
ProtGO: Function-Guided Protein Modeling for
Unified Representation Learning

Bozhen Hu1,2∗, Cheng Tan2∗, Yongjie Xu2, Zhangyang Gao2, Jun Xia2,
Lirong Wu2, Stan Z. Li2†

1Zhejiang University 2Westlake University
{hubozhen, tancheng, stan.zq.li}@westlake.edu.cn

Abstract

Protein representation learning is indispensable for various downstream applica-
tions of artificial intelligence for bio-medicine research, such as drug design and
function prediction. However, achieving effective representation learning for pro-
teins poses challenges due to the diversity of data modalities involved, including
sequence, structure, and function annotations. Despite the impressive capabilities of
large language models in biomedical text modelling, there remains a pressing need
for a framework that seamlessly integrates these diverse modalities, particularly
focusing on the three critical aspects of protein information: sequence, structure,
and function. Moreover, addressing the inherent data scale differences among these
modalities is essential. To tackle these challenges, we introduce ProtGO, a unified
model that harnesses a teacher network equipped with a customized graph neural
network (GNN) and a Gene Ontology (GO) encoder to learn hybrid embeddings.
Notably, our approach eliminates the need for additional functions as input for the
student network, which shares the same GNN module. Importantly, we utilize a
domain adaptation method to facilitate distribution approximation for guiding the
training of the teacher-student framework. This approach leverages distributions
learned from latent representations to avoid the alignment of individual samples.
Benchmark experiments highlight that ProtGO significantly outperforms state-of-
the-art baselines, clearly demonstrating the advantages of the proposed unified
framework.

1 Introduction

Proteins constitute the fundamental structural and functional components within cells and organisms
and serve as indispensable biomolecules thereof. These biomolecules are composed of linear
sequences of amino acids, linked together by peptide bonds, intricately folding into complex three-
dimensional (3D) structures [1]. Recent groundbreaking advancements, exemplified by AlphaFold
models [2, 3], have revolutionized protein structure prediction, leveraging artificial intelligence
techniques with unprecedented accuracy. Consequently, a significant scientific challenge emerges:
unravelling the intricate relationships among a protein’s sequence, structure, and function — an
endeavour crucial for understanding disease mechanisms [4]. Protein science primarily encompasses
three core types of information: sequence, structure, and function, as illustrated in Figure 1. There,
Gene Ontology (GO) annotations offer a standardized framework for delineating gene and protein
functions, covering molecular functions, cellular components, and biological processes. These
annotations furnish a comprehensive grasp of protein functionality across multiple dimensions and

*Equal contribution. †Correspondence: {stan.zq.li}@westlake.edu.cn

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

88581 https://doi.org/10.52202/079017-2810

are the purpose of a protein study. Designed to be species-agnostic, the GO vocabulary spans a diverse
array of biological functions, rendering it applicable to various biological contexts and organisms1 .

Protein representation learning emerges as a dynamic research domain, aiming to uncover underlying
patterns within raw protein data, providing invaluable insights applicable across diverse downstream
tasks [5]. Recently, protein language models (LMs) have emerged as powerful tools for processing
protein sequences, showcasing their capability to learn the certain ‘grammar of life’ from vast
collections of protein sequences [6]. Models such as ProtTrans [7], the ESM series [6, 8–10], and
xTrimoPGLM [11] leverage transformer architectures and attention mechanisms to autonomously
uncover intrinsic patterns, undergoing self-supervised pre-training on extensive datasets. In contrast
to sequences, protein structures entail continuous 3D coordinate data [12], necessitating distinct
modelling strategies. Graph neural network (GNN)-based models [13, 14] have been developed
and adapted to represent protein 3D structures [15, 16]. For instance, GearNet [17] encodes both
sequential and spatial features by facilitating message passing between nodes and edges across
multiple types of protein graphs.

UTP biosynthetic process

Oxidoreductase activity

membrane-enclosed lumen

H S

L F
H G

K K L

Sequence

Structure

GO-BP:0006228

Function

GO-MF:0016681

GO-CC:0031974

Figure 1: Protein sequence, structure, and
function.

While protein LMs and GNNs have demonstrated im-
pressive performance across various protein-related
tasks, such as predicting protein mutational stability
and Enzyme Commission (EC) numbers [18], most
of these methods overlook the utilization of func-
tional information [6, 7]. However, integrating func-
tional annotations is crucial for enhancing model ca-
pabilities and unveiling the intrinsic relationships be-
tween protein sequences and functions [18, 19]. Re-
cent research explores token-level protein knowledge
through pre-training on biomedical texts, which con-
tain sequential and biological information [19, 20].
Nonetheless, the disparity between the vast number
of protein sequences and the limited availability of
structures and annotations presents a significant challenge [21]. For instance, UniParc contains
over 500 million (M) sequences [22], whereas the Protein Data Bank (PDB) houses only about
190 thousand (K) structures [23], with approximately 5M triplets in ProteinKG25 [24], comprising
around 600K proteins and 50K attribute terms. This discrepancy in scale hampers the translation of
the success achieved in sequence modelling into structure and function modelling. Consequently,
enhancing the integration and fusion of information from these three modalities poses a crucial and
formidable challenge in protein science.

Considering the disparity in data categories and scales between protein sequences, structures, and
functions, we introduce ProtGO, a comprehensive multimodal framework for protein representation
learning. ProtGO leverages a teacher model to glean insights from triplets comprising sequences,
structures, and functions, distilling this knowledge to guide the training of the student model. However,
given that functional annotations are lacking for the vast majority of sequenced proteins [25, 26], such
information may not always be available for the teacher model in downstream tasks. Consequently, we
opt to train a sequence-structure student model, which can be readily applied to various downstream
tasks, with the teacher model serving solely to provide functional knowledge to the student model.
To facilitate knowledge transfer from teacher to student, we employ domain adaptation techniques
to align the distributions of latent spaces between the teacher and student models. Specifically, we
minimize the Kullback-Leibler (KL) divergence to mitigate distribution discrepancies between the
teacher and student domains.

The contributions of this paper can be summarized: 1) We propose ProtGO to integrate multimodal
information about proteins, encompassing sequence, structure, and functions. The teacher-student
framework enables the learning of unified representations suitable for diverse downstream tasks
where a protein model is needed. 2) We pioneer the adaptation of knowledge distillation methods to
connect protein teacher-student networks, infusing functional information into student representations
through distribution approximation and domain adaptation. 3) We validate ProtGO by outperforming
prevailing protein representation methods across a range of tasks, including protein fold prediction,
enzyme reaction classification, GO term prediction, and EC number prediction.

1https://geneontology.org/docs/ontology-documentation/

2

88582https://doi.org/10.52202/079017-2810

https://geneontology.org/docs/ontology-documentation/

2 Related Work

2.1 Representation Learning for Protein

Unimodal Protein Representation Learning. There are two primary categories of methods in
unimodal protein representation learning: sequence-based and structure-based approaches. Sequence-
based methods aim to derive representations directly from amino acid sequences [27], with notable
efforts focused on enhancing model sizes or scaling datasets [7, 10, 27–30]. For instance, Chen
et al. proposed xTrimoPGLM, a unified model capable of learning from protein sequences to address
both protein understanding and generation tasks concurrently, boasting a staggering 100 billion (B)
parameters and 1 trillion (T) training tokens. In addition to sequence-based approaches, structure-
based encoders have emerged to leverage the 3D structural information of proteins. For example,
IEConv [31] accommodates the inherent inductive bias in protein structure modelling by introducing
a graph convolution layer that integrates intrinsic and extrinsic distances between nodes. ProNet [32]
provides geometric representations across multiple levels of structure granularity.

Multimodal Protein Representation Learning. In the realm of protein multimodality learning,
methodologies such as GearNet [17] have been devised to concurrently exploit both sequence and
structural information. GearNet represents sequential and geometric features as graph node and edge
features, employing a message-passing mechanism to encode them [31, 33]. CDConv [12] introduces
continuous-discrete convolution to model sequential and geometric features. Acknowledging the
SE(3)-equivariant properties in protein structures, equivariant and invariant features are tailored as
model inputs [33, 34]. Furthermore, the integration of factual biological knowledge has demonstrated
enhancements in pre-trained LMs on protein sequences [24]. KeAP [19] and ProtST [20] train
biomedical LMs using masked language modelling [35] as the pretext task. Particularly noteworthy,
MASSA [18] initially derives sequence-structure embeddings from existing pre-trained models
[10, 33], subsequently aligning them globally with GO embeddings using five pre-training objectives.

2.2 Knowledge Distillation

Knowledge distillation involves the process of transferring knowledge from a larger teacher model
to a smaller student model [36, 37]. Significant advancements have been made in graph-based
knowledge distillation, leading to the development of various methodologies [38, 39]. RDD [40]
mandates the student model to faithfully replicate the complete node embeddings of the teacher,
ensuring the transfer of more informative knowledge. Another notable approach, GraphAKD [41],
employs adversarial learning to distill node representations from the teacher to the student. This
method effectively distills knowledge from both local and global perspectives, exhibiting superior
performance compared to earlier graph distillation techniques [42].

2.3 Domain Adaptation

Domain adaptation aims to develop a model from labelled data in a source domain that can be
effectively applied to a target domain by minimizing dissimilarities between their distributions [43–
45]. Methods for distribution alignment focus on reducing disparities in both marginal and conditional
representation distributions between the source and target domains [46, 47]. Adversarial learning
techniques have demonstrated remarkable effectiveness in mitigating the discrepancy between source
and target domains [48–50]. Semi-supervised domain adaptation strategies aim to minimize the
source-target gap with limited labelled target data [51–54]. In our work, we apply domain adaptation
methods to align the distributions of representations learned by teacher and student networks to avoid
dependence on individual samples.

3 Method

3.1 Preliminaries

Here, we provide definitions and relevant notations for the problem, and background knowledge of
the local coordinate system (LCS).

3

88583 https://doi.org/10.52202/079017-2810

Student (target domain)
Message passing

Pooling ...

Message passing

Structure

Sequence

Sequence

Structure

GO-BP: 0006228
GO-MF: 0016681
GO-CC: 0031974

Teacher (source domain)

GNN

...

GNN

Annotation Encoder

...

 Classification Head

 Classification Loss

 Domain
Adaptation

Pooling

Function

Figure 2: The overall framework of ProtGO consists of two branches: a teacher model in the source
domain and a student model in the target domain, connected by a knowledge distillation loss.

Problem Statement. Mathematically, we represent a protein graph as G = (V, E , X,E), where
V = {vi}i=1,...,n and E = {εij}i,j=1,...,n denote the vertex and edge sets of n residues, respectively.
We denote the position of a residue by the coordinate of Cα, the collection by the position matrix
is denoted as P = {Pi}i=1,...,n, where Pi ∈ R3×1. The node and edge feature matrices are
X = [xi]i=1,...,n and E = [eij]i,j=1,...,n, the feature vectors of node and edge are xi ∈ Rd1 and
eij ∈ Rd2 , d1 and d2 are the initial feature dimensions. The set of k GO annotations for proteins
is denoted as A = {Ai}i=1,...,k, where Ai ∈ {0, 1} is the indicator for annotation i. The goal of
protein graph representation learning is to find a low-dimensional embedding z for each protein.

There is a source domain S for the teacher model with the data distribution pS(zS |GS , A) in the
latent space, and there is also a target domain T for the student model with the data distribution
pT (zT |GT) in the latent space. zS , zT are latent embeddings from the teacher and student networks
for protein graphs GS and GT .

Local Coordinate System. In order to avoid the usage of complicated SE(3)-equivariant models,
the invariant and locally informative features are developed from the LCS [55], which is defined as:

Oi = [bi ni bi × ni] (1)

where ui =
Pi−Pi−1

∥Pi−Pi−1∥ , bi =
ui−ui+1

∥ui−ui+1∥ ,ni =
ui×ui+1

∥ui×ui+1∥ , bi is the negative bisector of the angle
between the rays (Pi−1 − Pi) and (Pi+1 − Pi).

eij = Concat(∥Pi − Pj∥ ,OT
i ·

Pi − Pj

∥Pi − Pj∥
,OT

i ·Oj) (2)

Note that the edge feature vector eij is the concatenation of the geometric features for protein 3D
structures, including distance, direction, and orientation, where ∥·∥ denotes the l2-norm.

3.2 Overall Framework

The overall framework of ProtGO is illustrated in Figure 2. It consists of two branches that train a
teacher model and a student model via iterative knowledge distillation. Compared to the student, the
teacher has an additional annotation encoder module comprised of several fully connected layers.
This transforms GO annotations into functional embeddings, combined with sequence-structure
embeddings from the GNNs to form the final knowledge-enhanced embeddings zS . Previous works
have successfully utilized label-augmented techniques to enhance model training [56, 57]. This
technique involves encoding labels and combining them with node attributes through concatenation
or summation. By doing so, it improves feature representation and enables the model to effectively
utilize valuable information from labels. Importantly, instead of directly minimizing the distances

4

88584https://doi.org/10.52202/079017-2810

between sample-dependent embeddings, denoted as zS and zT , we introduce a sample-independent
method. This is accomplished by aligning the latent space of the student with that of the teacher,
achieved through the approximation of distributions of embeddings from both networks. This
distribution alignment approach avoids dependence on individual sample inputs. It is noteworthy
that our primary objective is to derive comprehensive embeddings for the student model, with less
emphasis on the training specifics of the teacher model. Consequently, the teacher model can be
trained on multiple datasets, whereas the student does not need to have access to the same datasets
when data modalities are not available.

Protein Graph Message Passing. A protein sequence consists of n residues, which are deemed as
graph nodes. We concatenate the one-hot encoding of residue types with the physicochemical proper-
ties of each residue, namely, a steric parameter, hydrophobicity, volume, polarizability, isoelectric
point, helix probability, and sheet probability [58, 59], which are used as the graph node features
xi. These node features capture meaningful biochemical characteristics, enabling the model to learn
which residues tend to be buried, exposed, tightly packed, etc. We define the sequential distance,
lij = ∥i− j∥, and spatial distance dij = ∥Pi − Pj∥, where Pi is the 3D coordinate of the Cα atom
of the i-th residue. An edge εij exists if:

lij < ls and dij < rs (3)

where ls, rs are predefined radius thresholds, eij consists of geometric features of the protein structure,
defined in Eq. 2. We convolve node and edge features from sequence and structure simultaneously
and formulate the message passing mechanism as:

h
(0)
i = BN(FC (xi)) ,

u
(l)
i = σ(BN(

∑
vj∈N (vi)

Weijh
(l−1)
j),

h
(l)
i = h

(l)
i +Dropout(FC(u

(l)
i))

(4)

This mechanism (as shown in Eq. 4) can fuse and update the node and edge features, which includes
aggregation and update functions, where FC(·), BN(·), Dropout(·) represent fully connected, batch
normalization, and dropout layers, σ(·) is the activation function LeakyReLU and W is the learnable
convolutional kernel. N (vi) refers to the neighbors of node vi, and h

(l)
i is the representation of node

vi in the l-th message passing layer. The node and edge features are processed together in Eq. 4.
After message passing operations, a sequence pooling layer is applied to reduce the sequence length,
providing a simple but effective way to aggregate key patterns. After average pooling, the residue
number is halved; we expand the radius rs to 2rs to update the edge conditions and perform the
message passing and pooling operations again. These operations can make the GNNs cover more
distant nodes gradually. The teacher and student models share the same GNN architecture to process
protein sequences and structures. Finally, a global pooling layer is applied to obtain the graph-level
protein embeddings, denoted as hS and zT for the teacher and student. Detailed model descriptions
are presented in Appendix E.1.

Protein Domain Adaption. As shown in Figure 2, the teacher model consists of GNNs and an
auxiliary annotation encoder, which is a multi-layer perceptron (MLP) that provides function-friendly
protein representations. The annotations associated with GS serve as the input for the annotation
encoder, resulting in the extraction of feature vector hA. Therefore, we can combine hA and the
graph-level protein embeddings hS learned from GS together:

hA = MLP(A)

zS = hA + αhS
(5)

where α is a hyper-parameter, controlling the balance between the contribution of the annotation
embeddings hA and the protein embeddings hS in the combined representations.

As depicted in Figure 2, the generated protein embeddings zS contain sequence, structure, and func-
tion information, guiding the training of the student model. Since knowledge-enhanced embeddings
zS are intended to be aligned with zT , we obtain zS from the entire protein and GO term datasets to
avoid dependence on individuals. Then, we calculate the distributions of zS and zT to better capture

5

88585 https://doi.org/10.52202/079017-2810

the inherent uncertainty in the teacher’s and student’s latent spaces, in which the real distributions are
sample-independent. The minibatch is adopted to approximate the quantities pS(zS) and pT (zT):

pS(zS) = EpS(GS ,A)[p(zS |GS , A)]

≈ 1

BS

BS∑
i=1

pS(zS |G(i)
S , A(i))

pT (zT) = EpT (GT)[pT (zT |GT)]

≈ 1

BS

BS∑
i=1

pT (zT |G(i)
T)

(6)

where BS is the batch size. A Gaussian distribution Θ is assumed for protein embeddings, which
exhibit smoothness and symmetry properties that can reasonably mimic the expected continuity and
unimodality of the embeddings aggregated over many residues. We employ the reparameterization
trick [60] to sample the protein embeddings.

pS(zS) = Θ(µS , σ
2
S); pT (zT) = Θ(µT , σ

2
T) (7)

where µS , σ
2
S and µT , σ

2
T are the mean and variance values of the embeddings for the teacher and

student models, providing a summary of the distribution using first- and second-order statistics.

Proposition 2 in Appendix F shows that the conditional misalignment in the representation space is
bounded by the conditional misalignment in the input space. We have:

L∗
student ≤ Lteacher +

M√
2
C (8)

C =
√
KL [pS(z) ∥ pT (z)] + EpS(G) [KL [pS(y|G) ∥ pT (y|G)]] (9)

where L∗
student is the ideal target domain loss, and Lteacher is the teacher’s supervised loss, M is a

bound, see Appendix F. EpS(G) [KL [pS(y|G) ∥ pT (y|G)]] is often small and fixed (not dependent
on the representation z, and y is the function label). To reduce the generalization bound, we can focus
on optimizing the marginal misalignment with a hyper-parameter β:

Lteacher + β(KL [pS(z) ∥ pT (z)]) (10)

Eq. 10 can be used in an unsupervised way for the student to predict functions, which is near the ideal
target domain loss. For the proposed framework, ProtGO (shown in Figure 2), we use the Lteacher to
train the teacher model. When the student model has task labels, we adopt a hybrid loss L to train
the student model, where the Lkd = KL [pS(z)|pT (z)] is to optimize the marginal misalignment
between teacher and student models. Therefore, the final loss L with a hyper-parameter β for the
student model is formulated as:

L = Lstudent + βLkd (11)

The objective function of the teacher model Lteacher is the cross entropy loss for protein graph
classification. The hybrid loss for the student model has a cross entropy loss Lstudent for classification
and a regularization loss Lkd for domain-adapted knowledge distillation.

4 Experiments

4.1 Training Details

The proposed multimodal knowledge distillation framework, ProtGO, undergoes an easy training
process. A dataset comprising approximately 30,000 proteins, each associated with 2,752 GO
annotations from the GO dataset, is utilized without further categorization into biological process
(BP), molecular function (MF), and cellular component (CC) classes [67]. These classes serve as
input to the annotation encoder of the teacher model, yielding an overall Fmax of 0.489 for the teacher
model. Subsequently, the student model is trained. The optimization is performed using the Adam
optimizer through the PyTorch library, and the performance metrics are computed as mean values over
three initializations. Further details regarding experimental settings are available in Appendix E.2.

6

88586https://doi.org/10.52202/079017-2810

Table 1: Accuracy (%) of fold classification and enzyme reaction classification. The best results are
shown in bold.

Modality (Input) Method Fold Classification Enzyme

Fold SuperFamily Family Reaction

Sequence

CNN [61] 11.3 13.4 53.4 51.7
ResNet [27] 10.1 7.21 23.5 24.1
LSTM [27] 6.41 4.33 18.1 11.0
Transformer [27] 9.22 8.81 40.4 26.6

Structure

GCN [62] 16.8 21.3 82.8 67.3
GAT [63] 12.4 16.5 72.7 55.6
3DCNN_MQA [64] 31.6 45.4 92.5 72.2

Sequence-Structure

GraphQA [65] 23.7 32.5 84.4 60.8
GVP [66] 16.0 22.5 83.8 65.5
ProNet-Amino Acid [32] 51.5 69.9 99.0 86.0
ProNet-Backbone [32] 52.7 70.3 99.3 86.4
ProNet-All-Atom [32] 52.1 69.0 99.0 85.6
CRL [16] 47.6 70.2 99.2 87.2
GearNet [17] 28.4 42.6 95.3 79.4
GearNet-IEConv [17] 42.3 64.1 99.1 83.7
GearNet-Edge [17] 44.0 66.7 99.1 86.6
GearNet-Edge-IEConv [17] 48.3 70.3 99.5 85.3
CDConv [12] 56.7 77.7 99.6 88.5

ProtGO (Student) 60.5 79.4 99.8 89.4

4.2 Tasks and Baselines

Following the tasks in IEconv [31] and CDConv [12], we evaluate ProtGO on four protein tasks:
protein fold classification, enzyme reaction classification, GO term prediction, and EC number
prediction. Detailed task descriptions are presented in Appendix B. Dataset statistics are shown in
Table 4 in the appendix.

Baselines. The proposed method is compared with existing protein representation learning
methods, which are classified into three categories based on their inputs, which could be a se-
quence, 3D structure, or both sequence and structure. 1) Sequence-based encoders, including
CNN [61], ResNet [27], LSTM [27] and Transformer [27]. 2) Structure-based methods (GCN [62],
GAT [63], 3DCNN_MQA [64] 3) Sequence-structure based models, e.g., GVP [66], CRL [16],
ProNet [32], GearNet [17], CDConv [12], etc. GearNet-IEConv and GearNetEdge-IEConv [17] add
the IEConv [31] layer on GearNet.

4.3 Results of Fold and Enzyme Reaction Classification

Table 1 presents a performance comparison for protein fold and enzyme reaction prediction across
various methods, with results reported as average values. As depicted in the table, the proposed
ProtGO consistently achieves the highest performance across all four test sets for both fold and
reaction prediction tasks. The superiority of sequence-structure-based methods over sequence- or
structure-only approaches is evident, underscoring the advantages of jointly modelling sequence
and structure information. ProtGO achieves a remarkable improvement in accuracy of over 6.7%
compared to prior techniques on the Fold test set, highlighting its efficacy in learning mappings
between sequence, structure, and function. Furthermore, despite both CDConv and ProtGO employing
sequence-structure convolution architectures, ProtGO demonstrates superior performance over the
CDConv model. This observation suggests that the teacher-student training paradigm adopted in
ProtGO facilitates the acquisition of enhanced protein embeddings by the student model.

7

88587 https://doi.org/10.52202/079017-2810

Table 2: Fmax of GO term prediction and EC number prediction. The best results are shown in bold.

Modality (Input) Method GO-BP GO-MF GO-CC EC

Sequence

CNN [61] 0.244 0.354 0.287 0.545
ResNet [27] 0.280 0.405 0.304 0.605
LSTM [27] 0.225 0.321 0.283 0.425
Transformer [27] 0.264 0.211 0.405 0.238

Structure
GCN [62] 0.252 0.195 0.329 0.320
GAT [63] 0.284 0.317 0.385 0.368
3DCNN_MQA [64] 0.240 0.147 0.305 0.077

Sequence-Structure

GraphQA [65] 0.308 0.329 0.413 0.509
GVP [66] 0.326 0.426 0.420 0.489
CRL [16] 0.421 0.624 0.431 -
GearNet [17] 0.356 0.503 0.414 0.730
GearNet-IEConv [17] 0.381 0.563 0.422 0.800
GearNet-Edge [17] 0.403 0.580 0.450 0.810
GearNet-Edge-IEConv [17] 0.400 0.581 0.430 0.810
CDConv [12] 0.453 0.654 0.479 0.820

ProtGO (Student) 0.464 0.667 0.492 0.857

4.4 Results of GO Term and EC Number Prediction

Following the protocol in GearNet [17], the test sets for GO term and EC number prediction only
contain PDB chains with less than 95% sequence identity to the training set, ensuring rigorous
evaluation. The student model conducts the experiments, and the teacher model’s annotations are
not classified into these classes, avoiding data leakage. Table 2 shows comparative results between
different protein modeling methods on these tasks, with performance measured by Fmax, which
balances precision and recall, working well even if positive and negative classes are imbalanced.
The mean values of three independent runs are reported. ProtGO achieves the highest Fmax across
all test sets for both GO and EC prediction, outperforming other approaches. This demonstrates
ProtGO’s strong capabilities for predicting protein functions and activities. Overall, the consistent
improvements verify the benefits of injecting functional information into sequence-structure models,
as done in ProtGO’s teacher-student framework. The results cement ProtGO’s effectiveness using
knowledge distillation techniques.

0 50 100 150 200 250 300 350 400
Epoch

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Lo
ss

 K
L

with KL loss BP
w/o KL loss BP

(a) KL training loss of fold
classification

50 100 150 200 250 300 350 400
Epoch

0.46

0.48

0.50

0.52

0.54

0.56

0.58

Ac
cu

ra
cy

with KL loss BP
w/o KL loss BP

(b) Accuracy of fold clas-
sification

0 100 200 300 400 500
Epoch

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Lo
ss

 K
L

with KL loss BP
w/o KL loss BP

(c) KL training loss of EC
number prediction

100 150 200 250 300 350 400 450 500
Epoch

0.79

0.80

0.81

0.82

0.83

0.84

0.85

F m
ax

with KL loss BP
w/o KL loss BP

(d) Fmax of EC number
prediction

Figure 3: The KL training loss curves (a), (c) and test performance (b), (d) on the tasks of fold
classification and EC number prediction. The red curve denotes that Lkd conducts its function, while
the green curve denotes we calculated the value of Lkd, but it is not involved in the process of the
gradient backpropagation (BP).

4.5 Ablation Study

Table 3 presents ablation studies of the proposed ProtGO model on the four downstream tasks. We
examine the impact of removing the teacher model, which means removing the Lkd. We also remove
the annotation encoder in the teacher, which means that we incorporate function information into the
loss function for the teacher models. As shown in Table 3, removing the teacher model altogether

8

88588https://doi.org/10.52202/079017-2810

Table 3: Ablation experiments of our proposed method. w/o AE-T denotes without the annotation
encoder in the teacher model. w/o teacher means without the teacher model and directly using the
student model, which also means without Lkd.

Method Fold Classification Enzyme GO EC
Fold Superfamily Family Reaction BP MF CC

ProtGO 60.5 79.4 99.8 89.4 0.464 0.667 0.492 0.857
w/o AE-T 60.4 79.1 99.7 88.9 0.454 0.664 0.490 0.854
w/o Teacher 57.8 78.7 99.6 88.6 0.458 0.660 0.484 0.851

(w/o Teacher) leads to substantial performance drops across all tasks compared to the full ProtGO.
This shows the teacher’s knowledge distillation provides useful signals for the student model. Besides,
removing the annotation encoder in the teacher (w/o AE-T) also degrades performance, though
less severely. Despite being a label-augmented strategy, the annotation encoder exhibits minimal
influence, indicating low sensitivity and limited impact on test performance. Our student model is
specifically designed to process protein sequences and structures as inputs, enabling it to function
independently without the need for guidance from the teacher model.

GO-BP GO-MF GO-CC
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

F m
ax

Student Teacher

Figure 4: Performance comparisons of the
teacher and student of ProtGO on GO term
prediction.

Figure 3 illustrates the comparisons of the knowl-
edge distillation loss Lkd with and without involve-
ment in backpropagation during training. When
Lkd is excluded from the gradient backpropagation
process, it exhibits a decrease alongside the clas-
sification loss Lstudent. However, its value remains
substantially higher compared to when Lkd is in-
cluded in the training process. Similar observations
are presented for the accuracy and Fmax on the fold
classification and EC number prediction. The no-
table disparity observed between the distillation loss
and the test performance with and without involve-
ment in backpropagation suggests that the KL loss
does indeed play a significant role in guiding the
student model’s learning process. Its presence influ-
ences the model’s performance and convergence.

We compare the performance of the teacher and the
student on the tasks of GO term prediction. From the provided Figure 4, it is evident that incorporating
functional information as the input of the annotation encoder significantly enhances performance,
particularly for MF and CC term prediction. These two classes have fewer categories and are more
accessible, resulting in higher scores.

5 Conclusion

In this paper, we proposed ProtGO, a multimodal protein representation learning framework inte-
grating information from protein sequences, structures, and function annotations. While the teacher
network requires extra information about function annotations as input, such is not always avail-
able for the student model. The student model amends the problem by mimicking the behavior
or predictions of the teacher model. Our main focus is to obtain comprehensive embeddings for
the student model, whereas the complete training of the teacher model is not our primary concern.
We estimate the latent embedding distributions for the teacher-student model and learn annotation-
enriched student representations by distribution approximation. Compared to the mainstream protein
representation learning techniques, ProtGO achieves superior performances in predicting protein
families, reactions, GO terms, and EC numbers. These consistent improvements across benchmarks
highlight the advantages of this approach for informative protein representation learning. A limitation
is that this base model is not pre-trained on large-scale datasets. One way for improvement is to
integrate ProtGO with other pre-training strategies (refer to Appendix G). This would need to manage
the computational resources required for training and inference and ensure compatibility between
different model architectures and training objectives.

9

88589 https://doi.org/10.52202/079017-2810

Acknowledgements

This work was supported by the National Science and Technology Major Project (No.
2022ZD0115101), the National Natural Science Foundation of China Project (No. U21A20427
and No. 623B2086), Project (No. WU2022A009) from the Center of Synthetic Biology and Inte-
grated Bioengineering of Westlake University and Project (No. WU2023C019) from the Westlake
University Industries of the Future Research Funding.

References
[1] Bozhen Hu, Jun Xia, Jiangbin Zheng, Cheng Tan, Yufei Huang, Yongjie Xu, and Stan Z Li.

Protein language models and structure prediction: Connection and progression. arXiv preprint
arXiv:2211.16742, 2022.

[2] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ron-
neberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, et al.
Highly accurate protein structure prediction with alphafold. Nature, 596(7873):583–589, 2021.

[3] Josh Abramson, Jonas Adler, Jack Dunger, Richard Evans, Tim Green, Alexander Pritzel, Olaf
Ronneberger, Lindsay Willmore, Andrew J Ballard, Joshua Bambrick, et al. Accurate structure
prediction of biomolecular interactions with alphafold 3. Nature, pages 1–3, 2024.

[4] Onur Serçinoğlu and Pemra Ozbek. Sequence-structure-function relationships in class i mhc: A
local frustration perspective. PloS one, 15(5):e0232849, 2020.

[5] Serbulent Unsal, Heval Atas, Muammer Albayrak, Kemal Turhan, Aybar C Acar, and Tunca
Doğan. Learning functional properties of proteins with language models. Nature Machine
Intelligence, 4(3):227–245, 2022.

[6] Zeming Lin et al. Language models of protein sequences at the scale of evolution enable
accurate structure prediction. BioRxiv, 2022:500902, 2022.

[7] Ahmed Elnaggar, Michael Heinzinger, Christian Dallago, Ghalia Rehawi, Yu Wang, Llion
Jones, Tom Gibbs, Tamas Feher, Christoph Angerer, Martin Steinegger, et al. Prottrans: Toward
understanding the language of life through self-supervised learning. IEEE transactions on
pattern analysis and machine intelligence, 44(10):7112–7127, 2021.

[8] Alexander Rives et al. Biological structure and function emerge from scaling unsupervised
learning to 250 million protein sequences. Proceedings of the National Academy of Sciences,
118(15):e2016239118, 2021.

[9] Roshan M Rao, Jason Liu, Robert Verkuil, Joshua Meier, John Canny, Pieter Abbeel, Tom Sercu,
and Alexander Rives. Msa transformer. In International Conference on Machine Learning,
pages 8844–8856. PMLR, 2021.

[10] Roshan M Rao, Joshua Meier, Tom Sercu, Sergey Ovchinnikov, and Alexander Rives. Trans-
former protein language models are unsupervised structure learners. bioRxiv, 2020. doi:
10.1101/2020.12.15.422761. URL https://www.biorxiv.org/content/10.1101/2020.
12.15.422761v1.

[11] Bo Chen, Xingyi Cheng, Pan Li, Yangli-ao Geng, Jing Gong, Shen Li, Zhilei Bei, Xu Tan,
Boyan Wang, Xin Zeng, et al. xtrimopglm: unified 100b-scale pre-trained transformer for
deciphering the language of protein. arXiv preprint arXiv:2401.06199, 2024.

[12] Hehe Fan, Zhangyang Wang, Yi Yang, and Mohan Kankanhalli. Continuous-discrete convolu-
tion for geometry-sequence modeling in proteins. In The Eleventh International Conference on
Learning Representations, 2023.

[13] Yue Liu, Ke Liang, Jun Xia, Sihang Zhou, Xihong Yang, , Xinwang Liu, and Z. Stan Li.
Dink-net: Neural clustering on large graphs. In Proc. of ICML, 2023.

10

88590https://doi.org/10.52202/079017-2810

https://www.biorxiv.org/content/10.1101/2020.12.15.422761v1
https://www.biorxiv.org/content/10.1101/2020.12.15.422761v1

[14] Lirong Wu, Haitao Lin, Bozhen Hu, Cheng Tan, Zhangyang Gao, Zicheng Liu, and Stan Z Li.
Beyond homophily and homogeneity assumption: Relation-based frequency adaptive graph
neural networks. IEEE Transactions on Neural Networks and Learning Systems, 2023.

[15] Federico Baldassarre, David Menéndez Hurtado, Arne Elofsson, and Hossein Azizpour.
Graphqa: protein model quality assessment using graph convolutional networks. Bioin-
formatics, page 360–366, Apr 2021. doi: 10.1093/bioinformatics/btaa714. URL http:
//dx.doi.org/10.1093/bioinformatics/btaa714.

[16] Pedro Hermosilla and Timo Ropinski. Contrastive representation learning for 3d protein
structures. arXiv preprint arXiv:2205.15675, 2022.

[17] Zuobai Zhang, Minghao Xu, Arian Jamasb, Vijil Chenthamarakshan, Aurelie Lozano, Payel
Das, and Jian Tang. Protein representation learning by geometric structure pretraining. In
International Conference on Learning Representations, 2023.

[18] Fan Hu, Yishen Hu, Weihong Zhang, Huazhen Huang, Yi Pan, and Peng Yin. A multimodal
protein representation framework for quantifying transferability across biochemical downstream
tasks. Advanced Science, page 2301223, 2023.

[19] Hong-Yu Zhou, Yunxiang Fu, Zhicheng Zhang, Cheng Bian, and Yizhou Yu. Protein rep-
resentation learning via knowledge enhanced primary structure modeling. arXiv preprint
arXiv:2301.13154, 2023.

[20] Minghao Xu, Xinyu Yuan, Santiago Miret, and Jian Tang. Protst: Multi-modality learning of
protein sequences and biomedical texts. In International Conference on Machine Learning,
pages 38749–38767. PMLR, 2023.

[21] Michael Ashburner, Catherine A. Ball, Judith A. Blake, David Botstein, Heather Butler,
J. Michael Cherry, Allan P. Davis, Kara Dolinski, Selina S. Dwight, Janan T. Eppig, Mi-
dori A. Harris, David P. Hill, Laurie Issel-Tarver, Andrew Kasarskis, Suzanna Lewis, John C.
Matese, Joel E. Richardson, Martin Ringwald, Gerald M. Rubin, and Gavin Sherlock. Gene
ontology: tool for the unification of biology. Nature Genetics, page 25–29, May 2000. doi:
10.1038/75556. URL http://dx.doi.org/10.1038/75556.

[22] UniProt Consortium. Update on activities at the universal protein resource (uniprot) in 2013.
Nucleic acids research, 41(D1):D43–D47, 2012.

[23] Helen M. Berman, John D. Westbrook, Zukang Feng, Gary L. Gilliland, Talapady N. Bhat,
Helge Weissig, Ilya N. Shindyalov, and Philip E. Bourne. The protein data bank. Nucleic Acids
Research, 2000.

[24] Ningyu Zhang, Zhen Bi, Xiaozhuan Liang, Siyuan Cheng, Haosen Hong, Shumin Deng,
Jiazhang Lian, Qiang Zhang, and Huajun Chen. Ontoprotein: Protein pretraining with gene
ontology embedding. arXiv preprint arXiv:2201.11147, 2022.

[25] Mateo Torres, Haixuan Yang, Alfonso E Romero, and Alberto Paccanaro. Protein function
prediction for newly sequenced organisms. Nature Machine Intelligence, 3(12):1050–1060,
2021.

[26] Nabil Ibtehaz, Yuki Kagaya, and Daisuke Kihara. Domain-pfp allows protein function prediction
using function-aware domain embedding representations. Communications Biology, 6(1):1103,
2023.

[27] Roshan Rao, Nicholas Bhattacharya, Neil Thomas, Yan Duan, Peter Chen, John Canny, Pieter
Abbeel, and Yun Song. Evaluating protein transfer learning with tape. Advances in neural
information processing systems, 32, 2019.

[28] Erik Nijkamp, Jeffrey A Ruffolo, Eli N Weinstein, Nikhil Naik, and Ali Madani. Progen2:
exploring the boundaries of protein language models. Cell systems, 14(11):968–978, 2023.

[29] Noelia Ferruz, Steffen Schmidt, and Birte Höcker. Protgpt2 is a deep unsupervised language
model for protein design. Nature Communications, Jul 2022. doi: 10.1038/s41467-022-32007-7.
URL http://dx.doi.org/10.1038/s41467-022-32007-7.

11

88591 https://doi.org/10.52202/079017-2810

http://dx.doi.org/10.1093/bioinformatics/btaa714
http://dx.doi.org/10.1093/bioinformatics/btaa714
http://dx.doi.org/10.1038/75556
http://dx.doi.org/10.1038/s41467-022-32007-7

[30] Michael Heinzinger, Maria Littmann, Ian Sillitoe, Nicola Bordin, Christine Orengo, and
Burkhard Rost. Contrastive learning on protein embeddings enlightens midnight zone. NAR
genomics and bioinformatics, 4(2):lqac043, 2022.

[31] Pedro Hermosilla, Marco Schäfer, Matěj Lang, Gloria Fackelmann, Pere Pau Vázquez, Barbora
Kozlíková, Michael Krone, Tobias Ritschel, and Timo Ropinski. Intrinsic-extrinsic convolution
and pooling for learning on 3d protein structures. International Conference on Learning
Representations, 2021.

[32] Limei Wang, Haoran Liu, Yi Liu, Jerry Kurtin, and Shuiwang Ji. Learning hierarchical protein
representations via complete 3d graph networks. In The Eleventh International Conference on
Learning Representations, 2023.

[33] Bowen Jing, Stephan Eismann, Patricia Suriana, Raphael JL Townshend, and Ron Dror. Learn-
ing from protein structure with geometric vector perceptrons. arXiv preprint arXiv:2009.01411,
2020.

[34] Yuzhi Guo, Jiaxiang Wu, Hehuan Ma, and Junzhou Huang. Self-supervised pre-training for
protein embeddings using tertiary structures. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 36, pages 6801–6809, 2022.

[35] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805,
2018.

[36] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531, 2015.

[37] Ke Liang, Lingyuan Meng, Meng Liu, Yue Liu, Wenxuan Tu, Siwei Wang, Sihang Zhou,
Xinwang Liu, Fuchun Sun, and Kunlun He. A survey of knowledge graph reasoning on graph
types: Static, dynamic, and multi-modal. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2024.

[38] Jing Liu, Tongya Zheng, Guanzheng Zhang, and Qinfen Hao. Graph-based knowledge distilla-
tion: A survey and experimental evaluation. arXiv preprint arXiv:2302.14643, 2023.

[39] Yijun Tian, Chuxu Zhang, Zhichun Guo, Xiangliang Zhang, and Nitesh V Chawla. Nosmog:
Learning noise-robust and structure-aware mlps on graphs. arXiv preprint arXiv:2208.10010,
2022.

[40] Wentao Zhang, Xupeng Miao, Yingxia Shao, Jiawei Jiang, Lei Chen, Olivier Ruas, and Bin Cui.
Reliable data distillation on graph convolutional network. In Proceedings of the 2020 ACM
SIGMOD International Conference on Management of Data, pages 1399–1414, 2020.

[41] Huarui He, Jie Wang, Zhanqiu Zhang, and Feng Wu. Compressing deep graph neural networks
via adversarial knowledge distillation. In Proceedings of the 28th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, pages 534–544, 2022.

[42] Ruifei He, Shuyang Sun, Jihan Yang, Song Bai, and Xiaojuan Qi. Knowledge distillation as
efficient pre-training: Faster convergence, higher data-efficiency, and better transferability. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
9161–9171, 2022.

[43] Abolfazl Farahani, Sahar Voghoei, Khaled Rasheed, and Hamid R Arabnia. A brief review of
domain adaptation. Advances in data science and information engineering: proceedings from
ICDATA 2020 and IKE 2020, pages 877–894, 2021.

[44] Garrett Wilson and Diane J Cook. A survey of unsupervised deep domain adaptation. ACM
Transactions on Intelligent Systems and Technology (TIST), 11(5):1–46, 2020.

[45] Mei Wang and Weihong Deng. Deep visual domain adaptation: A survey. Neurocomputing,
312:135–153, 2018.

12

88592https://doi.org/10.52202/079017-2810

[46] A Tuan Nguyen, Toan Tran, Yarin Gal, Philip HS Torr, and Atılım Güneş Baydin. Kl guided
domain adaptation. arXiv preprint arXiv:2106.07780, 2021.

[47] Mingsheng Long, Yue Cao, Jianmin Wang, and Michael Jordan. Learning transferable features
with deep adaptation networks. In International conference on machine learning, pages 97–105.
PMLR, 2015.

[48] Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by backpropagation.
In International conference on machine learning, pages 1180–1189. PMLR, 2015.

[49] Mingsheng Long, Zhangjie Cao, Jianmin Wang, and Michael I Jordan. Conditional adversarial
domain adaptation. Advances in neural information processing systems, 31, 2018.

[50] Zhongyi Pei, Zhangjie Cao, Mingsheng Long, and Jianmin Wang. Multi-adversarial domain
adaptation. In Proceedings of the AAAI conference on artificial intelligence, volume 32, 2018.

[51] Kuniaki Saito, Donghyun Kim, Stan Sclaroff, Trevor Darrell, and Kate Saenko. Semi-supervised
domain adaptation via minimax entropy. In Proceedings of the IEEE/CVF international
conference on computer vision, pages 8050–8058, 2019.

[52] Taekyung Kim and Changick Kim. Attract, perturb, and explore: Learning a feature alignment
network for semi-supervised domain adaptation. In Computer Vision–ECCV 2020: 16th
European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XIV 16, pages
591–607. Springer, 2020.

[53] Pin Jiang, Aming Wu, Yahong Han, Yunfeng Shao, Meiyu Qi, and Bingshuai Li. Bidirectional
adversarial training for semi-supervised domain adaptation. In IJCAI, pages 934–940, 2020.

[54] Can Qin, Lichen Wang, Qianqian Ma, Yu Yin, Huan Wang, and Yun Fu. Contradictory structure
learning for semi-supervised domain adaptation. In Proceedings of the 2021 SIAM International
Conference on Data Mining (SDM), pages 576–584. SIAM, 2021.

[55] John Ingraham, Vikas Garg, Regina Barzilay, and Tommi Jaakkola. Generative models for
graph-based protein design. Advances in neural information processing systems, 32, 2019.

[56] Samy Bengio, Jason Weston, and David Grangier. Label embedding trees for large multi-class
tasks. Advances in neural information processing systems, 23, 2010.

[57] Xu Sun, Bingzhen Wei, Xuancheng Ren, and Shuming Ma. Label embedding network: Learning
label representation for soft training of deep networks. arXiv preprint arXiv:1710.10393, 2017.

[58] Gang Xu, Qinghua Wang, and Jianpeng Ma. Opus-rota4: a gradient-based protein side-chain
modeling framework assisted by deep learning-based predictors. Briefings in Bioinformatics,
23(1):bbab529, 2022.

[59] Jack Hanson, Kuldip Paliwal, Thomas Litfin, Yuedong Yang, and Yaoqi Zhou. Improving predic-
tion of protein secondary structure, backbone angles, solvent accessibility and contact numbers
by using predicted contact maps and an ensemble of recurrent and residual convolutional neural
networks. Bioinformatics, 35(14):2403–2410, 2019.

[60] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

[61] Amir Shanehsazzadeh, David Belanger, and David Dohan. Is transfer learning necessary for
protein landscape prediction? arXiv preprint arXiv:2011.03443, 2020.

[62] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In ICLR, 2017.

[63] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, Yoshua
Bengio, et al. Graph attention networks. In ICLR, 2018.

[64] Georgy Derevyanko, Sergei Grudinin, Yoshua Bengio, and Guillaume Lamoureux. Deep
convolutional networks for quality assessment of protein folds. Bioinformatics, 34(23):4046–
4053, 2018.

13

88593 https://doi.org/10.52202/079017-2810

[65] Federico Baldassarre, David Menéndez Hurtado, Arne Elofsson, and Hossein Azizpour.
Graphqa: protein model quality assessment using graph convolutional networks. Bioinfor-
matics, 2020.

[66] Bowen Jing, Stephan Eismann, Patricia Suriana, Raphael JL Townshend, and Ron Dror. Learn-
ing from protein structure with geometric vector perceptrons. arXiv preprint arXiv:2009.01411,
2020.

[67] Vladimir Gligorijević, P Douglas Renfrew, Tomasz Kosciolek, Julia Koehler Leman, Daniel
Berenberg, Tommi Vatanen, Chris Chandler, Bryn C Taylor, Ian M Fisk, Hera Vlamakis,
et al. Structure-based protein function prediction using graph convolutional networks. Nature
communications, 12(1):3168, 2021.

[68] Jie Hou, Badri Adhikari, and Jianlin Cheng. Deepsf: deep convolutional neural network for
mapping protein sequences to folds. Bioinformatics, 34(8):1295–1303, 2018.

[69] Edwin C Webb et al. Enzyme nomenclature 1992. Recommendations of the Nomenclature Com-
mittee of the International Union of Biochemistry and Molecular Biology on the Nomenclature
and Classification of Enzymes. Number Ed. 6. Academic Press, 1992.

[70] Marina V Omelchenko, Michael Y Galperin, Yuri I Wolf, and Eugene V Koonin. Non-
homologous isofunctional enzymes: a systematic analysis of alternative solutions in enzyme
evolution. Biology direct, 5:1–20, 2010.

[71] Helen M Berman, John Westbrook, Zukang Feng, Gary Gilliland, Talapady N Bhat, Helge
Weissig, Ilya N Shindyalov, and Philip E Bourne. The protein data bank. Nucleic acids research,
28(1):235–242, 2000.

[72] UniProt Consortium. Uniprot: a worldwide hub of protein knowledge. Nucleic acids research,
47(D1):D506–D515, 2019.

[73] Bozhen Hu, Cheng Tan, Jun Xia, Jiangbin Zheng, Yufei Huang, Lirong Wu, Yue Liu, Yongjie
Xu, and Stan Z Li. Learning complete protein representation by deep coupling of sequence and
structure. bioRxiv, pages 2023–07, 2023.

[74] Microsoft. Neural Network Intelligence, 1 2021. URL https://github.com/microsoft/
nni.

[75] Maxat Kulmanov et al. Protein function prediction as approximate semantic entailment. Nature
Machine Intelligence, 6(2):220–228, 2024.

[76] Youhan Lee, Hasun Yu, Jaemyung Lee, and Jaehoon Kim. Pre-training sequence, structure, and
surface features for comprehensive protein representation learning. In ICLR, 2023.

[77] Z Zhang, C Wang, M Xu, V Chenthamarakshan, AC Lozano, P Das, and J Tang. A systematic
study of joint representation learning on protein sequences and structures. Preprint at http://arxiv.
org/abs/2303.06275, 2023.

14

88594https://doi.org/10.52202/079017-2810

https://github.com/microsoft/nni
https://github.com/microsoft/nni

A Social Impact

Our proposed framework, ProtGO, can enable advanced protein analyses and provide effective and
comprehensive representations that incorporate the information from protein sequences, structures,
and functions. However, there may exist broader impacts and harmful activities. In detail, the
representations are potentially misused, e.g., designing harmful molecules or proteins based on these
representations. Wet lab experiments may be needed for the newly found mechanisms or functions of
proteins based on the learned representations.

B Task

Fold Classification. In order to understand how protein structure and evolution interact, it is crucial
to be able to predict fold classes [68]. This dataset contains 16,712 total proteins across 1,195 fold
classes. Three test sets are provided. Fold: proteins from the same superfamily are excluded during
training; SuperFamily: proteins from the same family are not used for training; and Family: the
training set includes proteins from the same family.

Enzyme Reaction Classification. Enzyme reaction classification can be viewed as a protein
function prediction task based on the enzyme-catalyzed reactions defined by the four levels of enzyme
commission numbers [69, 70]. We use the dataset [31, 71] containing 29,215 training proteins, 2,562
validation proteins, and 5,651 test proteins, spanning 384 four-level EC classes.

GO Term Prediction. The aim of Gene Ontology (GO) term prediction is to predict whether a
given protein should be annotated with a particular GO term. As we have stated before, proteins are
categorized into three hierarchical ontologies: molecular function (MF), biological process (BP), and
cellular component (CC). Specifically, MF denotes molecular activities of a protein, BP refers to
larger biological processes it is involved in, and CC describes subcellular locations and extracellular
components [72]. Accurately assigning GO terms is crucial for understanding protein function and
assessing computational methods.

EC Number Prediction. This task aims to predict the 538 Enzyme Commission (EC) numbers
at the third and fourth level hierarchies for different proteins [67], which provide precise informa-
tion about a protein’s enzymatic function, based on the protein’s features. The large number of
classes at the third and fourth EC levels makes this a challenging multi-class prediction problem in
bioinformatics.

C Evaluation Metric

Fmax provides an overall metric that combines both accuracy and coverage of the predictions. It is
calculated by first determining the precision and recall for each protein, then averaging these results
over all proteins [17, 67]. pji is the prediction probability for the j-th class of the i-th protein, given
the decision threshold t ∈ [0, 1], the precision and call are given as:

precisioni(t) =

∑
j I[(

(
pji ≥ t

)
∩ bji)]∑

j I[
(
pji ≥ t

)
]

, recalli(t) =

∑
j I[

((
pji ≥ t

)
∩ bji

)
]∑

j b
j
i

where bji ∈ {0, 1} is the corresponding binary class label, and I ∈ {0, 1} is an indicator function.
If there are N proteins in total, these protein-level precision and recall values are averaged over all
proteins to obtain the overall precision and recall for the dataset, then the average precision and recall
are defined as:

precision(t) =

∑N
i precisioni(t)∑N

i

((∑
j

(
pji ≥ t

))
≥ 1

) , recall(t) =

∑N
i recalli(t)

N

Finally, Fmax is defined as the maximum value of the F-score over all thresholds.

Fmax = max
t

{
2 · precision(t) · recall(t)
precision(t) + recall(t)

}
(12)

15

88595 https://doi.org/10.52202/079017-2810

D Complexity Analysis

Our main focus is on generating comprehensive embeddings for the student model, with less emphasis
placed on the training specifics of the teacher model. Regarding the student model, the computational
complexity of one message passing layer in this framework is O(ndn), where dn represents the
average node degree, typically much smaller than n. The time complexity is directly related to the
computational complexity of the message passing layer; as graph convolution is performed on nodes
and edges simultaneously, the time complexity remains O(ndn), linear with the number of residues
n. Denoting the size of the batch as Bs, the overall computational complexity is merely O(Bsndn).

E Experiment Setup

E.1 Model Details

The radius rs threshold increases from 4 to 16, and ls is 11. We set two message passing layers with
one average sequence pooling per GNN. After the pooling layer, the number of residues is halved,
and we update the edge conditions before performing another round of message passing and pooling
operations, as illustrated in the model Figure 2. The final GNNs include eight message-massing and
four pooling layers, which are sufficient for achieving satisfactory results. The number of initial
feature channels is 256, increased to 2048. The annotation encoder has 2 FC layers changing feature
channels from 2752 to 2048. The classification head is a liner layer for predicting classes. For the
teacher model, we use zS to get the predicted annotations by the classification head and calculate the
loss by Lteacher. The final loss L is used for the training of the student model.

We know spatially adjacent residues can still exist even when the sequence distance is large [73]. We
perform sequence average pooling and change edge conditions after once pooling. These operations
enable the protein graph to cover more distant nodes.

E.2 Training Details

Dataset statistics [17] of the four downstream tasks are summarized in Table 4. The proposed
framework conducted experiments on NVIDIA-SMI A100 GPUs and NVIDIA Tesla V100 GPUs,
implemented with PyTorch 1.13+cu117 and PyTorch Geometric 2.3.1 with CUDA 11.2.

Table 4: Dataset statistics. #X means the number of X.
Dataset #Train #Validation #Test

Enzyme Commission 15, 550 1, 729 1, 919
Gene Ontology 29, 898 3, 322 3, 415
Fold Classification - Fold 12, 312 736 718
Fold Classification - Superfamily 12, 312 736 1, 254
Fold Classification - Family 12, 312 736 1, 272
Reaction Classification 29, 215 2, 562 5, 651

In biology, a linear combination of original data with Gaussian noise [34] is a simple but effective
way to augment the protein data:

(Pi,xi)← (Pi,xi) + Θ,Θ ∼ (µk, σ
2
k) (13)

where µk and σk are selected as the random noise’s mean (expectation) and standard deviation.

Hyper-parameters related to the networks are set the same across different datasets: Adam optimizer
with learning rate lr = 1e − 3, weight decay decay = 5e − 4, epochs T = 300, Gaussian noise
µk = 0, σk = 0.1, it indicates trivial perturbation is introduced to the protein native structures.

The other dataset-specific hyper-parameters are determined by an AutoML toolkit NNI [74] with
the search spaces. The loss weight hyper-parameter is related to the value of the task-specific loss
β = {1, 0.1, 0.01, 0.001, 0}, and α = {10, 1, 0.1, 0.01, 0.001, 0}. As for the batch size and training
epochs, etc., which influence the convergence speed of deep learning models, we set 16 and 500
respectively.

16

88596https://doi.org/10.52202/079017-2810

F KL Guided Domain Adaption

Assuming source and target domains have the same support set and share the representation mapping
p(z|G), this means these two domains have the same datasets of protein graphs and functions. Given
the representation z, we learn a classifier to predict the label y through the predictive distribution
p̂(y|z) that is an approximation of the ground truth. During training, the representation network
p(z|G) and the classifier p̂(y|z) are trained jointly on the source domain and we hope that they can
generalize to the target domain, meaning that both p(z|G) and p̂(y|z) are kept unchanged between
training and testing.

We define the predictive distribution of y given G as
p̂(y|G) = Ep(z|G)[p̂(y|z)] (14)

We have a single z from the source model p(z|G) for each protein. The training objective of the
source domain is

Lteacher = EG,y∼pS(G,y),z∼p(z|G)[− log p̂(y|z)] = EpS(z,y)[− log p̂(y|z)] (15)

We consider the two assumptions of the representation z on the source domain:

Assumption 1. IS(z, y) = IS(G, y), where IS(·, ·) is the mutual information term, calculated on the
source domain. In particular:

IS(z, y) = EpS(z,y)

[
log

pS(z, y)

pS(z)pS(y)

]
; IS(G, y) = EpS(G,y)

[
log

pS(G, y)

pS(G)pS(y)

]
(16)

The mutual information quantifies the amount of information shared between the variables z and y
(or G and y) in the source domain. It measures the dependence or correlation between these variables
in the context of the source domain data. This is often referred to as the ‘sufficiency assumption’
since it indicates that the representation z has the same information about the label y as the original
input protein graph G, and is sufficient for this prediction task in the source domain. Note that the
data processing inequality indicates that IS(z, y) ≤ IS(G, y), so here we assume that z contains
maximum information about y.

Assumption 2. pS(y|G) = Ep(z|G) [pS(y|z)]

When this assumption holds, the predictive distribution p̂(y|G) will approximate pS(y|G), as long as
p̂(y|z) approximates pS(y|z).
The above two assumptions ensure that the teacher network has good performance in the source
domain. Now, we continue to consider the test loss and how we can reduce it. The loss of the target
domain is:

L∗
student = EpT (G,y)[− log p̂(y|G)] = EpT (G,y)

[
− logEp(z|G)[p̂(y|z)]

]
≤ EpT (G,y)

[
Ep(z|G)[− log p̂(y|z)]

]
= EpT (z,y)[− log p̂(y|z)]

(17)

Since we do not know the target domain and the target data distribution, there is no way to guarantee
the invariance (both marginally and conditionally) of the representation z. Therefore, We introduce
the following proposition that ensures a generalization bound of the target domain loss based on the
source domain loss and the KL divergence:

Proposition 1. If the loss − log p̂(y|z) is bounded by M , we have:

L∗
student ≤ Lteacher +

M√
2

√
KL [pS(y, z) ∥ pT (y, z)]

= Lteacher +
M√
2

√
KL [pS(z) ∥ pT (z)] + EpS(z) [KL [pS(y|z) ∥ pT (y|z)]]

(18)

Proposition 2. If Assumption 1 and 2 hold, and if pS(G,y)
pT (G,y) <∞ (i.e., there exists N ′, which can be

arbitrarily large, such that pS(G,y)
pT (G,y) < N ′), we have

EpS(G) [KL [pS(y|z) ∥ pT (y|z)]] ≤ EpS(G) [KL [pS(y|G) ∥ pT (y|G)]] (19)

17

88597 https://doi.org/10.52202/079017-2810

Table 5: The comparison results with pre-training methods (Fmax) on GO term and EC number
prediction. The best results are shown in bold.

Category Method GO-BP GO-MF GO-CC EC

Sequence ESM-1b [8] 0.452 0.659 0.477 0.869
ESM-2 [6] 0.472 0.662 0.472 0.874

Sequence-Function
ProtST-ESM-1b [20] 0.480 0.661 0.488 0.878
ProtST-ESM-2 [20] 0.482 0.668 0.487 0.878
DeepGO-SE [75] 0.438 0.564 0.427 0.810

Sequence-Structure

ESM-GearNet [77] 0.516 0.684 0.506 0.890
GearNet-ESM-INR-MC [76] 0.518 0.683 0.504 0.896
ProtGO-ESM (Student) 0.520 0.693 0.536 0.887

This shows that the conditional misalignment in the representation space is bounded by the conditional
misalignment in the input space. It then follows that:

L∗
student ≤ Lteacher +

M√
2

√
KL [pS(z) ∥ pT (z)] + EpS(G) [KL [pS(y|G) ∥ pT (y|G)]] (20)

We know y can represent the underlying functional label for the student model. Although the student
model may not have these functional labels, but we can assume that they exist for theoretical reasons.
The derived misalignment Eq. 20 and the derived loss Eq. 8 are based on the assumption that the
source and target domains have the same support set. Thus, the loss of Eq. 8 can be used in an
unsupervised way for the student to predict functions. However, the student model is applied to
different downstream tasks, like classification, which has classification classes. Thus, we add the
supervised student loss Lstudent and the knowledge distillation loss the Lkd as the final hybrid loss
for the student to improve its performance on classification tasks.

G Comparisons with Pre-training Methods

To ensure fair comparisons with pre-trained models, we integrate ESM-2 (650M) [6] into ProtGO,
resulting in the creation of ProtGO-ESM. In this approach, ESM embeddings are utilized to enhance
the graph node features. Our assessment evaluates ProtGO-ESM against various pre-training tech-
niques in the tasks of protein function and EC number prediction. This evaluation includes a range of
methods, such as sequence-based approaches like ESM-1b [8] and ESM-2 [6]; sequence-function
models including ProtST [20] and DeepGO-SE [75]; and sequence-structure methodologies such as
GearNet-ESM [17] and GearNet-ESM-INR-MC [76]. Detailed comparative results are presented
in Table 5. Notably, our proposed model, ProtGO-ESM, outperforms other methods across these
sequence-based, sequence-structure-based, and sequence-function-based pre-training techniques.

18

88598https://doi.org/10.52202/079017-2810

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We have introduced these.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See Section 5.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

19

88599 https://doi.org/10.52202/079017-2810

Justification:
Guidelines: See Appendix F.

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Dataset, models and settings are introduced in this manuscript.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

20

88600https://doi.org/10.52202/079017-2810

Answer: [Yes]
Justification: Codes are in the supplementary material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: These are introduced in the main texts and appendices.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Mean values are reported.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.

21

88601 https://doi.org/10.52202/079017-2810

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: See Appendix E.2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: we preserve the anonymity.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Social impact is discussed in the appendix.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to

22

88602https://doi.org/10.52202/079017-2810

https://neurips.cc/public/EthicsGuidelines

generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper does not have such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have cited original papers.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

23

88603 https://doi.org/10.52202/079017-2810

paperswithcode.com/datasets

Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not have this content.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

24

88604https://doi.org/10.52202/079017-2810

