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Abstract

Despite the importance of shape perception in human vision, early neural im-
age classifiers relied less on shape information for object recognition than other
(often spurious) features. While recent research suggests that current large Vision-
Language Models (VLMs) exhibit more reliance on shape, we find them to still
be seriously limited in this regard. To quantify such limitations, we introduce
IllusionBench, a dataset that challenges current cutting-edge VLMs to deci-
pher shape information when the shape is represented by an arrangement of
visual elements in a scene. Our extensive evaluations reveal that, while these
shapes are easily detectable by human annotators, current VLMs struggle to rec-
ognize them, indicating important avenues for future work in developing more
robust visual perception systems. The full dataset and codebase are available at:
https://arshiahemmat.github.io/illusionbench/

1 Introduction

Deep neural networks have accomplished remarkable breakthroughs in visual recognition over the
past decade [Krizhevsky et al., 2012, |[He et al., 2016l [Dosovitskiy et al., 2020l Radford et al., 2021}
Gemini Team et al.| [2023]]; but these models have also shown longstanding, fundamental limitations —
for instance, the performance of these models degrades when faced with common corruptions and
perturbations [Hendrycks and Dietterichl |2019], or natural out-of-distribution data [Hendrycks et al.
2021]. How can we facilitate more robust neural vision models? A natural place to begin is by
considering the source of robustness in human vision. Human object recognition is largely based on
shape perception [Landau et al., 1988, |Biederman and Ju, |1988| [ Xu et al., 2004, [Baker and Kellman)
2018]], which is essential to the robustness of human vision due to the invariance of shape to common
transformations such as translation, rotation, scaling, and changes in illumination, color, and texture
[Kendall, |1984] [Hummel, 2001, |Ommer, 2013| Dryden and Mardia, |2016|]. As such, substantial work
in computer vision has focused on improving and evaluating shape perception (e.g., Ritter et al.,
2017, Geirhos et al., 2019, Islam et al., 2021} |Geirhos et al.| 2021} |Gavrikov et al., 2024}, inter alia),
finding that early deep vision models relied much more on texture than shape in image classification
[Geirhos et al.| 2019, [Islam et al.,[2021] [Pinto et al., |2022al [Benarous et al., [2023|, [Subramanian et al.}
2023]], which is believed to contribute to their lack of robustness [Geirhos et al., 2020, |Gavrikov et al.}
2024]). Later work observed that vision encoders trained with larger-scale data weakly supervised by
language (e.g., CLIP; [Radford et al.| 2021) show improvements in shape recognition [Geirhos et al.|
2021} |Gavrikov et al., 2024].

While clear indicators of progress in visual perception of neural vision models, it is important
to note that all of the above studies on shape recognition in vision models have relied on two
standard datasets, Cue Conflict and Stylized-ImageNet [Geirhos et al.,|2019]], which presents several
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Figure 1: Can vision-language models recognize these shapes? I1lusionBench dataset contains
images in which scene elements are arranged to represent abstract shapes.

concerns — for instance, these datasets do not include coherent, naturalistic visual scenes; they
are built using legacy style transfer techniques that damage shape information and prevent the
reproduction of fine-grained textures; and each image includes only a single object class represented
as an abstract shape using perceptually uniform textures (see Section[2|for a more detailed critique).
To address these limitations, we introduce IllusionBenchEI which represents shape information by
an arrangement of visual elements existing in coherent, naturalistic scenes (see Figure[I). We evaluate
vision-language models (VLMs) using I11lusionBench in three scenarios: (1) measuring zero-shot

performance of generative VLMs (e.g., LLava [Liu et al.l |2024b]], GPT-40 [OpenAl| 2023|], and

Gemini [Gemini Team et al.l 2023])); (2) measuring few-shot performance of VLMs using in-context
learning (e.g., [Zhao et al., 2023]); and (3) fine-tuning contrastive VLMs (e.g., CLIP
[2021])) to recognize abstract shapes and testing their ability to generalize to unseen scenes. We find
that, while human annotators can easily identify these shapes, VLMs struggle to identify shapes and
instead focus on the scene components, failing to exhibit the abstract shape recognition capabilities
that are essential for enabling humanlike visual robustness.

2 Background and Related Work

Shape perception and visual recognition Shape information is widely considered to be the most
important cue leveraged by the human visual system for object recognition [Landau et all,
[Biederman and Jul [1988], Xu et al., 2004}, [Elder and Velisavljevid, 2009} [Baker and Kellman, 2018].
Our ability to perceive shapes is crucial in enabling the robustness of human visual perception

Hummell, 2001], [Ommer, 2013]], as shape is invariant to key transformations such as translation,
rotation, scaling, and changes in illumination, color, and texture Ommeﬂ, 2013[, KendallL 1984[
[Dryden and Mardial, 2016]]. Thus, many works have investigated the extent to which neural object
classifiers rely on shape for visual recognition tasks, finding that early supervised deep neural
networks rely more on texture cues rather than shape [Geirhos et al., 2019} [Islam et al., 2021},
Benarous et al.}[2023], [Pinto et al.| [2022al, [Subramanian et al., 2023]]. More recently, (Gavrikov et al.

2024] showed that multimodal vision-language models can be prompted to rely more on shape in
visual recognition. Each of these works evaluates shape perception on the basis of the Cue Conflict
(CC) or Stylized-ImageNet (SIN) benchmarks [Geirhos et al,[2019]; but despite their longstanding
utility, we observe several key limitations with these benchmarks:

1. Lack of coherent, naturalistic, and complex visual scenes: Images contain only the shape
of a single class mixed with a single texture applied uniformly to the entire image.

2. Missing shape information: Key shape information is often lost, yielding “a substantial
fraction” of images that are unrecognizable to human annotators [Geirhos et al.,[2019]. The
contrast in textures between the object and the background of any given image is usually

lost, yielding perceptually uniform images [[Chen et al.,[2021], Wang et al.,[2023].

'We use “Illusion” in the name of our benchmark because images in our dataset can be understood as
instances of pareidolia, an illusion caused by the tendency of the human visual system to identify familiar shapes
in complex scenes. Our dataset should not be confused with HallusionBench [2023]}, which instead
serves as a diagnostic tool to distinguish between VLM reasoning error modes, such as those caused by the
language component versus visual component of VLMs.
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Figure 2: Dataset generation. For each of the 3 datasets in I11usionBench, we show an example
image from the dataset alongside an example scene prompt and an example shape conditioning
image used to generate it. A shape image x; (with the class name ¢;) and a scene description s; are
combined to generate the I11lusionBench image x;;.

3. Low-quality style transfer: The style transfer methods in these datasets [Gatys et al.,[2016]
uang and Belongie), [2017]] are known to confuse shape and texture information

et al.,|2023]] and often fail to capture fine-grained textures 2021].

To address these limitations, we introduce I1lusionBench, which leverages state-of-the-art genera-
tive models to create images representing shape information with a complex arrangement of elements
in detailed visual scenes comprised of various textures and objects.

Evaluating visual capabilities of VLMs Vision-language models (VLMs) have exceeded conven-
tional benchmarks, often even exhibiting capabilities that they are not explicitly trained for
2023]] and underscoring the need for new forms of evaluation [Zhang et al.,2024]. Traditional
image recognition benchmarks are not designed to characterize such capabilities, indicating the
need for innovative evaluations. For instance, [Bitton-Guetta et al.|[2023]] studies commonsense
visual reasoning by testing whether models perceive peculiar content in visual scenes;
[2024]) evaluates VLMs on recognizing the count of objects, relative positions of objects, OCR, and
commonsense visual reasoning; and [2024] proposes visual tasks requiring fine-grained
understanding of object orientation, perspective, and the states of objects in the image. Finally,

Zhou et al | [2023]], ILi et al.| [2023d] focus on limitations specific to generative VLMs, such as visual
hallucination.

3 Benchmark Description

3.1 Generative Process and Notation

Consider the set C = {(z;,¢;)} |ZC:‘1 of binary shape conditioning images x; representing the shapes
of corresponding object class ¢;, and T = {(s j)}‘jzll is the set of prompts where each s; describes a
different scene (e.g., Ocean or Medieval Village). To synthesize our dataset, we use ControlNet

Zhang et al} 20234, a module that is trained to control the generative process of text-to-image
diffusion models (such as Stable Diffusion; [Rombach et all [2022) by conditioning on inputs
specifying spatial information to guide the generative process, such as our shape conditioning images
x; (refer to Figurefor an overview). The pipeline (Figure@) transforms the tuple (x;, s;) into an
image x,; representing the considered shape x; of class ¢; embedded in a scene of type Sjﬁ We
therefore obtain our datasets by creating a tuple (x;;, ¢;, s;) for each combination of conditioning
images and prompts. We then consider three predictive tasks a VLM f should perform (where pc, ps,
and pc, s represent prompts querying for c;, s;, or both, respectively):

1. 7¢: predict the shape ¢; = f(zi;,pc).
2. 7g: predict the scene s; = f(z;5,ps)-
3. 7¢,s, predicting both the shape and the scene (c;, s;) = f(zi;,pc,3).

3.2 Dataset Details

As exemplified in Figure 2} the I1lusionBench benchmark contains three different constituent
datasets: I11lusionBench-IN, I11lusionBench-L0OGO, and I11usionBench-ICON. The number of

The generation is conditioned on additional hyperparameters that allow us to obtain shapes that can be
recognized at varying levels of abstraction. See Appendix@for further details.
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samples, classes, conditioning images, and domains for each dataset are provided in Table[I] (with
more detailed metadata available in Appendix [B).

Table 1: Size of each dataset in I11lusionBench.

Dataset Name # Samples # Classes # Conditioning Images # Scenes
I1lusionBench-IN 6864 16 48 11
I1lusionBench-L0OGO 5577 21 39 11
I1lusionBench-ICON 20064 6 456 11

I1lusionBench-IN We build upon the 16 classes from the most popular shape perception bench-
mark, Stylized-ImageNet (SIN) [Geirhos et al., 2019]. However, since we are interested in how
well models can find shapes within a scene, we need clear and distinct shapes that can be identified
unambiguously. To address this, we replace 4 of the 16 SIN classes with similar categories (near
co-hyponyms) with more distinct shapes. We collect 3 conditioning images for each class.

I1lusionBench-LOGO Another category of shapes that are specifically designed to be visually
distinct and easily recognizable are logos, which provide an interesting contrast to the shapes in
I1lusionBench-IN, as recognizing them requires world knowledge specific to the category of
product brands (rather than culturally-nonspecific real-world object classes)E] Thus, we expand our
dataset to this domain by collecting 39 different logo conditioning images across 21 brands.

I1lusionBench-ICON Finally, we develop a third dataset to test whether VLMs can be trained
to recognize cross-modal abstractions over perceptually distinct shapes representing semantically
related concepts (e.g., where images representing shapes of owls or turtles are both recognized as
instances of the “animal” class, despite having very different shapes). We create a coarse-grained
dataset of 6 (informal) hypernym categories across 456 emojis as shape conditioning images.

Validating Dataset Quality Although ground truth labels for object classes and scene types are
available, image generators may sometimes produce low-quality or high-difficulty images whose
object shape is not human-recognizable. To minimize the proportion of such images, we begin by
restricting the hyperparameters that control the influence of the conditioning image to ranges that
we qualitatively found to produce clearly distinguishable shapes (see Appendix [B.2). To validate
that the shapes in the resulting images are indeed human-recognizable, we recruited 60 participants
(information is anonymized) to manually annotate randomly sampled subsets of I11usionBench-IN,
I1lusionBench-LOGO, I1lusionBench-ICON, obtaining an average annotator accuracy of 95.6%,
97.17% and 96.8%, respectively, indicating that humans are indeed able to recognize the shapes in
the vast majority of the generated images{’| (See Appendix for further details.)

3.3 Evaluation

Given image x;;, we prompt VLM f with both z;; and prompts p,, corresponding to the shape, scene,
and both the shape and scene (i.e., where py, is variously pc, ps, or pc s, respectively), yielding
responses 7, = f(x;;,px) for each prompt py. For each x;;, we evaluate shape recall on the basis of
whether the term ¢; appears in the response r¢ or r¢, g (yielding 1 if so, or 0 if not), and evaluate
scene recall by whether s; appears in 77 or r¢ g (similarly yielding 1 or 0), and report the shape
and scene recall for each dataset as the sum of the recall figures across all x;; instances divided by
the size of each dataset. In contrast to prior related works (e.g., (Geirhos et al.[2019, 2021} |Gavrikov:
et al.|2024), our proposed metrics are designed such that shape recognition performance is not in
competition with the ability to recognise other visual elements (e.g., textures or scene elements), as —
unlike traditional classifiers, which must select only one among a pre-defined set of discrete classes

3Given that this task requires both world knowledge of product brands and abstract shape recognition
capabilities, and considering that our goal with I11lusionBench is only to evaluate the latter, we normalize
scores by averaging results for each VLM exclusively on samples obtained from raw shapes that the VLM can
recognise in a zero-shot setting, meaning that models are not penalized for lacking world knowledge of specific
brands. See Appendicesandfor non-normalized results by class.

“Note that human annotator accuracies are only intended to validate the quality of the generated dataset
and confirm that the resulting abstract shapes are indeed human-perceptible. They are not intended for direct
comparison with VLM performance, as there are a few fundamental differences in how annotators and VLMs
are tested. For instance, where VLMs do not know the purpose or structure of the task beyond what is included
in the prompt, annotators are shown onboarding materials describing the task, including several pre-annotated
examples.
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Figure 3: Zero-Shot Results. Average shape and scene recall of VLMs across each I11usionBench
dataset, compared with Stylized-ImageNet [Geirhos et al] [2019] (rightmost, shaded).

— generative VLMs can respond with detailed descriptions of images including information about
shape, scene, or other visual elements at the same time (or given different prompts).

3.4 Experimental Overview

In the following sections, we evaluate the shape perception capabilities of modern VLMs on
I1lusionBench under the following paradigms:

e Zero-Shot Recognition: Given that an instruction-tuned VLM can recognise a shape z;,
can it identify the same shape when it emerges from the combination of visual elements in
x;; without any explicit examples or specialized fine-tuning? (SectionE[)

* Few-Shot Learning: Given that a multi-modal in-context learner can recognise a shape z;
zero-shot, can it leverage few examples to learn to identify it in x;;? (SectionEl)

* Domain Generalization: Given training samples {x;; } representing a shape x; in certain
types of scenes, can models learn to recognise the same shape in other, unseen scene types?
(Section[6)

4 Can Instruction-Tuned VLLMs Recognize Shapes Zero-Shot?

Experimental Design In this experiment, we prompt VLMs zero-shot to identify the abstract shape
represented in a visual scene among a closed set of object classes. We begin by testing whether
models can correctly classify the shape conditioning images (binary shape images), and generate
images for I11usionBench exclusively using these condition shapes. We then prompt models with
respect to the shape and scene in each generated image, and measure the corresponding recall metrics
as described in Section[3.3] (See Appendix [C|for additional details regarding the experimental design,
prompts, and models used in this experiment.)

Models We consider the following VLMs for evaluation: GPT-4o0 [OpenAl, 2023]], Gemini-Flash

[Gemini Team et al.} 2023]], LLaVA1.5/6-7/13b [Liu et al.l 2024c||, CogVLM [Wang et al., [2024],
BLIPv2-t5 [Li et al.} [2023c]], InstructBLIP-7/13b [Dai et al.,[2024]], Qwen-VL-Chat [Bai et al.
2023||, and MoE-StablelLM/Qwen/Phi2 [Lin et al.,[2024].

Results Our main findings in this experiment (visualized in Figure 3 are as follows:

* For each of our datasets, shape recall is quite low, with most models ranging between
10-30% (in contrast to the previous dataset, Stylized-ImageNet [[Geirhos et al, 2019], where
all fourteen models exceed 30%).

* For nearly all models and datasets, models exhibit superior scene recall relative to shape
recall. This indicates that the recognition capacity of current VLMs is still biased towards
scene/texture features, similar to earlier work studying CNN classifiers (see Section2).

* GPT-40 and GEMINI show superior shape recall to all other models in 3/3 and 2/3 of our
datasets, respectively, demonstrating a shape-recognition gap between the best available
open- and closed-source VLMs.
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Figure 4: ICL Learning Tasks. Figure depicting the four ICL learning tasks, ICL1,ICL2, ICL3
and JC'L4, defined by constraints on demonstration example selection as introduced Section 3]

* Mixture of Experts (MoE) (like MoE-StableLM, MoE-Qwen, and MoE-Phi2), which are
generally employed to improve models’ performance, exhibit neither superior shape nor
scene recall with respect to individual models or closed-source models.

* Among all open source models, LLava attains the strongest shape recall performance
across all our datasets. In contrast, Blipv2 attains the highest scene recall (except for the
I1lusionBench-LOGO split).

See Appendix [C|for more fine-grained results and analysis.

5 Can In-Context Learners Learn to Identify Abstract Shapes?

Given zero-shot prompting exhibits poor performance at detecting abstract shapes and shows VLMs
mostly focus on background stimuli, a natural question is whether it is possible to teach models
to recognise known shapes with a few samples by leveraging their In-Context Learning (ICL) or
few-shot capabilitiesﬂ

Experimental Design We restrict our experiments to samples generated from conditioning images
x; that models can correctly classify in a zero-shot fashion (see Appendix [D.2). Let us focus on the
predictive task 7¢ (as analogous formulations of ICL apply for 75 and ¢, s). Given that the model
can correctly assign the class ¢; to the conditioning image x;, we provide it with the context sequence

{(@iy ju» Cin )}L‘Ql, where W is the context window plus a test image x;, ;, , and prompt the model

to predict the object’s shape c;, .
Using specific constraints on context sampling relative to a test sample, we define four learning tasks
corresponding to perceptual challenges:

* ICL1: Given the context lacks any image depicting the scene or shape type of the test sample
x; 5, can the model recognize its shape c;?

e ICL2: Given the context includes an image of the shape type but not the scene type of the
test sample x; ;, can the model recognize its shape c;?

e ICL3: Given the context includes an image of the scene type but not the shape type of the
test sample x; ;, can the model recognize its shape c;?

* ICL4: Given the context includes images of the scene type and shape type of the test sample
x; ; (separately and exactly once), can the model recognize the test sample’s shape c;?

Samples in the context are selected uniformly at random, excluding those that do not satisfy the
constraints for a given test sample. Random selection serves as a simple baseline for ICL example
selection, avoiding confounding factors like similarity bias or majority [Bertini Baldassini et al., 2024]].
We perform 0, 1,2, 4, 8-shot on I11usionBench-L0OGO and I1lusionBench-IN, and 1,2, 4, 5-shot
on I1lusionBench-ICON. Further details of ICL experiments can be found in Appendix [D.2] We
additionally perform ablations to examine the sensitivity of our results to the prompt template used or
to the order in which in-context examples are given to the model. These additional results can be

found in Appendix

Models. We consider several state-of-the-art models that have been designed to support ICL: (1)
LLaVA-Next [Liu et all) [2024b], (2) Qwen-VL-Chat [Bai et al| [2023]], (3) Otter-MPT [Li et al
2023a], (4) IDEFICS-9B-Instruct [Laurencon et al.,2024]], and (5) MMICL-T5-XXL[Zhao et al.,
2023]]. (We describe each models, the prompts they are provided, and a detailed motivation for
selecting these particular models in Appendix [D.3])

>See Appendix for a brief introduction to ICL.
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Figure 5: ICL Results. Few-shot (0,1,2 and 4-shot) shape and scene recall of VLMs averaged across
the I11lusionBench-L0OGO, I1lusionBench-IN and I1lusionBench-ICON datasets, displayed for
the different ICL learning tasks and the different prediction tasks.

Results. We summarise the average results across all three dataset splits for 0, 1, 2 and 4-shot ICL
as show in Figure [5|following the recall metrics introduced in Section (for results for individual
datasets and for 5-shot and 8-shot performance on I1lusionBench-ICON and I1lusionBench-IN/
I1lusionBench-LOGO respectively, see Appendix ) E] We report here the main trends in the data.
Discussion of exceptions that do not follow the reported general trends can be found in Appendix [D.6|

* ICL does not mitigate tendency to predict scene over shape. As shown in Figure 5] ICL
has minimal effect in altering the models’ tendency to predict the scene s;, regardless of
whether the prediction task is 7¢ (predict shape), T (predict scene), or 7¢ s (predict both).

* On average, MMICL-t5-XXL exhibits the strongest scene and shape recall for the highest
number of shots (i.e., when majority voting biases decay; see [Bertini Baldassini et al.,
2024]).

* Increasing the number of shots has mixed effects on performance. We observe in Figure[3]
that the models often exhibit non-monotonic performance trends for both shape and scene
recall across all prediction tasks and demonstration selection constraints. In general, this
indicates that the models struggle in general to adapt to tasks 7¢, Ts, and 7¢ g, even with
increasing demonstration examples. These results are in line with previous findings that
complex ICL tasks remain challenging for current visual language models (VLMs) [Zong
et al., [2024].

* Context selection strategy effects prediction tasks differently.

- 7¢ (shape prediction): As shown in the top row of Figure [5] for task 7 (shape
prediction), including the shape in the context (ICL2 and ICL4) either maintains or
reduces performance for most models such as MMICL and IDEFICS. This suggests that
most models struggle to identify and disentangle shape from the scene through ICL.

— Tg (scene prediction): The second row of Figure [5]shows the mixed effect of including
the scene within the context (ICL3 and ICL4) compared to not including it (ICL1
and ICL2). Models such as LLAVA, OTTER show a reduction in scene recall and when
including the scene in the context. MMICL maintains comparable performance, whereas
LLaVA and QWEN show improved performance.

- 7c,s (predicting both shape and scene): The final row of Figure [5] typically shows
trends similar to 7¢ and 75 — e.g., scene recall and shape recall for MMICL (whose zero-
shot shape recall is lower on this task than in 7¢), IDEFICS, and LLaVA are comparable
with respect to those in 7¢ s and 7g (respectively).

SIn Figure we observe that LLaVA shows often close to zero recall on either shape of scene prediction. We
explore a few possible reasons for these results in Appendix @}
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Overall, we observe that ICL does not substantially aid models in learning to detect abstract shapes
within scenes or to help reduce scene prediction bias. The non-uniformity of relative results between
models further highlights the immaturity of ICL for multi-modal models, particularly for complex
tasks like abstract shape recognition.

6 Can VLMs Learn Invariant Representations Across Domains?

A compelling application of I11usionBench-IN lies in Domain Generalisation (DG)
2020]. A visual domain is a set of samples with shared characteristics that influence
the appearance of objects (e.g., shared style, such as cartoons, paintings, or photos; shared lighting
conditions, such as photos taken at similar times of day with similar weather conditions; etc.). In
DG, the goal is for models to learn domain-invariant representations — i.e., generalisable features that
are predictive of task labels across any domain — by training across multiple “source” domains and
testing how well models generalise to unseen test domains. (See Appendix [EI]for a more detailed
introduction to DG.)

Experimental Design. We consider all images generated using the same
scene prompt s; as coming from the same domain DJ. As shown in Fig-
ure [6] we partition the IllusionBench-IN dataset split into train domains
sj € {Cloud, Forest, Ocean, Origami, Sand Dune} and test domains s; €
{Bazaar Market, City, Medieval Village, Museum, Times Square, Underwater}.
(Conditioning images x; used to generate the training domains are not contained in the test domains.)
We then consider a contrastive language-vision encoder (CLIP [Radford et al}[2021]]) and prompt
CLIP in order to identify the class c;, of a test sample z;, among all possible shape classe
Throughout the experiment, we use “A photo of {class_name}” as the prompt template. (See
Appendix [E:2]for further experimental details.)

Source Domain Target Domain

Origami Sand Dune Bazaar Market City Medieval Village Museum Time Square Underwater Ruins

Training Condition Image Test Condition Image

Airplane

J_‘I:
iy

-
—

Figure 6: I11lusionBench-IN for Domain Generalisation. We split the dataset into five source
domains for training and six target domains for testing. The condition images for generated data
samples are only shared among source and target domains, respectively, without overlapping.

Methods Considered. We compare various domain generalisation methods including ERM, MixUp
[Yan et al.| 2020], RegMixUp [[Pinto et al.| 2022b]], GroupDRO [Sagawa et al.| [2019], and VREx
Krueger et al.,[2021]], using both linear probing and full-parameter finetuning. Besides linear probing,
we also consider DPLCLIP [Zhang et all, [2023b]], a prompt optimization approach specifically
designed for CLIP domain generalisation.

Results. We summarise our findings (reported in Figure|[/) as follows:

* CLIP cannot recognise shapes well in a zero-shot setting. The CLIP model attains on
average extremely low performance in zero-shot settings, with the exception of the Museum
domain. This can be attributed to the fact that certain samples within this domain do not
simply assemble c; from visual cues of other objects, but incorporate it as a sculpture.

* CLIP embeddings only partially capture shape information. Applying prompt learning
for domain generalisation via DPLCLIP is not particularly effective with an average test
accuracy of 13.62%, and ERM results are more effective in improving over the zero-shot
performance with accuracy 22.36%, outperforming all other probing techniques. However,
the relatively low absolute values of accuracy indicate the embedding space does not render
the test samples linearly separable based on shape criteria.

"Since the zero-shot performance is particularly low, we do not confuse the model further asking it to
distinguish the shape from the background type. This also allows us to make the comparison with probing and
fine-tuning techniques that deliberately aim at extracting shape more fairly.
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Figure 7: Domain Generalisation. CLIP performance on I1lusionBench-IN for different fine-
tuning approaches. Each sub-figure represents an unseen test domain. The categories of approaches,
with alternating shading from left to right to indicate these different categories, are: zero-shot
prediction, prompt learning, linear probing, and full parameter fine-tuning.

* CLIP can learn features that allow to distinguish objects based on shape using multiple
domains. In full-parameter fine-tuning, it is possible to learn representations that are more
oriented towards shape recognition — in all cases, a very large improvement is observed with
respect to linear probing. The best performing methods are Mixup and RegMixup, which
attain 71.79% and 73.00% on average accuracy, respectively.

7 Social Impact

The limited shape perception abilities of current vision systems, as highlighted in our work, could
hypothetically be exploited by malicious users to, for instance, disseminate hateful or sensitive
material online by bypassing inappropriate content visual filters that cannot recognize human-
perceptible abstract shapes in scene elements (as enabled by the data-generation methodology
we explore in this work). Conversely, improving perception ability could also aid censorship by
moderators. In general, we anticipate that shape recognition capabilities on-par with generative
techniques would empower platforms relative to users (e.g., for both content moderation and potential
censorship), and shape recognition capabilities that are not able to recognize abstract shapes in
outputs of leading generative techniques (as we observe in this work) empowers users relative to
platforms, irrespective of whether content is legal or ethical.

8 Conclusion

We present I1lusionBench, a collection of 3 datasets to evaluate shape recognition in vision-
language models (VLMs) by representing abstract shapes as complex arrangements of visual scene
elements. While human annotators identify these shapes with high accuracy, we find that state-
of-the-art VLM fail to identify the shapes in these scenes zero-shot, tending to focus on scene
elements instead. We observe that in-context learning does not significantly improve models’ ability
to detect abstract shapes; but we do find that contrastive VLMs such as CLIP can be fine-tuned
to recognize these shapes and generalize to new scene domains. In highlighting the limited shape
perception abilities of current VLMs, we hope that I11usionBench will help guide future research
in developing more robust computer vision systems. The contributions of each author are listed in

Appendix [A]

88535 https://doi.org/10.52202/079017-2808



Acknowledgements

This work is supported in part by the National Science Foundation and the Institute of Education
Sciences, U.S. Department of Education, through Award #2229612 (National Al Institute for Inclusive
Intelligent Technologies for Education). Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect the views of National
Science Foundation or the U.S. Department of Education.

Ashkan Khakzar and Philip Torr are supported by UKRI grant: Turing AI Fellowship EP/W002981/1,
and by the Royal Academy of Engineering (United Kingdom) under the Research Chair and Senior
Research Fellowships scheme.

We would like to express our gratitude to Yawei Li for performing some preliminary experiments on a
different topic (not included in this work) before we converged on the research topic explored in this
work. We also extend our thanks to Ali Ma’manpush, Julia Hockenmaier, and Prashant Jayannavar
for their invaluable assistance and advice regarding the human data annotation process.

References

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, lain Barr, Yana Hasson, Karel
Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual language
model for few-shot learning. Advances in neural information processing systems, 35:23716-23736,
2022.

Anas Awadalla, Irena Gao, Josh Gardner, Jack Hessel, Yusuf Hanafy, Wanrong Zhu, Kalyani Marathe,
Yonatan Bitton, Samir Gadre, Shiori Sagawa, et al. Openflamingo: An open-source framework for
training large autoregressive vision-language models. arXiv preprint arXiv:2308.01390, 2023.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, et al. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023.

Nicholas Baker and Philip J Kellman. Abstract shape representation in human visual perception.
Journal of Experimental Psychology: General, 147(9):1295, 2018.

Elior Benarous, Sotiris Anagnostidis, Luca Biggio, and Thomas Hofmann. Harnessing synthetic
datasets: The role of shape bias in deep neural network generalization. ArXiv, abs/2311.06224,
2023. URL https://api.semanticscholar.org/CorpusID:265128614.

Folco Bertini Baldassini, Mustafa Shukor, Matthieu Cord, Laure Soulier, and Benjamin Piwowarski.
What makes multimodal in-context learning work? arXiv e-prints, pages arXiv—2404, 2024.

Irving Biederman and Ginny Ju. Surface versus edge-based determinants of visual recognition.
Cognitive psychology, 20(1):38-64, 1988.

Nitzan Bitton-Guetta, Yonatan Bitton, Jack Hessel, Ludwig Schmidt, Yuval Elovici, Gabriel
Stanovsky, and Roy Schwartz. Breaking common sense: Whoops! a vision-and-language bench-
mark of synthetic and compositional images. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 2616-2627, 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877-1901, 2020.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar,
Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, Harsha Nori, Hamid Palangi, Marco Tulio
Ribeiro, and Yi Zhang. Sparks of artificial general intelligence: Early experiments with gpt-4,
2023.

Haibo Chen, Lei Zhao, Huiming Zhang, Zhizhong Wang, Zhiwen Zuo, Ailin Li, Wei Xing, and
Dongming Lu. Diverse image style transfer via invertible cross-space mapping. In 2021 IEEE/CVF
International Conference on Computer Vision (ICCV), pages 14860-14869. IEEE Computer
Society, 2021.

https://doi.org/10.52202/079017-2808 88536


https://api.semanticscholar.org/CorpusID:265128614

Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang,
Boyang Li, Pascale Fung, and Steven Hoi. Instructblip: Towards general-purpose vision-language
models with instruction tuning, 2023.

Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang,
Boyang Li, Pascale N Fung, and Steven Hoi. Instructblip: Towards general-purpose vision-
language models with instruction tuning. Advances in Neural Information Processing Systems, 36,
2024.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
arXiv preprint arXiv:2010.11929, 2021.

Ian L Dryden and Kanti V Mardia. Statistical shape analysis: with applications in R, volume 995.
John Wiley & Sons, 2016.

James H. Elder and Ljiljana Velisavljevié. Cue dynamics underlying rapid detection of animals in
natural scenes. Journal of Vision, 9(7):7-7, 07 2009. ISSN 1534-7362. doi: 10.1167/9.7.7. URL
https://doi.org/10.1167/9.7.7.

Chaoyou Fu, Peixian Chen, Yunhang Shen, Yulei Qin, Mengdan Zhang, Xu Lin, Jinrui Yang, Xiawu
Zheng, Ke Li, Xing Sun, Yunsheng Wu, and Rongrong Ji. Mme: A comprehensive evaluation
benchmark for multimodal large language models, 2024.

Leon A Gatys, Alexander S Ecker, and Matthias Bethge. Image style transfer using convolutional
neural networks. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 2414-2423, 2016.

Paul Gavrikov, Jovita Lukasik, Steffen Jung, Robert Geirhos, Bianca Lamm, Muhammad Jehanzeb
Mirza, Margret Keuper, and Janis Keuper. Are vision language models texture or shape biased and
can we steer them?, 2024.

Robert Geirhos, Patricia Rubisch, Claudio Michaelis, Matthias Bethge, Felix A. Wichmann, and
Wieland Brendel. Imagenet-trained CNNs are biased towards texture; increasing shape bias
improves accuracy and robustness. In International Conference on Learning Representations,
2019. URL https://openreview.net/forum?id=Bygh9j09KX!

Robert Geirhos, Jorn-Henrik Jacobsen, Claudio Michaelis, Richard Zemel, Wieland Brendel, Matthias
Bethge, and Felix A Wichmann. Shortcut learning in deep neural networks. Nature Machine
Intelligence, 2(11):665-673, 2020.

Robert Geirhos, Kantharaju Narayanappa, Benjamin Mitzkus, Tizian Thieringer, Matthias Bethge,
Felix A Wichmann, and Wieland Brendel. Partial success in closing the gap between human and
machine vision. Advances in Neural Information Processing Systems, 34:23885-23899, 2021.

Gemini Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui
Yu, Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Tianrui Guan, Fuxiao Liu, Xiyang Wu, Ruiqi Xian, Zongxia Li, Xiaoyu Liu, Xijun Wang, Lichang
Chen, Furong Huang, Yaser Yacoob, et al. Hallusionbench: An advanced diagnostic suite for
entangled language hallucination and visual illusion in large vision-language models. arXiv
preprint arXiv:2310.14566, 2023.

Ishaan Gulrajani and David Lopez-Paz. In search of lost domain generalization. arXiv preprint
arXiv:2007.01434, 2020.

88537 https://doi.org/10.52202/079017-2808


https://doi.org/10.1167/9.7.7
https://openreview.net/forum?id=Bygh9j09KX

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,

pages 770-778, 2016.

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common
corruptions and perturbations. arXiv preprint arXiv:1903.12261, 2019.

Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn Song. Natural adversarial
examples. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pages 15262-15271, 2021.

Xun Huang and Serge Belongie. Arbitrary style transfer in real-time with adaptive instance normaliza-
tion. In Proceedings of the IEEE international conference on computer vision, pages 1501-1510,
2017.

John E Hummel. Complementary solutions to the binding problem in vision: Implications for shape
perception and object recognition. Visual cognition, 8(3-5):489-517, 2001.

Gabriel Ilharco, Mitchell Wortsman, Nicholas Carlini, Rohan Taori, Achal Dave, Vaishaal Shankar,
Hongseok Namkoong, John Miller, Hannaneh Hajishirzi, Ali Farhadi, and Ludwig Schmidt.
Openclip, July 2021. URL https://doi.org/10.5281/zenodo.5143773.

Hakan Inan, Kartikeya Upasani, Jianfeng Chi, Rashi Rungta, Krithika Iyer, Yuning Mao, Michael
Tontchev, Qing Hu, Brian Fuller, Davide Testuggine, et al. Llama guard: Llm-based input-output
safeguard for human-ai conversations. arXiv preprint arXiv:2312.06674, 2023.

Md Amirul Islam, Matthew Kowal, Patrick Esser, Sen Jia, Bjorn Ommer, Konstantinos G. Derpanis,
and Neil Bruce. Shape or texture: Understanding discriminative features in {cnn}s. In International
Conference on Learning Representations, 2021. URL https://openreview.net/forum?id=
NcFEZQOi-rLa.

David G Kendall. Shape manifolds, procrustean metrics, and complex projective spaces. Bulletin of
the London mathematical society, 16(2):81-121, 1984.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolu-
tional neural networks. Advances in neural information processing systems, 25, 2012.

David Krueger, Ethan Caballero, Joern-Henrik Jacobsen, Amy Zhang, Jonathan Binas, Dinghuai
Zhang, Remi Le Priol, and Aaron Courville. Out-of-distribution generalization via risk extrap-
olation (rex). In International Conference on Machine Learning, pages 5815-5826. PMLR,
2021.

Barbara Landau, Linda B Smith, and Susan S Jones. The importance of shape in early lexical learning.
Cognitive development, 3(3):299-321, 1988.

Hugo Laurencon, Lucile Saulnier, Léo Tronchon, Stas Bekman, Amanpreet Singh, Anton Lozhkov,
Thomas Wang, Siddharth Karamcheti, Alexander Rush, Douwe Kiela, et al. Obelics: An open
web-scale filtered dataset of interleaved image-text documents. Advances in Neural Information
Processing Systems, 36, 2024.

Bo Li, Yuanhan Zhang, Liangyu Chen, Jinghao Wang, Fanyi Pu, Jingkang Yang, Chunyuan Li, and
Ziwei Liu. Mimic-it: Multi-modal in-context instruction tuning. arXiv preprint arXiv:2306.05425,
2023a.

Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image pre-
training for unified vision-language understanding and generation. In International conference on
machine learning, pages 12888-12900. PMLR, 2022.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
pre-training with frozen image encoders and large language models. In International conference
on machine learning, pages 19730-19742. PMLR, 2023b.

https://doi.org/10.52202/079017-2808 88538


https://doi.org/10.5281/zenodo.5143773
https://openreview.net/forum?id=NcFEZOi-rLa
https://openreview.net/forum?id=NcFEZOi-rLa

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
pre-training with frozen image encoders and large language models, 2023c.

Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Wayne Xin Zhao, and Ji-Rong Wen. Evaluating object
hallucination in large vision-language models, 2023d.

Bin Lin, Zhenyu Tang, Yang Ye, Jiaxi Cui, Bin Zhu, Peng Jin, Jinfa Huang, Junwu Zhang, Munan
Ning, and Li Yuan. Moe-llava: Mixture of experts for large vision-language models, 2024.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
tuning, 2024a.

Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae Lee.
Llava-next: Improved reasoning, ocr, and world knowledge, January 2024b. URL jhttps://
llava-vl.github.io/blog/2024-01-30-1lava-next/.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. Advances in
neural information processing systems, 36, 2024c.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, William B Dolan, Lawrence Carin, and Weizhu Chen.
What makes good in-context examples for gpt-3? In Proceedings of Deep Learning Inside Out
(DeeLlO 2022): The 3rd Workshop on Knowledge Extraction and Integration for Deep Learning
Architectures, pages 100-114, 2022.

Bjorn Ommer. The Role of Shape in Visual Recognition, pages 373-385. Springer London, London,
2013. ISBN 978-1-4471-5195-1. doi: 10.1007/978-1-4471-5195-1_25. URL https://doi!
org/10.1007/978-1-4471-5195-1_25,

OpenAl. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

Francesco Pinto, Philip H. S. Torr, and Puneet Kumar Dokania. An impartial take to the cnn vs
transformer robustness contest. In European Conference on Computer Vision, 2022a. URL
https://api.semanticscholar.org/CorpusID:251040759.

Francesco Pinto, Harry Yang, Ser Nam Lim, Philip Torr, and Puneet Dokania. Using mixup as a
regularizer can surprisingly improve accuracy &amp; out-of-distribution robustness. In Advances
in Neural Information Processing Systems, volume 35, pages 14608—14622. Curran Associates,
Inc., 2022b.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual

models from natural language supervision. In International conference on machine learning, pages
8748-8763. PMLR, 2021.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research, 21(140):1-67, 2020.

Samuel Ritter, David GT Barrett, Adam Santoro, and Matt M Botvinick. Cognitive psychology for
deep neural networks: A shape bias case study. In International conference on machine learning,
pages 2940-2949. PMLR, 2017.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pages 10684—10695, 2022.

Shiori Sagawa, Pang Wei Koh, Tatsunori B Hashimoto, and Percy Liang. Distributionally robust
neural networks for group shifts: On the importance of regularization for worst-case generalization.
arXiv preprint arXiv:1911.08731, 2019.

Timo Schick and Hinrich Schiitze. It’s not just size that matters: Small language models are also
few-shot learners. In Proceedings of the 2021 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, pages 2339-2352,
2021.

88539 https://doi.org/10.52202/079017-2808


https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://doi.org/10.1007/978-1-4471-5195-1_25
https://doi.org/10.1007/978-1-4471-5195-1_25
https://api.semanticscholar.org/CorpusID:251040759

Ajay Subramanian, Elena Sizikova, Najib J. Majaj, and Denis G. Pelli. Spatial-frequency channels,
shape bias, and adversarial robustness. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023. URL https://openreview.net/forum?id=KvPwXVcslY.

Shengbang Tong, Zhuang Liu, Yuexiang Zhai, Yi Ma, Yann LeCun, and Saining Xie. Eyes wide
shut? exploring the visual shortcomings of multimodal llms, 2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Weihan Wang, Qingsong Lv, Wenmeng Yu, Wenyi Hong, Ji Qi, Yan Wang, Junhui Ji, Zhuoyi Yang,
Lei Zhao, Xixuan Song, Jiazheng Xu, Bin Xu, Juanzi Li, Yuxiao Dong, Ming Ding, and Jie Tang.
Cogvlm: Visual expert for pretrained language models, 2024.

Zhizhong Wang, Lei Zhao, Haibo Chen, Zhiwen Zuo, Ailin Li, Wei Xing, and Dongming Lu. Evaluate
and improve the quality of neural style transfer. Computer Vision and Image Understanding, 207:
103203, 2021.

Zhizhong Wang, Lei Zhao, and Wei Xing. Stylediffusion: Controllable disentangled style transfer via
diffusion models. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pages 7677-7689, 2023.

Genta Indra Winata, Andrea Madotto, Zhaojiang Lin, Rosanne Liu, Jason Yosinski, and Pascale
Fung. Language models are few-shot multilingual learners. In Proceedings of the 1st Workshop on
Multilingual Representation Learning, pages 1-15, 2021.

Fei Xu, Susan Carey, and Nina Quint. The emergence of kind-based object individuation in infancy.
Cognitive psychology, 49(2):155-190, 2004.

Shen Yan, Huan Song, Nanxiang Li, Lincan Zou, and Liu Ren. Improve unsupervised domain
adaptation with mixup training. arXiv preprint arXiv:2001.00677, 2020.

Duzhen Zhang, Yahan Yu, Chenxing Li, Jiahua Dong, Dan Su, Chenhui Chu, and Dong Yu. Mm-1lms:
Recent advances in multimodal large language models. arXiv preprint arXiv:2401.13601, 2024.

Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
diffusion models. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pages 3836-3847, 2023a.

Xin Zhang, Shixiang Shane Gu, Yutaka Matsuo, and Yusuke Iwasawa. Domain prompt learning for
efficiently adapting clip to unseen domains. Transactions of the Japanese Society for Artificial
Intelligence, 38(6), 2023b.

Haozhe Zhao, Zefan Cai, Shuzheng Si, Xiaojian Ma, Kaikai An, Liang Chen, Zixuan Liu, Sheng
Wang, Wenjuan Han, and Baobao Chang. Mmicl: Empowering vision-language model with
multi-modal in-context learning. arXiv preprint arXiv:2309.07915, 2023.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36, 2024.

Yiyang Zhou, Chenhang Cui, Jachong Yoon, Linjun Zhang, Zhun Deng, Chelsea Finn, Mohit Bansal,
and Huaxiu Yao. Analyzing and mitigating object hallucination in large vision-language models.
arXiv preprint arXiv:2310.00754, 2023.

Yongshuo Zong, Ondrej Bohdal, and Timothy Hospedales. Vl-icl bench: The devil in the details of
benchmarking multimodal in-context learning. arXiv preprint arXiv:2403.13164, 2024.

https://doi.org/10.52202/079017-2808 88540


https://openreview.net/forum?id=KvPwXVcslY

A Author Contributions

* Arshia Hemmat:

— Dataset Generation: Responsible for the development of the Illusion Generation
Pipeline, meticulously designing and implementing the system to create high-quality
illusions. Efforts included fine-tuning the hyperparameters to ensure the generated
images met the desired standards of clarity and effectiveness. This process involved
extensive experimentation and adjustment to achieve optimal results.

— Experiments and Method: Conducted the zero-shot experiments for all the models,
which involved setting up, running, and analyzing the results of these experiments.

— Data Annotation: Managed data annotation involving over 100 individuals, collected
and analyzed the annotation results to ensure data quality and relevance.

— Paper Writing: Co-writer of the basics of the chapter Section 4]

* Adam Davies:

— Experiments and Method: Co-supervised benchmark design, generation, evaluation,
zero-shot experiments, and results analysis/visualization; implemented experimen-
tal prototypes for VLM generation and evaluation; assisted in model selection and
deployment.

— Data Annotation: Designed data annotation procedure; wrote onboarding materials for
annotators; prototyped data annotation setup and assisted in deployment and analysis.

— Paper Writing: Co-wrote, edited, and revised all sections of the paper; co-shaped
central story (motivation, contribution, relationship with prior work in computer and
human vision, results analysis, social impact); literature review (shape recognition in
human vision, shape recognition benchmarks).

* Tom A. Lamb:

— Experiments: Co-shaped design of ICL experiments; implemented and carried out all
ICL experiments and co-led the analysis and presentation of ICL results.

— Paper Writing: Led writing of Section[5] Additionally, contributed to the writing and
presentation of Section 4]

* Jianhao Yuan:

— Experiments: Carried out all domain generalization experiments Section[6] Addition-
ally, carried out zeroshot experiment of GPT-40 and Gemini in Section [4]

— Paper Writing: Led writing of Section [6]

* Philip Torr: Provided feedback and advice regarding the project direction and proposed
approach; assisted in securing compute resources to carry out experiments.
Ashkan Khakzar:
— Idea Conceived the research problem and idea (the idea to evaluate VLMs on shapes
represented by an arrangement of visual scene elements)
— Method ldentified the existing method to generate such images. Demonstrated proof of
concept (that state-of-the-art VLMs cannot identify these shapes)
— Literature review On shape recognition in computer vision and co-shaped the storyline
— Experiments Project co-supervision (curating the dataset Section [3| and zero-shot
experiments Section [4)
— Writing Co-writing of abstract, introduction, related works, and conclusion.
* Francesco Pinto:

— Experiments and Method: Led benchmark design, generation and evaluation; led design,
results analysis and visualization of zero-shot, in-context learning and multi-domain
generalization experiments.

— Data Annotation: Implemented and tested data annotation procedure, assisted in
preparing the onboarding materials for annotators; collected and analysed the results of
the annotation.

— Paper Writing: Co-shaped central story (motivation, contribution, relationship with
prior work in computer vision, results analysis, impact); literature review (on shape
recognition in computer vision); co-wrote the abstract and all sections of the paper but
conclusions. Co-supervised full project.

88541 https://doi.org/10.52202/079017-2808



B Dataset Documentation and Additional Information

Below, we include all information required for dataset submissions to the NeurIPS Datasets and
Benchmarks Track:

Dataset Documentation and Intended Uses The dataset documentation is provided at the Croissant
and Huggingface URLs mentioned below. The dataset mainly evaluates foundational VLMs and
their shape recognition abilities. The dataset can also learn invariant representations using domain
generalisation techniques. Other uses may be possible.

Dataset URL Our datasets are available for viewing and full download at the following permanent
link: https://huggingface.co/datasets/arshiahemmat/I1lusionBench. The “dataset
viewer” allows one to select a specific split (i.e., I1lusionBench-IN, I1lusionBench-L0OGO, or
I1lusionBench-ICON). All images are provided in the .png format. The HuggingFace Datasets
repository service (where our dataset is hosted) automatically generates structured Web standard
metadata for dataset discovery.

Croissant Metadata URL Our Croissant metadata record is available at https://huggingface!
co/api/datasets/arshiahemmat/I1llusionBench/croissant.

Author Statement The authors have collected the conditioning images and generated this dataset
for research purposes. For this reason, the data usage is allowed under the fair use law and is not
intended to yield any copyright infringement. There is no warranty of fitness for a particular purpose
or noninfringement. The authors remain available to edit the dataset to comply with the law. In no
event shall the authors or the NeurIPS conference be liable for any claim, damages, or other liability
arising from, out of, or in connection with the usage or release of this dataset.

Data License This work is openly licensed under CC BY-NC 4.0 (https://creativecommons,
org/licenses/by-nc/4.0/deed.en).

Long-Term Hosting, Licensing, and Maintenance Plan We have uploaded our dataset to Hugging-
Face Datasets (link above). The Licensing information and Croissant metadata URL are available
above and also available in the HuggingFace URL. Regarding Maintenance of the dataset on the
HuggingFace servers please refer to the https://huggingface.co/content-guidelines,

Reproducibility The code for generating the dataset and the experiments are publicly available in
the following repository https://github.com/arshiahemmat/I1lusionBench|

Human Annotations We have provided screenshots of annotation forms which were distributed
among participants in Appendix [B.1]

Attributions This work utilizes stock images to condition generators (as described in Section 3)).
I1lusionBench-ICON conditioning images are taken from icons8. com, which makes them freely
available provided they are attributed using a link (as we do here).

B.1 Human Annotation Details

Subsampling for Annotation Given the size of our dataset ( more than 32K samples) performing
a complete annotation of it would be expensive. Furthermore, since the data is synthesized and we
perfectly know the class of the shapes represented in each image, the purpose of the annotation
is simply to verify that the generated images have shapes that are recognisable by humans. For
this reason, we subsample the generated dataset by enforcing that, for each dataset (i.e., each of
I1lusionBench-IN, I11lusionBench-ICON, and I11usionBench-LOGO), at least one conditioning
image from each class and scene choice is annotated.

Furthermore, we observe that the difficulty in perceiving an object depends on the choice of the
hyperparameters that control the diffusion process. For this reason, we additionally enforce that
images are uniformly sampled from each hyperparameter setting so that annotators are exposed to
images encompassing the full range of difficulty.

Participants Our human evaluation involved 106 participants. The annotators were first instructed
about the task and required to perform a simple test on 10 images, in order to make sure they
understood the task to be performed. Annotators participated on a purely volunteer basis and were
awarded with in-course credit. Participation was not mandatory for any student or course. No risks
were identified for the annotation process.
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Figure 8: Human Anneotation screenshots from GoogleForm through which the images are annotated
by human annotators.

Further annotation meta-data The number of annotators for IllusionBench-IN,
I1lusionBench-ICON, and IllusionBench-LOGO is respectively of 35 each. We split the
original data so that each sample is annotated twice. Each reviewer is assigned approximately 80
samples (since the splitting algorithm is randomised, they may receive slightly less or slightly more
samples).

B.2 Image Generation Hyperparameters

For data generation, we focused on the Illusion Diffusion generative models (demo available here),
containing three major components:

* ControlNet [Zhang et al [2023al], specifically: icontrolvIp sd15 grcode monster
» Base Model, specifically: RealisticVision V5.1 noVAE, built using Stable Diffusion

2022]
* Stable Diffusion-guided VAE, specifically: sd-vae-ft-mse

We used the following generation hyperparameters:

* Prompts were simply a single word corresponding to the scene types (e.g., “city” or “mu-
seum”

* Guidance-scale was always set to default value 7.5

* Illusion_strength, which can be used to modulate the strength of abstract shape patterns, was
selected based on our anecdotal observations regarding an appropriate difficulty level for
each dataset (see below) and validated using human data annotation (as described above)

» Sampler was always set to default value Euler
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The Illusion_strength for the different datasets are as follows:

 {Illusion_strength} of the I11usionBench-LOGO and I1lusionBench-IN: [0.75,
0.80, 0.85, 0.90, 1.05, 1.10, 1.15, 1.20, 1.25, 1.35, 1.40, 1.50, 1.60]

 {Illusion_strength} of the I11lusionBench-ICON: [0.85, 1.05, 1.25, 1.40]

B.3 Limitations

For future work, we will create more complex images and define more tasks in order to challenge
models. We have also increased the size of our dataset so that we can train large models using our
dataset. A current limitation is that we only hide a single shape in each image. Future work could
extend this to incorporating several objects within the same background. Finally, we also plan to
experiment with further tasks for compositional understanding and scene understanding of SOTA
models. We leveraged prompt engineering to report the best possible performance of each model
in the zero-shot case as described in Appendix [C]and Section 4} however, improvements may be
possible. We describe several limitations of the methods explored in this work in Sections ] and [35]

B.4 Data Samples

To illustrate the quality of abstract shape recognition images created for this dataset, we randomly
sample one image from several scene types in each dataset and display them in Figure[9]

Illusion-LOGO Illusion-IN Illusion-ICON Illusion-LOGO Illusion-IN Illusion-ICON

Figure 9: Image Samples from each dataset in our benchmark.

C Zero-Shot Experiments Details

C.1 Zero-shot Experiments

We test our models zero-shot to evaluate their abstract shape recognition abilities. To leverage all
capabilities of these models, we describe the conditions of our experiments in our prompt. The
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models are then asked to choose the correct shape type among a closed set of options, which include
both shapes and scene names.

Let us focus on the predictive task 7. Analogous formulations hold for 7g and 7¢ s. Given that the
model can correctly assign the class yg to the hidden shape in the scene xlc we provide it with a set
of options O, which includes all the shapes and scene names considered in the dataset split. We then
ask the model to predict the shape name from these options.

Define O = {shape,, shape,, ..., sceney, scenes, ...} as the set of possible options. The model’s
response is evaluated based on whether the correct shape name is present in its output.

C.2 Models

In our zero-shot experiments, we evaluate each of the following large vision language models (VLMs):

e BlipV2-T5 [Li et al.,2023c|, a VLM utilizing the T5 architecture [Raffel et al., 2020] for text
encoding and a state-of-the-art vision encoder, designed for high-performance multimodal
tasks.

* CogVLM [Wang et al.,[2024]], an advanced VLM leveraging a Vision Transformer (ViT)
[Dosovitskiy et al., [2021]] and a powerful language model fine-tuned for vision-language
reasoning tasks.

¢ InstructBlip-T5 [Dai et al.| [2023]], a model combining the T5 architecture [Raffel et al.,
2020] for text processing with a highly efficient vision encoder, fine-tuned for instructional
prompts and multimodal interactions.

* LLaVA-Next (Vicuna-7b) [Liu et al.| 2024bf], a VLM using Vicuna-7b-v1.5 [Zheng et al.|
2024] and CLIP ViT-L/14 [Radford et al.| 2021]] as text and visual encoders, respectively.
These are connected via simple projections.

* Qwen-VL-Chat [Bai et al.}[2023]], a 9B parameter model employing a cross-attention module
to link an OpenClip ViT-bigG [Ilharco et al.,|2021]] vision encoder to a Qwen-7b [Bai et al.}
2023|] text backbone.

e Llaval.5-7b and 13-b [Liu et al.} 2024a], a VLM employing a 7-billion parameter language
model and advanced visual encoder, connected via efficient projections.

¢ InstructBlip-7b and 13b [Dai et al., 2023} 2024, a BLIP [Li et al.,|2022]] model fine-tuned
using instruction tuning, using a 7-billion parameter language model and a high-resolution
vision encoder for precise multimodal understanding.

* MoE-StableLM, MoE-Qwen, MoE-Phi2 [Lin et al., 2024]], a mixture of experts (MoE)
model combining StableLM architecture [Raftel et al.l2020] with multiple expert models
for dynamic task specialization and improved performance.

* GPT-40, a multimodal version of GPT-4 [OpenAlL 2023]], incorporating optimized end-
to-end multimodal encoding of images, text, and audio for improved multimodal task
performance.

* Gemini-Flash [Gemini Team et al., 2023], a high-speed VLM combining the latest advance-
ments in vision transformers [Dosovitskiy et al.l[2021]] and language models for rapid and
accurate multimodal analysis.

Note that, for the last two models in this list, we are unable to provide any specific information
regarding their respective architectures or training regimes, as this information has not been made
publicly available.

C.3 Prompts

We use the following general prompt template for our zero-shot experiments:
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* Tl Prompt: This image contains a {shape} integrated into a
background, where elements of the background contribute to
forming the {shape}. Identify the {shape} that is represented
in the image by choosing exclusively among the following
options: {shape_options}, {background_classes}. Provide
your response by stating only the single, most accurate class
name that represents the {shape}. You have to respond with a
single word.

o Texture Question Bias: This image contains a {shape} integrated
into a background, where elements of the background contribute
to forming the {shape}. Identify the background that is
represented in the image by choosing exclusively among the
following options: {shape_options}, {background_classes}.
Provide your response by stating only the single, most
accurate class name that represents the background. You have
to respond with a single word.

where shape € {logo, shape, icon}for the dataset IllusionBench-LOGO, IllusionBench-IN and
[lusionBench-CI respectively.

C.4 Text Generation Hyperparameters

For all VLMs, we use full-precision weights (i.e., no quantization), generating responses using greedy
decoding without sampling, and limit the maximum response length to 100 tokens.
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C.5 Zero-Shot Results By Class
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Figure 10: Zero-shot results on I11usionBench-IN by class. Zero-shot shape and scene recall of
VLMs for each class in the I11usionBench-IN dataset.
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Figure 11: Zero-shot results on I11usionBench-LOGO by class. Zero-shot shape and scene recall
of VLMs for each class in the I11usionBench-LOGO dataset.
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Figure 12: Zero-shot results on I11usionBench-ICON by class. Zero-shot shape and scene recall
of VLMs for each class in the I11usionBench-ICON dataset.
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Figure 13: Zero-shot results on Stylized ImageNet by class. For comparison, we also report the
zero-shot shape and texture bias of VLMs on the Stylized ImageNet dataset [Geirhos et al.| 2019].

D In-Context Learning Experiments Details

D.1 In-Context Learning (ICL)

ICL is a method of adapting a model for an unseen task without any additional training or
fine-tuning. Specifically, n-shot ICL consists of sequence of labelled demonstrations C =
{(%i;s¥ir), -+ 5 (Ti,,v:,)}- These are supplied to a model pg(y|z) for an unseen task. The la-
bel corresponding to a test query . is predicted through the predictive distribution of the model
conditioned on the demonstration set C alongside an instruction / for the new task:

pG(y|C7I) :p0<y|x117yz17xln’yln7[) (1)

This learning method has proven to be an efficient and low-cost method for adapting LLMs to

downstream tasks [Brown et all, [2020], [Schick and Schiitze] 2021} [Winata et al, 2021], [Ciu et al.

[2022]. The success of ICL for LLMs has led to recent research aiming to extend ICL to multi-modal
models, where labeled demonstrations now contain interleaved image and text modalities [[Alayrac]

let al} 2022}, Bertini Baldassini et al.| 2024} [Zhao et al,[2023] [Zong et al.| [2024].

D.2 ICL Further Experimental Details

Considering we restrict evaluations to classes recognised in a zero-shot manner, we use the following
class counts: 10 for the I11usionBench-LOGO split, 14 for the I11usionBench-IN split, and 6 for
the icons split, utilizing all 11 scenes of the dataset. To overcome ICL biases like majority voting
and recency bias, each shape and scene class is represented at most once within the context, with no
repetitions, and new demonstrations are randomly sampled for each test sample.
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D.3 Models Description

In our zero-shot experiments, we evaluate each of the following large vision language models (VLMs):

* LLaVA-Next (Vicuna-7b) [Liu et al.l 2024b], a VLM operating at an input image resolution
of 3362, using Vicuna-7b-v1.5 [Zheng et al., 2024] and CLIP ViT-L/14 [Radford et al.,
2021]] as text and visual encoders, respectively. These are connected via simple projections.

* Qwen-VL-Chat [Bai et al., 2023], a 9B parameter model with an input resolution of 4482,
employing a cross-attention module to link an OpenClip ViT-bigG [llharco et al., 2021]]
vision encoder to a Qwen-7b [Bai et al., [2023|] text backbone.

* Otter-MPT [Li et al.,[2023al], a 9B parameter VLM based on the OpenFlamingo architecture
[[Awadalla et al.l 2023]], featuring an input image resolution of 2242 and utilizing LLaMA-
7B [Touvron et al.| 2023 and CLIP-ViT-L/14 as text and image backbones, respectively,
connected through cross-attention.

* IDEFICS-9B-Instruct [Laurencon et al., 2024, an open-source reproduction of Flamingo
[Alayrac et al.,|2022], with an input image resolution of 2242, using cross-attention trans-
former blocks to connect LLaMA and OpenClip text and image backbones.

* MMICL-T5-XXL [Zhao et al., 2023]], a 12B parameter model that employs a Q-former [Li
et al.| [2023b] to integrate language and image components within an InstructBlip-FLANTS5-
XXL [Dai et al., [2024] backbone. This model can handle complex prompts with interleaved
text and images, allowing for text-image references through dummy demonstration tokens,
and operates at an input image resolution of 2242

D.4 Prompts

We use the following general prompt template for our ICL experiments:

{TASK_INSTRUCTION}
{demonstration_image_1}

Answer: {demonstration_label_1}
{demonstration_image_2}

Answer: {demonstration_label_2}

{demonstration_image_n}

Answer: {demonstration_label_n}
{query_image}

Answer:

where demonstration_image_i and demonstration_label_i refer to the image and label for
the ith demonstration used as the context for predicting the answer for the query image query_image.
TASK_INSTRUCTION is the instruction used based on the prediction target and the dataset. We used
the following TASK_INSTRUCTION prompts for predicting the shape, texture, and both the texture
and shape simultaneously respectively:
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# Predict shape

TASK_INSTRUCTION =‘This image contains a {shapel} integrated into a
background, where elements of the background contribute to forming
the image.

background options: [{BG_OPTIONS}]

{shape} options: [{SHAPE_OPTIONS}]

Identify the {shapel} that is represented in the image by choosing
among the provided options. Provide your response by stating only
the single, most accurate option that represents the {shapel} in the
image. You have to respond with a single word.’

# Predict texture

TASK_INSTRUCTION = ‘This image contains a {shape} integrated into a
background, where elements of the background contribute to forming
the image.

background options: [{BG_OPTIONS}]

{shape} options: [{SHAPE_OPTIONS}]

Identify the background that is represented in the image by choosing
among the provided options. Provide your response by stating only
the single, most accurate option that represents the background in
the image. You have to respond with a single word.’

# Predict both texture and shape

TASK_INSTRUCTION = ‘This image contains a {shape} integrated into a
background, where elements of the background contribute to forming
the image.

background options: [{BG_OPTIONS}]

{shape} options: [{SHAPE_OPTIONS}]

Identify BOTH the background AND the {shape} that are represented
in the image by choosing among the provided options. Provide your
response by stating only the single, most accurate options that
represent the background and the {shape} in the image respectively.
You have to respond with two words, one predicting the background and
one predicting the {shapel}’

where shape € {logo, object, icon}for the dataset IllusionBench-LOGO, IllusionBench-IN and
[lusionBench-CI respectively.

D.5 Text Generation Hyperparameters

For all VLMs, we use full-precision weights (i.e., no quantization), generating responses using greedy
decoding without sampling, and limit the maximum response length to 100 tokens.

D.6 ICL Results: Exceptions

We list the exceptions to the general treneds reported in Section[5] We maintain the key takeaway
headings and format in Section[5]and discuss key exceptions.

* ICL does not mitigate tendency to predict scene over shape. LLaVA on the task 7¢ (along
the first row) stands as an exception, where the model demonstrates low scene prediction
accuracy and non-trivial performance shape accuracy on ICL2 and ICL4.

» Context selection strategy effects prediction tasks differently.

— 7¢ : For LLaVA, including the shape through ICL2 or ICL4 for 1 or 2 shots leads to a
significant performance increase over all other models. This is especially evident for
1-shot, where we see high shape accuracy values of ICL2: 97.9% and ICL4: 99.9%.
These high accuracy values indicate that the model exhibits a copying phenomenon
[Bertini Baldassini et al.,|2024]], where for 1-shot, it simply copies the label from the
ICL demonstration, which will have the same test label.
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— Ts: QWEN shows an improvement in scene accuracy (for 4-shot, scene accuracies are
ICL1: 51.4% and ICL3: 88.1%) when the scene is included in the context. Additionally,
LLaVA exhibits a similar copying phenomenon for scene prediction in ICL3 and ICL4
as discussed for 7¢ but also shows some improvements over zero-shot for 2-shots.

— 7¢,s: As an exception, OTTER and QWEN show a general increase in scene accuracy
on 7¢,s compared to Tg, while their shape accuracy remains similar to 7. This
suggests that predicting both shape and scene and including demonstrations with such
predictions can help these models better disentangle scene from shape. Again, we
observe the copying mechanisms in LLaVA described for 7 and 7g.

D.7 Individual Dataset Splits ICL Results
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Figure 14: ICL Results on I11usionBench-LOGO. Few-shot shape and texture accuracy of VLMs on
the I11usionBench-LOGO dataset across the different ICL learning tasks and the different prediction
tasks.
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Figure 15: ICL Results on I11usionBench-IN. Few-shot shape and texture accuracy of VLMs on
the I11usionBench-IN dataset across the different ICL learning tasks and the different prediction
tasks.
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Figure 16: ICL Results on I11usionBench-ICON. Few-shot shape and texture accuracy of VLMs on
the I11usionBench-ICON dataset across the different ICL learning tasks and the different prediction
tasks.

D.8 Responses From Low Performing Models

We often observe close to 0% shape accuracy of the LLaVA model on shape prediction tasks across
all four ICL-constrained ICL prediction tasks when using a higher number of ICL demonstrations.
Figure [T7]illustrates three example responses from the LLaVA model using 4-shot ICL for ICL3,
which includes the test query background in the ICL demonstrations. From the example model
responses R1, R2, and R3, it is evident that the LLaVA model tends to produce descriptive and verbose
responses. Specifically, it fails to be concise and accurate, unlike the other models we investigate
that usually respond with a single class prediction even with more shots. This verbosity leads to poor
accuracy as the model fails to adhere to the prompt instructions of predicting a single class, resulting
in the test class rarely being included in the model’s responses.

* R1: The image shows a paper sculpture that resembles a stylized

* R2: The image shows a logo integrated into a background that
features a mountainous landscape

* R3: The image shows a beautiful natural scene with a large rock
formation in the ocean

Figure 17: LLaVA verbose responses. Example responses from the LLaVA model for 4-shot shape
prediction (T1) on the ICL3 learning task.

However, Figure [I8]shows example responses from the LLaVA model on the same task and for the
same test queries as in Figure[I7]but using 2-shots. Observations from responses R1°, R2’, and R3’
indicate that with fewer shots, the model is much more likely to produce single-class predictions
or responses that are generally more concise and less descriptive. The differences observed with
increasing numbers of shots suggest that LLaVA’s ability to correctly process and learn both the
expected answer format and the task diminishes with a greater number of shots, highlighting its
limitation as an in-context learner.

* R1’: The logo in the image is Tesla.
* R2’: The logo in the image is Starbucks.
* R3’: Audi

Figure 18: LLaVA concise responses. Example responses from the LLaVA model for 2-shot shape
prediction (T1) on the ICL3 learning task for the same test query as in Figure[T7]
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D.9 ICL Prompt and Context Sensitivity

Prompt Sensitivity. We assess whether our ICL results are sensitive to the prompts used. We conduct
ablations over four different prompt templates: the original template provided in Appendix [D.4]
and three additional variations. These variations include: (i) a simplified minimalistic prompt, (ii)
the same simplified prompt but reversing the order in which the object and background options are
presented, and (iii) a Llama-guard-style prompt [Inan et al.l 2023]] that explicitly indicates what the
model should and should not focus on when making predictions. The specific prompt templates are
as follows:

# Simplified prompt

TASK_INSTRUCTION = ‘This image contains an object integrated into a
background, where elements of the background contribute to forming
the image.

background options: [{BG_OPTIONS}]

{object} options: [{0BJ_OPTIONS}]

Identify the object/background/object and background that are
represented in the image by choosing among the provided optioms.’

# Simplified prompt reverse

TASK_INSTRUCTION = ‘This image contains a background with an
integrated {object}, where elements of the background contribute to
forming the image.

{object} options: [{0BJ_OPTIONS}]

background options: [{BG_OPTIONS}]

Identify the {object/background/object and background} that are
represented in the image by choosing among the provided optioms.’

# Llama-guard style

#i## Pay attention to:

ONLY ({the object/the background/BOTH the object and the background} that is represented
in the image by choosing among the provided icon options.TASK_INSTRUCTION =
‘This image contains an {object} integrated into a background, where
elements of the background contribute to forming the image.

{object} options: [{0BJ_OPTIONS}]

background options: [{BG_OPTIONS}]

Identify the {object/background/object and background} that is
represented in the image by choosing among the provided optioms.
Provide your response by stating only the single, most accurate
option that represents the {object/background/object and background}
in the image. You have to respond with a single word.

### Pay attention to:

ONLY {the object/the background/BOTH the object and the background}
that is represented in the image by choosing among the provided icon
options.

### DO NOT:
Focus on the {object/the background/IGNORE IN THIS CASE} of the
image.’

\. .

We report the mean shape and scene recall on the I11usionBench-LOGO dataset split, with error
bars representing one standard error from the mean. The results are shown in Figure[I9] Overall, we
observe very little variation in shape and scene recall across models, tasks, and contexts. Significant
variations, when present, occur only for LLava or Idefics models and are limited to cases with a
small number of shots. These variations diminish as the number of in-context examples increases,
suggesting that the results described in Section [5|are generally insensitive to the type of prompt used,
particularly when a larger number of in-context examples are provided.
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Figure 19: Prompt sensitivity on I11usionBench-LOGO. Mean shape and scene recall metrics with
error bars representing one standard error from the mean across four different prompts used for ICL
on the I11lusionBench-LOGO dataset split.
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Figure 20: Context ordering sensitivity on I1lusionBench-LOGO. Mean shape and scene recall
metrics with error bars representing one standard error from the mean over three shuffled orders of
the same context examples used for ICL on the I11lusionBench-L0OGO dataset split.

Sensitivity to the order of in-context examples. We also investigate the sensitivity of ICL results to
the order of in-context examples. To assess this, we shuffle the context examples three times on the
I1lusionBench-LOGO when performing inference on task 7¢,s. The results, shown in Figure 20}
display very tight metrics with minimal variation in shape and scene recall, demonstrating that the
results described in Section [5]are not sensitive to the ordering of the context examples.

E Domain Generalisation Experiments Details

E.1 Background Details

Domain generalisation has been a challenging task for image recognition. Several methods have been
developed to improve training strategies for better generalisability of early specialist visual models,
which are also applicable to CLIP models. Data augmentation strategies such as MixUp [Yan et al.}
2020]] and RegMixUp [Pinto et al., [2022b] are known to improve generalisation capacity through
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interpolation or extrapolation of data samples outside the training domain for diversity. GroupDRO
[Sagawa et al.,[2019] performs ERM with a re-weighting of classes with larger errors, making them
more significant. VREx [Krueger et al.,[2021]] reduces differences in risk across training domains,
which can decrease a model’s sensitivity. Additionally, prompt learning, a promising approach for
CLIP-style models, can also be leveraged for domain generalisation. Specifically, we adopt DPLCLIP
[Zhang et al.| 2023b]], which trains a prompt generator during the training phase and infers unseen
domains.

E.2 Further Experiment Details

CLIP Model For all experiments, the image encoder backbone of CLIP model is a ResNet50 [[He
et al., 2016]]. For full-parameter fine-tuning, we train the whole image encoder, whereas for linear
probing we only train the projection layer. The inferent prompt template for all methods is ¢‘A photo
of [Class name]’’.

Training Hyperparameters For all experiments, we use a batch size of 32 and the Adam optimiser
[Kingma and Bal [2014]] with a learning rate of Se-5. For full parameter fine-tuning, we train the
model for 1000 steps, and for linear probing, we train the model for 800 steps. For MixUp [Yan et al.}
2020]] and RegMixUp [Pinto et al., |2022b], the alpha and beta are both set to 0.2. For GroupDRO
[Sagawa et al.,[2019], the eta is set to 1e-2. For VREx [Krueger et al., 2021]], the penalty weight is set
to 1.0. For DPLCLIP [Zhang et al.,|2023b], the number of domain tokens is 16.

F Compute Resources

All experiments are performed on our internal cluster.

Resources for image generation For the Image generation, we used three A40 GPUs with 45 GB
RAM with around 65h to generate all of the images in the dataset.

Resources for zero-shot experiments For the zero-shot experiments, we used eight A40 GPUs with
45 GB RAM for around 250h total to cover all Zero-shot experiments experiments.

Resources for in-context learning experiments We perform ICL inference using 8 A40 GPUs with
45GB RAM for around 168h total to cover all ICL experimental settings.

Resources for domain generalisation experiments For each fine-tuning CLIP we use a single A40
GPUs with 45GB RAM for an hour on average for full parameter fine-tuning and half an hour for
linear probing.
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