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Abstract

With the proposal of patching technique in time series forecasting, Transformer-
based models have achieved compelling performance and gained great interest from
the time series community. But at the same time, we observe a new problem that
the recent Transformer-based models are overly reliant on patching to achieve ideal
performance, which limits their applicability to some forecasting tasks unsuitable
for patching. In this paper, we intent to handle this emerging issue. Through diving
into the relationship between patching and full attention (the core mechanism
in Transformer-based models), we further find out the reason behind this issue
is that full attention relies overly on the guidance of patching to focus on the
important time points and learn non-trivial temporal representation. Based on this
finding, we propose DeformableTST as an effective solution to this emerging
issue. Specifically, we propose deformable attention, a sparse attention mechanism
that can better focus on the important time points by itself, to get rid of the need of
patching. And we also adopt a hierarchical structure to alleviate the efficiency issue
caused by the removal of patching. Experimentally, our DeformableTST achieves
the consistent state-of-the-art performance in a broader range of time series tasks,
especially achieving promising performance in forecasting tasks unsuitable for
patching, therefore successfully reducing the reliance on patching and broadening
the applicability of Transformer-based models. Code is available at this repository:
https://github.com/luodhhh/DeformableTST.

1 Introduction

Time series forecasting is widely used in real-world applications, such as transportation manage-
ment [39, 5], economic planning [41, 30, 31], energy planning [42, 34] and weather forecasting [45].
Because of the immense practical value, time series forecasting has received great attention and has
grown tremendously in recent years [44, 19, 33, 2, 28, 32, 25].

But looking back at the development of time series forecasting, Transformer-based models, who
have sparked the boom of time series forecasting [55, 47, 57], are constantly being challenged. In
particular, some recent studies [52, 18, 22] have questioned that attention mechanism is not suitable
for modeling the temporal dependency in time series. As the early strike back of Transformer-based
models, PatchTST [35] proposes that attention mechanism can work better in temporal modeling
with the help of large size patching technique. Afterwards, equipped with the growing patch size
and increasing input length, the advanced Transformer-based models [53, 58, 51, 6] gain great
performance improvement and successfully win back the championship in time series forecasting.

However, with large size patching becoming a must-have technique for the following Transformer-
based models, a new problem occurs: patched-based Transformers have to work with a very long
input length and a very large patch size to achieve ideal performance [35, 53, 22]. But large size
patching cannot be apply to all kinds of time series forecasting tasks. For example, some forecasting
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Figure 1: The Effective Receptive Field (ERF) of PatchTST. A brighter area means that these time
points are focused by the model when extracting temporal representation. The results show that
PatchTST highly relies on the guidance of patching to focus on the important time points. This
phenomenon is also present in multiple advanced patch-based Transformer forecasters (Appendix E).

tasks are with limited input lengths [29, 30, 31], which are not sufficient to be divided into patches. In
such condition, the advanced Transformer-based models suffer from severe performance degradation
due to the lack of patching [58, 51], limiting their applicability to a wider range of forecasting tasks.

To broaden the applicability of the Transformer-based model, we need to design an attention
mechanism that is less reliant on patching (e.g., can work well with a small patch size or can
work well even without patching). To this end, we first analyze exactly why attention must work
with patching and why patching can help attention better model the temporal dependency in time
series forecasting? We visualize the effective receptive fields (ERFs) of PatchTST [35] in Figure
1. And the ERFs can indicate which parts of the time points in input series are focused by the
model when extracting temporal representations. A surprising finding is shown in Figure 1 (left).
If without patching, nearly all time points in input series are equally focused by the model and the
model performs worse (MSE 0.385), exposing the problem of distracted attention. This finding
means that attention has not learned to distinguish the importance of each time point in input series,
leading to trivial representation. Note that the time points in a time series are very redundant or even
noisy [35, 56, 55, 7, 53], focusing on the trivial part of them will influence the predictions. Thus, an
ideal time series forecaster should mainly focus on a small number of important time points which
make contribution to better performance and reflect the property of time series. In Figure 1 (right),
when using patching, the model focuses on some selected time points and achieve better performance
(MSE 0.367), indicating that the model has successfully focused on the important time points. And
in terms of why patching can guide the model to learn a non-trivial representation, we find that the
pattern of ERF is also divided by patches, which means that patching can force the model to only
focus on a small number of important time points based on the patch partition. As a conclusion of
above discussion on Figure 1, since full attention is unable to focus on the important time points
by itself, it highly relies on the guidance of patching to focus on the important time points and
learn non-trivial representation. This is the reason why full attention must work with patching
to achieve ideal performance.

Therefore, if we can find another way to help attention focus on the important time points, we can
get rid of over-reliance on patching. Since full attention is hard to focus due to the redundancy in
time series data [35, 56, 55, 7, 53], replacing it with sparse attention can be a natural idea. There are
some previous prior-based sparse attentions in time series community [55, 47, 57]. But due to the
diverse pattern in different time series, their priors are hard to match all kinds of inputs, resulting in
their inferior performance. Different from them, we introduce a data-driven sparse attention called
deformable attention under the inspiration of deformable operations [8, 60, 48]. It can sample a
subset of important time points from the input series based on the learnable offsets and only calculate
attention with these selected important time points. These learnable offsets are learned from each
input sample, therefore being more flexible to the diverse property in different time series.

Based on the above motivations, we intend to broaden the applicability of Transformer-based models.
To accomplish this goal, we propose DeformableTST, a Transformer-based model that is less
reliant on patching. Technically, the patching process in our method is optional. We remove the
patching process in most cases. Only when the input length is very long, we will use a small size
patching for better efficiency. Since the removal of patching will cause severe memory usage in
previous plain architecture, we adopt a hierarchical architecture to alleviate this efficiency issue. And
we further introduce deformable attention, a data-driven sparse attention that can better focus on the
important time points by itself, to achieve excellent performance without patching. Experimentally,
DeformableTST achieves the consistent state-of-the-art performance in a wider range of time series
tasks, especially in tasks unsuitable for patching, thus successfully reducing the reliance on patching
and broadening the applicability of Transformer-based models. Our contribution are as follows:

• We dive into the relationship between patching and attention. We point out a new problem
that recent advanced Transformer-based models are too reliant on patching. And we further
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find out the reason behind this problem is that full attention relies overly on the guidance of
patching to focus on important time points and learn non-trivial temporal representation.

• To get rid of the over-reliance on patching, we propose DeformableTST and achieve the
consistent state-of-the-art performance in a wider range of time series forecasting tasks.
Experimental results show that our deformable attention can better model the temporal
dependency in time series without reliance on patching.

• We successfully broaden the applicability of Transformer-based models in time series tasks.
Our DeformableTST can flexibly adapt to multiple input lengths and achieve excellent
performance in tasks unsuitable for patching, which is a great improvement than previous
Transformer-based models.

2 Related Work

2.1 Tranformers for Time Series Forecasting

Transformer-based models mainly use attention mechanism to model the temporal dependency in time
series [55, 47, 57]. In 2020s, they achieve excellent performance in time series forecasting for the first
time and bring great attention to time series forecasting tasks [26, 9, 56, 20, 21, 7]. But their validity
is questioned by [52, 18] with the finding that a simple linear layer can outperform complicated
attention mechanisms. It’s until the proposal of patching that Transformer-based models win back the
championship in time series forecasting [35]. Based on patching technique, Pathformer [6] adopts a
multi-scale patches structure. Crossformer [53] and CARD [51] further propose to additionally apply
attention on variate and feature dimensions rather than only on temporal dimension. Sageformer [54]
combines the graph methods with patch-based Transformer forecasters. And GPT4TS [58] also
transfers pre-trained large language models to time series with the help of patching. But the question
of whether attention is suitable for modeling the temporal dependency in time series still remains. For
example, although adopting a Transformer architecture, iTransformer [22] still suggests that linear
layers are more appropriate for temporal modeling. Meanwhile, the proposal of patching also comes
with a new question that advanced Transformer-based models are too reliant on patching. Therefore,
further research about Transformer-based forecasters are still needed, especially on the question of
how to better use attention in temporal modeling without over-reliance on patching.

2.2 Sparse Attention

Sparse attention used to be popular in time series forecasting. Early Transformer-based models
usually adopt prior-based sparse attention mechanisms. Informer [55] adopt ProbSparse attention to
model the temporal dependency. Autoformer and FEDformer [47, 57] further combine the signal
processing technique with the attention mechanisms and select the top-k sparse representation in
time domain or frequency domain respectively. But due to the diverse pattern in different time
series, these priors are hard to match all kind of inputs, resulting in their inferior performance. As
a comparison, data-driven sparse attention, also called deformable attention, is more flexible to
diverse inputs. Similar idea has been explored in Computer Vision (CV). Inspired by deformable
convolution [8, 59], deformable DERT [60] proposes multi-scale deformable attention for object
detection tasks. And [48, 49] further improve it and make it suitable for general CV tasks. In this
work, we propose a deformable attention for time series forecasting to break through the bottleneck
faced by previous attention mechanism in modeling temporal dependency.

3 DeformableTST

Given an observed multivariate or univariate time series as input, time series forecasting aims to
predict the length-T future series based on the length-I input series. In real-world scenarios, the input
length I varies from a wide range and is not always sufficient for patching technique, leading to the
limited applicability of previous patch-based Transformer forecasters. To tackle this problem, we
propose DeformableTST. And we introduce details of DeformableTST in following subsections.
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Figure 2: Structure overview of DeformableTST. (a) The input time series is embedded variate-
independently. (b) The local perception unit (LPU) is used to learn the local temporal information.
(c) The proposed deformable attention is adopted to learn the global temporal information. (d) The
feed-forward network injected with a depth-wise convolution (ConvFFN) is used to learn the local
temporal information and the new feature representation.

3.1 Structure Overview

As shown in Figure 2, our DeformableTST adopts the encoder-only architecture of Transformer [43],
including the input embedding layer, hierarchical Transformer backbone and prediction head. And
following the recent Transformer-based models, we adopt RevIN [15] to mitigate the distribution
shift between the training and testing data.

Input Embedding Layer Denoted Xin ∈ RM×I as the M variates input time series of length I ,
it will be divided into N0 non-overlapping patches and then embedded variate-independently into
D0-dimensional embeddings:

X0 = Embedding(Xin) (1)

X0 ∈ RM×D0×N0 is the input embedding. It is worth noting that DeformableTST is less reliant
on patching and thus the patching process is optional. We only adopt patching when the input
length is very long for efficiency reasons. And we also adopt a much smaller patch size than recent
Transformer-based models, making it more adaptable to diverse input lengths.

Hierarchical Transformer Backbone The backbone is stacked by L Transformer blocks and
utilizes a hierarchical structure. The forward process in the i-th block is simply formulated as follows:

Xlocal
i = LPU(Xi−1) (2)

Xglobal
i = LayerNorm

(
Xlocal

i + DeformableAttention(Xlocal
i )

)
(3)

Xi = LayerNorm
(
Xglobal

i + ConvFFN(Xglobal
i )

)
(4)

Xi ∈ RM×Di×Ni is the output feature series of the i-th block, i ∈ {1, ..., L}. And Di and Ni are the
sizes of its feature and temporal dimensions. DeformableAttention is the core component to better
cpature the global temporal dependency, which will be introudced in Section3.2. LPU and ConvFFN
are local enhancement modules (Figure 2 (b) and (d)). LPU is the local perception unit, a depth-wise
convolution with residual connection [10]. And ConvFFN is a feed-forward network injected with a
depth-wise convolution [50]. These two modules are adopted to improve the local temporal modeling
ability. And a GELU activation [11] is adopted in ConvFFN to provide nonlinearity when learning
the new feature representation. Meanwhile, to construct a hierarchical structure, a downsampling
convolution layer [24] with kernel size 2 and stride 2 is adopted between two blocks, which will
halve the series’ temporal dimension and double the feature dimension.
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Prediction Head We first flatten the final representation from the backbone XL ∈ RM×DL×NL

into RM×(DL×NL). Then we obtain the prediction through a linear projection layer:

Ŷ = Projection(XL) (5)

Where Ŷ ∈ RM×T is the prediction of length T with M variates.

3.2 Deformable Attention

Figure 3: Deformable Attention. (a) The process of deformable attention from the tensor view and
coordinate view. (b) The structure of the offset network, marked with the size of feature series.

Figure 3 introduces the detailed process of our deformable attention. In each attention module, it first
samples a few important time points from the input feature series X based on the learnable offsets.
Then the sampled important time points are fed to the key and value projections to get the sampled
key and value tokens K̃, Ṽ. Meanwhile, the input feature series X is also projected into queries Q.
Finally, standard multi-head attention [43] is applied to Q, K̃, Ṽ to obtain the attention output O.

Sample the Important Time Points As shown in Figure 3 (a), we sample the important time points
based on a set of learnable coordinates called sampling points. Specifically, the sampling points are
calculated by a set of uniformly sparse reference points and their learnable offsets.

Given a length-N feature series X ∈ RM×D×N , we first generate the sparse reference points
Tref ∈ RM×1×Nsamp from a 1D uniform grid. The grid size Nsamp = N/r is downsampled from
the input series length N with a downsampling factor r to provide sparsity. The reference points
indicate the 1D coordinates of some time points uniformly distributed in the feature series X with
interval r. These coordinate values are normalized to [−1,+1], where −1 indicates the start of the
series and +1 means the end of the series. And these reference points serve as the initial coordinates
for the following deforming process.

Then we obtain the offsets for each reference point by offset sub-network (Figure 3 (b)). It contains
two convolution layers. The first layer is a depth-wise convolution, which can take the local neighbors
into consideration when generating the offsets [48]. It takes the query tokens Q as input, where Q is
the linear projection of the feature series X. After a nonlinear activation, the output from the first
layer is passed into a point-wise convolution layer to generate the offsets ∆T ∈ RM×1×Nsamp .

Adding up the reference points with the learnable offsets, we obtain Nsamp sampling points, which
can serve as the final coordinates to sample the important time points from the feature series X.
In practice, we follow [48, 60] and calculate the values of these important time points by linear
interpolation φ(·; ·) to make this sampling process differentiable. The overall process is as follows:

∆T = Offset-Network(Q) (6)
Tsamp = Tref + ∆T (7)

X̃ = φ(X;Tsamp) (8)
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where X̃ ∈ RM×D×Nsamp is the sampled feature series consisting of the important time points. And
the implementation of linear interpolation φ(·; ·) is in Appendix I.1. And we clip Tsamp by −1 and
+1 to avoid sampling outside the feature series.

Calculate Attention Output In above sampling process, we have got the query tokens Q. After
the sampling process, we can get the sampled key and value tokens K̃, Ṽ after two linear projections
of the sampled feature series X̃. Then we calculate the multi-head self-attention with H heads as:

O(h) = Softmax
(
Q(h)K̃(h)>/

√
d+ B

)
Ṽ(h), h=1, . . . ,H (9)

O = OutputProjection(Concat
(
O(1), . . . ,O(H)

)
) (10)

where d=D/H is the dimension of each head. The upper index (h) denotes the h-th attention head.
After concatenating the output embedding from each attention head O(h) together, we obtain the
output of the DeformableAttention module O ∈ RM×D×N through a linear projection. B is the
deformable relative position bias to provide the positional information into the attention map and its
implementation is introduced in Appendix I.2.

To conclude, this subsection introduces the detailed process of DeformableAttention (Eq.(3)). And
for the i-th block, X in this subsection corresponds to Xlocal

i in Eq.(3) and O corresponds to Xglobal
i .

4 Experiments

We thoroughly evaluate our DeformableTST on a wide range of time series forecasting tasks, including
long-term forecasting tasks with various input lengths, as well as multivariate and univariate short-
term forecasting tasks that are unsuitable for patching, to verify the performance and applicability of
our DeformableTST.

Baselines We extensively include the latest and advanced models in time series community as strong
baselines, including patch-based Transformer models: Pathformer [6], CARD [51], GPT4TS [58],
PatchTST [35]; non patch-based Transformer models: iTransformer [22], FEDformer [57], Auto-
former [47]; other non Transformer-based models: RLinear [18], TiDE [9], TimesNet [46], DLin-
ear [52] and SCINet [20]. We also include the state-of-the-art models in each specific task as
additional baselines for a comprehensive comparison.

Main Result As shown in Figure 4, our DeformableTST achieves consistent state-of-the-art
performance in a broader range of time series tasks. In details, DeformableTST can flexibly
adapt to multiple input lengths and especially achieve excellent performance in tasks unsuitable for
patching, which is a great improvement than previous Transformer-based models, proving that our
DeformableTST can successfully reduce the reliance on patching and broaden the applicability
of Transformer-based models. Experiment details and result discussions of each task are provided
in following subsections. In each table, the best results are in bold and the second best are underlined.

Figure 4: Model performance comparison (left) and performance under different input lengths (right).
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4.1 Long-term Forecasting

Setups We conduct long-term forecasting experiments on 8 popular real-world benchmarks, in-
cluding Weather [45], Traffic [39], ECL [42], Solar-Energy [34] and 4 ETT datasets [55]. In this
paper, we refine the evaluation approach for a comprehensive comparision of the models. Dif-
ferent from previous settings that use a fixed short input length (e.g., 96) [55, 47, 22]. We fix three
different input lengths {96, 384, 768} and calculate the averaged results to adequately reflect model’s
adaptability to multiple input lengths. These input lengths covers a variety of real-world appilication
scenarios, i.e., shorter than prediction lengths, within the prediction lengths’ interval and longer than
prediction lengths. Following the previous settings, we set prediction lengths as {96, 192, 336, 720}
and calculate the MSE and MAE of multivariate time series forecasting as metrics.

Results Table 1 shows the excellent performance of DeformableTST in long-term forecasting.
Concretely, DeformableTST gains the best performance in most cases, surpassing extensive state-
of-the-art Transformer-based models. As shown in Figure 4 (right), DeformableTST achieves
the consistent state-of-the-art performance in all input lengths and gains continuous performance
improvement with the increasing input length, validating its adaptability to multiple input lengths
and its effectiveness in extracting useful information from longer history. For comparison, the non
patch-based Transformer baselines suffer from performance degradation with increasing input length
due to the distracted attention on the prolonging input. And the patch-based Transformer baselines
can not work well with a short input length (e.g., 96) because leveraging patching on the short time
series leads to very few tokens, limiting attention’s ability in long-term modeling.

Table 1: Multivariate long-term forecasting results. A lower MSE or MAE indicates a better
performance. Results are averaged from three input lengths I ∈ {96, 384, 768} and four prediction
lengths T ∈ {96, 192, 336, 720}. See Table 8, 9, 10 for full results with more baselines.

Models DeformableTST Pathformer CARD GPT4TS PatchTST iTransformer FEDformer Autoformer RLinear TiDE TimesNet
(Ours) [6] [51] [58] [35] [22] [57] [47] [18] [9] [46]

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 0.413 0.430 0.439 0.446 0.430 0.438 0.479 0.459 0.438 0.444 0.461 0.463 0.505 0.495 0.483 0.488 0.429 0.434 0.505 0.492 0.524 0.485

ETTh2 0.336 0.381 0.361 0.401 0.355 0.391 0.399 0.425 0.356 0.394 0.390 0.417 0.441 0.466 0.437 0.466 0.358 0.396 0.499 0.505 0.436 0.450

ETTm1 0.358 0.386 0.375 0.394 0.368 0.386 0.373 0.393 0.365 0.391 0.386 0.405 0.456 0.462 0.576 0.523 0.379 0.390 0.383 0.397 0.412 0.414

ETTm2 0.267 0.321 0.277 0.329 0.268 0.321 0.286 0.331 0.273 0.327 0.281 0.335 0.335 0.376 0.347 0.389 0.266 0.320 0.310 0.373 0.311 0.351

Weather 0.233 0.266 0.239 0.269 0.247 0.278 0.249 0.280 0.236 0.269 0.244 0.276 0.317 0.360 0.327 0.366 0.253 0.283 0.254 0.295 0.271 0.299

Solar-Energy 0.199 0.255 0.248 0.300 0.228 0.282 0.259 0.318 0.234 0.303 0.214 0.266 0.394 0.460 0.866 0.703 0.279 0.320 0.277 0.351 0.261 0.319

ECL 0.169 0.267 0.176 0.272 0.174 0.269 0.182 0.271 0.177 0.271 0.175 0.271 0.227 0.342 0.218 0.321 0.189 0.280 0.201 0.300 0.213 0.315

Traffic 0.410 0.280 0.454 0.312 0.426 0.291 0.453 0.309 0.430 0.290 0.424 0.306 0.685 0.423 0.725 0.433 0.502 0.330 0.579 0.401 0.593 0.318

4.2 Short-term Forecasting

Time series community are currently focusing on long-term forecasting tasks, where the input length
and prediction length are adequate for patching technique. However, the short-term forecasting tasks,
where the input length and prediction length are limited, are also of extensive practical value in
real-world appilications. The study on short-term forecasting tasks has been stagnant in recent years
and the advanced patching technique proposed in long-term forecasting is hard to apply to short-term
forecasting due to the limited input length. To validate the applicability of our DeformableTST in
short-term forecasting, we extensively conduct experiments in following two kinds of tasks.

Setups of Multivariate Short-term Forecasting We conduct multivariate short-term forecasting
experiments on 8 popular real-world benchmarks, including Exchange [17], ILI [3], 2 ETTh [55] and
4 PEMS datasets [5]. We set prediction lengths as {6, 12, 18} and set the input length to be 2 times
of the prediction length, which precisely meets the definition of limited input lengths in short-term
forecasting. We calculate the MSE and MAE of multivariate time series forecasting as metrics.

Setups of Univariate Short-term Forecasting The study on univariate short-term forecasting tasks
used to be popular in the early time series community [29, 31, 37] but has been stagnant in recent
years. In this paper, we bring back this classic tasks and conduct experiments on following datasets:
M1 [29], M3 [30], M4 [31], Tourism [1], NN5 [41], Hospital [12] and KDD Cup [13]. Following the
classic settings [29, 37], we calculate the SMAPE as metric. Specially for M4 datasets, we follow the
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rules of M4 competition [31] and use MASE and OWA as additional metrics. The prediction lengths
are from 2 to 48 and the input length is 2 times of the prediction length.

We emphasize the difference between multivariate and univariate tasks as follows. In multivariate
tasks, all input samples are obtained by sliding window from the same multivariate long series.
Therefore, there is a high degree of similarity among the input samples in multivariate tasks. In
contrast, the input samples in univariate tasks are collected from many different univariate time series
sources. As a result, the input samples in univariate tasks may differ from each other and have quite
different temporal property, making the univariate short-term forecasting tasks much more difficult.

Results As shown in Table 2 and 3. DeformableTST performs excellently in short-term forecasting.
Compared with the second best model, it achieves averaged 14.1% SMAPE promotion in univariate
tasks and averaged 25.6% MSE promotion in multivariate tasks. As a comparison, the limited input
length in short-term forecasting poses a dilemma for patch-based Transformer forecasters. Using
patching will lead to very few tokens, making it unable to fully utilize the long-term modeling ability
in attention. Not using patching will lead to the distracted attention on all input time points, making
it hard to extract non-trivial temporal information. As a result, previous patch-based Transformer
forecasters fail in many cases of short-term forecasting tasks. And in multivariate short-term forecast-
ing, the variate correlation plays an important role to the final results for the temporal information
is limited due to the limited input length. Therefore, CARD and iTransformer, which can learn
the variate correlation, achieve ideal performance in PEMS datasets whose variate number is very
large. As a variate-independent method, our DeformableTST still competes favorably with these
cross-variate methods, further demonstrating its excellent temporal modeling ability to extract useful
information even from the limited inputs. It will be our future work to study how to capture the
multivariate correlation in our model, which will further improve the performance. Meanwhile,
the great diversity in univariate samples makes it more difficult to learn temporal representation in
univariate short-term forecasting. Therefore, the linear baselines and iTransformer, which adopt
linear layers on the temporal dimension, suffer from inferior performance due to the insufficient
representation capability in linear layers. By contrast, thanks to the better representation capability
in attention mechanism and the better focusing capacity in the proposed deformable attention, our
DeformableTST is particularly good at short-term forecasting tasks, which is a great improvement
than previous Transformer-based models, therefore successfully broadening the applicability of
Transformer-based models.

Table 2: Multivariate short-term forecasting results. A lower MSE or MAE indicates a better
performance. Results are averaged from three prediction lengths T ∈ {6, 12, 18}. And the PEMS
results are further averaged by four subsets. Full results and more baselines are listed in Table 11.

Models DeformableTST Pathformer CARD GPT4TS PatchTST iTransformer FEDformer Autoformer RLinear TiDE TimesNet
(Ours) [6] [51] [58] [35] [22] [57] [47] [18] [9] [46]

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 0.373 0.381 0.456 0.424 0.490 0.433 0.475 0.427 0.551 0.467 0.435 0.412 0.468 0.445 0.494 0.459 0.743 0.543 0.699 0.528 0.440 0.419

ETTh2 0.142 0.239 0.159 0.257 0.163 0.262 0.164 0.263 0.172 0.269 0.164 0.262 0.176 0.279 0.174 0.278 0.211 0.303 0.192 0.289 0.171 0.266

ILI 1.767 0.798 3.130 1.160 3.872 1.371 3.365 1.227 4.217 1.435 2.510 1.009 4.407 1.509 4.500 1.523 5.262 1.611 5.444 1.648 2.544 0.930

Exchange 0.013 0.070 0.015 0.077 0.016 0.083 0.015 0.077 0.016 0.085 0.014 0.073 0.028 0.119 0.026 0.117 0.022 0.100 0.019 0.093 0.016 0.081

PEMS (Avg) 0.104 0.208 0.137 0.235 0.108 0.215 0.133 0.239 0.140 0.254 0.102 0.208 0.122 0.239 0.147 0.268 0.165 0.272 0.188 0.291 0.130 0.237

Table 3: Univariate short-term forecasting results. Lower metrics indicate better performance. Weight
Avg and Avg means the results are (weighted) averaged by subdatasets. We only report the SMAPE
as metric here. Full results with more metrics for M4 are provided in Table 12 and 13. ∗. in the
Transformers indicates the name of ∗former.

Models DeformableTST Path. CARD GPT4TS Cross. PatchTST iTransformer FED. Auto. RLinear TiDE TimesNet DLinear SCINet N-HiTS N-BEATS
(Ours) [6] [51] [58] [53] [35] [22] [57] [47] [18] [9] [46] [52] [20] [4] [37]

M1 (Avg) 15.250 18.684 18.001 19.771 20.055 18.662 21.626 20.056 21.066 27.709 27.119 19.126 24.422 26.910 25.466 19.810

M3 (Avg) 11.747 17.747 16.381 19.082 14.234 14.721 17.035 18.988 17.681 34.291 20.876 18.770 20.588 24.226 20.869 17.823

M4 (Weight Avg) 11.688 12.001 11.815 12.008 13.475 11.952 11.878 12.840 12.909 13.398 13.711 11.829 13.639 12.699 11.927 11.851

Tourism (Avg) 21.502 31.345 23.349 35.018 23.618 23.442 24.429 37.295 35.793 39.756 44.504 33.279 37.363 37.739 35.934 42.832

NN5 14.372 18.186 22.491 16.012 17.672 17.717 20.449 17.072 19.650 22.868 23.424 22.355 23.781 26.486 16.645 23.282

Hospital 19.088 21.551 21.392 22.587 20.907 22.123 20.785 28.646 25.749 26.184 29.103 21.182 23.015 28.807 25.309 23.594

KDD Cup 50.694 56.740 61.653 54.713 58.472 59.449 60.615 59.013 57.617 62.922 63.447 56.618 59.523 63.358 54.855 62.305
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5 Model Analysis

5.1 Ablation Study

Figure 5: Ablation study in long-term forecasting tasks. From the top to the bottom, each row means
one design that we add on PatchTST to modify it into our DeformableTST. We report the averaged
MSE of four prediction lengths. The memory usage is recorded under input-96-predict-96 setting
with the same batch size. A lower MSE (a shorter blue bar) and a smaller memory usage (a green star
closer to the vertical axis) means better performance and efficiency. More results are in Appendix F.1.

In order to validate the effectiveness of our designs, we start from a PatchTST [35] and gradually
update it into our DeformableTST by adding our designs step by step. And we provide the trajectory
going from a PatchTST to a DeformableTST in Figure 5. To get rid of the over-reliance on patching,
we remove the patching design in PatchTST. After this step, PatchTST suffers from degradation in both
performance and efficiency. To address these issues, more designs are adopted in DeformableTST.

First, the removal of patching leads to a larger number of tokens processed in the attention computa-
tion, resulting in heavier memory usage. Responding to the issue, we adopt a hierarchical structure to
gradually reduce the number of tokens, therefore alleviating the efficiency problem. Secondly, full
attention is hard to focus on the important time points after removing the patching design, leading to
trivial temporal representation and performance degradation. To help attention better focus without
patching, we propose deformable attention as a complementary. Thanks to the better focusing ability
in deformable attention, we observe great performance improvement after adding this design. Mean-
while, we also adopt some local enhancement modules in our design since locality is also important
in time series [20]. And this step also brings performance improvement. After equipped with all
our designs, DeformableTST shows great performance and efficiency superiority than the baseline
PatchTST, which proves the necessity and effectiveness of our designs.

5.2 Compared Deformable Attention with Prior-based Sparse Attention

In Section 1, we propose that sparse attention can help attention to better foucs without patching
and further argue that data-drivien sparse attention is more appropriate than prior-based ones. To
validate the necessity and effectiveness of using data-drivien sparse attention, we compare our
deformable attention with some prior-based sparse attentions in time series community, that is
ProbSparse Attention in Informer [55], AutoCorrelation in Autoformer [47] and FourierAttention
in FEDformer [57]. We also include the local window attention in Swin Transformer [23] and the
vanilla full attention [43] adopted in most baselines [22, 53, 35] for a comprehensive comparison.

As shown in Table 4, our deformable attention surpasses other prior-based competitors in all bench-
marks. This is because the priors are hard to match all kind of inputs due to the diverse pattern in
different time series, resulting in the inferior performance of prior-based sparse attentions. Different
from them, our deformable attention is a data-driven sparse attention that can learn from the input
time series, therefore is more flexible to the diverse property in different time series.

Our deformable attention also surpasses the full attention by a large margin for it can better focus
on the important time points to learn non-trivial temporal representation, while the full attention
suffers from the distracted attention and trivial temporal representation due to the lack of patching.
Although window attention can help attention avoid being distracted in a global range by limiting the
attention computation into local windows, its performance still decreases due to the lack of long-term
modeling ability, which is an important ability a time series forecaster should have.
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Table 4: Comparison of our Deformable Attention with other prior-based Sparse Attentions. We
replace our Deformable Attention with other prior-based Sparse Attentions for comparison. We
conduct the experiment in long-term forecasting tasks with input length 96 and list the averaged
MSE/MAE of four different prediction lengths. More results are in Appendix F.2.

Dataset ETTh1 ETTh2 ETTm1 ETTm2 Weather Solar ECL Traffic

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Deformable Attention 0.425 0.428 0.346 0.382 0.373 0.395 0.283 0.327 0.251 0.276 0.224 0.256 0.183 0.278 0.445 0.285
ProbSparse Attention 0.431 0.434 0.379 0.407 0.390 0.404 0.295 0.338 0.267 0.287 0.270 0.291 0.201 0.293 0.483 0.327

AutoCorrelation 0.449 0.443 0.375 0.401 0.393 0.405 0.292 0.334 0.263 0.286 0.275 0.298 0.215 0.302 0.561 0.373
FourierAttention 0.453 0.443 0.374 0.401 0.384 0.402 0.290 0.334 0.266 0.287 0.265 0.285 0.208 0.299 0.493 0.333

Full Attention 0.447 0.444 0.373 0.400 0.385 0.403 0.293 0.337 0.260 0.286 0.247 0.273 0.201 0.292 0.469 0.316
Window Attention 0.441 0.437 0.370 0.398 0.380 0.397 0.291 0.334 0.263 0.285 0.255 0.280 0.204 0.295 0.488 0.327

6 Conclusion and Future Work

In this paper, we expose an emerging issue faced by advanced Transformer-based models that they
have limited applicability in time series forecasting tasks due to their over-reliance on patching. And
we further find out the reason behind this problem is that full attention relies overly on the guidance of
patching to focus on the important time points and learn non-trivial temporal representation. To tackle
this problem, we propose DeformableTST as an effective solution, which equips with deformable
attention that can better focus on the important time points by itself to get rid of the over-reliance on
patching. Experimentally, DeformableTST achieves the consistent state-of-the-art performance in a
broader range of time series forecasting tasks, especially achieving promising performance in tasks
unsuitable for patching, therefore successfully reducing the reliance on patching and broadening the
applicability of Transformer-based models. And we hope our findings can prompt people to rethink
the relationship between Transformer-based models and patching technique, thereby designing more
powerful Transformer-based forecasters with a wider range of applicability.
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A Datasets

Table 5: Detailed descriptions of multivariate datasets. The Dataset Size denotes the total number of
time points in (Train, Validation, Test) split respectively.

Tasks Dataset Variates Prediction Length Dataset Size Frequency Information

Long-term
Forecasting

ETTh1 7 {96, 192, 336, 720} (8545, 2881, 2881) Hourly Electricity

ETTh2 7 {96, 192, 336, 720} (8545, 2881, 2881) Hourly Electricity

ETTm1 7 {96, 192, 336, 720} (34465, 11521, 11521) 15min Electricity

ETTm2 7 {96, 192, 336, 720} (34465, 11521, 11521) 15min Electricity

Weather 21 {96, 192, 336, 720} (36792, 5271, 10540) 10min Weather

Solar-Energy 137 {96, 192, 336, 720} (36601, 5161, 10417) 10min Energy

ECL 321 {96, 192, 336, 720} (18317, 2633, 5261) Hourly Electricity

Traffic 862 {96, 192, 336, 720} (12185, 1757, 3509) Hourly Transportation

Short-term
Forecasting

PEMS03 358 {6, 12, 18} (15617, 5135, 5135) 5min Transportation

PEMS04 307 {6, 12, 18} (10172, 3375, 3375) 5min Transportation

PEMS07 883 {6, 12, 18} (16911, 5622, 5622) 5min Transportation

PEMS08 170 {6, 12, 18} (10690, 3548, 3548) 5min Transportation

Exchange 8 {6, 12, 18} (5120, 665, 1422) Daily Illness

ILI 7 {6, 12, 18} (676, 96, 194) Weekly Economy

ETTh1 7 {6, 12, 18} (8545, 2881, 2881) Hourly Electricity

ETTh2 7 {6, 12, 18} (8545, 2881, 2881) Hourly Electricity

Table 6: Datasets and mapping details of univariate short-term forecasting datasets.

Dataset Sample Numbers (train set,test set) Variate Numbers Prediction Length

M1 Yearly (181, 181) 1 2
M1 Quarterly (203, 203) 1 3
M1 Monthly (617 , 617 ) 1 8
M3 Yearly (645, 645) 1 3
M3 Quarterly (756, 756) 1 4
M3 Monthly (1428, 1428) 1 10
M3 Other (174 , 174 ) 1 10
M4 Yearly (23000, 23000) 1 6
M4 Quarterly (24000, 24000) 1 8
M4 Monthly (48000, 48000) 1 18
M4 Weekly (359, 359) 1 13
M4 Daily (4227, 4227) 1 14
M4 Hourly (414, 414) 1 48
Tourism Quarterly (427, 427) 1 5
Tourism Monthly (366 , 366 ) 1 15
NN5 Weekly (111, 111 ) 1 15
Hospital Monthly (767 , 767 ) 1 10
KDD Cup Hourly (270 , 270) 1 48

A.1 Multivariate Long-term and Short-term Forecasting Datasets

We evaluate the multivariate long-term forecasting performance on 8 popular real-world datasets,
including Weather, Traffic, ECL, Solar-energy and 4 ETT datasets (ETTh1, ETTh2, ETTm1, ETTm2).
And for multivariate short-term forecasting tasks, we choose Exchange, ILI, 2 ETTh datasets and 4
PEMS datasets for benchmarking. These datasets have been extensively utilized for benchmarking
and cover many aspects of life.

15

88017 https://doi.org/10.52202/079017-2794



The variate number, dataset size and sampling frequency of each dataset are summarized in Table
5 . We follow standard protocol [55] and split all datasets into training, validation and test set in
chronological order by the ratio of 6:2:2 for the ETT and PEMS dataset and 7:1:2 for the other
datasets. And training, validation and test sets are zero-mean normalized with the mean and standard
deviation of training set. Each of above datasets only contains one continuous long time series, and
we obtain samples by sliding window.

More introduction of the datasets are as follow:

1) Weather1 contains 21 meteorological indicators of Germany in 2020.

2) Traffic2 contains the road occupancy rates measured by 862 different sensors on San Francisco
Bay area freeways in 2 years.

3) ECL(Electricity)3 contains hourly electricity consumption of 321 clients from 2012 to 2014.

4) ETT(Electricity Transformer Temperature)4 contains the data collected from two different elec-
tricity transformers with 2 different resolutions (15 minutes and 1 hour) by 7 sensors.

5) Solar(Solar-Eneryg)5 contains 137 time series representing the solar power production in Alabama
state in 2006.

6) PEMS6 is collected from California freeway and contains 4 subsets.

7) Exchange7 the daily exchange rates of eight different countries ranging from 1990 to 2016.

8) ILI(Influenza-Like Illness)8 contains 7 indicators of influenza-like illness (ILI) patients in the
United States between 2002 and 2021.

A.2 Univariate Short-term Forecasting Datasets

We conduct univariate short-term forecasting experiments on 7 popular datasets, including M1, M3,
M4, Tourism, NN5, Hospital and KDD Cup. We emphasize the difference between multivariate and
univariate tasks as follows. In multivariate tasks, all input samples are obtained by sliding window
from the same multivariate long series. Therefore, there is a high degree of similarity between the
input samples in multivariate tasks. In contrast, the input samples in univariate tasks are collected
from many different univariate time series sources. As a result, the input samples in univariate
tasks may differ from each other and have quite different temporal property, making the univariate
short-term forecasting tasks much more difficult.

Table 6 summarizes details of statistics of univariate short-term forecasting datasets. And more
introduction of the datasets are as follow:

1) M19 contains 3 subsets with different frequency: Yearly, Quarterly and Monthly. The series are
belonging to 7 different domains: macro 1, macro 2, micro 1, micro 2, micro 3, industry and
demographic.

2) M310 contains 4 subsets with different frequency: Yearly, Quarterly, Monthly and Others. The
series are belonging to 6 different domains: demographic, micro, macro, industry, finance and
other.

3) M411 contains 6 subsets with different frequency: Yearly, Quarterly, Monthly, Weekly, Daily
and Hourly. The series are belonging to a wide range of economic, industrial, financial and
demographic areas.

1https://www.bgc-jena.mpg.de/wetter/
2https://pems.dot.ca.gov/
3https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
4https://github.com/zhouhaoyi/ETDataset
5https://www.nrel.gov/grid/solar-power-data.html
6http://pems.dot.ca.gov/
7https://github.com/laiguokun/multivariate-time-series-data
8https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html
9https://doi.org/10.2307/2345077

10https://doi.org/10.1016/S0169-2070(00)00057-1
11https://doi.org/10.1016/j.ijforecast.2019.04.014
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4) Tourism12 contains 3 subsets with different frequency (Yearly, Quarterly and Monthly) used in
the Kaggle Tourism forecasting competition. Considering the dataset size, we only use Tourism
Quarterly and Tourism Monthly.

5) NN513 contains weekly time series from the banking domain.
6) Hospital Dataset14 contains 767 monthly time series that represent the patient counts related to

medical products from January 2000 to December 2006.
7) KDD Cup15 contains 270 hourly time series representing the air quality levels by multiple

measurements such as PM2.5, PM10, NO2, CO, O3 and SO2.

B Experiment details

B.1 Long-term Forecasting

Implementation Details Our method is trained with the L2 loss, using the ADAM [16] optimizer
with an initial learning rate in {10−3, 5 × 10−4, 10−4}. The default training process is 50 epochs
with proper early stopping. The mean square error (MSE) and mean absolute error (MAE) are used
as metrics. All the experiments are repeated 5 times with different seeds and the means of the metrics
are reported as the final results. All the deep learning networks are implemented in PyTorch[38] and
conducted on NVIDIA A100 40GB GPU.

Model Parameter By default, DeformableTST contains 4 Transfomer blocks. And we adopt
downsampling layers between two blocks, which will halve the series’ length and double the model
dimension. The dimension D of the first block is set as 16. The expansion α is set as 4. The number
of important time points Nsamp is set as 12. We optionally adopt non-overlap patching depended
on the input lengths. When input length is 96, we do not adopt patching. When input length is
384, the patch size is 4. When input length is 768, the patch size is 8. For baseline models, if the
original papers conduct long-term forecasting experiments on the dataset we use, we follow the
official codes with the recommended model parameters in the original papers, including the number
of blocks, model dimension, etc. Otherwise, their model parameters are searched from following
searching space: number of blocks L from {2, 4, 6}, model dimension D from {64, 128, 256} and
FFN expansion α from {1, 2, 4, 8}.

Metric We adopt the mean square error (MSE) and mean absolute error (MAE) of multivariate
time series forecasting as metrics.

MSE =
1

T

T∑
i=0

(Ŷi −Yi)
2

MAE =
1

T

T∑
i=0

∣∣∣Ŷi −Yi

∣∣∣
where Ŷ,Y ∈ RT×M are the M variates prediction results of length T and corresponding ground
truth. Ŷi means the i-th time point in the prediction result.

B.2 Multi-variate Short-term Forecasting

Implementation Details Our method is trained with the L2 loss, using the ADAM [16] optimizer
with an initial learning rate in {10−3, 5 × 10−4, 10−4}. The default training process is 50 epochs
with proper early stopping. The mean square error (MSE) and mean absolute error (MAE) are used
as metrics. All the experiments are repeated 5 times with different seeds and the means of the metrics
are reported as the final results. All the deep learning networks are implemented in PyTorch[38] and
conducted on NVIDIA A100 40GB GPU.

12https://cran.r-project.org/web/packages/Tcomp
13http://www.neural-forecasting-competition.com/NN5/
14https://cran.r-project.org/package=expsmooth
15https://www.kdd.org/kdd2018/kdd-cup
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Model Parameter By default, DeformableTST contains 6 Transformer blocks with the model
dimension D = 256 and FFN expansion α = 4. The number of important time points Nsamp is in
the range of 1 to 12 in short-term forecasting tasks, which is depended on the different input lengths.
Due to the limited input lengths, we do not adopt patching and downsampling layers in short-term
forecasting tasks. For baseline models, we follow the official codes with the recommended model
parameters and some of their model parameters are re-searched from following searching space:
number of blocks L from {2, 4, 6}, model dimension D from {64, 128, 256} and FFN expansion α
from {1, 2, 4, 8}.

Metric We adopt the mean square error (MSE) and mean absolute error (MAE) of multivariate
time series forecasting as metrics.

MSE =
1

T

T∑
i=0

(Ŷi −Yi)
2

MAE =
1

T

T∑
i=0

∣∣∣Ŷi −Yi

∣∣∣
where Ŷ,Y ∈ RT×M are the M variates prediction results of length T and corresponding ground
truth. Ŷi means the i-th time point in the prediction result.

B.3 Univariate Short-term Forecasting

Implementation Details Our method is trained with the SMAPE loss, using the ADAM [16]
optimizer with an initial learning rate of 5× 10−4. The default training process is 50 epochs with
proper early stopping. Following [46], we fix the input length to be 2 times of prediction length for
all models. All the experiments are repeated 5 times with different seeds and the means of the metrics
are reported as the final results.

Model Parameter By default, DeformableTST contains 4 Transformer blocks with the model
dimension D = 256 and FFN expansion α = 4. Due to the limited input lengths, we do not adopt
patching and downsampling layers in short-term forecasting tasks.

Metric For the M4 datasets, following [31, 37], we adopt the symmetric mean absolute percentage
error (SMAPE), mean absolute scaled error (MASE) and overall weighted average (OWA) as the
metrics, which can be calculated as follows:

SMAPE =
200

T

T∑
i=1

|Yi − Ŷi|
|Yi|+ |Ŷi|

, MAPE =
100

T

T∑
i=1

|Yi − Ŷi|
|Yi|

,

MASE =
1

T

T∑
i=1

|Yi − Ŷi|
1

T−p
∑T

j=p+1 |Yj −Yj−p|
, OWA =

1

2

[
SMAPE

SMAPENaïve2
+

MASE
MASENaïve2

]
,

where p is the periodicity of the data. Ŷ,Y ∈ RT×M are the M variates prediction results of length
T and corresponding ground truth. Ŷi means the i-th time point in the prediction result.

For other datasts, we adopt the symmetric mean absolute percentage error (SMAPE) as the metric,
which can be calculated as follows:

SMAPE =
200

T

T∑
i=1

|Yi − Ŷi|
|Yi|+ |Ŷi|

,

where Ŷ,Y ∈ RT×M are the M variates prediction results of length T and corresponding ground
truth. Ŷi means the i-th time point in the prediction result.

C Pseudo-code of DeformableTST

We provide the pseudo-code of DeformableTST in Algorithm 1.
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Algorithm 1 DeformableTST - Overall Architecture.
Require: Input time series Xin ∈ RB×I×M ; batch size B; variates number M ; input length I;

prediction length T ; DeformableTST block number L; feature series’s embedding dimension

in the i-th block Di; feature series’s length in the i-th block Ni. Boolean flag to indicate using

downsampling layers or not Use_Downsampling.

1: Xin = RevIN(Xin, mode=norm) .X ∈ RB×I×M

2: Xin = Xin.transpose .X ∈ RB×M×I

3: Xin = Xin.reshape .Xin ∈ R(BM)×1×I

4: . Embedding the input time series variate-independently with optional patching.

5: X0 = Embedding(Xin) .X0 ∈ R(BM)×D0×N0

6: for i in {1, . . . , L}: . Run through DeformableTST blocks.

7: for . The local perception unit (LPU) is used to learn the local temporal information.

8: for Xlocal
i = LPU(Xi−1) .Xlocal

i ∈ R(BM)×Di×Ni

9: for . The deformable attention is adopted to learn the global temporal information.

10: for Xglobal
i = LayerNorm

(
Xlocal

i + DeformAttention(Xlocal
i )

)
.Xglobal

i ∈ R(BM)×Di×Ni

11: for . The feed-forward network injected with a depth-wise convolution (ConvFFN) is used to

learn the local temporal information and the new feature representation.

12: for Xi = LayerNorm
(
Xglobal

i + ConvFFN(Xglobal
i )

)
.Xi ∈ R(BM)×Di×Ni

13: for . Adopting the optional downsampling layer between two blocks.

14: for if i < L and Use_Downsampling is True:

15: for if Xi = DownSampling(Xi) .Xi ∈ R(BM)×(2Di)×(Ni/2)

16: End for

17: XL = XL.reshape .XL ∈ RB×M×(DLNL)

18: Ŷ = Projection(XL) . Obtaining the forecasting series with Projection, Ŷ ∈ RB×M×T

19: Ŷ = Ŷ.transpose . Ŷ ∈ RB×T×M

20: Ŷ = RevIN(Ŷ, mode=denorm) . Ŷ ∈ RB×T×M

21: Return Ŷ . Return the prediction result Ŷ

D Parameter Sensitivity

To evaluate the parameter sensitivity of our DeformableTST, we perform experiments with varying
model parameters, including number of blocks ranging from L = {2, 4, 6}, model dimension
ranging from D = {16, 32, 64}, FFN expansion ranging from α = {1, 2, 4, 8}, number of important
time points ranging from Nsamp = {6, 12, 24} and learning rate ranging from lr = {10−3, 5 ×
10−4, 10−4}.
The results are shown in Figure 6. In general, our model is robust to the choice of model parameters.
Compared with the default block number L = 4, stacking more blocks will bring further performance
improvement. Considering both performance and efficiency, we recommend to fix the block number
as 4 in long term forecasting tasks.

We also compare our model sensitivity to patch size with PatchTST’s. As shown in Figure 6, our
model is less sensitive to the choice of patch size, therefore successfully getting rid of the over-reliance
of patching.
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Figure 6: Parameter sensitivity. For patch size, we conduct experiments under input-384-predict-96
settings and adopt PatchTST as comparison. For other parameters, we conduct experiments under
input-96-predict-96 settings.

E More ERF Results

In Section 1, we visualize the effective receptive fields (ERFs) of PatchTST [35] based on [27, 14] to
see which parts of the time points in input series are focused by the model when extracting temporal
representations. Here we provide more ERF visualization results with other patch-based Transformer
forecasters. In a ERF figure, a brighter area means that the model tends to focus on these time points
when extracting temporal representation, and thus these time points will contribute more to the middle
point of the final representation.

As shown in Figure 7, the ERFs of the patch-based Transformer forecasters highly rely on the
guidance of patching. If without patching, nearly all time points in input series are equally focused
by the model and the model performs worse, exposing the problem of distracted attention. This
finding means that attention has not learned to distinguish the importance of each time point in input
series, leading to trivial representation. After patching, these Transformer forecasters tend to foucs
on some important time points based on a patch partition. This phenomenon means that: although
patching can help attention better focus on important time points, the guidance of patching tend to
distribute the focused points evenly among all patches. But in real-world scenarios, it is possible that
the important time points are not evenly distributed among all patches, which is inconsistent with
the tendency in the guidance of patching, leading to the inferior performance of these patch-based
Transformer forecasters in some cases. There is also some difference among the ERFs of these
patch-based Transformer forecasters due to their different specific designs. PatchTST [35] tends to
only focus on a very few time points in each patch and ignore others. But CARD [51] can focus
on more time points in one patch thanks to its additional attention across feature dimension, which
aligns the information within patch. And the ERF of GPT4TS [58] also reveals the autoregressive
property in GPT [40] backbone, making it only focus on the time points before the the middle point.

By contrast, we provide the ERF of our DeformableTST in Figure 8 for comparison. By default, we
set Nsamp = 12. Under input-96 settings, our DeformableTST does not adopt patching technique
but can still focus on a small number of important time points, proving that our DeformableTST
can foucs well by itself without the need of patching. Under input-384 settings, we adopt a small
size patching and divide the input series into 96 patches to alleviate the efficiency issue. Under such
condition, our DeformableTST still does not focus based on a patch partition. Although adopting
patching technique, the focused time points in our DeformableTST is not evenly distributed among
all 96 patches, therefore being less reliant on patching.
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Figure 7: The Effective Receptive Field (ERF) of more patch-based Transformer forecasters. A
brighter area means that these time points are focused by the model when extracting temporal
representation.

Figure 8: The Effective Receptive Field (ERF) of DeformableTST. A brighter area means that these
time points are focused by the model when extracting temporal representation.

F More Results of Model Analysis in Section 5

F.1 More Ablation Results in Section 5.1

More ablation results are provided in Figure 9.

Figure 9: More ablation study results in long-term forecasting tasks. From the top to the bottom,
each row means one design we add on PatchTST to modify it into our DeformableTST. We report the
averaged MSE of four prediction lengths. The memory usage is recorded under input-96-predict-96
setting with the same batch size. A lower MSE (a shorter blue bar) and a smaller memory usage (a
green star closer to the vertical axis) means better performance and efficiency.

F.2 More Comparison Results in Section 5.2

Case Study We provide the visualization of learned important time points as an intuitive compari-
sion for some popular sparse attentions in time series community. As shown in Figure 10, the keys
of window attention are restricted within the local window. And the important keys for ProbSparse
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attention tend to gather in a small area around the time point that most fits the prior. This property
makes window attention and ProbSparse attention only focus on a small local area and fail to find the
important time points in a global range, leanding to the loss of information. Meanwhile, imporatant
time points refer to the time points that reflect the property of time series and make contribution to
better performance. And the types of imporatant time points are varied (e.g., time point in the similar
changing stage, the inflexion point, the extremal point and so on). But AutoCorrelation can only
foucs on the time points in the similar changing stage due to its prior, resulting in the lack of diversity.
By contrast, our deformable attention can find the important time points in a global range for the
reference points in the sampling process are uniformly distributed throughout the whole input time
series. And our deformable attention can also learn different types of important time points because
it is less reliant on specific priors and can foucs on any appropriate important time points based on
the learnable offsets learned from the input series. Therefore, our deformable attention can find more
types of important time points in a wider range, therefore being more flexible to the diverse property
in different time series and performing better than other prior-based sparse attentions.

Figure 10: Visualization of learned important time points. For clearness, we show the top-6 keys with
respect to the last query for attentions and show the top-6 time delays for AutoCorrelation.

G Model Efficiency

We comprehensively compare the forecasting performance, training speed, and memory usage of
some advanced Transformer-based models. And we compare the efficiency under two representative
conditions: (1) the dataset is of a large variate number, (2) the experiment setting is of a long input
length and prediction length. And the results are shown in Figure 11. Considering both performance
and efficiency, our DeformableTST shows great superiority than other Transformer-based competitors,
therefore being an ideal choice in time series forecasting.

Figure 11: Model efficiency comparison.

H Error Bar

We report the standard deviation of DeformableTST performance under five runs with different
random seeds in Table 7, which exhibits that the performance of DeformableTST is stable.
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Table 7: Error bar of DeformableTST.

Dataset ETTh1 ETTh2 ETTm1 ETTm2

Horizon MSE MAE MSE MAE MSE MAE MSE MAE

96 0.373±0.002 0.396±0.001 0.281±0.001 0.334±0.001 0.316±0.001 0.358±0.001 0.178±0.000 0.262±0.000
192 0.427±0.001 0.427±0.000 0.353±0.002 0.382±0.001 0.354±0.001 0.380±0.001 0.243±0.002 0.301±0.002
336 0.437±0.003 0.426±0.002 0.341±0.000 0.379±0.000 0.379±0.002 0.405±0.002 0.310±0.001 0.348±0.001
720 0.464±0.003 0.462±0.003 0.410±0.004 0.431±0.003 0.443±0.004 0.438±0.003 0.400±0.002 0.398±0.002

Dataset Weather Solar-Energy ECL Traffic

Horizon MSE MAE MSE MAE MSE MAE MSE MAE
96 0.169±0.000 0.213±0.000 0.193±0.001 0.232±0.001 0.158±0.002 0.255±0.002 0.418±0.002 0.271±0.002
192 0.216±0.002 0.255±0.001 0.225±0.002 0.261±0.001 0.168±0.004 0.265±0.004 0.437±0.004 0.276±0.003
336 0.271±0.001 0.294±0.001 0.239±0.000 0.267±0.000 0.183±0.003 0.280±0.004 0.449±0.005 0.290±0.005
720 0.347±0.003 0.344±0.002 0.238±0.000 0.265±0.000 0.223±0.004 0.313±0.004 0.477±0.004 0.303±0.004

I More Implementation Details about Deformable Attention

I.1 Implementation of Linear Interpolation

As mentioned in Section 3.2, we sample the important time points based on a set of learnable
coordinates called sampling points Tsamp. In practice, after obtaining the sampling points Tsamp,
we achieve this sampling process via linear interpolation following [48, 60]. In details, we calculate
the values of these important time points by linear interpolation φ(·; ·) to make this sampling process
differentiable. And the linear interpolation φ(·; ·) is calculated as follows:

φ (X;Tsamp)=

N−1∑
t=0

g(t,De-normalize(Tsamp))X[:, t, :], (11)

where g(a, b) = max(0, 1− |a− b|) and t indexes all the coordinates on X ∈ RM×D×N . The value
of Tsamp is de-normalized back to the range of [0, N − 1] before passed into g. As g would be
non-zero only on the 2 integral coordinates closest to Tsamp, it simplifies Eq.(11) to calculate the
value of each important time point as the weighted average of its only 2 closest time points.

I.2 Deformable Relative Positional Bias

Due to the deforming process and hierarchical representation, the fixed absolute positional embedding
is not suitable for our design. Instead, we adopt a relative position bias to encode the position
information into the attention map [23], which represents the relative positional information between
the query token series Q and the key token series K̃.

Considering the input feature series X ∈ RM×D×N of the attention module, the relative coordinate
displacements of this length-N series contain (2N − 1) different values and lie in the range of
[−N,N ]. Then we will maintain a learnable parameterized bias table B̂ ∈ RH×(2N−1)×1, in which
each element represents one of the above (2N − 1) relative coordinate displacements.

Meanwhile, to represent the relative positional information between the query token series Q and the
key token series K̃, we also need to denote the coordinates of Q and K̃. The coordinates of Q are
generated from a 1D uniform grid with size N . It indicates the 1D coordinates of all N time points in
the query series Q. These coordinate values are normalized to [−1,+1], where −1 indicates the start
of the series and +1 means the end of the series. And the coordinates of K̃ are the sampling point
Tsamp. Then the relative position R ∈ RN×Nsamp×1 is calculated as follows:

R = Qcoord − Transpose(Tsamp) (12)

Then we clip R by−1 and +1 and obtain deformable relative positional bias B by linear interpolation
to the learnable parameterized bias table B̂ with the continuous relative displacements R as follows:

B = φ(B̂;R) (13)
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J More Discussions on Patching and Transformer-based Models

J.1 Discussions on Patching

Impact on Performance As shown in Figure 1 and 7, although patching can help attention better
focus on important time points, the guidance of patching tend to distribute the focused points evenly
among all patches. But in real-world scenarios, it is possible that the important time points are not
evenly distributed among all patches. In some cases, most of the important time points are only
distributed in a few patches while other patches only contain unimportant time points. Such cases are
inconsistent with the tendency in the guidance of patching, leading to the inferior performance of the
patch-based Transformer forecasters in these cases. And patching technique must work with a very
long input length because leveraging patching on short time series leads to very few tokens, limiting
attention’s ability in long-term modeling. These drawbacks limit the performance and applicability
of the previous patch-based Transformer forecasters.

Impact on Efficiency In addition to helpling attention focus better, patching can also improve the
efficiency by reducing the number of tokens. When facing a very long input length (e.g., 384 and
768), we still adopt a small patch size in our design for better efficiency. Therefore this paper is not
a call to completely abandon patching technique in all cases, but an extension to scenarios where
patching technique is not suitable.

J.2 Compared with Typical Transformer-based Models

To highlight how we innovate and upgrade the Transformer-based model, we compare our De-
formableTST with some milestone Transformer-based models in time series community.

Compared with PatchTST [35] PatchTST is a milestone Transformer-based model and De-
formableTST can be seen as an improvement of it to solve the problem of over-reliance on patching.
PatchTST highly relies on patching for patching can force the attention to focus on only a few impor-
tant time points within each patch and ignore other time points within the patch. But the choose of
patch size is a dilemma in practice: a too large patch size could lead to many other time points within
the patch being ignored, resulting in the risk of neglecting other priorities. And a too small patch
size will lead to a huge amount of tokens, making it hard to focus. This dilemma cannot be resolved
by PatchTST itself. To address this issue, we propose deformable attention, an attention mechanism
that can focus well by itself, to get rid of the need of patching. Since deformable attention enjoys
great focusing ability, we can use a small patch size to mitigate the problem of some priorities being
ignored and free to worry about attention being hard to focus on important time points, successfully
reducing the reliance on patching and resolving the dilemma.

Compared with iTransformer [22] DeformableTST and iTransformer are the lastest Transformer-
based forecasters. Both methods focus on the underperformance issue of previous attention mecha-
nism in temporal modeling and devote to designing a more powerful Transformer-based forecaster.
But they hold different opinions. Although iTransformer still adopts a Transformer architecture, it
insists that attention is not suitable for temporal modeling while linear layers are more appropriate.
This design makes its performance more similar to linear-based forecasters rather than Transformer-
based ones, being less competitive in difficult tasks (e.g., univariate short-term forecasting tasks with
lower similarity between samples). Different from iTransformer, our DeformableTST follows the
tradition of Transformer-based models to still uses attention for temporal modeling. Specifically,
in this paper, through experiments and analysis, we further attribute the underperformance issue
of previous attention mechanism to their over-reliance on patching and thus propose deformable
attention to solve this problem, successfully designing a more powerful Transformer-based forecaster
and broadening the applicability of Transformer-based models.

K Limitations and Future Work

In this paper, we mainly focus on how to better use attention in temporal modeling and do not consider
the multivariate correlating. It will be our future work to study how to further capture the multivariate
correlation in our model, which can hopefully improve the performance, especially in datasets with
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large number of variates. Besides, we will further explore the potential of our DeformableTST in
more time series analysis tasks and further develop its performance by large-scale pre-training in the
future.

L Ethics Statement and Broader Impact

Our work only focuses on the time series forecasting problem, so there is no potential ethical risk.

Our model achieves the state-of-the-art performance on a wider range of time series forecasting tasks,
covering a large amount of real-world scenarios. Therefore, the proposed model makes it promising
to tackle real-world forecasting problem, helping our society make better decisions and prevent
risks in advance. And we hope our findings can prompt people to rethink the relationship between
Transformer-based models and patching technique, thereby designing more powerful Transformer-
based forecasters with a wider range of applicability.

Our paper mainly focuses on scientific research and has no obvious negative social impact.

M Reproducibility Statement

In the main text, we have strictly formalized the model architecture with equations. All the imple-
mentation details are included in the Appendix, including dataset descriptions, metrics, model, and
experiment configurations. Code is available at this repository: https://github.com/luodhhh/
DeformableTST.

N Full Results

Due to the space limitation of the main text, we place the full results of all experiments and results of
more baselines in the following subsections. And we also provide the showcases in Appendix O.

N.1 Long-term Forecasting with Input Length 96

The full results of long-term forecasting with input length 96 are provided in Table 8. And more
results with more baselines are also included.

N.2 Long-term Forecasting with Input Length 384

The full results of long-term forecasting with input length 384 are provided in Table 9. And more
results with more baselines are also included.

N.3 Long-term Forecasting with Input Length 768

The full results of long-term forecasting with input length 768 are provided in 10. And more results
with more baselines are also included.

N.4 Multivariate Short-term Forecasting

The full results of multivariate short-term forecasting tasks are provided in Table 11. And more
results with more baselines are also included.

N.5 Univariate Short-term Forecasting

The full results of M4 datasets are provided in Table 12. And the full results of other datasets are
provided in Table 13.
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Table 8: Full results of the long-term forecasting tasks with input length 96. We compare extensive
competitive models under different prediction lengths. The input sequence length is set to 96 for all
baselines. Avg means the average results from all four prediction lengths.

Models DeformableTST Pathformer CARD GPT4TS PatchTST iTransformer FEDformer Autoformer RLinear TiDE TimesNet DLinear SCINet
(Ours) [6] [51] [58] [35] [22] [57] [47] [18] [9] [46] [52] [20]

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

96 0.373 0.396 0.396 0.409 0.398 0.405 0.394 0.404 0.414 0.419 0.386 0.405 0.376 0.419 0.449 0.459 0.386 0.395 0.479 0.464 0.384 0.402 0.386 0.400 0.654 0.599
192 0.427 0.427 0.449 0.434 0.448 0.433 0.463 0.442 0.460 0.445 0.441 0.436 0.420 0.448 0.500 0.482 0.437 0.424 0.525 0.492 0.436 0.429 0.437 0.432 0.719 0.631
336 0.437 0.426 0.476 0.447 0.494 0.457 0.487 0.452 0.501 0.466 0.487 0.458 0.459 0.465 0.521 0.496 0.479 0.446 0.565 0.515 0.491 0.469 0.481 0.459 0.778 0.659
720 0.464 0.462 0.489 0.474 0.483 0.472 0.496 0.472 0.500 0.488 0.503 0.491 0.506 0.507 0.514 0.512 0.481 0.470 0.594 0.558 0.521 0.500 0.519 0.516 0.836 0.699

Avg 0.425 0.428 0.453 0.441 0.456 0.442 0.460 0.443 0.469 0.454 0.454 0.447 0.440 0.460 0.496 0.487 0.446 0.434 0.541 0.507 0.458 0.450 0.456 0.452 0.747 0.647

E
T

T
h2

96 0.281 0.334 0.289 0.342 0.294 0.341 0.308 0.361 0.302 0.348 0.297 0.349 0.358 0.397 0.346 0.388 0.288 0.338 0.400 0.440 0.340 0.374 0.333 0.387 0.707 0.621
192 0.353 0.382 0.377 0.401 0.375 0.391 0.390 0.409 0.388 0.400 0.380 0.400 0.429 0.439 0.456 0.452 0.374 0.390 0.528 0.509 0.402 0.414 0.477 0.476 0.860 0.689
336 0.341 0.379 0.375 0.399 0.419 0.426 0.421 0.438 0.426 0.433 0.428 0.432 0.496 0.487 0.482 0.486 0.415 0.426 0.643 0.571 0.452 0.452 0.594 0.541 1.000 0.744
720 0.410 0.431 0.426 0.443 0.422 0.438 0.428 0.452 0.431 0.446 0.427 0.445 0.463 0.474 0.515 0.511 0.420 0.440 0.874 0.679 0.462 0.468 0.831 0.657 1.249 0.838

Avg 0.346 0.382 0.367 0.396 0.378 0.399 0.387 0.415 0.387 0.407 0.383 0.407 0.437 0.449 0.450 0.459 0.374 0.398 0.611 0.550 0.414 0.427 0.559 0.515 0.954 0.723

E
T

T
m

1 96 0.316 0.358 0.329 0.361 0.327 0.359 0.334 0.370 0.329 0.367 0.334 0.368 0.379 0.419 0.505 0.475 0.355 0.376 0.364 0.387 0.338 0.375 0.345 0.372 0.418 0.438
192 0.354 0.380 0.374 0.390 0.372 0.381 0.377 0.389 0.367 0.385 0.377 0.391 0.426 0.441 0.553 0.496 0.391 0.392 0.398 0.404 0.374 0.387 0.380 0.389 0.439 0.450
336 0.379 0.405 0.400 0.401 0.403 0.401 0.410 0.409 0.399 0.410 0.426 0.420 0.445 0.459 0.621 0.537 0.424 0.415 0.428 0.425 0.410 0.411 0.413 0.413 0.490 0.485
720 0.443 0.438 0.467 0.439 0.467 0.438 0.471 0.442 0.454 0.439 0.491 0.459 0.543 0.490 0.671 0.561 0.487 0.450 0.487 0.461 0.478 0.450 0.474 0.453 0.595 0.550

Avg 0.373 0.395 0.393 0.398 0.392 0.395 0.398 0.402 0.387 0.400 0.407 0.410 0.448 0.452 0.588 0.517 0.414 0.407 0.419 0.419 0.400 0.406 0.403 0.407 0.485 0.481

E
T

T
m

2 96 0.178 0.262 0.176 0.260 0.176 0.259 0.179 0.263 0.175 0.259 0.180 0.264 0.203 0.287 0.255 0.339 0.182 0.265 0.207 0.305 0.187 0.267 0.193 0.292 0.286 0.377
192 0.243 0.301 0.245 0.306 0.246 0.306 0.247 0.308 0.241 0.302 0.250 0.309 0.269 0.328 0.281 0.340 0.246 0.304 0.290 0.364 0.249 0.309 0.284 0.362 0.399 0.445
336 0.310 0.348 0.308 0.343 0.302 0.343 0.313 0.350 0.305 0.343 0.311 0.348 0.325 0.366 0.339 0.372 0.307 0.342 0.377 0.422 0.321 0.351 0.369 0.427 0.637 0.591
720 0.400 0.398 0.406 0.401 0.400 0.404 0.409 0.403 0.402 0.400 0.412 0.407 0.421 0.415 0.433 0.432 0.407 0.398 0.558 0.524 0.408 0.403 0.554 0.522 0.960 0.735

Avg 0.283 0.327 0.284 0.328 0.281 0.328 0.287 0.331 0.281 0.326 0.288 0.332 0.305 0.349 0.327 0.371 0.286 0.327 0.358 0.404 0.291 0.333 0.350 0.401 0.571 0.537

W
ea

th
er

96 0.169 0.213 0.165 0.206 0.160 0.208 0.191 0.231 0.177 0.218 0.174 0.214 0.217 0.296 0.266 0.336 0.192 0.232 0.202 0.261 0.172 0.220 0.196 0.255 0.221 0.306
192 0.216 0.255 0.218 0.259 0.207 0.250 0.236 0.267 0.225 0.259 0.221 0.254 0.276 0.336 0.307 0.367 0.240 0.271 0.242 0.298 0.219 0.261 0.237 0.296 0.261 0.340
336 0.271 0.294 0.266 0.292 0.265 0.292 0.287 0.303 0.278 0.297 0.278 0.296 0.339 0.380 0.359 0.395 0.292 0.307 0.287 0.335 0.280 0.306 0.283 0.335 0.309 0.378
720 0.347 0.344 0.346 0.342 0.346 0.346 0.363 0.352 0.354 0.348 0.358 0.347 0.403 0.428 0.419 0.428 0.364 0.353 0.351 0.386 0.365 0.359 0.345 0.381 0.377 0.427

Avg 0.251 0.276 0.249 0.275 0.245 0.274 0.269 0.288 0.259 0.281 0.258 0.278 0.309 0.360 0.338 0.382 0.272 0.291 0.271 0.320 0.259 0.287 0.265 0.317 0.292 0.363

So
la

r-
E

ne
rg

y 96 0.193 0.232 0.269 0.300 0.230 0.281 0.254 0.295 0.234 0.286 0.203 0.237 0.242 0.342 0.884 0.711 0.322 0.339 0.312 0.399 0.250 0.292 0.290 0.378 0.237 0.344
192 0.225 0.261 0.296 0.314 0.267 0.308 0.268 0.312 0.267 0.310 0.233 0.261 0.285 0.380 0.834 0.692 0.359 0.356 0.339 0.416 0.296 0.318 0.320 0.398 0.280 0.380
336 0.239 0.267 0.320 0.334 0.289 0.319 0.327 0.336 0.290 0.315 0.248 0.273 0.290 0.296 0.941 0.723 0.397 0.369 0.368 0.430 0.319 0.330 0.353 0.415 0.304 0.389
720 0.238 0.265 0.334 0.337 0.294 0.327 0.333 0.347 0.289 0.317 0.249 0.275 0.357 0.427 0.882 0.717 0.397 0.356 0.370 0.425 0.338 0.337 0.356 0.413 0.308 0.388

Avg 0.224 0.256 0.305 0.321 0.270 0.309 0.296 0.323 0.270 0.307 0.233 0.262 0.291 0.381 0.885 0.711 0.369 0.356 0.347 0.417 0.301 0.319 0.330 0.401 0.282 0.375

E
C

L

96 0.158 0.255 0.161 0.256 0.155 0.246 0.189 0.268 0.181 0.270 0.148 0.240 0.193 0.308 0.201 0.317 0.201 0.281 0.237 0.329 0.168 0.272 0.197 0.282 0.247 0.345
192 0.168 0.265 0.173 0.269 0.170 0.259 0.198 0.280 0.188 0.274 0.162 0.253 0.201 0.315 0.222 0.334 0.201 0.283 0.236 0.330 0.184 0.289 0.196 0.285 0.257 0.355
336 0.183 0.280 0.189 0.283 0.194 0.285 0.205 0.283 0.204 0.293 0.178 0.269 0.214 0.329 0.231 0.338 0.215 0.298 0.249 0.344 0.198 0.300 0.209 0.301 0.269 0.369
720 0.223 0.313 0.233 0.319 0.229 0.316 0.246 0.316 0.246 0.324 0.225 0.317 0.246 0.355 0.254 0.361 0.257 0.331 0.284 0.373 0.220 0.320 0.245 0.333 0.299 0.390

Avg 0.183 0.278 0.189 0.282 0.187 0.277 0.210 0.287 0.205 0.290 0.178 0.270 0.214 0.327 0.227 0.338 0.219 0.298 0.251 0.344 0.192 0.295 0.212 0.300 0.268 0.365

Tr
af

fic

96 0.418 0.271 0.490 0.314 0.448 0.300 0.531 0.349 0.462 0.295 0.395 0.268 0.587 0.366 0.613 0.388 0.649 0.389 0.805 0.493 0.593 0.321 0.650 0.396 0.788 0.499
192 0.437 0.276 0.495 0.319 0.465 0.303 0.535 0.350 0.466 0.296 0.417 0.276 0.604 0.373 0.616 0.382 0.601 0.366 0.756 0.474 0.617 0.336 0.598 0.370 0.789 0.505
336 0.449 0.290 0.523 0.342 0.477 0.306 0.547 0.353 0.482 0.304 0.433 0.283 0.621 0.383 0.622 0.337 0.609 0.369 0.762 0.477 0.629 0.336 0.605 0.373 0.797 0.508
720 0.477 0.303 0.559 0.354 0.509 0.323 0.554 0.359 0.514 0.322 0.467 0.302 0.626 0.382 0.660 0.408 0.647 0.387 0.719 0.449 0.640 0.350 0.645 0.394 0.841 0.523

Avg 0.445 0.285 0.517 0.332 0.475 0.308 0.542 0.353 0.481 0.304 0.428 0.282 0.610 0.376 0.628 0.379 0.626 0.378 0.760 0.473 0.620 0.336 0.625 0.383 0.804 0.509

1st Count 16 17 0 4 6 5 0 0 2 1 7 7 1 0 0 0 0 4 0 0 1 0 1 0 0 0
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Table 9: Full results of the long-term forecasting tasks with input length 384. We compare extensive
competitive models under different prediction lengths. The input sequence length is set to 384 for all
baselines. Avg means the average results from all four prediction lengths.

Models DeformableTST Pathformer CARD GPT4TS PatchTST iTransformer FEDformer Autoformer RLinear TiDE TimesNet DLinear SCINet
(Ours) [6] [51] [58] [35] [22] [57] [47] [18] [9] [46] [52] [20]

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

96 0.369 0.396 0.386 0.413 0.377 0.402 0.415 0.419 0.376 0.401 0.413 0.427 0.398 0.439 0.446 0.448 0.372 0.397 0.451 0.455 0.414 0.428 0.373 0.399 0.419 0.435
192 0.410 0.417 0.413 0.425 0.404 0.418 0.447 0.447 0.410 0.421 0.449 0.450 0.454 0.471 0.425 0.448 0.411 0.421 0.482 0.473 0.469 0.467 0.407 0.421 0.471 0.469
336 0.391 0.414 0.437 0.438 0.428 0.435 0.457 0.449 0.434 0.439 0.455 0.458 0.469 0.476 0.517 0.499 0.425 0.429 0.501 0.486 0.502 0.480 0.435 0.445 0.515 0.497
720 0.447 0.464 0.463 0.472 0.437 0.459 0.471 0.462 0.451 0.471 0.528 0.521 0.630 0.559 0.557 0.536 0.450 0.465 0.510 0.509 0.645 0.542 0.479 0.501 0.529 0.515

Avg 0.404 0.423 0.425 0.448 0.412 0.429 0.448 0.444 0.418 0.433 0.461 0.464 0.488 0.486 0.486 0.483 0.415 0.428 0.486 0.481 0.508 0.479 0.424 0.442 0.483 0.479

E
T

T
h2

96 0.272 0.334 0.283 0.350 0.275 0.336 0.319 0.371 0.275 0.337 0.306 0.363 0.426 0.469 0.395 0.444 0.278 0.338 0.370 0.431 0.347 0.395 0.305 0.368 0.327 0.383
192 0.325 0.369 0.341 0.389 0.339 0.376 0.395 0.419 0.338 0.375 0.366 0.402 0.393 0.432 0.396 0.439 0.356 0.393 0.441 0.474 0.403 0.430 0.399 0.428 0.375 0.412
336 0.319 0.373 0.382 0.421 0.360 0.397 0.414 0.439 0.352 0.391 0.400 0.427 0.390 0.436 0.397 0.441 0.364 0.408 0.469 0.499 0.441 0.457 0.471 0.476 0.438 0.453
720 0.395 0.433 0.426 0.452 0.390 0.425 0.450 0.470 0.398 0.435 0.435 0.454 0.513 0.520 0.463 0.484 0.419 0.447 0.504 0.530 0.471 0.483 0.764 0.621 0.439 0.461

Avg 0.328 0.377 0.358 0.403 0.341 0.384 0.394 0.425 0.341 0.385 0.377 0.412 0.431 0.464 0.413 0.452 0.354 0.397 0.446 0.484 0.416 0.441 0.485 0.473 0.395 0.427

E
T

T
m

1 96 0.292 0.344 0.306 0.353 0.295 0.346 0.298 0.352 0.292 0.344 0.314 0.366 0.339 0.408 0.528 0.504 0.316 0.355 0.311 0.353 0.338 0.377 0.302 0.345 0.316 0.363
192 0.335 0.371 0.337 0.378 0.339 0.371 0.345 0.379 0.340 0.374 0.353 0.389 0.397 0.442 0.583 0.534 0.337 0.366 0.344 0.372 0.363 0.386 0.337 0.368 0.360 0.390
336 0.365 0.392 0.371 0.396 0.373 0.392 0.370 0.391 0.367 0.394 0.383 0.405 0.549 0.501 0.593 0.539 0.375 0.389 0.378 0.391 0.389 0.405 0.368 0.384 0.397 0.409
720 0.417 0.418 0.437 0.433 0.420 0.414 0.428 0.426 0.422 0.427 0.437 0.435 0.470 0.472 0.618 0.553 0.426 0.415 0.433 0.422 0.514 0.465 0.422 0.418 0.453 0.439

Avg 0.352 0.381 0.363 0.390 0.357 0.381 0.360 0.387 0.355 0.385 0.372 0.399 0.439 0.456 0.581 0.533 0.364 0.381 0.367 0.385 0.401 0.408 0.357 0.379 0.382 0.400

E
T

T
m

2 96 0.170 0.257 0.172 0.261 0.165 0.256 0.179 0.268 0.166 0.255 0.179 0.271 0.277 0.349 0.285 0.361 0.164 0.253 0.189 0.292 0.217 0.290 0.165 0.260 0.182 0.275
192 0.227 0.295 0.252 0.312 0.229 0.298 0.243 0.306 0.228 0.299 0.243 0.313 0.297 0.357 0.308 0.366 0.227 0.297 0.250 0.333 0.251 0.317 0.238 0.319 0.254 0.321
336 0.278 0.327 0.285 0.335 0.274 0.328 0.315 0.352 0.280 0.331 0.295 0.345 0.349 0.386 0.347 0.387 0.275 0.329 0.309 0.372 0.312 0.358 0.309 0.370 0.298 0.353
720 0.365 0.384 0.384 0.399 0.367 0.383 0.389 0.396 0.373 0.389 0.377 0.397 0.419 0.425 0.424 0.429 0.368 0.386 0.412 0.435 0.481 0.448 0.404 0.423 0.392 0.407

Avg 0.260 0.316 0.273 0.327 0.259 0.316 0.282 0.331 0.262 0.319 0.273 0.332 0.336 0.379 0.341 0.386 0.259 0.316 0.290 0.358 0.315 0.353 0.279 0.343 0.282 0.339

W
ea

th
er

96 0.149 0.198 0.154 0.205 0.155 0.209 0.164 0.215 0.150 0.201 0.160 0.210 0.245 0.304 0.267 0.322 0.174 0.227 0.176 0.228 0.161 0.216 0.172 0.232 0.161 0.218
192 0.192 0.238 0.218 0.249 0.207 0.255 0.208 0.253 0.194 0.244 0.203 0.251 0.295 0.347 0.291 0.335 0.216 0.261 0.219 0.263 0.234 0.278 0.215 0.272 0.211 0.261
336 0.244 0.278 0.263 0.283 0.263 0.294 0.256 0.289 0.243 0.279 0.252 0.287 0.338 0.377 0.322 0.354 0.263 0.294 0.266 0.298 0.286 0.316 0.264 0.317 0.259 0.296
720 0.317 0.331 0.334 0.326 0.355 0.352 0.328 0.340 0.319 0.333 0.325 0.339 0.372 0.387 0.372 0.386 0.329 0.340 0.333 0.345 0.373 0.368 0.324 0.364 0.285 0.315

Avg 0.225 0.261 0.242 0.266 0.245 0.277 0.239 0.274 0.226 0.264 0.235 0.272 0.313 0.354 0.313 0.349 0.246 0.281 0.249 0.284 0.264 0.295 0.244 0.296 0.229 0.272

So
la

r-
E

ne
rg

y 96 0.173 0.241 0.215 0.286 0.175 0.243 0.225 0.296 0.197 0.291 0.187 0.246 0.328 0.425 0.946 0.696 0.223 0.297 0.228 0.300 0.217 0.311 0.216 0.316 0.206 0.306
192 0.187 0.248 0.220 0.301 0.209 0.262 0.234 0.315 0.214 0.319 0.209 0.269 0.404 0.474 0.869 0.702 0.251 0.312 0.259 0.345 0.273 0.338 0.244 0.334 0.229 0.328
336 0.193 0.260 0.232 0.311 0.209 0.272 0.236 0.318 0.235 0.328 0.222 0.281 0.431 0.498 0.834 0.694 0.265 0.338 0.273 0.353 0.266 0.368 0.259 0.346 0.235 0.325
720 0.204 0.272 0.250 0.329 0.227 0.281 0.251 0.334 0.225 0.329 0.231 0.291 0.563 0.559 0.783 0.700 0.284 0.345 0.294 0.346 0.251 0.336 0.283 0.350 0.247 0.321

Avg 0.189 0.255 0.229 0.307 0.205 0.265 0.237 0.316 0.218 0.317 0.212 0.272 0.432 0.489 0.858 0.698 0.256 0.323 0.264 0.336 0.252 0.338 0.251 0.337 0.229 0.320

E
C

L

96 0.132 0.231 0.137 0.232 0.133 0.233 0.137 0.232 0.133 0.232 0.140 0.240 0.199 0.318 0.137 0.246 0.151 0.251 0.161 0.266 0.192 0.300 0.151 0.250 0.162 0.269
192 0.150 0.250 0.159 0.257 0.157 0.256 0.157 0.255 0.148 0.246 0.158 0.258 0.224 0.343 0.203 0.308 0.163 0.262 0.169 0.273 0.202 0.306 0.165 0.263 0.178 0.283
336 0.167 0.267 0.175 0.270 0.169 0.268 0.171 0.269 0.169 0.265 0.175 0.275 0.249 0.364 0.236 0.338 0.179 0.277 0.181 0.284 0.262 0.350 0.180 0.280 0.188 0.294
720 0.203 0.299 0.209 0.305 0.200 0.292 0.205 0.297 0.202 0.295 0.215 0.310 0.251 0.364 0.243 0.345 0.218 0.308 0.210 0.308 0.257 0.349 0.215 0.313 0.205 0.306

Avg 0.163 0.262 0.170 0.266 0.165 0.262 0.168 0.263 0.163 0.260 0.172 0.271 0.231 0.347 0.205 0.309 0.178 0.275 0.180 0.283 0.228 0.326 0.178 0.277 0.183 0.288

Tr
af

fic

96 0.362 0.262 0.410 0.286 0.380 0.270 0.396 0.281 0.385 0.277 0.393 0.298 0.714 0.434 0.489 0.318 0.433 0.305 0.489 0.364 0.556 0.305 0.428 0.304 0.495 0.375
192 0.385 0.268 0.413 0.291 0.398 0.277 0.411 0.289 0.401 0.283 0.414 0.312 0.625 0.420 0.811 0.471 0.441 0.307 0.493 0.370 0.557 0.304 0.437 0.308 0.509 0.386
336 0.397 0.275 0.439 0.315 0.409 0.289 0.420 0.295 0.410 0.287 0.432 0.322 0.690 0.428 0.736 0.440 0.453 0.313 0.512 0.383 0.590 0.312 0.448 0.314 0.526 0.393
720 0.434 0.298 0.464 0.333 0.437 0.301 0.451 0.312 0.443 0.304 0.472 0.347 0.755 0.455 0.900 0.523 0.483 0.331 0.539 0.404 0.617 0.323 0.480 0.333 0.565 0.411

Avg 0.395 0.276 0.432 0.306 0.406 0.284 0.420 0.294 0.410 0.288 0.428 0.320 0.696 0.434 0.734 0.438 0.453 0.314 0.508 0.380 0.580 0.311 0.448 0.315 0.524 0.391

1st Count 24 22 0 0 5 5 0 0 3 3 0 0 0 0 0 0 2 2 0 0 0 0 0 1 0 0
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Table 10: Full results of the long-term forecasting tasks with input length 768. We compare
extensive competitive models under different prediction lengths. The input sequence length is set to
768 for all baselines. Avg means the average results from all four prediction lengths.

Models DeformableTST Pathformer CARD GPT4TS PatchTST iTransformer FEDformer Autoformer RLinear TiDE TimesNet DLinear SCINet
(Ours) [6] [51] [58] [35] [22] [57] [47] [18] [9] [46] [52] [20]

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

96 0.367 0.404 0.389 0.417 0.377 0.410 0.454 0.449 0.379 0.410 0.401 0.428 0.481 0.486 0.374 0.436 0.372 0.400 0.446 0.457 0.510 0.483 0.372 0.401 0.427 0.447
192 0.409 0.430 0.423 0.432 0.410 0.428 0.512 0.485 0.416 0.433 0.433 0.452 0.489 0.500 0.403 0.460 0.420 0.433 0.483 0.478 0.537 0.505 0.411 0.425 0.472 0.475
336 0.406 0.437 0.449 0.450 0.430 0.443 0.525 0.489 0.440 0.451 0.475 0.481 0.647 0.563 0.516 0.514 0.438 0.441 0.508 0.496 0.691 0.561 0.438 0.450 0.525 0.509
720 0.458 0.481 0.497 0.493 0.470 0.487 0.623 0.532 0.469 0.483 0.567 0.549 0.733 0.610 0.572 0.562 0.469 0.487 0.518 0.519 0.680 0.556 0.486 0.508 0.548 0.531

Avg 0.410 0.438 0.440 0.448 0.422 0.442 0.529 0.489 0.426 0.444 0.469 0.478 0.588 0.540 0.466 0.493 0.425 0.440 0.489 0.488 0.605 0.526 0.427 0.446 0.493 0.491

E
T

T
h2

96 0.269 0.334 0.284 0.349 0.279 0.341 0.340 0.386 0.275 0.339 0.307 0.363 0.446 0.478 0.413 0.471 0.267 0.333 0.365 0.427 0.431 0.446 0.325 0.386 0.333 0.386
192 0.325 0.372 0.346 0.393 0.350 0.384 0.420 0.429 0.336 0.378 0.441 0.442 0.449 0.480 0.459 0.503 0.332 0.378 0.436 0.471 0.444 0.471 0.432 0.450 0.375 0.411
336 0.324 0.380 0.379 0.424 0.367 0.403 0.436 0.443 0.357 0.401 0.452 0.456 0.413 0.455 0.420 0.461 0.357 0.405 0.459 0.495 0.513 0.499 0.535 0.508 0.399 0.432
720 0.412 0.446 0.422 0.456 0.392 0.430 0.470 0.476 0.397 0.436 0.434 0.462 0.511 0.528 0.500 0.516 0.424 0.454 0.494 0.529 0.520 0.494 0.947 0.689 0.433 0.460

Avg 0.333 0.383 0.358 0.405 0.347 0.390 0.417 0.434 0.341 0.389 0.409 0.431 0.455 0.485 0.448 0.488 0.345 0.393 0.439 0.480 0.477 0.483 0.560 0.508 0.385 0.422

E
T

T
m

1 96 0.291 0.347 0.301 0.353 0.296 0.343 0.306 0.359 0.295 0.351 0.316 0.370 0.444 0.465 0.466 0.463 0.312 0.355 0.317 0.360 0.378 0.397 0.307 0.351 0.334 0.377
192 0.325 0.372 0.351 0.381 0.339 0.371 0.339 0.377 0.329 0.373 0.347 0.387 0.546 0.500 0.535 0.506 0.344 0.374 0.344 0.374 0.414 0.415 0.337 0.368 0.363 0.392
336 0.359 0.390 0.382 0.403 0.368 0.388 0.370 0.395 0.364 0.395 0.388 0.412 0.471 0.478 0.614 0.548 0.366 0.387 0.373 0.391 0.443 0.429 0.364 0.384 0.392 0.409
720 0.418 0.423 0.443 0.438 0.417 0.420 0.432 0.429 0.420 0.432 0.460 0.456 0.465 0.474 0.616 0.557 0.414 0.413 0.422 0.418 0.510 0.474 0.413 0.414 0.453 0.443

Avg 0.348 0.383 0.369 0.394 0.355 0.381 0.362 0.390 0.352 0.388 0.378 0.406 0.482 0.479 0.558 0.519 0.359 0.382 0.364 0.386 0.436 0.429 0.355 0.379 0.386 0.405

E
T

T
m

2 96 0.169 0.258 0.171 0.262 0.164 0.255 0.181 0.274 0.182 0.272 0.185 0.278 0.305 0.362 0.331 0.384 0.161 0.252 0.186 0.291 0.244 0.314 0.161 0.253 0.186 0.278
192 0.229 0.299 0.239 0.312 0.226 0.298 0.249 0.311 0.247 0.314 0.239 0.317 0.344 0.386 0.351 0.397 0.227 0.299 0.245 0.333 0.287 0.342 0.222 0.302 0.245 0.322
336 0.280 0.333 0.293 0.349 0.272 0.328 0.326 0.346 0.303 0.354 0.298 0.355 0.385 0.418 0.383 0.422 0.276 0.330 0.304 0.373 0.326 0.370 0.296 0.361 0.302 0.358
720 0.349 0.384 0.387 0.409 0.390 0.399 0.397 0.392 0.371 0.398 0.401 0.416 0.420 0.437 0.426 0.440 0.353 0.386 0.392 0.430 0.450 0.442 0.400 0.425 0.386 0.410

Avg 0.257 0.319 0.273 0.333 0.263 0.320 0.288 0.331 0.276 0.335 0.281 0.341 0.364 0.401 0.373 0.411 0.254 0.317 0.282 0.357 0.327 0.367 0.270 0.335 0.280 0.342

W
ea

th
er

96 0.146 0.198 0.149 0.200 0.152 0.208 0.166 0.220 0.148 0.202 0.165 0.217 0.293 0.345 0.297 0.349 0.170 0.224 0.171 0.225 0.173 0.228 0.167 0.226 0.171 0.234
192 0.191 0.239 0.197 0.242 0.227 0.269 0.210 0.257 0.194 0.241 0.205 0.253 0.306 0.350 0.313 0.354 0.213 0.259 0.214 0.261 0.258 0.296 0.211 0.267 0.211 0.262
336 0.241 0.280 0.247 0.286 0.262 0.298 0.255 0.291 0.243 0.282 0.259 0.296 0.343 0.373 0.336 0.368 0.257 0.292 0.258 0.295 0.311 0.334 0.256 0.306 0.266 0.304
720 0.310 0.331 0.315 0.336 0.362 0.356 0.322 0.338 0.310 0.328 0.321 0.342 0.369 0.392 0.374 0.392 0.320 0.337 0.321 0.340 0.416 0.404 0.315 0.353 0.322 0.345

Avg 0.222 0.262 0.227 0.266 0.251 0.283 0.238 0.277 0.224 0.263 0.238 0.277 0.328 0.365 0.330 0.366 0.240 0.278 0.241 0.280 0.290 0.316 0.237 0.288 0.243 0.286

So
la

r-
E

ne
rg

y 96 0.165 0.238 0.192 0.263 0.177 0.246 0.223 0.289 0.191 0.273 0.174 0.242 0.327 0.431 0.878 0.686 0.191 0.268 0.197 0.272 0.219 0.279 0.190 0.273 0.181 0.277
192 0.184 0.254 0.198 0.270 0.210 0.268 0.238 0.314 0.211 0.282 0.194 0.259 0.313 0.410 0.836 0.674 0.209 0.277 0.216 0.293 0.228 0.297 0.211 0.291 0.201 0.288
336 0.191 0.263 0.226 0.283 0.219 0.277 0.243 0.316 0.221 0.293 0.207 0.272 0.613 0.606 0.901 0.731 0.224 0.285 0.233 0.317 0.239 0.312 0.227 0.303 0.227 0.312
720 0.199 0.262 0.220 0.270 0.233 0.294 0.275 0.343 0.235 0.297 0.217 0.279 0.579 0.591 0.809 0.710 0.228 0.288 0.237 0.320 0.238 0.313 0.234 0.316 0.234 0.316

Avg 0.185 0.254 0.209 0.272 0.210 0.271 0.245 0.316 0.215 0.286 0.198 0.263 0.458 0.510 0.856 0.700 0.213 0.280 0.221 0.301 0.231 0.300 0.216 0.296 0.211 0.298

E
C

L

96 0.132 0.234 0.134 0.236 0.133 0.230 0.134 0.229 0.130 0.235 0.142 0.241 0.219 0.336 0.141 0.248 0.142 0.242 0.143 0.250 0.203 0.310 0.145 0.243 0.154 0.261
192 0.148 0.248 0.156 0.256 0.157 0.256 0.153 0.250 0.153 0.249 0.160 0.258 0.229 0.347 0.240 0.331 0.156 0.254 0.154 0.258 0.205 0.313 0.159 0.257 0.167 0.274
336 0.165 0.266 0.179 0.271 0.181 0.283 0.176 0.272 0.168 0.269 0.179 0.277 0.243 0.359 0.242 0.334 0.172 0.269 0.176 0.275 0.228 0.331 0.174 0.274 0.177 0.285
720 0.197 0.296 0.209 0.307 0.207 0.303 0.206 0.296 0.205 0.298 0.221 0.312 0.250 0.363 0.269 0.351 0.212 0.301 0.213 0.303 0.241 0.342 0.208 0.307 0.202 0.306

Avg 0.161 0.261 0.170 0.268 0.170 0.268 0.167 0.262 0.164 0.263 0.176 0.272 0.235 0.351 0.223 0.316 0.170 0.267 0.171 0.272 0.219 0.324 0.171 0.270 0.175 0.282

Tr
af

fic

96 0.355 0.261 0.389 0.277 0.369 0.267 0.371 0.265 0.373 0.267 0.380 0.291 0.782 0.470 0.606 0.385 0.402 0.285 0.451 0.344 0.565 0.303 0.400 0.287 0.456 0.352
192 0.380 0.271 0.396 0.283 0.381 0.270 0.387 0.271 0.384 0.269 0.400 0.306 0.608 0.391 0.861 0.501 0.411 0.289 0.459 0.346 0.579 0.308 0.411 0.291 0.469 0.358
336 0.393 0.281 0.417 0.307 0.402 0.283 0.398 0.279 0.399 0.275 0.420 0.317 0.624 0.396 0.905 0.529 0.425 0.296 0.470 0.353 0.573 0.304 0.425 0.298 0.483 0.365
720 0.434 0.300 0.447 0.319 0.437 0.299 0.436 0.303 0.439 0.295 0.466 0.344 0.985 0.579 0.883 0.513 0.464 0.317 0.491 0.362 0.601 0.318 0.465 0.322 0.526 0.386

Avg 0.391 0.278 0.412 0.297 0.397 0.280 0.398 0.280 0.399 0.277 0.417 0.315 0.750 0.459 0.814 0.482 0.426 0.297 0.468 0.351 0.579 0.308 0.425 0.300 0.484 0.365

1st Count 25 19 0 0 3 5 0 1 2 1 0 0 0 0 0 0 2 4 0 0 0 0 2 3 0 0
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Table 11: Full results of the multivariate short-term forecasting tasks. We compare extensive
competitive models under different prediction lengths. The input length is 2 times of the prediction
length. Avg means the average results from all three prediction lengths.

Models DeformableTST Pathformer CARD GPT4TS PatchTST iTransformer FEDformer Autoformer RLinear TiDE TimesNet DLinear SCINet
(Ours) [6] [51] [58] [35] [22] [57] [47] [18] [9] [46] [52] [20]

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

6 0.507 0.428 0.608 0.481 0.728 0.521 0.670 0.495 0.759 0.535 0.589 0.472 0.622 0.500 0.609 0.494 1.049 0.636 1.090 0.663 0.606 0.479 0.870 0.624 0.592 0.482
12 0.306 0.358 0.386 0.399 0.377 0.393 0.382 0.395 0.454 0.437 0.371 0.393 0.381 0.410 0.434 0.436 0.611 0.505 0.523 0.469 0.349 0.383 0.486 0.461 0.418 0.434
18 0.305 0.358 0.373 0.392 0.365 0.386 0.372 0.390 0.440 0.430 0.346 0.372 0.401 0.425 0.439 0.446 0.570 0.489 0.483 0.453 0.366 0.396 0.463 0.446 0.422 0.435

Avg 0.373 0.381 0.456 0.424 0.490 0.433 0.475 0.427 0.551 0.467 0.435 0.412 0.468 0.445 0.494 0.459 0.743 0.543 0.699 0.528 0.440 0.419 0.606 0.510 0.477 0.450

E
T

T
h2

6 0.132 0.230 0.145 0.246 0.150 0.252 0.152 0.254 0.156 0.259 0.151 0.253 0.149 0.262 0.139 0.257 0.203 0.302 0.180 0.286 0.154 0.254 0.194 0.326 0.176 0.301
12 0.139 0.238 0.160 0.259 0.167 0.266 0.166 0.266 0.172 0.270 0.159 0.257 0.172 0.275 0.172 0.277 0.202 0.295 0.194 0.289 0.169 0.265 0.204 0.320 0.198 0.323
18 0.155 0.250 0.171 0.265 0.172 0.268 0.173 0.268 0.189 0.279 0.181 0.275 0.206 0.299 0.210 0.301 0.228 0.311 0.202 0.293 0.189 0.280 0.207 0.312 0.258 0.371

Avg 0.142 0.239 0.159 0.257 0.163 0.262 0.164 0.263 0.172 0.269 0.164 0.262 0.176 0.279 0.174 0.278 0.211 0.303 0.192 0.289 0.171 0.266 0.202 0.319 0.211 0.332

IL
I

6 1.338 0.671 2.421 0.955 2.930 1.110 2.390 0.965 3.349 1.197 1.973 0.851 3.188 1.172 2.922 1.128 3.744 1.252 4.333 1.349 1.440 0.694 3.359 1.236 5.186 1.495
12 2.397 0.924 3.289 1.221 4.842 1.591 4.141 1.399 4.465 1.513 2.761 1.064 4.863 1.650 5.557 1.741 5.915 1.739 6.737 1.886 2.830 1.022 5.450 1.732 4.659 1.509
18 1.567 0.800 3.680 1.305 3.843 1.413 3.565 1.317 4.837 1.594 2.797 1.112 5.171 1.705 5.020 1.700 6.128 1.843 5.262 1.709 3.363 1.073 4.976 1.689 5.350 1.674

Avg 1.767 0.798 3.130 1.160 3.872 1.371 3.365 1.227 4.217 1.435 2.510 1.009 4.407 1.509 4.500 1.523 5.262 1.611 5.444 1.648 2.544 0.930 4.595 1.552 5.065 1.559

E
xc

ha
ng

e 6 0.008 0.051 0.009 0.061 0.010 0.062 0.008 0.056 0.009 0.064 0.008 0.053 0.018 0.098 0.016 0.091 0.013 0.076 0.012 0.071 0.009 0.060 0.049 0.166 0.043 0.156
12 0.013 0.072 0.016 0.081 0.016 0.086 0.015 0.079 0.016 0.087 0.014 0.075 0.026 0.114 0.027 0.120 0.022 0.103 0.018 0.091 0.016 0.082 0.034 0.138 0.056 0.175
18 0.018 0.087 0.019 0.089 0.022 0.101 0.021 0.096 0.023 0.105 0.020 0.092 0.040 0.146 0.036 0.139 0.030 0.121 0.028 0.116 0.023 0.101 0.041 0.156 0.069 0.188

Avg 0.013 0.070 0.015 0.077 0.016 0.083 0.015 0.077 0.016 0.085 0.014 0.073 0.028 0.119 0.026 0.117 0.022 0.100 0.019 0.093 0.016 0.081 0.041 0.153 0.056 0.173

PE
M

S0
3 6 0.072 0.179 0.090 0.193 0.074 0.181 0.086 0.193 0.085 0.198 0.063 0.171 0.078 0.189 0.079 0.191 0.096 0.208 0.108 0.224 0.079 0.185 0.100 0.218 0.069 0.179

12 0.100 0.208 0.122 0.223 0.101 0.210 0.123 0.231 0.131 0.247 0.089 0.198 0.110 0.230 0.147 0.280 0.147 0.255 0.167 0.276 0.114 0.224 0.131 0.255 0.105 0.225
18 0.133 0.240 0.173 0.266 0.138 0.251 0.179 0.279 0.188 0.294 0.127 0.235 0.147 0.271 0.173 0.307 0.219 0.310 0.241 0.328 0.156 0.261 0.176 0.296 0.137 0.247

Avg 0.102 0.209 0.128 0.227 0.104 0.214 0.129 0.234 0.135 0.246 0.093 0.201 0.112 0.230 0.133 0.259 0.154 0.258 0.172 0.276 0.116 0.223 0.136 0.256 0.104 0.217

PE
M

S0
4 6 0.085 0.192 0.107 0.208 0.089 0.194 0.098 0.208 0.097 0.210 0.079 0.183 0.100 0.215 0.100 0.216 0.123 0.245 0.135 0.258 0.098 0.206 0.120 0.246 0.079 0.184

12 0.113 0.222 0.144 0.243 0.118 0.227 0.136 0.246 0.144 0.261 0.111 0.219 0.134 0.257 0.160 0.291 0.178 0.289 0.208 0.319 0.138 0.250 0.169 0.298 0.106 0.221
18 0.150 0.254 0.192 0.283 0.163 0.269 0.193 0.293 0.207 0.318 0.153 0.259 0.178 0.300 0.252 0.376 0.253 0.344 0.290 0.375 0.197 0.300 0.195 0.322 0.146 0.247

Avg 0.116 0.223 0.148 0.245 0.123 0.230 0.142 0.249 0.149 0.263 0.114 0.220 0.137 0.257 0.171 0.294 0.185 0.293 0.211 0.317 0.144 0.252 0.161 0.289 0.110 0.217

PE
M

S0
7 6 0.063 0.162 0.085 0.186 0.062 0.165 0.077 0.184 0.077 0.188 0.059 0.159 0.072 0.181 0.076 0.190 0.090 0.205 0.102 0.221 0.076 0.182 0.092 0.213 0.066 0.169

12 0.087 0.191 0.120 0.222 0.087 0.195 0.114 0.225 0.122 0.243 0.082 0.188 0.101 0.219 0.118 0.247 0.140 0.250 0.160 0.270 0.118 0.230 0.122 0.250 0.087 0.200
18 0.121 0.223 0.174 0.267 0.127 0.233 0.174 0.276 0.187 0.303 0.122 0.230 0.135 0.261 0.150 0.279 0.212 0.309 0.241 0.332 0.168 0.275 0.169 0.294 0.131 0.243

Avg 0.090 0.192 0.126 0.225 0.092 0.198 0.122 0.228 0.129 0.245 0.088 0.192 0.103 0.220 0.115 0.239 0.147 0.255 0.168 0.274 0.121 0.229 0.128 0.252 0.095 0.204

PE
M

S0
8 6 0.078 0.180 0.104 0.207 0.083 0.188 0.091 0.203 0.092 0.207 0.080 0.187 0.097 0.208 0.097 0.209 0.109 0.228 0.125 0.247 0.092 0.198 0.116 0.242 0.100 0.200

12 0.104 0.208 0.140 0.238 0.113 0.217 0.132 0.240 0.142 0.259 0.110 0.217 0.132 0.247 0.165 0.289 0.171 0.280 0.187 0.300 0.135 0.242 0.164 0.293 0.126 0.238
18 0.136 0.237 0.191 0.277 0.147 0.253 0.189 0.288 0.206 0.314 0.145 0.250 0.179 0.290 0.239 0.349 0.245 0.337 0.287 0.340 0.185 0.286 0.193 0.314 0.143 0.249

Avg 0.106 0.208 0.145 0.241 0.114 0.219 0.137 0.244 0.147 0.260 0.112 0.218 0.136 0.248 0.167 0.282 0.175 0.282 0.200 0.296 0.137 0.242 0.158 0.283 0.123 0.229

1st Count 16 16 0 0 0 1 1 0 0 0 7 7 0 0 0 0 0 0 0 0 0 0 0 0 4 1

Table 12: Full results for the univariate short-term forecasting tasks in M4 dataset. We report
SMAPE, MASE, OWA for M4 datasets as metrics. Lower metrics indicate better performance.
Wighted Average means the results are wighted averaged from several M4 subdatasets under different
sample intervals. ∗. in the Transformers indicates the name of ∗former. The original paper of
N-BEATS [37] adopts a special ensemble method to promote the performance. For fair comparisons,
we remove the ensemble and only compare the pure forecasting models.

Models DeformableTST Path. CARD GPT4TS Cross. PatchTST iTransformer FED. Auto. RLinear TiDE TimesNet DLinear SCINet N-HiTS N-BEATS
(Ours) [6] [51] [58] [53] [35] [22] [57] [47] [18] [9] [46] [52] [20] [4] [37]

Y
ea

rl
y SMAPE 13.194 13.473 13.302 13.538 13.392 13.445 13.461 13.728 13.974 16.151 17.019 13.387 16.965 13.764 13.418 13.436

MASE 2.955 3.005 3.016 3.041 3.001 3.021 3.045 3.048 3.134 3.680 3.945 2.996 4.283 3.103 3.045 3.043
OWA 0.775 0.790 0.786 0.797 0.787 0.791 0.795 0.803 0.822 0.957 1.017 0.786 1.058 0.811 0.793 0.794

Q
ua

rt
er

ly SMAPE 9.971 10.233 10.031 10.325 16.317 10.187 10.071 10.792 11.338 11.741 12.164 10.100 12.145 10.946 10.202 10.124
MASE 1.163 1.203 1.176 1.218 2.197 1.196 1.182 1.283 1.365 1.456 1.510 1.182 1.520 1.293 1.194 1.169
OWA 0.877 0.903 0.884 0.913 1.542 0.898 0.888 0.958 1.012 1.064 1.103 0.890 1.106 0.969 0.899 0.886

M
on

th
ly SMAPE 12.592 12.895 12.670 12.860 12.924 12.856 12.737 14.260 13.958 13.599 13.616 12.670 13.514 13.541 12.791 12.677

MASE 0.931 0.955 0.933 0.951 0.966 0.956 0.935 1.102 1.103 1.056 1.056 0.933 1.037 1.024 0.969 0.937
OWA 0.874 0.896 0.878 0.893 0.902 0.895 0.881 1.012 1.002 0.968 0.968 0.878 0.956 0.951 0.899 0.880

O
th

er
s SMAPE 4.324 5.136 5.330 4.861 5.511 4.877 5.033 4.954 5.485 6.747 6.825 4.891 6.709 8.138 5.061 4.925

MASE 2.993 3.427 3.261 3.320 3.733 3.280 3.284 3.264 3.865 4.652 4.809 3.302 4.953 4.997 3.216 3.391
OWA 0.927 1.081 1.075 1.035 1.168 1.030 1.047 1.036 1.187 1.443 1.477 1.035 1.487 1.644 1.040 1.053

W
ei

gh
te

d
A

ve
ra

ge SMAPE 11.688 12.001 11.815 12.008 13.475 11.952 11.878 12.840 12.909 13.398 13.711 11.829 13.639 12.699 11.927 11.851
MASE 1.555 1.610 1.587 1.614 1.868 1.604 1.597 1.701 1.771 1.935 2.017 1.585 2.095 1.765 1.613 1.599
OWA 0.838 0.863 0.850 0.865 0.985 0.860 0.855 0.918 0.939 1.000 1.033 0.851 1.051 0.930 0.861 0.855
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Table 13: Full results for the univariate short-term forecasting tasks in other datasets. We report
the SMAPE in this Table as metric and a lower metric indicates better performance. ∗. in the
Transformers indicates the name of ∗former. The original paper of N-BEATS [37] adopts a special
ensemble method to promote the performance. For fair comparisons, we remove the ensemble and
only compare the pure forecasting models.

Models DeformableTST Path. CARD GPT4TS Cross. PatchTST iTransformer FED. Auto. RLinear TiDE TimesNet DLinear SCINet N-HiTS N-BEATS
(Ours) [6] [51] [58] [53] [35] [22] [57] [47] [18] [9] [46] [52] [20] [4] [37]

M1
Yearly 15.902 20.305 21.769 21.208 26.310 22.408 29.190 21.718 27.242 21.491 25.671 16.023 27.472 21.145 27.404 21.021

Quarterly 14.232 16.955 15.666 16.782 15.806 16.338 16.288 20.823 17.249 30.849 29.427 22.875 25.456 32.920 27.035 17.089
Monthly 15.616 18.793 16.569 21.322 18.049 17.241 19.401 17.626 18.708 30.788 26.259 18.480 20.337 26.665 21.960 21.320

M3

Yearly 15.315 24.509 20.867 21.846 18.488 18.623 22.998 17.300 17.386 55.073 20.301 23.989 24.359 33.380 23.544 17.204
Quarterly 7.365 10.933 8.052 12.579 8.069 7.991 8.642 11.751 11.503 27.079 18.749 11.649 16.963 11.576 18.907 12.189
Monthly 14.928 18.193 21.103 22.804 18.278 16.562 18.060 25.910 19.309 30.241 26.082 21.350 25.341 25.883 23.808 19.809

Other 9.378 17.353 15.500 19.099 12.100 15.707 18.439 20.989 22.525 24.769 18.370 18.091 15.690 26.064 17.216 22.090

Tourism Quarterly 17.968 27.921 19.182 31.216 19.517 19.314 20.116 38.606 39.887 39.079 48.609 28.052 34.630 35.208 33.909 43.887
Monthly 25.037 34.769 27.515 38.819 27.718 27.570 28.743 35.983 31.698 40.432 40.399 38.505 40.095 40.269 37.959 41.778

NN5 Weekly 14.372 18.186 22.491 16.012 17.672 17.717 20.449 17.072 19.650 22.868 23.424 22.355 23.781 26.486 16.645 23.282

Hospital Monthly 19.088 21.551 21.392 22.587 20.907 22.123 20.785 28.646 25.749 26.184 29.103 21.182 23.015 28.807 25.309 23.594

KDD Cup Hourly 50.694 56.740 61.653 54.713 58.472 59.449 60.615 59.013 57.617 62.922 63.447 56.618 59.523 63.358 54.855 62.305
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O Showcases

To provide an intuitive comparison among different models, we provide showcases to the long-
term forecasting tasks under two representative cases (the time series is in declining stage and the
time series is in rising stage). The results are in Figure 12-13. Among the various models, our
DeformableTST predicts the most precise future series variations and exhibits superior performance.

Figure 12: Visualization of input-96-predict-96 results on the Solar dataset. The time series is in
declining stage. The blue lines stand for the ground truth and the orange lines stand for predicted
values.

Figure 13: Visualization of input-96-predict-96 results on the Solar dataset. The time series is in
rising stage. The blue lines stand for the ground truth and the orange lines stand for predicted values.
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P Comparison with More Baselines and Experiments on More Datasets

P.1 Compared with Sageformer

We compare our model with Sageformer [54], the latest Graph-Transformer model. Since Sageformer
will produce NaN outputs in some short-term forecasting tasks, we mainly conduct comparisons in
long-term forecasting. The results are shown in Table 14. Our DeformableTST achieves consistently
better performance than the latest Graph-Transformer method, further demonstrating our performance
superiority.

Table 14: Comparison with Sageformer in long-term forecasting tasks. A lower MSE or MAE
indicates a better performance. Results are averaged from three input lengths I ∈ {96, 384, 768}
and four prediction lengths T ∈ {96, 192, 336, 720}. The best results are in bold. Full results of
Sageformer [54] are provided in Table 15.

Dataset
ETTh1 ETTh2 ETTm1 ETTm2 Weather Solar ECL Traffic

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

DeformableTST (Ours) 0.413 0.430 0.336 0.381 0.358 0.386 0.267 0.321 0.233 0.266 0.199 0.255 0.169 0.267 0.410 0.280
Sageformer [54] 0.427 0.438 0.368 0.405 0.371 0.394 0.275 0.327 0.238 0.272 0.227 0.285 0.174 0.273 0.418 0.287

P.2 Experiments on Stock Market Dataset

We conduct multivariate short-term forecasting experiments on Stock Market Dataset [36]. As shown
in Table 16, our DeformableTST still outperforms other competitors, validating that DeformableTST
can work on stock market data.

Q Experiments on Synthetic Dataset

We conduct experiments on synthetic dataset with some typical cases of attention distributions to
prove our model can handle both uniform and clustered attention distribution. The details and results
are provided in Figure 14.

As shown in Figure 14, our method can accurately predict the future data in all cases. And ERFs
can operate as anticipated, successfully matching the distributions of key information. In details,
in the case of globally uniform attention, the brighter points in ERF are also distributed globally,
which means the model can find the important time points across the whole series. In other cases,
the brighter points in ERF tend to concentrate in localized areas of key information, proving the
effectiveness of our method in scenarios where key information is clustered within specific time
window. These results validate that our method can adeptly manage both uniform and clustered
attention distributions.

R Model Robustness to Patching

We conduct ablation study to show the effect of patching on our method (under input-384 and
input-768 settings). As shown in Figure 6 and Figure 16, our model is robust to the choice of different
patch sizes on input length 384 and input length 768.

Meanwhile, as shown in Figure 15, the performance of other Patch-based Transformer competitors
(e.g., PatchTST [35] and CARD [51]) will decrease obviously and fell out of the good rankings
if without patching. This is a significant performance decrease, especially considering the intense
competition in time series forecasting. By contrast, our method works well without patching, which
further verifies our robustness to the use of patching and shows that our model can successfully get
rid of the over-reliance of patching.
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Table 15: Full results of Sageformer [54] in long-term forecasting tasks. Avg means the average
results from all four prediction lengths.

Models Sageformer Sageformer Sageformer
(Input-96) (Input-384) (Input-768)

Metric MSE MAE MSE MAE MSE MAE

E
T

T
h1

96 0.385 0.402 0.371 0.401 0.377 0.412
192 0.431 0.428 0.418 0.429 0.413 0.429
336 0.458 0.445 0.428 0.436 0.433 0.444
720 0.476 0.469 0.461 0.470 0.473 0.485

Avg 0.438 0.436 0.420 0.434 0.424 0.443

E
T

T
h2

96 0.300 0.346 0.284 0.343 0.289 0.347
192 0.391 0.408 0.347 0.384 0.354 0.393
336 0.418 0.426 0.372 0.419 0.386 0.430
720 0.428 0.448 0.418 0.443 0.425 0.471

Avg 0.384 0.407 0.355 0.397 0.364 0.410
E

T
T

m
1 96 0.336 0.368 0.294 0.345 0.300 0.353

192 0.376 0.395 0.339 0.375 0.337 0.374
336 0.399 0.410 0.381 0.400 0.369 0.391
720 0.464 0.447 0.434 0.436 0.418 0.432

Avg 0.394 0.405 0.362 0.389 0.356 0.388

E
T

T
m

2 96 0.177 0.259 0.172 0.260 0.170 0.255
192 0.247 0.304 0.241 0.307 0.232 0.304
336 0.308 0.346 0.284 0.336 0.308 0.352
720 0.412 0.406 0.379 0.398 0.374 0.391

Avg 0.286 0.329 0.269 0.325 0.271 0.326

W
ea

th
er

96 0.163 0.207 0.153 0.207 0.149 0.198
192 0.222 0.258 0.196 0.242 0.197 0.248
336 0.272 0.296 0.247 0.285 0.253 0.293
720 0.347 0.347 0.326 0.341 0.323 0.340

Avg 0.251 0.277 0.231 0.269 0.231 0.270

So
la

r-
E

ne
rg

y 96 0.231 0.286 0.190 0.254 0.179 0.243
192 0.265 0.305 0.208 0.269 0.195 0.277
336 0.288 0.313 0.213 0.286 0.212 0.287
720 0.292 0.327 0.226 0.286 0.223 0.281

Avg 0.269 0.308 0.209 0.274 0.202 0.272

E
C

L

96 0.156 0.251 0.141 0.244 0.138 0.243
192 0.171 0.263 0.158 0.259 0.154 0.254
336 0.188 0.285 0.174 0.275 0.171 0.273
720 0.226 0.317 0.215 0.309 0.200 0.300

Avg 0.185 0.279 0.172 0.272 0.166 0.268

Tr
af

fic

96 0.418 0.271 0.385 0.275 0.371 0.268
192 0.434 0.281 0.397 0.279 0.385 0.273
336 0.446 0.289 0.414 0.295 0.399 0.278
720 0.480 0.305 0.443 0.308 0.442 0.320

Avg 0.445 0.287 0.410 0.289 0.399 0.285

Table 16: Multivariate short-term forecasting results on Stock Market. We compare extensive
competitive models under different prediction lengths. The input length is 2 times of the prediction
length. Avg means the average results from all three prediction lengths. The best results are in bold.

Models DeformableTST Pathformer CARD GPT4TS PatchTST iTransformer FEDformer Autoformer RLinear TiDE TimesNet
(Ours) [6] [51] [58] [35] [22] [57] [47] [18] [9] [46]

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

St
oc

k

6 0.110 0.132 0.127 0.143 0.121 0.138 0.121 0.142 0.127 0.152 0.121 0.139 0.132 0.178 0.126 0.159 0.157 0.168 0.149 0.167 0.121 0.138
12 0.121 0.152 0.130 0.157 0.134 0.161 0.144 0.166 0.138 0.174 0.137 0.162 0.143 0.189 0.143 0.186 0.161 0.187 0.164 0.192 0.136 0.163
18 0.136 0.170 0.146 0.178 0.143 0.177 0.155 0.179 0.146 0.186 0.145 0.175 0.157 0.217 0.152 0.208 0.171 0.208 0.167 0.200 0.141 0.173

Avg 0.122 0.151 0.134 0.159 0.133 0.159 0.140 0.162 0.137 0.171 0.134 0.159 0.144 0.195 0.140 0.184 0.163 0.188 0.160 0.186 0.133 0.158

33

88035 https://doi.org/10.52202/079017-2794



Figure 14: We conduct experiments with some typical cases of attention distributions. The synthetic
data and experiment setups are as follows. Setup (1) for globally uniform attention as shown
in Case (a): The input consists of 4 semi-sinusoidal signals with noise. The task is to predict 1
semi-sinusoidal signal. Thus, the future data evenly relates to the historical data. The length of each
signal is 96. So this is an input-384-predict-96 task. Setup (2) for clustered attention as shown in
Case (b) and (c): Simlilar to setup (1), but in the length-384 input, only 1 semi-sinusoidal signal
is remained while others are masked as 0. Thus, the future data is related only to the local window
of remained signal. Masks can be constant or varying across samples to simulate scenarios that
the localized areas are constant or varying across samples. Setup (3) for global but not uniform
attention as shown in Case (d): This setup is similar to setup (2) but more semi-sinusoidal signals
are remained, resulting in global attention distribution but not uniform.

Figure 15: The impact of patching on latest patch-based Transformer forecasters (PatchTST and
CARD). After the removal of patching, the performance of PatchTST and CARD will decrease
obviously and fell out of the good rankings, while our DeformableTST is robust to patching and
maintains the consistent excellent performance, consistently ranked in the top-3. We conduct
experiments under input-384-predict-96 settings. The rankings on each dataset are calculated from
Table 9 of Appendix N.
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Figure 16: Robustness of our DeformableTST to patch size under input-768 settings.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Please refer to Section 1 and Abstract.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Please refer to Appendix K. And model efficiency is provided in G.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Please refer to Section 3, Section 4, Appendix A and Appendix B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: Code is available at this repository: https://github.com/luodhhh/
DeformableTST. We provide the pseudo-code in Appendix C and add a Reproducibil-
ity Statement in Appendix M. We have already provided experimental details and model
settings in Section 3, Section 4, Appendix A and Appendix B. And details about tensor
shape and model structure are also included.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We have already provided experimental details and model settings in Section
3, Section 4, Appendix A and Appendix B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Please refer to Appendix H.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Please refer to Appendix B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Please refer to Appendix L.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Please refer to Appendix L.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The code packages, baseline models and datasets used in this paper are publicly
available and properly credited. Please refer to Section 4, Appendix A, Appendix B and the
Reference. The baseline models are mostly using Apache-2.0 license and MIT license. The
datasets we used are all extensively utilized for benchmarking and publicly available. We
provide the URLs for the datasets in Appendix A.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Please refer to Section 3, Section 4, Appendix A, Appendix B and Appendix K.
Code with detailed documentation is available at this repository: https://github.com/
luodhhh/DeformableTST..
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
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• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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