the indicator 1k=k2
; for the second

term, the expression can be simplified because Ri is a set of indices whose time is
greater than or equal to yi

=

n∑
i=1

δi

(∑
k∈Ri

eηk∑
j∈Ri

eηj
X2

kl −
∑
k∈Ri

∑
k2∈Ri

eηkeηk2(∑
j∈Ri

eηj
)2XklXk2l

)
# distribute

∑
k∈Ri

inside (·)

=

n∑
i=1

δi

[∑
k∈Ri

eηk∑
j∈Ri

eηj
X2

kl −
(∑
k∈Ri

eηk∑
j∈Ri

eηj
Xkl

)( ∑
k2∈Ri

eηk2∑
j∈Ri

eηj
Xk2l

)]
# the double sum of the second term can be rewritten as product of two sums

=

n∑
i=1

δi

[∑
k∈Ri

eηk∑
j∈Ri

eηj
X2

kl −
(∑
k∈Ri

eηk∑
j∈Ri

eηj
Xkl

)2]
# the two terms of the product are exactly the same and can be simplified because k and
k2 are independent

A.1.3 Third Order Partial Derivative

We want to show that

∂3ℓ(β)

∂β3
l

=

n∑
i=1

δi

[∑
k∈Ri

eηk∑
j∈Ri

eηj
X3

kl + 2

(∑
k∈Ri

eηk∑
j∈Ri

eηj
Xkl

)3

−3

(∑
k∈Ri

eηk∑
j∈Ri

eηj
X2

kl

)(∑
k∈Ri

eηk∑
j∈Ri

eηj
Xkl

)]
.

∂3ℓ(β)

∂β3
l

=
∂3ℓ(η)

∂β3
l

=

n∑
k3=1

∂

∂ηk3

(∂2ℓ(η)

∂β2
l

)∂ηk3

∂βl
# Apply chain rule from calculus

=

n∑
k3=1

∂

∂ηk3

{ n∑
i=1

δi

[∑
k∈Ri

eηk∑
j∈Ri

eηj
X2

kl −
(∑
k∈Ri

eηk∑
j∈Ri

eηj
Xkl

)2]}∂ηk3

∂βl

# plug in ∂ℓ(η)
∂βl

from the end result for the second order partial derivative above

=

n∑
i=1

δi

{ n∑
k3=1

∂

∂ηk3

[∑
k∈Ri

eηk∑
j∈Ri

eηj
X2

kl −
(∑
k∈Ri

eηk∑
j∈Ri

eηj
Xkl

)2]∂ηk3

∂βl

}
# exchange summation orders; sum over k3 and then i by moving ∂

∂ηk3
(·)∂ηk3

∂βl
inside

into the inner summation
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=

n∑
i=1

δi

{ n∑
k3=1

∂

∂ηk3

[∑
k∈Ri

eηk∑
j∈Ri

eηj
X2

kl −
(∑
k∈Ri

eηk∑
j∈Ri

eηj
Xkl

)2]
Xk3l

}
# ∂ηk3

∂βl
= Xk3l

=

n∑
i=1

δi

{ n∑
k3=1

{ ∂

∂ηk3

(∑
k∈Ri

eηk∑
j∈Ri

eηj
X2

kl

)
− ∂

∂ηk3

[(∑
k∈Ri

eηk∑
j∈Ri

eηj
Xkl

)2]}
Xk3l

}
# distribute ∂

∂ηk3
inside [·]

=

n∑
i=1

δi

{ n∑
k3=1

{∑
k∈Ri

∂

∂ηk3

( eηk∑
j∈Ri

eηj

)
X2

kl −
∂

∂ηk3

[(∑
k∈Ri

eηk∑
j∈Ri

eηj
Xkl

)2]}
Xk3l

}
# for the first term, move ∂

∂ηk3
(·) inside the summation

=

n∑
i=1

δi

{ n∑
k3=1

[∑
k∈Ri

∂

∂ηk3

( eηk∑
j∈Ri

eηj

)
X2

kl

− 2
(∑
k∈Ri

eηk∑
j∈Ri

eηj
Xkl

) ∂

∂ηk3

(∑
k∈Ri

eηk∑
j∈Ri

eηj
Xkl

)]
Xk3l

}
# apply product rule from calculus to the second term

=

n∑
i=1

δi

{ n∑
k3=1

{∑
k∈Ri

∂

∂ηk3

( eηk∑
j∈Ri

eηj

)
X2

kl

− 2
(∑
k∈Ri

eηk∑
j∈Ri

eηj
Xkl

)[ ∑
k∈Ri

∂

∂ηk3

( eηk∑
j∈Ri

eηj

)
Xkl

]}
Xk3l

}
# for the second term, move ∂

∂ηk3
(·) inside the summation

=

n∑
i=1

δi

{ n∑
k3=1

{∑
k∈Ri

∂

∂ηk3

( eηk∑
j∈Ri

eηj

)
X2

klXk3l

− 2
(∑
k∈Ri

eηk∑
j∈Ri

eηj
XklXk3l

)[ ∑
k∈Ri

∂

∂ηk3

( eηk∑
j∈Ri

eηj

)
Xkl

]}}
# distribute Xk3l inside {·}

=

n∑
i=1

δi

{ n∑
k3=1

{∑
k∈Ri

( eηk∑
j∈Ri

eηj
1k=k3

− eηkeηk3(∑
j∈Ri

eηj
)21yk3

≥yi

)
X2

klXk3l

− 2
(∑
k∈Ri

eηk∑
j∈Ri

eηj
Xkl

)[ ∑
k∈Ri

( eηk∑
j∈Ri

eηj
1k=k3

− eηkeηk3(∑
j∈Ri

eηj
)21yk3

≥yi

)
Xkl

]
Xk3l

}}
# ∂

∂ηk3

(
eηk∑

j∈Ri
eηj

)
= eηk∑

j∈Ri
eηj

1k=k3
− eηke

ηk3(∑
j∈Ri

eηj
)21yk3

≥yi

=

n∑
i=1

δi

{ n∑
k3=1

[∑
k∈Ri

( eηk∑
j∈Ri

eηj
1k=k3 −

eηkeηk3(∑
j∈Ri

eηj
)21yk3

≥yi

)
X2

klXk3l

− 2
(∑
k∈Ri

eηk∑
j∈Ri

eηj
Xkl

)(∑
k∈Ri

eηk∑
j∈Ri

eηj
1k=k3Xkl −

∑
k∈Ri

eηkeηk3(∑
j∈Ri

eηj
)21yk3

≥yiXkl

)
Xk3l

]}
# for the last term, distribute

∑
k∈Ri

(·)Xkl inside [·]

=

n∑
i=1

{
δi

n∑
k3=1

[∑
k∈Ri

eηk∑
j∈Ri

eηj
1k=k3

X2
klXk3l −

∑
k∈Ri

eηkeηk3(∑
j∈Ri

eηj
)21yk3

≥yi
X2

klXk3l

− 2
(∑
k∈Ri

eηk∑
j∈Ri

eηj
Xkl

)(∑
k∈Ri

eηk∑
j∈Ri

eηj
1k=k3Xkl −

∑
k∈Ri

eηkeηk3(∑
j∈Ri

eηj
)21yk3

≥yiXkl

)
Xk3l

]}
# for the first term, distribute

∑
k∈Ri

(·)X2
klXk3l inside (·)
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=

n∑
i=1

δi

{ n∑
k3=1

[∑
k∈Ri

eηk∑
j∈Ri

eηj
1k=k3

X2
klXk3l −

∑
k∈Ri

eηkeηk3(∑
j∈Ri

eηj
)21yk3

≥yi
X2

klXk3l

− 2
(∑
k∈Ri

eηk∑
j∈Ri

eηj
Xkl

)(∑
k∈Ri

eηk∑
j∈Ri

eηj
Xkl1k=k3

Xk3l

)
+ 2
(∑
k∈Ri

eηk∑
j∈Ri

eηj
Xkl

)2( eηk3∑
j∈Ri

eηj

)
1yk3

≥yi
Xk3l

]}
# for the third term, distribute 2(

∑
k∈Ri

( eηk∑
j∈Ri

eηj
))(·)Xk3l inside (·)

=

n∑
i=1

δi

{(∑
k∈Ri

eηk∑
j∈Ri

eηj

)
X2

kl

( n∑
k3=1

1k=k3
Xk3l

)
−
(∑
k∈Ri

eηk∑
j∈Ri

eηj
X2

kl

)( n∑
k3=1

1yk3
≥yiXk3l

eηk3∑
j∈Ri

eηj

)
− 2
(∑
k∈Ri

eηk∑
j∈Ri

eηj
Xkl

)[∑
k∈Ri

eηk∑
j∈Ri

eηj
Xkl

( n∑
k3=1

1k=k3
Xk3l

)]
+ 2
(∑
k∈Ri

eηk∑
j∈Ri

eηj
Xkl

)2[ n∑
k3=1

( eηk3∑
j∈Ri

eηj

)
1yk3

≥yi
Xk3l

]}
# exchange summation orders; distribute

∑n
k3=1 into each of the four terms inside [·]

=

n∑
i=1

δi

[(∑
k∈Ri

eηk∑
j∈Ri

eηj

)
X3

kl

−
(∑
k∈Ri

eηk∑
j∈Ri

eηj
X2

kl

)( ∑
k3∈Ri

Xk3l
eηk3∑
j∈Ri

eηj

)
− 2
(∑
k∈Ri

eηk∑
j∈Ri

eηj
Xkl

)(∑
k∈Ri

eηk∑
j∈Ri

eηj
X2

kl

)
+ 2
(∑
k∈Ri

eηk∑
j∈Ri

eηj
Xkl

)2( ∑
k3∈Ri

eηk3∑
j∈Ri

eηj
Xk3l

)]
# simplify the summation over k3

=

n∑
i=1

δi

[(∑
k∈Ri

eηk∑
j∈Ri

eηj

)
X3

kl

−
(∑
k∈Ri

eηk∑
j∈Ri

eηj
X2

kl

)(∑
k∈Ri

Xkl
eηk∑

j∈Ri
eηj

)
− 2
(∑
k∈Ri

eηk∑
j∈Ri

eηj
Xkl

)(∑
k∈Ri

eηk∑
j∈Ri

eηj
X2

kl

)
+ 2
(∑
k∈Ri

eηk∑
j∈Ri

eηj
Xkl

)2(∑
k∈Ri

eηk∑
j∈Ri

eηj
Xkl

)]
# change notation by replacing k3 with k

=

n∑
i=1

δi

[(∑
k∈Ri

eηk∑
j∈Ri

eηj

)
X3

kl

− 3
(∑
k∈Ri

eηk∑
j∈Ri

eηj
X2

kl

)(∑
k∈Ri

Xkl
eηk∑

j∈Ri
eηj

)
+ 2
(∑
k∈Ri

eηk∑
j∈Ri

eηj
Xkl

)3]
# simplify all relevant terms
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A.2 Partial Derivative of r-th Central Moment

Proof. Recall that the r-th central moment Cr is defined as:

Cr :=
∑
k∈Ri

eηk∑
j∈Ri

eηj

(
Xkl −

∑
k1∈Ri

eηk1∑
j∈Ri

eηj
Xk1l

)r

.

We need to show that
∂

∂βl

(
Cr

)
= Cr+1 − r · C2 · Cr−1.

∂

∂βl

(
Cr

)
=

∂

∂βl

[∑
k∈Ri

eηk∑
j∈Ri

eηj

(
Xkl −

∑
k1∈Ri

eηk1∑
j∈Ri

eηj
Xk1l

)r]

=
∑
k∈Ri

∂

∂βl

[
eηk∑

j∈Ri
eηj

(
Xkl −

∑
k1∈Ri

eηk1∑
j∈Ri

eηj
Xk1l

)r]
# move the partial differentail operator ∂

∂βl
(·) inside

∑
k∈Ri

=
∑
k∈Ri

{
∂

∂βl

(
eηk∑

j∈Ri
eηj

)(
Xkl −

∑
k1∈Ri

eηk1∑
j∈Ri

eηj
Xk1l

)r

+

(
eηk∑

j∈Ri
eηj

)
∂

∂βl

[(
Xkl −

∑
k1∈Ri

eηk1∑
j∈Ri

eηj
Xk1l

)r]}
# apply the product rule from calculus

=
∑
k∈Ri

[
∂

∂βl

(
eηk∑

j∈Ri
eηj

)(
Xkl −

∑
k1∈Ri

eηk1∑
j∈Ri

eηj
Xk1l

)r

+

(
eηk∑

j∈Ri
eηj

)
r

(
Xkl −

∑
k1∈Ri

eηk1∑
j∈Ri

eηj
Xk1l

)r−1
∂

∂βl

(
Xkl −

∑
k1∈Ri

eηk1∑
j∈Ri

eηj
Xk1l

)
# apply the chain rule from calculus to the second term d

dxy
r = (r − 1)yr−1 dy

dx

=
∑
k∈Ri

{
∂

∂βl

(
eηk∑

j∈Ri
eηj

)(
Xkl −

∑
k1∈Ri

eηk1∑
j∈Ri

eηj
Xk1l

)r

−

(
eηk∑

j∈Ri
eηj

)
r

(
Xkl −

∑
k1∈Ri

eηk1∑
j∈Ri

eηj
Xk1l

)r−1 [ ∑
k1∈Ri

∂

∂βl

(
eηk1∑
j∈Ri

eηj

)
Xk1l

]
# move the partial differential operator ∂

∂βl
inside sumk1∈Ri

; move the negative sign −
in the second term to the front

=
∑
k∈Ri

[
∂

∂βl

(
eηk∑

j∈Ri
eηj

)(
Xkl −

∑
k1∈Ri

eηk1∑
j∈Ri

eηj
Xk1l

)r]

−
∑
k∈Ri


(

eηk∑
j∈Ri

eηj

)
r

(
Xkl −

∑
k1∈Ri

eηk1∑
j∈Ri

eηj
Xk1l

)r−1 [ ∑
k1∈Ri

∂

∂βl

(
eηk1∑
j∈Ri

eηj

)
Xk1l

]
# distribute

∑
k∈Ri

into the two summation terms

=
∑
k∈Ri

[
∂

∂βl

(
eηk∑

j∈Ri
eηj

)(
Xkl −

∑
k1∈Ri

eηk1∑
j∈Ri

eηj
Xk1l

)r]
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− r

[ ∑
k1∈Ri

∂

∂βl

(
eηk1∑
j∈Ri

eηj

)
Xk1l

]∑
k∈Ri

eηk∑
j∈Ri

eηj

(
Xkl −

∑
k1∈Ri

eηk1∑
j∈Ri

eηj
Xk1l

)r−1


# move the two values in the second term outside of
∑

k∈Ri
because they are independent of k

=
∑
k∈Ri

[
∂

∂βl

(
eηk∑

j∈Ri
eηj

)(
Xkl −

∑
k1∈Ri

eηk1∑
j∈Ri

eηj
Xk1l

)r]

− r

[ ∑
k1∈Ri

∂

∂βl

(
eηk1∑
j∈Ri

eηj

)
Xk1l

]
Cr−1

# simplify by replacing the last value in the second term with Cr−1 because the central
moment definition

Let us focus on the solution for the subproblem ∂
∂βl

[
eηk/

(∑
j∈Ri

eηj

)]
.

∂

∂βl

(
eηk∑

j∈Ri
eηj

)

=

n∑
k2=1

∂

∂ηk2

(
eηk∑

j∈Ri
eηj

)
∂ηk2

βl
# apply the chain rule from calculus

=

n∑
k2=1

 1∑
j∈Ri

eηj

∂

∂ηk2

(eηk)− eηk(∑
j∈Ri

eηj

)2 ∂

∂ηk2

∑
j∈Ri

eηj


 ∂ηk2

βl

# apply the quotient rule from calculus

=

n∑
k2=1

 eηk∑
j∈Ri

eηj
1k=k2

− eηkeηk2(∑
j∈Ri

eηj

)21tk2
≥ti

Xk2l # calculate the partial derivative

=

n∑
k2=1

eηk∑
j∈Ri

eηj
1k=k2Xk2l −

n∑
k2=1

eηkeηk2(∑
j∈Ri

eηj

)21tk2
≥tiXk2l

# distribute
∑n

k2=1(·)Xk2l into the two terms inside [·]

=
eηk∑

j∈Ri
eηj

Xkl −
∑

k2∈Ri

eηkeηk2(∑
j∈Ri

eηj

)2Xk2l # evaluate the two summations

=
eηk∑

j∈Ri
eηj

(
Xkl −

∑
k2∈Ri

eηk2∑
j∈Ri

eηj
Xk2l

)
# evaluate the two summations
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Let us now plug this result back into the original problem:

∂

∂βl
(Cr)

=
∑
k∈Ri

[
∂

∂βl

(
eηk∑

j∈Ri
eηj

)(
Xkl −

∑
k1∈Ri

eηk1∑
j∈Ri

eηj
Xk1l

)r]

− r

[ ∑
k1∈Ri

∂

∂βl

(
eηk1∑
j∈Ri

eηj

)
Xk1l

]
Cr−1

# pick up from where we left for the original problem

=
∑
k∈Ri

[
eηk∑

j∈Ri
eηj

(
Xkl −

∑
k2∈Ri

eηk2∑
j∈Ri

eηj
Xk2l

)(
Xkl −

∑
k1∈Ri

eηk1∑
j∈Ri

eηj
Xk1l

)r]

− r

[ ∑
k1∈Ri

eηk1∑
j∈Ri

eηj

(
Xk1l −

∑
k2∈Ri

eηk2∑
j∈Ri

eηj
Xk2l

)
Xk1l

]
Cr−1

# plug in the solution to the subproblem

=
∑
k∈Ri

 eηk∑
j∈Ri

eηj

(
Xkl −

∑
k1∈Ri

eηk1∑
j∈Ri

eηj
Xk1l

)r+1


− r

[ ∑
k1∈Ri

eηk1∑
j∈Ri

eηj

(
Xk1l −

∑
k2∈Ri

eηk2∑
j∈Ri

eηj
Xk2l

)
Xk1l

]
Cr−1

# for the first term, change k2 into k1 because both are dummy variables that are
independent from each other

=
∑
k∈Ri

 eηk∑
j∈Ri

eηj

(
Xkl −

∑
k1∈Ri

eηk1∑
j∈Ri

eηj
Xk1l

)r+1


− r

[ ∑
k1∈Ri

eηk1∑
j∈Ri

eηj

(
X2

k1l −
∑

k2∈Ri

eηk2∑
j∈Ri

eηj
Xk1lXk2l

)]
Cr−1

# for the second term, move Xk1l inside (·)

=
∑
k∈Ri

 eηk∑
j∈Ri

eηj

(
Xkl −

∑
k1∈Ri

eηk1∑
j∈Ri

eηj
Xk1l

)r+1


− r

 ∑
k1∈Ri

eηk1∑
j∈Ri

eηj
X2

k1l −
∑

k1∈Ri

∑
k2∈Ri

eηk1 eηk2(∑
j∈Ri

eηj

)2Xk1lXk2l

Cr−1

# for the second term, distribute
∑

k1∈Ri

e
ηk1∑
j∈Ri

into the two terms inside (·)

=
∑
k∈Ri

 eηk∑
j∈Ri

eηj

(
Xkl −

∑
k1∈Ri

eηk1∑
j∈Ri

eηj
Xk1l

)r+1


− r

 ∑
k1∈Ri

eηk1∑
j∈Ri

eηj
X2

k1l −

( ∑
k1∈Ri

eηk1∑
j∈Ri

eηj
Xk1l

)2
Cr−1

#
in the second term, k1 and k2 are independent dummy variables, so we can turn a
double sum of products into a products of sums; we can further simplify this into a
square of a sum because the two terms equal to the same value

= Cr+1 − r · C2 · Cr−1 # simplify by using the definition of central moment
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A.3 First and Second Order Partial Derivatives Are Lipschitz-Continuous

Proof. To show that the first and second order partial derivatives are Lipschitz-continuous, we need
to show that the second and third order partial derivatives are bounded, respectively.

First order partial derivative is Lipschitz-continuous To show that the first order partial derivative
with respect to each coordinate is Lipschitz, we need to show that the second order partial derivative
with respect to each coordinate is bounded. Recall that the second order partial derivative with respect
to the l-th coordinate can be expressed as:

∂2ℓ(β)

∂β2
l

=

n∑
i=1

δi

[∑
k∈Ri

eηk∑
j∈Ri

eηj
X2

kl −
(∑
k∈Ri

eηk∑
j∈Ri

eηj
Xkl

)2]
It suffices to show that each term inside the bracket is bounded.

If we interpret the expression probabilistically, then the coefficients eηk∑
j∈Ri

eηj
in front of X2

kl and

Xkl can be thought of as the probability of a particular distribution because all terms are greater than
or equal to 0 and sum up to 1.

For notational convenience, let us use a to denote the probability of this specific distribution with
ak = eηk∑

j∈Ri
eηj

. Then we can rewrite each term inside [·] as:∑
k∈Ri

eηk∑
j∈Ri

eηj
X2

kl −
(∑
k∈Ri

eηk∑
j∈Ri

eηj
Xkl

)2
=
∑
k∈Ri

akX
2
kl − (

∑
k∈Ri

akXkl)
2

The right-hand side is nothing but the variance of {Xkl}k∈Ri with respect to the distribution {ak}k∈Ri .
Since the variance is always non-negative, we have∑

k∈Ri

akX
2
kl − (

∑
k∈Ri

akXkl)
2 ≥ 0

Let us now denote a := mink∈Ri Xkl as the minimum of this given set, b := maxk∈Ri Xkl as the
maximum of this given set, Z as a random variable with values restricted to [a, b]. We are going to
show that ∑

k∈Ri

akX
2
kl − (

∑
k∈Ri

akXkl)
2 ≤ max

Z

[
E[Z2]− (E[Z])2

]
. (23)

We achieve this through two steps.
First, suppose the random variable can only take finite |Ri| number of values {Z1, Z2, ..., Z|Ri|} with
probability {p1, p2, ..., p|Ri|}, where |Ri| is the cardinality of the set Ri. Then, we have∑

k∈Ri

akX
2
kl − (

∑
k∈Ri

akXkl)
2 ≤ max

Z,p

[
Ep[Z

2]− (Ep[Z])2
]
, (24)

where the expectation is taken with respect to the distribution p. The above inequality holds because
the left-hand side is a specific instance of the expression inside [·], so taking max(·) produces the
inequality above.
Next, if we drop the assumption that the random variable Z can only take |Ri| number of values, then
the maximum variance we can achieve is no smaller than before. Mathematically, this means that

max
Z,p

[
Ep[Z

2]− (Ep[Z])2
]
≤ max

Z

[
E[Z2]− (E[Z])2

]
. (25)

Combining Inequality (24) and Inequality (25), we arrive at Inequality (23). Lastly, note that the
Popoviciu Inequality [58] tells us that for a bounded random variable restricted to [a, b], the maximum
variance it can achieve is (a−b)2

4 , i.e.,

max
Z

[
E[Z2]− (E[Z])2

]
≤ (b− a)2

4
.

This allows us to conclude that∑
k∈Ri

akX
2
kl −

(∑
k∈Ri

akXkl

)2

≤ (b− a)2

4
=

(maxk∈Ri
Xkl −mink∈Ri

Xkl)
2

4
.
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Plugging in this inequality into the expression of the second order partial derivative, we can show
that the second order partial derivative is bounded:

0 ≤ ∂2ℓ(β)

∂β2
l

=

n∑
i=1

δi

[ ∑
k1∈Ri

eηk1∑
j∈Ri

eηj
X2

k1l −
( ∑
k1∈Ri

eηk1∑
j∈Ri

eηj
Xk1l

)2]
≤ 1

4

n∑
i=1

δi(max
k∈Ri

Xkl − min
k∈Ri

Xkl)
2

Second order partial derivative is Lipschitz-continuous This proof is similar to the first part
above. We need to show that the third order partial derivative with respect to each coordinate is
bounded. Recall that the third order partial derivative can be expressed as:

∂3ℓ(β)

∂β3
l

=

n∑
i=1

δi

[∑
k∈Ri

eηk∑
j∈Ri

eηj
X3

kl + 2
(∑
k∈Ri

eηk∑
j∈Ri

eηj
Xkl

)3
− 3
(∑
k∈Ri

eηk∑
j∈Ri

eηj
X2

kl

)(∑
k∈Ri

eηk∑
j∈Ri

eηj
Xkl

)]
As we have done in the first part, if we use a to denote the probability of this specific distribution
with ak = eηk∑

j∈Ri
eηj

, we can rewrite each term inside [·] as

∑
k∈Ri

eηk∑
j∈Ri

eηj
X3

kl + 2
(∑
k∈Ri

eηk∑
j∈Ri

eηj
Xkl

)3 − 3
(∑
k∈Ri

eηk∑
j∈Ri

eηj
X2

kl

)(∑
k∈Ri

eηk∑
j∈Ri

eηj
Xkl

)
=
∑
k∈Ri

akX
3
kl + 2(

∑
k∈Ri

akXkl)
3 − 3(

∑
k∈Ri

akX
2
kl)(

∑
k∈Ri

akXkl)

Similarly, as in the first part, let us now denote a := mink∈Ri Xkl as the minimum of this given set,
b := maxk∈Ri Xkl as the maximum of this given set, Z as a random variable with values restricted
to [a, b]. Using the exact same logic, we have

|
∑
k∈Ri

akX
3
kl + 2(

∑
k∈Ri

akXkl)
3 − 3(

∑
k∈Ri

akX
2
kl)(

∑
k∈Ri

akXkl)|

≤max
Z

|E[Z3] + 2E[Z]3 − 3E[Z2]E[Z]|||

=max
Z

|E[(Z − E[Z])3]|

The expression inside |·| on the right-hand side is known as the third central moment (skewedness)
in statistics. Fortunately, we can derive an explicit formula for the maximum of the absolute third
central moment of a bounded variable.

According to [61], we have the following inequality involving the second and third central moment:

E[(Z − E[Z])2] +
( E[(Z − E[Z])3]

2E[(Z − E[Z])2]

)2
≤ 1

4
(b− a)2

From this, we can derive an upper bound on the third central moment:

|E[(Z − E[Z])3]| ≤ 2E[(Z − E[Z])2]

√
1

4
(b− a)2 − E[(Z − E[Z])2]

For notational convenience, let us denote V := E[(Z − E[Z])2], then the right-hand side above can
be expressed as a function of V:

f(V ) := 2V

√
1

4
(b− a)2 − V =

√
(b− a)2V 2 − 4V 3

Because V is the variance, V ∈ [0, 1
4 (b− a)2]. Additionally, because

√
· is monotonically increasing,

the maximum is achieved either at the points where the first order derivative of (b− a)2V 2 − 4V 3
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with respect to V is 0 or at the boundary, 0 and 1
4 (b− a)2. Let us calculate the points where the first

order derivative is 0:

d

dV

[
(b− a)2V 2 − 4V 3

]
= 2(b− a)2V − 12V 2 = 0 ⇐⇒ V =

(b− a)2

6
or V = 0

To obtain the maximum value achievable, we calculate the values at points V = 0, V = (b−a)2

6 , and
V = 1

4 (b− a)2 and pick the maximum value afterwards:

f(0) = 2× 0

√
1

4
(b− a)2 − 0 = 0

f(
1

6
(b− a)2) = 2× 1

6
(b− a)2

√
1

4
(b− a)2 − 1

6
(b− a)2 =

1

6
√
3
|b− a|3

f(
1

4
(b− a)2) = 2× 1

4
(b− a)2

√
1

4
(b− a)2 − 1

4
(b− a)2 = 0

Therefore, the maximum value achievable is 1
6
√
3
|b− a|3.

We now show that upper bound on the absolute value of the third central moment is actually tight by
providing with a concrete example. For a random variable Z, let P[Z = a] = 1

4 , P[Z = b] = 1
4 , and

P[Z = a+b
2 ] = 1

2 . We can verify that E[(Z − E[Z])3] = 1
6
√
3
|b− a|3, thus proving that this upper

bound is indeed tight.

This helps us to arrive at the following inequality:

|
∑
k∈Ri

akX
3
kl + 2(

∑
k∈Ri

akXkl)
3 − 3(

∑
k∈Ri

akX
2
kl)(

∑
k∈Ri

akXkl)| ≤
1

6
√
3
|max
k∈Ri

Xkl − min
k∈Ri

Xkl|3

Therefore, for the upper bound of the third order partial derivative, we have the following explicit
formula:

|∂
3ℓ(β)

∂β3
l

| ≤ 1

6
√
3

n∑
i=1

δi|max
k∈Ri

Xkl − min
k∈Ri

Xkl|3

A.4 Analytical Solution to the Cubic Surrogate Problem

Let f(x) be a convex function whose first, second, and third derivatives all exist. Let hx(∆x) :=
f(x) + f ′(x)∆x + 1

2f
′′(x)∆x2 + 1

6L3|∆x|3 be the cubic surrogate function [53] of f(x), where
L3 > 0 is the Lipschitz-constant of the second derivative f ′′(x). Then, the minimum of this surrogate
function is achieved at the following point:

∆x̂ = argmin
∆x

hx(∆x) = sgn(f ′(x)) ·
f ′′(x)−

√
(f ′′(x))2 + 2L3|f ′(x)|

L3
(26)

Proof. We discuss three cases: f ′(x) > 0, f ′(x) < 0, and f ′(x) = 0.

Case 1 f ′(x) > 0.

If f ′(x) > 0, then ∆x̂ < 0. For the sake of contradiction, suppose ∆x̂ > 0, which means hx(∆x)
achieves its minimum at some point with ∆x > 0. However, we arrive at a contradiction because

hx(0) = f(x) < f(x) + f ′(x)∆x+
1

2
f ′′(x)∆x2 +

1

6
L3|∆x|3 = hx(∆x), for ∆x > 0.

Therefore, the minimum is achieved either at ∆x = 0 or ∆x < 0. However, since ∆x2 and |∆x|3
grow slower than |∆x| when ∆x is close to 0, there exists some ∆x < 0 such that f ′(x)∆x +
1
2f

′′(x)∆x2 + 1
6L3|∆x|3 < 0. Thus, hx(0) cannot be the minimum value, and we are left with the
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minimum value achieved at some ∆x < 0. If ∆x < 0, hx(∆x) = f(x)+f ′(x)∆x+ 1
2f

′′(x)∆x2−
1
6L3(∆x)3. Note that the second order derivative of hx(∆x) is greater than or equal to 0 since

d2

d∆x2
hx(∆x) = f ′′(x)− L3∆x ≥ 0.

# f ′′(x) ≥ 0 because f(x) is convex, 0 ≤ |f ′′′(x)| ≤ L3, and ∆x < 0

Therefore, hx(∆x) is a convex function with respect to ∆x when ∆x < 0, and its minimum value is
achieved when the first order derivative is 0. When the derivative with respect to ∆x is 0, we have

f ′(x) + f ′′(x)∆x− 1

2
(∆x)2 = 0 ⇐⇒ ∆x =

f ′′(x)±
√
(f ′′(x))2 + 2L3f ′(x)

L3
.

Since f ′(x) > 0, only one root f ′′(x)−
√

(f ′′(x))2+2L3f ′(x)

L3
satisfing the condition ∆x < 0.

Thus, when f ′(x) < 0, we have

∆x̂ =
f ′′(x)−

√
(f ′′(x))2 + 2L3f ′(x)

L3

Case 2 f ′(x) < 0.

If f ′(x) < 0, we have ∆x̂ > 0 using the same logic as above. If ∆x > 0, hx(∆x) = f(x) +
f ′(x)∆x + 1

2f
′′(x)∆x2 + 1

6L3(∆x)3. Note that the second order derivative of hx(∆x) is also
greater than or equal to 0 since

d2

d∆x2
hx(∆x) = f ′′(x) + L3∆x ≥ 0.

# f ′′(x) ≥ 0 because f(x) is convex, L3 > 0, and ∆x > 0

Therefore, hx(∆x) is a convex function with respect to ∆x when ∆x > 0, and its minimum value is
achieved when the first derivative is 0. When the derivative with respect to ∆x is 0, we have

f ′(x) + f ′′(x)∆x+
1

2
(∆x)2 = 0 ⇐⇒ ∆x =

−f ′′(x)±
√
(f ′′(x))2 − 2L3f ′(x)

L3
.

Since f ′(x) < 0, only one root −f ′′(x)+
√

(f ′′(x))2−2L3f ′(x)

L3
satisfing the condition ∆x > 0.

Thus, when f ′(x) < 0, we have

∆x̂ =
−f ′′(x) +

√
(f ′′(x))2 − 2L3f ′(x)

L3

Case 3 f ′(x) = 0.

When f ′(x) = 0, the minimum value of hx(∆x) is achieved at ∆x = 0.

The explicit formulas for the three cases above can be unified into one succinct formula below:

∆x̂ = sgn(f ′(x)) ·
f ′′(x)−

√
(f ′′(x))2 + 2L3|f ′(x)|

L3

A.5 Analytical Solution to the ℓ1-regularized Quadratic and Cubic Surrogate Problems

ℓ1-regularized quadratic surrogate problem We have the following ℓ1-regularized quadratic
surrogate problem:

∆x̂ = argmin
∆x

a∆x+
1

2
b∆x2 + λ1|c+∆x|.

The solution for the above problem is

∆x̂ =


−(a− λ1)/b if bc− a < −λ1

−(a+ λ1)/b if bc− a > λ1

−c otherwise
.
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Proof. Since the function a∆x+ 1
2b∆x2 + λ1|c+∆x| is convex, the condition for this function to

achieve the minimum value is for its differential to include 0. The differential of this function is:

∂∆x

(
a∆x+

1

2
b∆x2 + λ1|c+∆x|

)
=


a+ b∆x+ λ1 if ∆x > −c

a+ b∆x− λ1 if ∆x < −c

a+ b∆x+ [−λ1, λ1] if ∆x = −c

1. For the first condition, if the differential contains 0, we have

a+ b∆x+ λ1 = 0 ⇒ ∆x = −a+ λ1

b
However, because we require ∆x > −c, we have

−a+ λ1

b
> −c ⇒ bc− a > λ1

2. For the second condition, if the differential contains 0, we have

a+ b∆x− λ1 = 0 ⇒ ∆x = −a− λ1

b
However, because we require ∆x < −c, we have

−a− λ1

b
< −c ⇒ bc− a < −λ1

3. For the third condition, if the differential contains 0, we have

0 ∈ a+ b∆x+ [−λ1, λ1] ⇒ a+ b∆x− λ1 ≤ 0 ≤ a+ b∆x+ λ1

However, because we require ∆x = −c, we have

−λ1 ≤ bc− a ≤ λ1

ℓ1-regularized cubic surrogate problem We have the following ℓ1-regularized cubic surrogate
problem:

∆x̂ = argmin
∆x

a∆x+
1

2
b∆x2 +

1

6
c|x|3 + λ1|d+∆x|. (27)

The solution to the above problem is

∆x̂ =


sgn(d)

(
−b+

√
b2 − 2c(sgn(d)a+ λ1)

)
/c if sgn(d)a+ λ1 ≤ 0

sgn(d)
(
b+

√
b2 + 2c(sgn(d)a− λ1)

)
/c if sgn(d)(a− bd)− 1

2cd
2 > λ1

sgn(d)
(
b+

√
b2 + 2c(sgn(d)a+ λ1)

)
/c if sgn(d)(a− bd)− 1

2cd
2 < −λ1

−d otherwise

.

Proof. Like the first part, since the function a∆x+ 1
2b∆x2 + 1

6c|x|
3 + λ1|d+∆x| is convex, the

condition for this function to achieve the minimum value is for its differential to include 0. We
discuss the differential of this function in two cases: d ≥ 0 and d < 0.

• When d ≥ 0, the differential of this function is:

∂∆x

(
a∆x+

1

2
b∆x2 +

1

6
c|x|3 + λ1|d+∆x|

)

=



a+ b∆x+ 1
2c∆x2 + λ1 if ∆x > 0

a+ b∆x+ 1
2c[−∆x2,∆x2] + λ1 if ∆x = 0

a+ b∆x− 1
2c∆x2 + λ1 if − d < ∆x < 0

a+ b∆x− 1
2c∆x2 + [−λ1, λ1] if ∆x = −d

a+ b∆x− 1
2c∆x2 − λ1 if ∆x < −d

We discuss these 5 cases one by one.
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1. For the first condition, if the differential contains 0, we have

a+ b∆x̂+
1

2
c∆x̂2 + λ1 = 0 ⇒ ∆x̂ =

−b±
√
b2 − 2c(a+ λ1)

c
However, because we require ∆x > 0, we have

λ1 = −(a+ b∆x+
1

2
c∆x2) < −a

This means that we can only have one root because the other root violates ∆x > 0:

∆x̂ =
−b+

√
b2 − 2c(a+ λ1)

c

2. For the second condition, if the differential contains 0, we have

0 ∈ a+ b∆x̂+
1

2
c[−∆x̂2,∆x̂2] + λ1

⇒ a+ b∆x̂− 1

2
c∆x̂2 + λ1 ≤ 0 ≤ a+ b∆x̂+

1

2
c∆x̂2 + λ1

However, because we require ∆x = 0, we have

a+ λ1 = 0

3. For the third condition, if the differential contains 0, we have

a+ b∆x̂− 1

2
c∆x̂2 + λ1 = 0 ⇒ ∆x̂ =

−b±
√
b2 + 2c(a+ λ1)

−c

However, because we require −d < ∆x < 0, we have

λ1 = −
(
a+ b∆x̂− 1

2
c∆x̂2

)
> −a ⇒ a+ λ1 > 0

This means that we can only have one root because the other root violates the condition
−d < ∆x < 0:

∆x̂ =
b−

√
b2 + 2c(a+ λ1)

c

Moreover, since the root is between −d and 0, and the coefficients in front of ∆x, − 1
2c,

is negative, we have a− bd− 1
2cd

2 + λ1 < 0.
4. For the fourth condition, if the differential contains 0, we have

0 ∈ a+ b∆x̂− 1

2
c∆x̂2 + [−λ1, λ1]

⇒ a+ b∆x̂− 1

2
c∆x̂2 − λ1 ≤ 0 ≤ a+ b∆x̂− 1

2
c∆x̂2 + λ1

However, because we require ∆x = −d, we have

a− bd− 1

2
cd2 − λ1 ≤ 0 ≤ a− bd− 1

2
cd2 − λ1 ⇒ |a− bd− 1

2
cd2| ≤ 0

5. For the fifth condition, if the differential contains 0, we have

a+ b∆x̂− 1

2
c∆x̂2 − λ1 = 0 ⇒ ∆x̂ =

−b±
√
b2 + 2c(a− λ1)

−c

However, because we require ∆x < −d, we have

λ1 = a+ b∆x̂− 1

2
c∆x̂2 < a ⇒ a− λ1 > 0

This means that we can only have one root because the other root violates the condition
∆x < −d ≤ 0:

∆x̂ =
b−

√
b2 + 2c(a− λ1)

c

Moreover, because the left root is less than −d and the coefficient in front ∆x2, − 1
2c,

is negative, we have a− bd− 1
2cd

2 − λ1 > 0.
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• When d < 0, the differential of this function is

∂∆x

(
a∆x+

1

2
b∆x2 +

1

6
c|x|3 + λ1|d+∆x|

)

=



a+ b∆x+ 1
2c∆x2 + λ1 if ∆x > −d

a+ b∆x+ 1
2c∆x2 + [−λ1, λ1] if ∆x = −d

a+ b∆x+ 1
2c∆x2 − λ1 if 0 < ∆x < −d

a+ b∆x+ 1
2c[−∆x2,∆x2]− λ1 if ∆x = 0

a+ b∆x− 1
2c∆x2 − λ1 if ∆x < 0

Similar to the previous part when d ≥ 0, we discuss the 5 cases one by one but omit the
details because the logic and the reasoning process are exactly the same:

1. For the first condition, if the differential contains 0, we have

∆x̂ =
−b+

√
b2 − 2c(a+ λ1)

c
and a− bd+

1

2
cd2 + λ1 < 0

2. For the second condition, if the differential contains 0, we have

∆x̂ = −d and |a− bd+
1

2
cd2| ≤ λ1

3. For the third condition, if the differential contains 0, we have

∆x̂ =
−b+

√
b2 − 2c(a− λ1)

c

4. For the fourth condition, if the differential contains 0, we have

∆x̂ = 0 and a− λ1 = 0

5. For the fifth condition, if the differential contains 0, we have

∆x̂ =
b−

√
b2 + 2c(a− λ1)

c
and a− λ1 > 0

We can combine the two situations where d ≥ 0 and d < 0 and obtain a unified formula:

∆x̂ =



sgn(d)
(
−b+

√
b2 − 2c(sgn(d)a+ λ1)

)
/c if sgn(d)a+ λ1 < 0

0 if sgn(d)a+ λ1 = 0

sgn(d)
(
b+

√
b2 + 2c(sgn(d)a− λ1)

)
/c if sgn(d)(a− bd)− 1

2cd
2 > λ1

sgn(d)
(
b+

√
b2 + 2c(sgn(d)a+ λ1)

)
/c if sgn(d)(a− bd)− 1

2cd
2 < −λ1

−d otherwise

.

The first and second equations above can be further unified into just one equation sgn(d)
(
−b +√

b2 − 2c(sgn(d)a+ λ1)
)
/c if sgn(d)a+ λ1 ≤ 0, so we finally have

∆x̂ =


sgn(d)

(
−b+

√
b2 − 2c(sgn(d)a+ λ1)

)
/c if sgn(d)a+ λ1 ≤ 0

sgn(d)
(
b+

√
b2 + 2c(sgn(d)a− λ1)

)
/c if sgn(d)(a− bd)− 1

2cd
2 > λ1

sgn(d)
(
b+

√
b2 + 2c(sgn(d)a+ λ1)

)
/c if sgn(d)(a− bd)− 1

2cd
2 < −λ1

−d otherwise

.
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B Related Work

Optimization for CPH One way to train the CPH model is through gradient descent [63]. However,
because the CPH loss is complex, it is difficult to pick the right step sizes, so gradient descent
tends to be slow when we want to obtain solutions with high precision. To speed up the training
process, people have used the Newton method [25, 22, 23]. The drawback of this approach is that
it is computationally intensive to calculate the full Hessian matrix. Moreover, the vanilla Newton
method cannot be applied to solve the ℓ1-regularized problem. To alleviate this problem, quasi
Newton [62] and proximal Newton [51] methods have been proposed. However, as we have shown
in our experiments, these Newton methods have the flaw of training loss blow up due to vanishing
second order derivatives. A generic binary search method [41] has also been proposed, but the
algorithm has been shown to be slower than the quasi Newton method. In contrast to all these
approaches, our method is computationally efficient, can easily handle different regularizers, and
guarantees that the loss decreases monotonically.

Modern First and Second-order Optimization Methods Our work is greatly inspired by the
modern developments for convex optimization [52], but the general principle cannot be rigidly
applied. For first order methods, as we mentioned about gradient descent in the last paragraph, it is
difficult to choose the right stepsize for fast convergence. Instead of performing gradient descent, our
method performs coordinate descent, which has been shown to be effective in training other statistical
models [9, 18, 19, 20, 34, 55]. We give an explicit formula, by leveraging the Popoviciu’s inequality
on variances [58], to calculate the Lipschitz constant at each coordinate. We also design a second
order method (still under the coordinate descent framework) based on the cubic-regularization of the
Newton method [53]. To calculate the Lipschizt constant, we make the connections to the third central
moment and Bhatia–Davis’s inequality [61]. Moreover, we are able to exploit the mathematical
structures of the CPH model to compute the second order partial derivatives at the computational
complexity of O(n), making the evaluation per iteration of our second order method as fast as that of
our first order method.

Variable Selection and Interpretability for the CPH Model If we can find sparse solutions
whose predictive performances are as good as dense solutions, we can better interpret which features
play important roles. A popular way to select important variables for the CPH model is adding
an ℓ1 regularization term [64], commonly known as the LASSO method. We can also use the
ElasticNet method, which adds an ℓ1 + ℓ2 regularization term [62]. Another way is to apply the
Adaptive LASSO [69], which repeatedly use the absolute values of coefficients obtained from the
previous iteration as weights of ℓ1 regularizations for parameters in the current iteration. These above
approaches all use convex regularizers and have difficulty obtaining high-quality solutions when
the support size is small. The reason is that these convex regularizers penalize the magnitude of
the coefficients while promoting sparsity. To avoid this issue, recently, solving the ℓ0-constrained
problem [49, 29, 4] has attracted lots of attention and shown to produce much sparser models without
losing accuracy. For the ℓ0-constrained CPH problem, ABESS [71] has proposed to use a hybrid
method of greedy selection and feature swapping to solve the problem heuristically. However, as
we have shown in our experiments, this method cannot handle highly correlated features. Our
method also solves the ℓ0-constrained CPH problem but uses the beam search framework [66, 48, 47].
Although the beam search framework has already existed, this frameowork cannot be applied to the
CPH model without our coordinate descent algorithm. We need to use coordinate descent for support
expansion as well as coefficient finetuning, in which other Newton-type methods all have issues with
losses potentially blowing up.

Other Model Classes for Survival Analysis In addition to the CPH model, there are some other
model classes that can be applied to analyze time-to-event data. One model class is the survival tree
models [70, 3, 35]. Survival trees have the advantage of capturing non-linear interactions between
features. However, when sparse models are desired, the accuracy of sparse trees is compromised
by the fact that all samples in the same leaf node share the same predictions. One way to overcome
this issue is to construct ensembles of trees using random forest or boosting techniques [36, 32, 33].
Another model class for survival analysis is based on neural networks [39, 7, 6, 59, 21]. However, for
all these other model classes mentioned, they are not very interpretable due to large parameter space.
The CPH model, which is the focus of our work, provides both interpretability and good accuracy.
For applications involving high stakes decisions, it is desirable to produce models that are as sparse
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as possible without losing accuracy. In this work and especially the variable selection experiments,
we push the limit of sparsity-accuracy tradeoff curve for this model class.
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C Experimental Setup Details

C.1 Computing Platforms

All experiments were run on the Intel(R) Xeon(R) CPU E5-2680 v3 Processor, 2.50GHz. We set the
memory limit to be 100GB.

C.2 Datasets, Baselines, and Licenses

We have a summary of datasets for experiments in Table 1.

Dataset Samples Origin Features Encoded Binary Features
Flchain 7874 39 333
Kickstarter1 4175 54 2144
Dialysis 6805 7 207
EmployeeAttrition 14999 17 272
SyntheticHighCorrHighDim1 1200 1200 N/A
SyntheticHighCorrHighDim2 900 900 N/A
SyntheticHighCorrHighDim3 600 600 N/A

Table 1: Datasets Summary.

Synthetic Data Generation Process The synthetic data used in the paper is generated according to
the following process, similar to [71]:

Firstly, from a Gaussian distribution N (0,Σ) where the first entry is the mean and the second entry
is the covariance matrix with size p× p, we sample features:

xi ∼ N (0,Σ). (28)

The covariance matrix is defined as Σjl = ρ|j−l|, where ρ ∈ (0, 1] is the correlation parameter. When
ρ is large, the features in xi are more correlated. We create a k-sparse coefficient vector β∗ ∈ Rp.
The entries of β∗ are either 1 or 0. If jmod(p/k) = 0, then β∗

j = 1; otherwise, β∗
j = 0.

Secondly, we generate the death time ti according to the following equation:

ti =

(
− log Vi

ex
T
i β∗

)s

, (29)

where Vi ∼ U(0, 1) (samples are drawn from a uniform distribution on the interval [0, 1]) and s is a
hyperparameter. In our experiments, we set s = 0.1.

Lastly, we generate the censoring time, the censoring indicator, and change the death time to
observation time. We sample the censoring time from a uniform distribution: Ci ∼ U(0, 1). If the
death time is bigger than the censoring time, we have the indicator equal to 1; otherwise, we have the
indicator equal to 0. Specifically, we have:

δi = 1ti>Ci
(30)

Afterwards, we change the death time to observation time, taking into consideration of censoring:

ti = min(ti, Ci). (31)

We form a triplet (xi, ti, δi) and return this triplet as one sample.

Real-world survival data:

• Flchain: Use of nonclonal serum immunoglobulin free light chains to predict overall survival
in the general population [10]. The event is death.

• Kickstarter1: Data from a popular crowdfunding platform, used to predict project suc-
cess [46]. We used the version from https://dmkd.cs.vt.edu/projects/survival/
data/.
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• Dialysis: Data from a survival study of dialysis patients, which aims to assess quality of
renal replacement therapy at dialysis centers in Rio de Janeiro, Brazil [60].

• EmployeeAttrition: The task of predicting when an IBM employee will quit. The event is
an IBM employee’s leaving [30].

Licenses We list the licenses of the software packages used in this paper:

• Abess: The license of this package is GPL-3.

• skglm: The license of this package is BSD-3.

• Scikit-survival (SkSurv): The license of this package is GPL-3.

• Flchain: We use the dataset from the Scikit-Survival [56] package. The GitHub
link to this dataset is https://github.com/sebp/scikit-survival/tree/master/
sksurv/datasets/data. The license of this package is GPL-3.

• Kickstarter1: We use the dataset from the Virginia Tech. The link to this dataset is
https://dmkd.cs.vt.edu/projects/survival/data/. There is no license associated
with this dataset. This means we cannot modify any part of the dataset, which we have
obeyed while doing experiments on this dataset.

• Dialysis: We use the dataset from the SurvSet [12] package. The GitHub link
to this dataset is https://raw.githubusercontent.com/ErikinBC/SurvSet/main/
SurvSet/_datagen/output/Dialysis.csv. The license of this package is GPL-3.

• EmployeeAttrition: We use the dataset from the PySurvival [17] package. The GitHub
link to this dataset is https://github.com/square/pysurvival/blob/master/
pysurvival/datasets/employee_attrition.csv. The license of this package is
Apache-2.

Baselines We compared our method against various survival models:

• Abess: Adaptive Best-Subset Selection (ABESS) algorithm [71] for Cox proportional
hazards model. We used the Cox model in abess python package Version 0.4.6.

• SkglmALassoCox: Cox model with the adaptive Lasso regularization [69]. We used the
implementation from skglm [2, 51].

• SksurvCoxnet: Cox’s proportional hazard’s model with elastic net penalty [62]. We used
the implementation from Scikit-survival (SkSurv): scikit-survival version-0.20.0 (https:
//scikit-survival.readthedocs.io/en/stable/index.html).

• SksurvTree: A greedy decision tree model using log-rank splitting rule [43]. We used the
implementation from sksurv.

• SksurvRSF: Random survival forest [37] algorithm. We used the implementation from
Sksurv.

• SksurvGBST: Gradient-boosted Cox proportional hazards loss with regression trees as base
learner. In each stage, a regression tree is fit on the negative gradient of the loss function.
We used the implementation from Sksurv.

• SksurvNaiveSVM: Naive version of linear Survival Support Vector Machine [65]. We used
the implementation from Sksurv.

• SksurvFastSVM: Efficient Training of linear Survival Support Vector Machine [57]. We
used the implementation from Sksurv.

Evaluation Metrics

1. CIndex: The full name of this metric score is Harrell’s Concordance Indices [26]. It is
used to evaluate the discrimination ability of a survival model. It assesses how well the
model ranks observations based on their predicted risk of experiencing an event (e.g., death,
disease recurrence) over time. The higher the CIndex score, the better the model.
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2. IBS: The Integrated Brier score was proposed by [24] to evaluate survival models across all
possible time threshold. The IBS score takes the Brier score a step further by integrating it
across all possible time points within the follow-up period of interest. This provides a single
score summarizing the model’s performance over the entire time range. The lower the IBS
score, the better the model.

3. F1-score, Precision, Recall: Suppose the true coefficients are β∗ and the estimated
coefficients are β̂. Then the precision score can be calculated as P = |supp(β∗) ∪
supp(β̂)|/|supp(β̂)|, where supp(·) extracts the support (indices whose coefficients are
nonzero) of the input vector. The recall score can be calculated as R = |supp(β∗) ∪
supp(β̂)|/|supp(β∗)|. We calculate the F1 score as F1 = 2PR/(P +R).

C.3 Details about Variable Selection Experiments

Collection and Setup: We ran 5-fold cross-validation (random seed 0) on the following datasets:
Dialysis, Flchain, Kickstarter1, EmployeeAttrition, SyntheticHighCorrHighDim1, SyntheticHighCor-
rHighDim2, SyntheticHighCorrHighDim3. In order to create highly correlated features, we encoded
continuous features into binarized features, by considering 1000 quantiles for each continuous column.
For each dataset, we ran algorithms with different configurations and evaluated fitted models with
metrics described in Appendix C.2:

• Abess: We ran this algorithm with 30 different configurations: support size, k, ranging from
1 to 30, forcing the number of non-zero coefficients in the Cox model to be exact k. We set
primary_model_fit_max_iter to be 20, approximate_Newton to be False. All other
parameters were set to the default.

• SksurvCoxnet: We ran this algorithm with 30 different configurations: support size, k,
ranging from 1 to 30, forcing the number of non-zero coefficients in the Cox model to be
exact k. We set l1_ratio to be 1.0, alpha_min_ratio to be 0.01. All other parameters were
set to the default.

• SkglmALassoCox: We ran this algorithm with 9 different L1 regularization penalty param-
eters (alpha): 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100. All other parameters were set to the
default.

• SksurvTree: We ran this algorithm with 8 different configurations: max depth limit, d,
ranging from 2 to 9, and a corresponding maximum leaf limit 2d. The random state was set
to 2024 and all other parameters were set to the default.

• SksurvRSF, SksurvGBST: We ran this algorithm with 8× 5 configurations: max depth
limit, d, ranging from 2 to 9, and 5 different total numbers of estimators (10, 50, 100, 500,
100). The random state was set to 2024 and all other parameters were set to the default.

• SksurvNaiveSVM, SksurvFastSVM: We ran this algorithm with 9 different ℓ2 regulariza-
tion penalty parameters (alpha): 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100. All other parameters
were set to the default.

• SksurvCoxPHBeamSearch (our method): We ran this algorithm with 30 different config-
urations: support size, k, ranging from 1 to 30, forcing the number of non-zero coefficients
in the Cox model to be exact k.

Recording experimental results: For each method with specific configuration, we have a set of up
to 5 fitted models on each dataset. Some metrics may be unavailable:

• Precision, recall, and f1-score are not available on real-world data as we do not know the
true coeffcients.

• The losses on the training and testing folds of cox models are not applied to non-Cox models.
• SksurvNaiveSVM and SksurvFastSVM were not able to provide IBS and AUC.
• Some methods’ training time exceeded our 3-hour time limit (We noticed that sksurv-

NaiveSVM often timed out).

For Cox and SVM models, we recorded the number of non-zero coefficients as the support size. For
tree based models we recorded the number of nodes as the support size. We plotted the standard
deviation of support size and various metric scores as corresponding error bars.
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D Additional Results

D.1 Optimization on ℓ1 and ℓ1 + ℓ2-regularized Problems

D.1.1 Results on Flchain

Figure 5: Optimization on the Flchain dataset with λ1 = 0 and λ2 = 1.0. The baselines (exact
Newton, quasi Newton, and proximal Newton) all have the losses blow up. In contrast, our methods
based on the quadratic and cubic surrogate functions have the losses monotonically decreasing.

Figure 6: Optimization on the Flchain dataset with λ1 = 0 and λ2 = 5.0. The baseline, exact Newton,
has the losses blow up despite a stronger ℓ2 regularization. The other two baselines, quasi Newton
and proximal Newton, do not have this issue when ℓ2 increases but are significantly slower than our
methods.
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Figure 7: Optimization on the Flchain dataset with λ1 = 1.0 and λ2 = 1.0. The exact Newton
method can be applied to solve the ℓ1-regularized problems, so we only compare with quasi Newton
and proximal Newton. These two baselines both have the losses blow up when the ℓ2 regularization
is weak. In contrast, our methods based on the quadratic and cubic surrogate functions have losses
that monotonically decrease.

Figure 8: Optimization on the Flchain dataset with λ1 = 1.0 and λ2 = 5.0. The exact Newton
method can be applied to solve the ℓ1-regularized problems, so we only compare with quasi Newton
and proximal Newton. Stronger ℓ2 regularization helps these two baselines avoid the losses going
into infinity. However, these two baselines are still significantly slower than our methods.
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D.1.2 Results on Employee Attrition

Figure 9: Optimization on the Employee Attrition dataset with λ1 = 0 and λ2 = 1.0. Although our
methods make less progress toward the minimum loss per iteration (left plot), we are significantly
faster than other methods in terms of elapsed time (wall clock) due to cheap evaluation cost per
iteration. For ease of figure reading, we only give a partial plot with a few iterations. When the
number of iterations is large, our methods achieve better losses than the baseline methods.

Figure 10: Optimization on the Employee Attrition dataset with λ1 = 0 and λ2 = 5.0. Although our
methods make less progress toward the minimum loss per iteration (left plot), we are significantly
faster than other methods in terms of elapsed time (wall clock) due to cheap evaluation cost per
iteration. For ease of figure reading, we only give a partial plot with a few iterations. When the
number of iterations is large, our methods achieve better losses than the baseline methods.
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Figure 11: Optimization on the Employee Attrition dataset with λ1 = 1.0 and λ2 = 1.0. The exact
Newton method can be applied to solve the ℓ1-regularized problems, so we only compare with quasi
Newton and proximal Newton. Although our methods make less progress toward the minimum loss
per iteration (left plot), we are significantly faster than other methods in terms of elapsed time (wall
clock) due to cheap evaluation cost per iteration. For ease of figure reading, we only give a partial
plot with a few iterations. When the number of iterations is large, our methods achieve better losses
than the baseline methods.

Figure 12: Optimization on the Employee Attrition dataset with λ1 = 1.0 and λ2 = 5.0. The exact
Newton method can be applied to solve the ℓ1-regularized problems, so we only compare with quasi
Newton and proximal Newton. Although our methods make less progress toward the minimum loss
per iteration (left plot), we are significantly faster than other methods in terms of elapsed time (wall
clock) due to cheap evaluation cost per iteration. For ease of figure reading, we only give a partial
plot with a few iterations. When the number of iterations is large, our methods achieve better losses
than the baseline methods.
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D.1.3 Results on Kickstarter1

Figure 13: Optimization on the Kickstarter1 dataset with λ1 = 0 and λ2 = 1.0. The baselines (exact
Newton, quasi Newton, and proximal Newton) all have losses that blow up. In contrast, our methods
based on the quadratic and cubic surrogate functions have monotonically decreasing losses.

Figure 14: Optimization on the Kickstarter1 dataset with λ1 = 0 and λ2 = 5.0. The baselines (exact
Newton, quasi Newton, and proximal Newton) all have the losses blow up. In contrast, our methods
based on the quadratic and cubic surrogate functions have monotonically decreasing losses.
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Figure 15: Optimization on the Kickstarter1 dataset with λ1 = 1.0 and λ2 = 1.0. The exact Newton
method can be applied to solve the ℓ1-regularized problems, so we only compare with quasi Newton
and proximal Newton. These two baselines both have the losses blow up when both the ℓ1 and
ℓ2 regularizations are weak. In contrast, our methods based on the quadratic and cubic surrogate
functions have monotonically decreasing losses.

Figure 16: Optimization on the Kickstarter1 dataset with λ1 = 1.0 and λ2 = 5.0. The exact Newton
method can be applied to solve the ℓ1-regularized problems, so we only compare with quasi Newton
and proximal Newton. These two baselines both have the losses blow up even when we have a
stronger ℓ2 regularization. In contrast, our methods based on the quadratic and cubic surrogate
functions have monotonically decreasing losses.
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D.1.4 Results on Dialysis

Figure 17: Optimization on the Dialysis dataset with λ1 = 0 and λ2 = 1.0. Although our methods
make less progress toward the minimum loss per iteration (left plot), we are significantly faster than
other methods in terms of elapsed time (wall clock) due to cheap evaluation cost per iteration. For
ease of figure reading, we only give a partial plot with a few iterations. When the number of iterations
is large, our methods achieve better losses than the baseline methods.

Figure 18: Optimization on the Dialysis dataset with λ1 = 0 and λ2 = 5.0. Although our methods
make less progress toward the minimum loss per iteration (left plot), we are significantly faster than
other methods in terms of elapsed time (wall clock) due to cheap evaluation cost per iteration. For
ease of figure reading, we only give a partial plot with a few iterations. When the number of iterations
is large, our methods achieve better losses than the baseline methods.
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Figure 19: Optimization on the Dialysis dataset with λ1 = 1.0 and λ2 = 1.0. The exact Newton
method can be applied to solve the ℓ1-regularized problems, so we only compare with quasi Newton
and proximal Newton. Although our methods make less progress toward the minimum loss per
iteration (left plot), we are significantly faster than other methods in terms of elapsed time (wall
clock) due to cheap evaluation cost per iteration. For ease of figure reading, we only give a partial
plot with a few iterations. When the number of iterations is large, our methods achieve better losses
than the baseline methods.

Figure 20: Optimization on the Dialysis dataset with λ1 = 1.0 and λ2 = 5.0. The exact Newton
method can be applied to solve the ℓ1-regularized problems, so we only compare with quasi Newton
and proximal Newton. Although our methods make less progress toward the minimum loss per
iteration (left plot), we are significantly faster than other methods in terms of elapsed time (wall
clock) due to cheap evaluation cost per iteration. For ease of figure reading, we only give a partial
plot with a few iterations. When the number of iterations is large, our methods achieve better losses
than the baseline methods.
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D.2 Variable Selection for the CPH Model

D.2.1 Results on Dialysis

Figure 21: 5-fold Cross-validation on Dialysis dataset. Comparision with other cox models, metric:
CIndex

Figure 22: 5-fold Cross-validation on Dialysis dataset. Comparision with non-cox models, metric:
CIndex
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Figure 23: 5-fold Cross-validation on Dialysis dataset. Comparision with other cox models, metric:
IBS

Figure 24: 5-fold Cross-validation on Dialysis dataset. Comparision with non-cox models, metric:
IBS

Figure 25: 5-fold Cross-validation on Dialysis dataset. Comparision with other cox models, metric:
CPH Loss
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D.2.2 Results on EmployeeAttrition

Figure 26: 5-fold Cross-validation on EmployeeAttrition dataset. Comparision with other cox models,
metric: CIndex

Figure 27: 5-fold Cross-validation on EmployeeAttrition dataset. Comparision with non-cox models,
metric: CIndex
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Figure 28: 5-fold Cross-validation on EmployeeAttrition dataset. Comparision with other cox models,
metric: IBS

Figure 29: 5-fold Cross-validation on EmployeeAttrition dataset. Comparision with non-cox models,
metric: IBS

Figure 30: 5-fold Cross-validation on EmployeeAttrition dataset. Comparision with other cox models,
metric: CPH Loss
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D.2.3 Results on Kickstarter1

Figure 31: 5-fold Cross-validation on kickstarter1 dataset. Comparision with other cox models,
metric: CIndex

Figure 32: 5-fold Cross-validation on kickstarter1 dataset. Comparision with non-cox models, metric:
CIndex
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Figure 33: 5-fold Cross-validation on kickstarter1 dataset. Comparision with other cox models,
metric: IBS

Figure 34: 5-fold Cross-validation on kickstarter1 dataset. Comparision with non-cox models, metric:
IBS

Figure 35: 5-fold Cross-validation on kickstarter1 dataset. Comparision with other cox models,
metric: CPH Loss
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes] ,

Justification: The abstract and intro clearly state the contributions.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Limitations are discussed above the conclusion section.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes] ,
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Justification: All proofs are provided in the appendix. All assumptions are provided.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Experimental setups are clearly stated in the Appendix. Code for the method
and paper’s experiments is included in a public GitHub repository.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: All baselines and real-world datasets are publicly accessible. The synthetic
data generation process is clearly stated in the Appendix. Code for the method and paper’s
experiments is included in a public GitHub repository.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: This is described in the experimental section and the Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes] .
Justification: Error bars are present.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: This was reported in the manuscript. See Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines? [Yes]

Justification: The paper follows the full code of ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper involves survival analysis. We have never heard of survival analysis
having negative societal impacts. It has positive impacts, particularly in medicine and
reliability analysis for equipment/machinery.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The paper develops its own assets. Other works (datasets and baseline software
packages) are properly cited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

53

87764 https://doi.org/10.52202/079017-2785

paperswithcode.com/datasets


• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer:[Yes]
Justification: Documentation is provided with our code.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA] .
Justification: The paper does not use human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
[NA] .
Justification: This is not relevant to us.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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