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Abstract

Deep learning models are now trained on increasingly larger datasets, making it
crucial to reduce computational costs and improve data quality. Dataset distillation
aims to distill a large dataset into a small synthesized dataset such that models
trained on it can achieve similar performance to those trained on the original
dataset. While there have been many empirical efforts to improve dataset distillation
algorithms, a thorough theoretical analysis and provable, efficient algorithms are
still lacking. In this paper, by focusing on dataset distillation for kernel ridge
regression (KRR), we show that one data point per class is already necessary and
sufficient to recover the original model’s performance in many settings. For linear
ridge regression and KRR with surjective feature mappings, we provide necessary
and sufficient conditions for the distilled dataset to recover the original model’s
parameters. For KRR with injective feature mappings of deep neural networks, we
show that while one data point per class is not sufficient in general, £+ 1 data points
can be sufficient for deep linear neural networks, where k is the number of classes.
Our theoretical results enable directly constructing analytical solutions for distilled
datasets, resulting in a provable and efficient dataset distillation algorithm for KRR.
We verify our theory experimentally and show that our algorithm outperforms
previous work such as KIP while being significantly more efficient, e.g. 15840
faster on CIFAR-100. Our code is available at GitHub.

1 Introduction

Deep learning models are now trained on increasingly massive datasets, incurring substantial com-
putational costs and data quality challenges. For instance, Llama 3 was pre-trained on over 15
trillion tokens, while the training of GPT-4 exceeded $100 million. Reducing these burdens is crucial.
Dataset distillation [34] aims to distill a large dataset into a small synthesized dataset such that models
trained on it can achieve similar performance to those trained on the original dataset. A good small
distilled dataset is not only useful in saving computational cost and improving data quality but also
has various applications such as continual learning [39} 40} 35]], privacy protection 24,40 [18l |5} [1]],
and neural architecture search [31, 39]].

While there have been many empirical efforts to improve dataset distillation algorithms [24} 39,2} [3§]],
a thorough theoretical analysis is still lacking. 1zzo and Zou [9] show single distill data is sufficient
for a class of generalized linear models with one-dimensional output, where the data is assumed
to follow a generalized exponential density function and the negative log-likelihood is optimized
by gradient descent. For a linear ridge regression (LRR), Izzo and Zou [9] show d data points are
needed to recover the original model’s parameter for all regularization at the same time, where d is the
dimension of the data and is large even for small datasets like MNIST [[13]] and CIFAR [12]] (d = 784
and 3072) in computer vision. For kernel regression with Gaussian kernel, they show n data points
are necessary, where n is the number of original data points and can be large for modern datasets, e.g.
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Table 1: Comparison with existing theoretical analysis of dataset distillation. The number of distilled
data needed to recover original model’s performance and models analyzed. “-” means not applicable.
For linear ridge regression (LRR) and kernel ridge regression (KRR) with subjective feature mapping,
our results only need one distilled data per class (k < d in our setting), which is far less than the
existing work [9, 21] that require n or p points. As an example, k = 10,d = 3072,n = 50000
for CIFAR-10. The k, d, n of standard datasets are listed in Table[2] p is the dimension of feature
mapping ¢ : R? — RP.

| LRR

Kernel ridge regression (KRR)

Izzo and Zou [9] | d
Maalouf et al. [21]]

Our work

| n (Gaussian Kernel)

|
| surjective ¢ | non-surjective ¢
|
|

k, (k< d)

| p (Shift-invariant Kernels)

k,(k < p) (Invertible | pin general (Deep nonlinear
NNs, FCNN, CNN, Random | NNs).
Fourier Features) k + 1 for deep linear NNs

n = 60000 and 50000 for MNIST and CIFAR (see Table 2). Maalouf et al. [21]] use Random Fourier
Features (RFF) to approximate shif-invariant kernels that may have an infinite-dimensional feature
space, and construct p distilled data for such RFF model, where p is the dimension of the RFF model
and can be Q(y/nlogn) in general cases. The results in [9] 21]], however, have a large gap compared
with the empirical evidence that one data point per class can often achieve comparable performance
to the original model [24} 39, [2, [38]].

In this paper, by focusing on dataset distillation for kernel ridge regression (KRR), we show that one
data point per class is already necessary and sufficient to recover the original model’s performance
in many settings, which is far less than n or p data points needed in prior works [9, 21]. Besides, our
analysis is more general than prior works [9,21] and can handle more and different models, including
invertible neural networks, fully-connected neural networks (FCNN), Convolutional neural networks
(CNN), and Random Fourier Features (RFF). TableE] compares our theoretical results with previous
analysis. We summarize our contributions as follows.

* In Sec.[d.T]and [5] for linear ridge regression (LRR) and KRR with surjective feature mappings,
we show that one distilled data point per class is necessary and sufficient to recover the original
model’s parameters and provide necessary and sufficient conditions for such distilled datasets. In
addition, we show how to find distilled data that is close to real data in Sec. @

* In Sec.[5.2] for KRR with injective feature mappings of deep neural networks (NNs), we show
that one data point per class is in general not sufficient to recover the original model’s parameters.
However, k + 1 data points can be sufficient for deep linear NNs, where & is the number of classes.

* Our theoretical results enable us to directly construct analytical solutions for the distilled datasets,
resulting in a provable and efficient dataset distillation algorithm for KRR in Algorithm [T} We
verify our theory experimentally and show that our algorithm outperforms previous SOTA dataset
distillation algorithm KIP [25]] while being significantly more efficient, e.g. 15840x faster on
CIFAR-100.

* In Secl] we show our theoretical results can be used for several applications. First, it can be used
as necessary or sufficient conditions for KIP-type algorithms to converge to a global minimum
even if the loss function is highly non-convex. Second, our distilled dataset for KRR can provably
preserve the privacy of the original dataset while having a performance guarantee.

2 Related works

Dataset distillation. Dataset distillation aims to distill a large dataset into a small synthesized dataset
such that models trained on it can achieve similar performance to those trained on the original dataset.
Previous approaches can be mainly divided into four categories [29]]: 1) Meta-model Matching: this
category formulates the problem as a bilevel optimization problem and maximize the performance of
the model trained on the distilled dataset [34]. Some recent works such as KIP [24, 25]], FRePo [40],
RFAD [17]], and RCIG [[18] approximate the inner loop optimization of training neural networks by
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KRR with Neural Tangent Kernel [10] or neural network Gaussian process (NNGP) kernels [14]. 2)
Gradient Matching: this category minimizes the distance between the gradients of models trained
on the original dataset and distilled dataset [39,[37, [15,[11]]. 3) Trajectory Matching: this category
aims to match the training trajectories of models trained on the original dataset and distilled dataset
[2, 14118, 7]. 4) Distribution Matching: this approach directly matches the distribution of the original
dataset and distilled dataset via a single-level optimization [38} 33} 136]]. Our work is closely related
to kernel-based dataset distillation algorithms [24} 25} 40, 17, [18]] in category (1). Our theoretical
analysis provides theoretical foundations and implications for these kernel-based algorithms.

Theoretical analysis of dataset distillation. In addition to the papers discussed in the introduction,
Maalouf et al. [19] propose an efficient algorithm to construct a d? + 1 core set of the original dataset
for least mean squares problems. Maalouf et al. [20]] further propose to use the SVD of the original
dataset to construct a distilled dataset of size d. Tukan et al. [[32] utilize the idea of subset selection to
improve the initialization and training procedure of dataset distillation. Our paper focuses on KRR
and constructs k distilled data analytically, where k is usually much less than d (see Table [2)).

3 Preliminaries

3.1 Dataset Distillation

For an original dataset {x;,y;},_,, we denote X =
[®1,...,2,] € R*" and Y = [y1,...,y,] € RF*",
where d is the dimension of the data, k is the dimension
of the label or the number of the classes, and n is the
number of data points. The goal of dataset distillation is to

Table 2: k& (number of class), d (dimen-
sion of data), and n (number of training
data) of standard datasets.

hefic d X RAxM Dataset | & d n
create a synthetic dataset X g 7k[ic 511, e xs, | € MNIST [13] 10 784 60000
and Ys = [ys,,.--,¥s,. ] €R , with the number of  CIFAR-10 [12] 10 3072 50000

distilled data points m < n, such that a model trained CIFAR-100 [12] | 100 3072 50000
on this synthetic dataset (Xg,Yg) can achieve similar ~_'mageNet-1k[28) | 1000 196608 1281167
performance to those trained on the original dataset.

As the data dimension is usually larger than the label dimension in practice, e.g. MNIST has
d = 728, k = 10 and other datasets have even larger d, we consider d > k in this paper. For a matrix
A, we use AT to denote its pseudoinverse and Range (A) to denote its range space.

3.2 Dataset Distillation for Kernel Ridge Regression (KRR)

Original model: Given a kernel K (z,x') = (¢(x), ¢(z')), where ¢ : R? > RP is the feature
mapping from input space to a feature space of dimension p, a KRR model f(x) = W¢(x) trained
on original data set with a predefined regularization A\ > 0 tries to minimize following objective

. 2 2
min [Wo(X) = Y3+ A [W][2

where W € R¥*P and ¢(X) = [¢(x1),...,d(x,)] € RPX™. The solution can be computed
analytically as W = Y ¢, (X) ™, where
() = { KX X)+AL) " o(X) T = 6(X)T (6(X)$(X)T +AL) ", if A >0,
H(X)*, if A= 0.
and K (X, X) = ¢(X)T¢(X) € R"*". ¢(X) can be considered as regularized features. Linear
ridge regression is a special case of kernel ridge regression (KRR) with ¢(x) = «.

KRR is used in many dataset distillation algorithms [24} 25,40, 17, [18]. In this paper, we mainly
consider a finite-dimensional ¢. This matches the practical neural networks which are usually used in
dataset distillation. For shift-invariant kernels with infinite-dimensional RKHS space, e.g. Gaussian
kernel, they can be well approximated by finite-dimensional random Fourier features [27, [16].

Distilled dataset model: Similarly, a KRR trained on distilled dataset with regularization Ag > 0 is
fs(x) = Wgod(x), where W = Yo, (Xs)t € RE¥?. Additionally, denote Xy, = ¢, (Xs)
with ¢(x) = x, i.e.
s J (XIXs+AsLy) T X§ = XD (XsX] +AsLa) T, if As >0,
As X§7 if A\¢ = 0.
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The goal of dataset distillation here is to find (X g, Ys) such that Wg = W, where W is supposed
to be given, i.e. can be computed from the original dataset (X,Y).

4 Dataset Distillation for Linear Ridge Regression (LRR)

In this section, we first analyze the dataset distillation for the linear ridge regression (LRR). In
Sec. 1] for a LRR model, we show that k distilled data points (one per class) are necessary and
sufficient to guarantee Wg = W. We provide analytical solutions of such Xg allowing us to
compute the distilled dataset analytically instead of having to learn it heuristically in existing works
24, [18]. Then, in Sec #.2] we show how to find distilled data that is close to real data.
Lastly, for fixed data and only distilling labels, we show d points are needed in Sec[4.3]

4.1 Analytical Computation for Linear Ridge Regression

Theorem 4.1. When m < k, there is no Xg can guarantee Wg = W unless the columns of
W are in the range space of Ys. When m > k and Y is rank k, let r = min(m, d) and take
D= Y;W + (Im — Y;YS) Z, where Z € R™*% is any matrix of the same size as Xg. Suppose
the reduced SVD of D is D = Vdiag(d},...,0.)UT with o > --- > ol. > 0, the following results

hold:
1. As > 0: Wg = W if and only if, for any D defined above, \g < 40% and Xg =
1
0, ifol =0,
Udiag(o1,...,0,)V where 0; = { 1+,/T_drso’? .
—V——", otherwise.

2. As =0: Wg = W ifand only if Xg = DV for any D defined above.

Proof sketch. The proof can be found in Appendix [C| The key idea is that we want to solve X g from
Wgs = YSXJr = W (Note: W is given and we can select/decide Y g). When m < k, this is an
overdetermined system for Xj\'s. There is no solution for Xj\'s in general therefore no solution for Xg.
Whenmn > kand Y g is rank k, the solutions of X7 are givenby X} = YIW+(L,, — YY) Z,
where Z € R™*4 ig any matrix of the same size as X;\FS. However, not all such Xj\rs corresponds to
a X . To solve X g, we assume we have the SVD of X g and solve it from the SVD of Xj\'s. O]

Intuitively, original dataset (X,Y) is compressed into Xg through original model’s parameter
W-=Y (XTX + /\In)f1 XT. When m = k, i.e. one distilled data per class, D = Y;JW is
deterministic and X is fully determined by W and Yg. In this case, when A\g = 0 and W is
full rank, X5 can be easily computed as X5 = W'Yg. As an example, Figure [1| shows the
distilled data for MNIST and CIFAR-100 when m = 10/100. When m > k, i.e. more than one
distilled data per class, there exist infinitely many distilled datasets since Z is a free variable to
choose. When m = n, one can verify that X is a distilled dataset for itself by taking Yg =Y

and Z = (XTX + )\In)_1 X T. When m > n, we can generate more data than original dataset.
Compared with [9] that needs d data, our approach only requires k data and usually & < d in practice.
Our result is also more flexible to distill any m > k data points.

beetle blcycle

: 5 R

Figure 1: Distilled data of MNIST (first row) and CIFAR-100 (second row) for LRR when m = k.

Discussion. The requirement for As can be easily satisfied by setting Ag < ,2 for a given D. If
we want to fix a predefined \g, e.g. Ag = A, we need to sample different D (by sampling different

Z) so that \g < ﬁ is satisfied. Theorem generally suggests that a smaller \g is better for
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constructing distilled data. Practical algorithms, e.g. KIP, FRePo, and RFAD, usually use a very
small regularization, which may already satisfy the requirement.

In practice, we usually do not want the dataset to be singular. Below we show that it is easy to satisfy
as long as Z is full rank and the rows of W and Z are linearly independent.

Proposition 4.1. When m > k and Y s, W are rank k, the Xg in Theoremd.1|is full rank for any
full-rank Z such that Range (W ") N Range (Z") = {0}.

4.2 Finding Realistic Distilled Data

In Theorem any D satisfying the condition will guarantee the distilled dataset model to recover
the original model’s performance. For example, we can choose Z to be a random Gaussian matrix.
However, to make the distilled data more realistic and generalizable, we can select m real training

data X g as initialization of distilled data and find the distilled data that is closest to X g.

Corollary 4.1.1. Given fixed XS, As, and Y g, the D that satisfies Theorem and minimize

HD - Xt
S

is
F
D= Y{W + (L, - YY) (X, - YEW),

where Xi‘s is defined analogous to Xj\'s. Taking Yg = WX, s can further minimize the distance.

When A\g = 0, Yg = WXS is the prediction of original model for XS. Combining this with
Theorem we summarize the computation of the distilled data in Algorithmwith o(x) = x.
Figure 2] shows some distilled data that is close to the real data or generated with random noise.

(b) CIFAR-100 with IPC=5.

Figure 2: Initialized data (first row), distilled data generated from real images using techniques in
Sec 2] (second row), and distilled data generated from random noise using techniques in Sec {i.1]
(third row) for a LRR with m = 500 on MNIST and CIFAR-100. IPC: images per class.

4.3 Label Distillation

If we fix the X g and only distill labels, as also shown in [24]], we need at least m = d to guarantee
‘W = W because labels have fewer learnable parameters than data.

Theorem 4.2. For any fixed Xg,
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1. when m < d, there is no Y g can guarantee Wg = W in general unless the rows of W are
in the row space of Xi’s. The least square solution is Ys = WXy, and |[Wg —W| =

W (XasX], — L) |
2. when'm > d, if Xg is rank d, then Y g = WX, is sufficient for Wg = W.

5 Dataset Distillation for Kernel Ridge Regression (KRR)

In the last section, we analyzed the dataset distillation for LRR. However, more complex models such
as KRR and neural networks (NNs) are usually used in practice for better performance. Therefore,
it is crucial to extend the analysis to these practical settings. In this section, we first extend the
results of LRR to KRR in the feature space and then construct distilled data from desired features by
considering two cases — subjective and non-surjective feature mappings.

The results in Theorem [4.1] of LRR can be directly extended to the KRR in the feature space by
replacing data X g with features ¢(Xg) in Theorem For completeness, we state it below.

Theorem 5.1. When m < k, there is no $(Xg) can guarantee Wg = W unless the columns of
W are in the range space of Yg. When m > k and Y s is rank k, let 1 = min(m, p) and take
D =YW + (L, — YiYs) Z, where Z € R™*? is any matrix of the same size as ¢(Xg)'.
Suppose the reduced SVD of D is D = Vdiag(c},...,0.)UT with o} > --- > o/ > 0, the
following results hold:

1. A\s > 0: Wg = W if and only if, for any D defined above, \s < i and ¢(Xg) =

402
07 lfO'i = 0’
Udiag(o1,...,0.)V " where 0, = { 1+,/1_irs0??

’ 9
20

otherwise.
2. As = 0: Wg = W ifand only if (Xg) = DT for any D defined above.

This shows that in the feature space, k features are necessary and sufficient to recover the original
model’s parameter. However, what we get is the feature of distilled data ¢(X ) instead of distilled
data X itself. To get X g, we need to construct the data from the features. To do this, we consider
two cases — surjective and non-surjective ¢. For subjective ¢, we show that we can directly construct
X from ¢(Xg). For non-surjective ¢ such as neural networks (NNs), we show one data per class is
in general not sufficient, but k£ + 1 data points can be sufficient for deep linear neural networks.

5.1 Surjective Feature Mapping

When ¢ is surjective or bijective, we can always find a X for a desired ¢(Xg). In this case, k
distilled data (one data per class) is sufficient to recover the original model’s performance, in contrast
to [21]] that needs p distilled data. We summarize the computation of the distilled data in Algorithm [I]
Here we give some examples of surjective/bijective ¢.

Example 5.1 (Invertible NN). If ¢ is invertible such as invertible NNs used in normalizing flows,
then we can directly compute = ¢~ (¢(x)).

Example 5.2 (Fully-connected NN (FCNN)). For a (L + 1)-layer FCNN f(x) = W¢(x) and
(@) = o (WEg(... WA g(Whg))).

where o is a surjective or bijective activation function such as LeakyReLU, and W) ¢ R *xdi—1
withd =dg > dy > --- >d forl € [L]. If all W are full rank, given ¢(x), we can compute

T — (Vv(l))Jr o1 ( . (W(L))+ a_l(aﬁ(w))) ,

where o~ is any right inverse of o. When some W) are not full rank, we can still compute an
approximated solution.

Example 5.3 (Convolutional Neural Network (CNN)). CNN is known as a special type of FCNN. To
illustrate, we give an example of a convolution layer of 2 x 2 filter. Let w € R* be a convolutional
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filter of size 2. Then the convolution operation with stride 1 can be represented as

w; woy 0 o -+ 0 w3 wgy 0 -+ 0

0 w1 w2 0 0 0 w3 Wy - 0
o(x)= | . : s : : S : : N

0 0 0 et W1 wWo 0 0 w3 Wy

If the data is three-channel images, same operation can be done for each channel followed by a matrix
that sums over three channels. When the matrix equation has a solution, the data can be solved from
the feature.

Example 5.4 (Random Fourier Features (RFF) [27]). A shift-invariant kernel K (x, 2’) = K(x —
x') can be approximated by random Fourier features K (z,x’) = (¢(x), ¢(x’)). Here ¢(x) =

\/% [cos(a] @ +b1),...,cos(a) @ +b,)] " € RP where ay,. .., a, € RY are independent samples

from a distribution P (a) = .- [ e~/ 2K (A) dA (Fourier transform of K (A)) and by, ..., by, are

i.i.d. sampled from the uniform distribution on [0, 27]. For example, Gaussian kernel K (z,z’) =
_lle—=lI3

e~ 2 hasP(a) = N(0,0721,). Denote A = [a1,...,a,]" and b= [by,...,b,]", then we
have ¢(x) = \/%cos(Aa; +b). Whenever p < d and A is rank p, given ¢(x) we can solve x as,

x=A" (arccos \/ggb(:c) - b) .

To ensure the computed \/qu(XS) € [—1,1], we can normalize it by its largest absolute value,
which is equivalently scaling D in Theorem[5.1]and does not affect the direction of W g.

[21] use random Fourier features to approximate shif-invariant kernels that may have an infinite-
dimensional feature space, and construct p distilled data for such RFF model, where p € Q(y/nlogn)
in general cases. Their construction, however, only uses label distillation and the X g can be any
random data. Our analysis constructs X g explicitly and shows that whenever the dimension of RFF
p needs to approximate shif-invariant kernels is less than d, k distilled data suffice to recover the
performance of the original RFF model and approximate the original KRR with shif-invariant kernels.

5.2 Non-surjective Feature Mapping

When ¢ is injective or non-surjective, given a ¢(Xg), we may not find an exactly matched Xg.

However, we can find an approximated distilled data X g first and then adjust Yg toensure Wg =~ W.
As in the label distillation for LRR case, m > p distilled labels can guarantee Wg = W.

Below we show one data per class is in general not sufficient for non-surjective ¢, but k£ + 1 can be
sufficient for deep linear NNs. Consider a deep NN, f(z) = W¢(x) with

(@) = o (WEg(... WA g(Whg))).
where o is an invertible activation function such as LeakyReLU, Sigmoid, and W) ¢ R%xdi—
withd =dg < dy =---=dp =pforl € [L]. ¢(x) is an injective function in this definition.
Theorem 5.2. For a deep nonlinear NN defined above with fixed ¢, assume W), ... W) gre full
rank. Suppose \s = 0 and 'Y g is rank k. When m = k, there is no distilled data X g that can guaran-
tee Ws = W in general useless the columns of o~ ! ((W(Q)) o (W) e ((YgW)*))
are in the range space of W),

When m = k, only ¢(Xs) = (Y4 W)* that can guarantee W = W. One data per class is not
sufficient in general as long as (Y;EW)Jr is not in the range space of ¢. Although & data is not
sufficient, we show k + 1 data can be sufficient for deep linear neural networks, where o(x) = x.

Theorem 5.3. For a deep linear NN defined above with fixed ¢, assume W@ | ... W L) are full rank.
Suppose As = 0 and Y 5, W are rank k. Denote H = [Hle w® (W(l))+ (WtW —1,)| €
RP*2P,
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1. When m = k, there is no distilled data X g that can guarantee W g = W in general useless the
columns of WY g are in the range space oleLzl wo.

2. Whenm > k, If H is full rank and its right singular vectors Vg € R?P*2P’s [ast p x p submatrix
is full rank, then there exists a X g such that Wg = W.

Proof sketch. To find the distilled data theoretically, we need to guarantee 1) the feature ¢(Xg) need
to guarantee W g = W and 2) there are some distilled data X g corresponding to the feature. For the
first condition, Theorem gives the sufficient and necessary condition of ¢(X ). However, the
formulation involves a pseudoinverse of sum of matrices, which does not have a concise formulation
and therefore is hard to handle when solving X g. Instead, in Theorem[C.2} we derive a sufficient
condition of ¢(Xg) without pseudoinverse. For the second condition, ¢(Xg) = ¢* for a given ¢* is
an overdetermined system of linear equations of X g. We find the formulation of ¢(Xg) such that the
overdetermined system has solutions. Then combining the two conditions together, we end up with
an equation that has multiple free variables. Combing the variables together and solving the equation
will give us the results. In the proof, we provide the algorithm to compute the distilled data when the
assumptions are satisfied. [J

6 Applications

In this section, we show that our theoretical results can be useful in some applications. We first show
the conditions in Theorem can be necessary or sufficient conditions for KIP-type algorithms to
converge in Sec[6.I} We also show our distilled dataset for KRR can provably preserve the privacy of
the original dataset in Sec

6.1 An Implication for KIP-type Algorithms
In KIP [25]], FRePo [40]], RFAD [17], and RCIG [18]], a loss function as follows is optimized:

L(Xs) = [Wso(X) = Y2 = HYS (K(Xs, Xs) + AsLn) " K(Xs, X) — YH? e

Below we show our results can be sufficient conditions for the above loss function to converge to 0
even if the loss function is highly non-convex.

Theorem 6.1. Suppose ¢(X) is full rank and W is computed with \ = 0. Then
1. whenn < p, the $(Xs) that can guarantee W s = W in Theorem[5.1is sufficient for L(Xg) = 0.

2. whenn > p, the p(Xg) that can guarantee Wg = W in Theoremis necessary for L(Xg) =
0.

From this theorem, we see that KIP-type algorithms are enforcing W g = W to some extent. While
the KIP algorithm is computationally expensive, our solution for ¢(Xg) can be computed efficiently
and directly utilized in KIP-type algorithms for efficient optimization.

6.2 Privacy Preservation of Dataset Distillation

For our dataset distillation algorithm for KRR, we show that the original dataset cannot be recovered
from the distilled dataset, therefore provably preserving the privacy of the original dataset while
having the performance guarantees at the same time.

Proposition 6.1. Suppose n > k and Y is rank k. Given \g, ¢, for a distilled dataset (Xs,Yg)
that can guarantee W s = W in Theorem we can reconstruct W from ¢(Xg). However, given
W, there are infinitely many solutions for ¢(X).

Since there are infinitely many solutions for ¢(X), it is impossible to recover ¢(X) without additional
information. As long as ¢ does not contain any information of X, then X will not be able to recover
from distilled dataset (X, Ygs). Note in Sec. we use additional information (real images as
reference points) to compute X g. Therefore X g resembles original images and we may recover
these original images from X g. However, if we generate the distilled data with random noise, the
distilled data will contain no additional information and protect the privacy of the original dataset. In
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summary, we can control whether to generate realistic data by using real data as reference points or
protect privacy by generating noisy distilled data as shown in Figure 2]

More formally, we prove that the distilled data can be differential private with respect to the original
dataset if we take Z to be random Gaussian with suitable variance.

Theorem 6.2. Under the same setting of Theorem suppose that A = 0, all data are
bounded |x;||, < B, and the smallest singular value of the original datasets is bounded from
below 0., (X) > 09. Suppose Y s is independent of X and unknown to the adversary. Let
(Y& denote its i-th row. Let €,6 € (0,1) and take the elements of Z ~ N(0,0?) with

2y/I(125/8)B||[Y {1 Y|,

a§e|| [I,,,,—Y;rYs]

0 > MmaXjeg[m , then each row of Xg is (€,0)-differential private with

B

i

respect to X.

7 Experiments

(I) Analytical Computation of Dataset Distillation. In Table |3} we verify our theory of dataset
distillation for LRR and KRR with subjective mapping. We compute the distilled dataset for different
models using Algorithm[T} The models are KRR with different feature mappings: 1) identity mapping
(linear model), 2) one-hidden-layer LeakyReLU neural network, and 3) Random Fourier Features
(RFF) of Gaussian kernel. The feature mappings are constructed such that the feature dimension
is equal to the data dimension, i.e. p = d. For NNs, we use random initialized ones and use the
activations as feature mappings. As increasing the depth of NNs does not improve the performance,
we only use one hidden layer. For simplicity, we set Ag = 0 for all experiments. To choose the
original model’s regularization A, we split the original training set into a training set and a validation
set, and choose the A that performs best on the validation set. The results show that our analytically
computed distilled dataset can indeed recover the original models’ parameters and performance.
Some slight differences are caused by the numerical error in recovering the data from features and
computing the KRR solutions. As the purpose of this experiment is to verify if the distilled dataset
can recover the performance of a specific original model, we did not report the error bars.

Table 3: Verification of our theory. Test accuracy of original models and models trained on the
distilled dataset. IPC: images per class.

Dataset | IPC | Linear FCNN RFF
MNIST ‘ Original model ‘ 86.41 93.89 93.82
1 86.41 93.89 93.82
10 86.41 93.89 93.82
50 86.41 93.85 93.82
CIFAR-10 ‘ Original model ‘ 39.48 47.86 42.84
1 39.48 47.87 42.84
10 39.48 47.84 42.87
50 39.48 47.81 42.73
CIFAR-100 ‘ Original model ‘ 14.37 21.42 18.71
1 14.37 21.41 18.70
10 14.37 21.52 18.69
50 14.37 21.49 18.57

(IT) Comparison with KIP. In Table[d] we compare our algorithm with KIP in terms of performance
and efficiency under the setting of a subjective mapping. The test accuracy of models trained on
distilled datasets and averaged computational cost (GPU Seconds) are reported. The mean and
standard deviation of test accuracy are computed over four independent runs. As the experiment (I),
we use a randomly initialized one-hidden-layer LeakyReLU NN with p = d as the feature mapping.
For KIP, we implement their algorithm where we optimize a loss function (1)) and use label distillation
at each training step. For our results, we compute the distilled dataset using Algorithm [T} Our
algorithm performs better than KIP on CIFAR-10 and CIFAR-100 while being significantly more
efficient. We did not report the result of KIP with IPC=50 on CIFAR-100 because the estimated
running time is more than 110 hours.
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This experiment mainly aims to show that our theoretical guarantee can be transferred to practice. As
the proposed Algorithm I]is mainly for KRR with surjective mappings, we verified it and compared it
with baselines in this setting. We use a randomly initialized bijective NN in order to match previous
algorithms that use a randomly initialized NN. If a pre-trained NN is used, the accuracy can be
improved and may match the SOTA.

Table 4: Comparison between our algorithm and KIP.

Dataset IPC KIP 23] Ours
Accuracy T Cost | Accuracy T Cost | Speedup
(GPU Sec.) (GPU Sec.) over KIP 1

MNIST 1 93.44£0.17 159 93.72+0.14 16 9.9 %

10 93.75+£0.10 554 93.69£0.17 16 34.6x

50 93.72+0.11 3114 93.62+£0.24 16 194.6 <
CIFAR-10 1 45.83+0.29 225 47.85+0.10 21 10.7x

10 47.504+0.29 594 47.76+0.12 20 29.7x

50 47.48+0.20 3510 47.77+£0.06 20 175.5x
CIFAR-100 | 1 20.08+£0.20 616 21.58+0.15 20 30.8x

10 21.56+0.16 9323 21.594+0.15 20 466.1x

50 - ~396000 21.58+0.13 25 ~15840.0 <

(IIT) Privacy Protection. In this experiment, we show our algorithm can be used to protect the
privacy of the original dataset. Same as experiment (II), we use a one-hidden-layer LeakyReLLU
neural network with p = d as the feature mapping and train a KRR model on the original dataset.
Then we distill the dataset using Algorithm [I]and generate the distilled data with random Gaussian
noise. As shown in Figure [3] the distilled data for MNIST are essentially random noise, which
protects the privacy of the original MNIST dataset. At the same time, the model trained on it can
recover the original model’s performance of 93.87% test accuracy.

Figure 3: Distilled images of MNIST generated from random noise for a two-layer neural network.
m = 10 (first row) and 100 (second row).

8 Conclusion and Future Works

In this paper, by focusing on dataset distillation for KRR, we show that one data point per class
is already necessary and sufficient to recover the original model’s performance in many settings.
For linear ridge regression and KRR with surjective feature mappings, we provide necessary and
sufficient conditions for the distilled dataset to recover the original model’s parameters. For KRR
with injective feature mappings of deep neural networks, we show that while one data point per class
is not sufficient in general, £ + 1 data points can be sufficient for deep linear neural networks. Our
theoretical results facilitate the direct construction of analytical solutions for distilled datasets, leading
to a provable and efficient dataset distillation algorithm for KRR. Additionally, we have developed
applications for KIP-type algorithms and privacy protection.

Several future research directions are worth exploring. First, while the current analysis shows
that k& data points are generally insufficient for non-surjective deep non-linear neural networks,
determining the minimum number of distilled data points required remains an open question worthy
of investigation. Second, this paper focuses on KRR with fixed feature mappings, which differs from
some empirical works that train all neural network parameters. Extending the analysis to learnable
feature mappings would bridge this gap and provide further insights.
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Appendices

Algorithm 1 Dataset distillation for kernel ridge regression

Input: Number of distilled data m, number of classes k, regularization Ag, feature mapping ¢,

1:

18:
19:
20:
21:

original model’s parameter W, generate from original data or random noise
if Generate from original data then

Sample m balanced initialized data X g from original dataset. Initialize Y g as corresponding

one-hot labels .
Compute ¢, (Xg)

if Rank (W@S(XS)) — & then
Ys =Wy, (Xs)
end if
Construct Z = (I, — YY) (qﬁ,\s (Xg)t — YgW)
else if Generate from random noise then

Sample Z from random noise. Initialize Y g as balanced one-hot labels
end if

: Compute D =Y W + (I, - Y{Ys) Z
. if Ag > 0 then

Compute the SVD of D, D = Vdiag(a},...,0.)UT
if \s > ;2 then
Ag = ﬁ
end if
Construct ¢(Xg) = Udiag(o1,...,0,)V " where 0; = 0if o} = 0 and 0; =
otherwise.
else if A = 0 then

Construct ¢(Xg) = DT
end if
Construct X g from ¢(Xg)

Olltpllt: Xs, /\S

14+/1-4X50/2

!
20

A

Broader Impact

Our approach can be used to protect data privacy, which may have a positive societal impact. There
are no particular ethical concerns we are aware of.

B

Additional Experiment Details

All the experiments are implemented with PyTorch [26] and conducted on a single 24G A5000 GPU.
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C Proofs for Linear Ridge Regularization

C.1 Analytical Computation for Linear Ridge Regression

Theorem 4.1} When m < k, there is no Xg can guarantee Wg = W unless the columns of
W are in the range space of Ys. When m > k and Y is rank k, let r = min(m, d) and take
D= Y;CW + (Im — Y;YS) Z, where Z. € R™*% is any matrix of the same size as Xg Suppose
the reduced SVD of D is D = Vdiag(o},...,0.)U" witha) > --- > ol > 0, the following results
hold:

1. s > 0: Wg = W if and only if, for any D defined above, \s < —7 and Xg =

40’12
. 0, ifo; =0,
Udiag(o1,...,0.)V "' where o; = 144/1—4rgo’?

otherwise.
207 ’

2. Ag = 0: Wg = W ifand only if X5 = D7 for any D defined above.
Proof. Recall Wg = Ysz{S where
s = (XIXs+AsLy)  X§ = XT (XsX] +Aska) ', if As >0,
As ng if \g = 0.
Let Wg =W,
YSXL =W.
When m < k, this is an overdetermined system for X;f . There is no solution for Xj\' in general

. . S
therefore no solution for X g unless all the columns of W are in the range space of Y g. When there
is a solution, we can solve it as following m > k cases.

In the following, we consider the m > k case. Since m > k and Y g is rank k, the solutions of X;\FS
are given by
X;rs = YgW + (Im - YgYS) Z 2)

where Z € R™*¢ is any matrix of the same size as Xj\'s. When k£ = m, the solution is unique

Xj{s = Y§1W. However, there are solutions for st does not mean there are solutions for Xg.
Next, we need to solve X g from X;\FS.

1. When m < d. Suppose the reduced SVD of Xg is Xg = UXV', where & =
diag(cy,...,0,) € R™X™ V € R™*™ s a unitary matrix and U € R?*™ is the first m columns
of a unitary matrix. Then when Ag > 0,

Xi = (XEXs + AsLn) X4
— (VEUTURVT 4 XgL,)  VEU'T
= (V22VT 4+ AgL,) VEUT
V(22 +AsL,) V) VU
(2% 4+ AsL,) " VIVEUT
(2% 4 AgL,) ' SUT

01 Om T
. 3
o2+ Xs’ o2+ As @)

(

\'%
\'%
Vdiag(

Combining (2)) and (3), we must have
g1 Om
O’%+)\S,.“70'72n+)\5

1a, = + (L — s) 4.
Vdiag U =YW+ (L, -YiYs)Z

Denote D = Y{W + (L, — Y{Ygs) Z. Given D, we can compute its reduced SVD D =
V'diag(o},...,0.,)U'T with ] > --- > o/ . Note that SVD of a matrix is unique. Since

? m m*
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D = V'diag(o},...,0/ ) U'T = Vdiag(g%‘jj)\s v YUT, wemusthave V=V’ U =1,
and
ol = i
' O'Z-2 + Ag
That is

!/
O

2 /
i0; —o0; +Ago; =0

When o] = 0, we have 0; = 0. When o] # 0 and Ag < ;2= < 1. it has solutions given by

72
4o

141 4Xg0?

!
207

0

Take the above computed U, V, and 32, we can construct X g. Above shows such X g is a necessary
condition for Wg = W. To show the sufficiency, take such X g into Wg.

Om

. g1
Wgs =YsVdia ey
S S g(af—i—)\s o2 + As

= YsVdiag(a},...,0! )UT
=YsD

=Ys (YW + (1, - YEYs) Z)
=W

yu'

which shows it is a sufficient condition.
When Ag = 0, we have Wg = YSXg. Let Wg = YSX;C = W. The solution for X;C is
XE=YIW+ (L, — Y;YS) Z
where Z € R™*? is any matrix of the same size as X . Therefore
Xs= (YW + (L, — YYs)Z) "

Similarly, this is a necessary condition for W g = W. To show the sufficiency, take such Xg into
Wg.

Ws=Yg (Y;EW + (Im — Y;CYS) Z)
=W
which shows it is a sufficient condition.

2. When m > d. Suppose the reduced SVD of X5 is Xg = UXV T, where & = diag(cy,...,04) €
R¥*4 U € R¥? is a unitary matrix and V € R™*? is the first d columns of a unitary matrix. Then
when Ag > 0,

Xi = X§ (XsX§ + AsLy)
= VU (USVTVSUT 4 AgL) "
— VU (US?UT + A1)
—VSUT (U(Z2+ A1) UT)
—VEUU (2 +AsL,) ' UT
=V (224 AsLy) UT
= Vdiag(

m,...,ﬁ)UT )
Then we proceed similarly to the m < d case. Last, we can unify two cases by taking r = min(m, d).

O
Propositiond.1} When m > k and Ys, W are rank k, the Xg in Theorem[d1|is full rank for any
full-rank Z such that Range (W ") N Range (Z") = {0}.
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Proof. Xg is computed from D = YW + (I, — Y{Yg) Z. Itis easy to check that X is full
rank if and only if D is full rank.

When Y g and W are rank k, Rank(Y{ W) = k. Since Rank(L,, — YY) = m — k and Z is full
rank, by Sylvester’s rank inequality,

Rank( (Im — YgYS) Z) > Rank(I,, — YgYS) + Rank(Z) —m
=m — k+min(m,d) —m
= min(m,d) — k
ForD = YIW + (1, — Y+Y5 Z, since the columns of YIW € Range Y!) and the
S S S S

columns of (I,, = Y{Yg)Z € Null(Ys). By the fundamental theorem of linear algebra,
Range (Y:gr) and Null (Yg) are orthogonal subspaces of R™. Therefore Range (Y;W) N
Range ((Im — Y;CYS) Z) = {0}. This can also be seen from (Y;W)T (Im - YgYS) Z =0,
which shows their columns are orthogonal to each other. If we have Range (WT) N Range (ZT) =
{0}, then Range ((YgW)T) NRange (Z" (I,, - Y{Ys)) = {0}. By [22],

Rank(D) = Rank(Y W) + Rank((L,, — Y{Ygs) Z) > k + min(m, d) — k = min(m, d).
Therefore D is full rank and X is full rank. L]

C.2 Characterization of Distilled Data without Pseudoinverse

In the last section, we give analytical solutions for X g that can guarantee W g = W. However, the
expression of X g involves some pseudoinverse calculation and the explicit expression of X g remains
unclear because there is no concise formulation for the pseudoinverse of sum of matrices. In this
section, we give some direct characterization for Xg.

Again, supposed its reduced SVD is Xg = Udiag(o1,...,0,)V T, where r = min(m, d). When

As > 0, from Eq. (3) and Eq. (@), X;\rs =D = Vdiag(a?j})\s,..., a%i—TAs YUT and X, =
Udiag( %, - 2% ) TV T where [diag( %5, o%55) | = oi+ 22 if 0y > Oelse

0. When Ag = 0, X;\rs = X:g and X, = Xg. Given X, and A\g, we can easily compute X g by
SVD. Below we give conditions for Wg = W through X, .
Suppose the eigenvalues of X are o}. Then by the definition of X, o; + 2—5 = o} if 0; > 0. That
is

2

g, —

oio; +As =0

. (ST .
Only when 022 > 4)\g, there are solution(s) o; = ”fs Therefore, to make sure there is a

X corresponds to X 4, the nonzero singular values of X, need to be larger than or equal to 2/ Ag.
When Ag = 0, there is no requirement.

Theorem C.1. Suppose k < d and W is rank k. Take
Xy =WHYg+ (I, - WTW) Z/,
where Z! € RY*™ is any matrix of the same size as X4 such that X, is full rank.
1. When m < d, it is a necessary condition for Wg = W.
2. When m > d, it is a sufficient condition for Wg = W.

Proof. Case 1. When m < d, recall that Wg = Ysz{S. Set the parameter to be the same
Wg = W and try to solve X4

W= YoX{, =W
Multiply Xy on both sides. Since X is full rank and X3 Xy = I,,,, we have
WX, = Y
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Since k < d and W is rank k, X g has infinite many solutions. The general solutions are
X = WtYgs + (Id - W+W) VA 5)

where Z' € R?*™ is any matrix of the same size as X g. Therefore, this is a necessary condition for
Ws =W.

Case 2. When m > d, to show the sufficiency, for any X,, = WtYg + (I, — WTW) Z/,
WX, =W [WYs+ (I, - WHW) Z'] =Y.
Multiply X on both sides. Since X, X1 = L4,

W =YX} =Ws.

From these two cases, we can also conclude that when m = d, such X, = W+Ygs +
(I — WTW) Z' is a sufficient and necessary condition for Wg = W.

O

Below we give a sufficient condition of Xy, when m > k. It will be used in the proof of Theorem[5.3]
Theorem C.2. When m > k, a sufficient condition for Wg = W is Y g is rank k and

Xy = WHY g+ (I - WTW) Z' (I, - Y1Ys),

where Z! € RY*™ is any matrix of the same size as X .

Proof. When m > k, for the sufficient condition Xjq = WTYg +
(I, - WTW)Z/ (Im — Y;fYS), denote A = WTYg and B =
(I, — WTW)Z/ (Im — Y;YS). Since ATB =0and ABT = 0, by [3], (A + B)Jr =AT+Bt.
Therefore

X5, = (WHYs)" + (Tl - W W) Z' (T, — YY5)]"
=YW+ [(Ig - WHW) Z' (I, - Y5Ys)] "

where the last equality is because W and Y g are full rank and therefore (W+Y5)+ = Y;W.
From this, we have

W = YoXJ,
= Ys (YEW + [(lo - WHW) Z/ (L, - YEYS)] )
=W+ Y [(I— WW) Z' (I, - YEY6)] T

For any matrix A and B, if AB = 0 then BTA* = 0 [30]. Since
(I, — WTW) Z' (Im - YgYS) Y;r =0,Yg [(Id - Wtw)Z’ (Im - Y§Y5)]+ = 0. There-
fore we conclude W g = W. Note in this case, we do not require X, to be full rank.

O

C.3 Finding Realistic Distilled Data

Corollary Given fixed Xg,\s, and Yg, the D that satisfies Theorem and minimize
D - X1l is
slF

D=YiW+ (L, - YEYs) (st . ng) ,

where X;\"S is defined analogous to X;\"S. Taking Ys = WX, s can further minimize the distance.
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Proof. Given fixed XS, As, and Y g, the linear ridge regression trained on Xs is
Ws = YsX{ R
By Theorem to ensure Wg = W, we need X}\LS to be equal to some D = Y{W +
(L, — Y{Yg) Z, where Z is a free variable to be determined. Therefore let
YIW + (L, - Y{Ys) Z =X,

That is A
(Ln—YiYs)Z=X] - YiW

Since (Im — Y;Ys) is idempotent and therefore singular, Z does not have a solution in general
(because the system of equations can be inconsistent). The least-squares solution is

+ A A
Z = (L, - YY) (X, - YEW) = (L - YEYs) (X, - YEW)
where one can verify that (Im — Y;YS)+ =1, — Y;Ys by SVD. This least-squares solution
minimize || (L = YYs)Z - X{, + YEW| = |D=X{_| . Take such Zinto D, we have
F F
D = YW + (L = YY) (Lo — YEYs) (X[, - Y5W)
= YEW + (L - YY) (X5, - YEW)
Then we have the difference between D and Xj\rs is
X{, =D =X{, - YEW - (L, - YEYs) (X, - YEW)
=YY (X5, - YEW)
—Yi (YSX;S _ W)
To further minimize the difference, we can let YSX;\FS = W. The least square solution is Yg =
WX,
O
C.4 Label Distillation

Theorem[@d.2} For any fixed Xsg,

1. when m < d, there is no Y g can guarantee Wg = W in general unless the rows of W are
in the row space of Xi’s. The least square solution is Ys = WX, and |[Wg —W| =

W (s X3, = Ta)]
2. whenm > d, if Xg is rank d, then Y g = WX is sufficient for Wg = W.

Proof. Whenm < d, let
Ws=YsX{ =W

and solve Yg. Yg does not have a solution in general unless the equations are consistent, i.e. the
rows of W are in the row space of X;\“S. The least-squares solution is

Ys=WX,,
Therefore we have
Ws =YsXy, = WX, X},
Then we can bound the difference between W g and W,
IWs = Wil = [[W (X X3, — La)|| < IWIH (X X3, ~ 1)
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When m > d, let
Ws=YsX] =W

and solve Yg. Since Xy is rank d, then X;\rs = X;E (XSX;r + )\SId)fl is rank d and Y g has
solutions. Take the minimum norm one,

Ys=WX,,
To show the sufficiency, take Y g into Wg.

Ws=WX; X, =W
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D Proofs for Kernel Ridge Regression

Theorem When m < k, there is no ¢(Xg) can guarantee Wg = W unless the columns of
W are in the range space of Ys. When m > k and Y g is rank k, let r = min(m, p) and take
D= Y;W + (Im — YgYS) Z, where Z. € R™*P is any matrix of the same size as $(Xs)'.
Suppose the reduced SVD of D is D = Vdiag(c},...,0.)U" with o} > --- > o/ > 0, the
following results hold:

1. A\s > 0: Wg = W if and only if, for any D defined above, \s < 1 and $(Xg) =

40./2
{ 0, ifol =0, '

Udiag(o1,...,0,)V" where 0; = { 1+,/T_drso?

otherwise.
20/ ’

2. \s =0: Wg = W ifand only if (X s) = D™ for any D defined above.
Proof. The proof is same as Theorembut just replace X g with ¢(Xg). O

D.1 Deep Nonlinear Neural Networks

Theorem For a deep nonlinear NN defined above with fixed ¢, assume W2 ... W) are full
rank. Suppose \g = 0 and Y g is rank k. When m = k, there is no distilled data X g that can guaran-

tee Ws = W in general useless the columns of o~ ! ((VV(Q))T1 e (VV(L))T1 ot ((Y;W)“‘))
are in the range space of W),

Proof. To get adistilled data X g that can guarantee W g = W, the sufficient and necessary condition
is that

1. ¢(Xs) need guarantee Wg = W.
2. There is some X corresponds to such ¢(Xg). Equivalently X is recoverable from ¢(Xg).
1. For the first condition, when Ag = 0, we have shown in Theorem ¢(Xs) has to be
+
$(Xs) = (YsW+ (In — Y{Ys) Z) ©)
When m = k and Y is rank k, this reduce to ¢(Xg) = (Y4 W),

2. For the second condition, given ¢(Xg) = o (W) ... o (W(DX)), solving X is same as
solving

WX = o1 ((w<2>)‘1 (W) o (¢<xs>>)

When m = k and combined with the first condition, it becomes
-1 -1
WXy =01 ((W(2)> (W(L)) ot ((Y;W)Jr))

Since this is an over-determined system of linear equations and RHS is fixed, It does not have a
solution in general unless The RHS is in the range space of W (1),

O

D.2 Deep Linear Neural Networks

Theorem For a deep linear NN defined above with fixed ¢, assume W2 ... W L) are full rank.
Suppose As = 0 and Y 5, W are rank k. Denote H = {Hle w® (W(l))+ (WHW —1,)| €
RP*2p,

1. When m = k, there is no distilled data X g that can guarantee W g = W in general useless the
columns of WTY g are in the range space oleLzl w,
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2. When m > k, If H is full rank and its right singular vectors Vi € R?P*2P’s [ast p x p submatrix
is full rank, then there exists a X g such that Wg = W.

Proof. To get a distilled data X g that can guarantee W g = W, the sufficient and necessary condition
is that
1. ¢(Xg) need guarantee Wg = W.
2. There is some X g corresponds to such ¢(X ). Equivalently X is solvable from ¢(Xg).
1. For the first condition, when Ag = 0, we have shown in Theorem ¢(Xg) has to be
$(Xs) = (YW + (L, - YEYS) Z) " @)

When m = k and Yg, W are rank k, this reduce to ¢(Xg) = WHYg. When m > k, from
Theorem we know ¢(Xg) = WHYg+ (I, - WHW) Z' (I,, — Y{Ys) forany Z' € RP*™
is also a sufficient condition for Wg = W.

2. For the second condition, given ¢(Xg) = Hle WX, solving X g is same as solving

L

WX = (HW”’> $(Xs)

1=2
This is an over-determined system of linear equations. A necessary and sufficient condition
for any solution(s) to exist is that RHS is in the range space of W) or equivalently Xg =

“1
(W(l))+ (HlL:Q W(l)) #(X) is a solution. Take this solution into equation,

L

L -1 -1
WO (W<1>>+ (H W(”> p(Xg) = (H W(l)> $(Xs)
1=2 ) . 17:12
(1,, ~ W (W) ) (me) 9(Xs) =0
=2

—1
Solve the equation for (HlL:2 W(l)) #(Xs), we have
L - +\* +
(H W<l>> $(Xs) = (Ip (1, -w® (W(l)) ) (I,, —wm (W“)) )) A
1=2
+
: ) ) )

|
N
"UH
I
7 N7 N N
@l—l
|
2
=
/N
2
—
—
+

for any Z; € RP*™. Therefore to guarantee X is solvable from ¢(Xs), #(Xs) have to be in the
form of

L
o(xs) = [JW® (W) 2, ®)
=1

In this case, Xg = (W(l))Jr Z,. For any Z;, W(1) (W(l))Jr is a projector that projects Z to the
range space of W (1),

Combing two conditions (7) and (8), we need to solve

L
[[w® (W“))+ Zi = (YW + (L, — YY) Z)
=1

+

for Z and Z;.
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1. When m = k, it becomes
L
[[WOXs =WHYs
=1
Since [, W® € R?*? and p > d, the equation has a solution only when WY g is in the
L @
range space of [[,_; W,

2. When m >k, from Theorem we know ¢(Xs) = WTYg +
(I, - WTW)Z' (I, - Y{Yg) for any Z/ € RP*™ is a sufficient condition for Wg = W.
Therefore we can instead solve

L
IRE (Wu))+ Zy = WHYs+ (I, - WHW) Z' (L, — Y1)
=1

Combine the variables Z’ and Z;, we have

Z
[T, WO (W) (WHw —1,)| [z’ (L~ Y§vs)| = WYs

Denote H = [HlL:1 w® (W(l))+ (WTW — Ip)] € RP*2P_If H is full rank (rank p), then
the solutions are

Z
[Z, (L _1Y§YS)} =H"W'Ys + (I, - H'H) Z,

where Zy, € R2PX™ jg any matrix. For any RHS, we can find a solution for Z;. Next, we
try to find a solution for Z’ and Zs such that the equation is consistent. Suppose the full
SVD of H = UXV', where U € RP*P, % € RPX?P|'V € R?*?P, Then I, - HTH =

Vdiag(0,...,0,1,...,1)VT = [0 ... 0 V,41 ... V,]VT. Then the equation be-
N N ——
comes ?
VA
0 ... 0 Vo o Vy[VTZy= |, (I —Y§Ys)| HIWIYs
b]
Denote B=V 'Z, = : € R?PX™_ Since Zs is solvable from any B, we can instead solve
by,
B. Then the equation is
bl .
bT
2p

Denote HfW1Yg = [gj where C1,Cy € RPX™ are the first and last p rows. Then the

equation can be partitioned into two parts

T
p+1
[Vp+1 - V2p]1:p =7 -C; ©)]

bT
L “2p |
o
[Vp+1 ce V2p]p+1:2p : =7 (Im — Y;Ys) — C2 (10)

b7

L “2p

where [Vpp1 ... V] denF)tes its ﬁrs't p rows and [forl s Vgl d'enotes' its
last p rows. For the first equation, there is always a solution for Z;. So we will mainly
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care about if there is a solution for the second equation. For the second equation, when
T
bpi1
is full rank, then there is always a solution for : and therefore
T
by,
solutions for B and Z,. The equations do not depend on b1, .. ., b, so they can be anything.

[VP-H V2p]p+1;2p

In conclusion, when [Vpi1 ... Vg o, is full rank, there is a solution for Z; and Xs. To
construct Xg, take any Z’ and ¢(Xg) = WTYg + (I, - WTW) Z' (I,, - Y{Yg). Then
construct H = [[T-, W (W) (WHW —1,)| € R and its SVD H = USV . If

[Vps1 - Vapl 1, is full rank, solve (10),
by 1
D =Vesr o Vol o [Z (I — YEYs) - Co
b,

Then we get Z; from (9)

T
p+1

Z1 = [Vp+1 NN Vgp} + Cl

1:p .
T
by,

Then we can construct X g = (W(l))Jr Z1.

D.3 Additional Trainable Layer

Here we consider whether adding an additional trainable layer to the distilled dataset model will
help dataset distillation. Suppose original model is f(z) = W¢(x) and distilled dataset model is
fs(x) = WgAgp(z) where A € RP*? is the additional trainable layer. In this case, the feature of
distilled dataset model is A¢(x) instead of ¢(x) and the analytical solution for W g becomes W g =

1
Y ((Agi)(XS))T Aop(Xg) + /\sIm) (Ap(Xs))". Here the objective becomes WgA = W.

Theorem D.1. When k < m < p and Ag > 0, suppose Y g is rank k, there exists a distilled dataset
(Xs,Ys) can guarantee W g A = W if below equation has a solution for some Z € R™*? such
that p(Xg) is full rank and some ¢ > 0:

c

c+1

d(Xg)t = YEW + (I, — YY) Z.

Proof. What we want now is WgA = W. That is
T -1 T
Yo ((A6(Xs)" AG(Xs) +AsLn)  (A9(Xs)) A=W
For a given Y g, since k < m, the solution of LHS is
(p(Xs)TATAG(Xs) + )\SIm)_l d(Xs)'ATA =YW+ (I, - Y{Ys)Z

for any Z € R™*?. Denote RHS as D = YW + (I, — YY) Z and multiply the inverse on
both sides,
$(Xs) ATA = (¢(Xs) ATAG(Xs) + AsLy) D

Arrange the terms,
$(Xs)"ATA (I, — (Xs5)D) = AsD

If there exists a D such that I, — ¢(Xg)D is rank p,

p(Xs)TATA = \sD (I, — ¢(Xs)D) "

https://doi.org/10.52202/079017-2816 88762



Here ¢(Xs)" € R™*P. Since m < p, there are solutions for AT A. Take the minimum norm one:
+ -
ATA =5 (6(Xs)") DI, - 6(Xs)D) "

Since A T A is symmetric and positive semidefinite, the RHS also needs to be positive semidefinite. A

sufficient condition is that D (I, — $(Xs)D) " = c(Xg)* for some constant ¢ > 0. Solve it we

get D = -5 ¢(Xs)™. Inthis case, I, — ¢(Xs)D =1, — $76(Xs)d(Xs)" is indeed full rank.

By the definition of D and D = _{7¢(Xs)*, the problem boils down to

C
c+1

P(Xs)T=YIW+ (I, - YIYs)Z

O

Compared with Eq. (7)), adding one additional trainable layer only relaxes the original equation with
constant scaling and does not help too much.
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E Applications

E.1 An Implication for KIP-type Algorithms

Theorem[6.1} Suppose ¢(X) is full rank and W is computed with \ = 0. Then

1. whenn < p, the $(Xs) that can guarantee W s = W in Theorem[5.1is sufficient for L(Xg) = 0.
2. (v)vhen n > p, the $(Xg) that can guarantee W s = W in Theorem[5.1|is necessary for L(Xg) =

Proof. The ¢(Xgs) in Theorem [5.1] guarantees Wg = W. Since A = 0 and ¢(X) is full rank,
W = Y¢(X)*. Therefore we have

Ws =Yo(X)*"
When n < p, multiply ¢(X) on both sides,
Wiso(X) =Y

which implies L(Xs) = [|[Ws¢(X) — Y||* = 0. This shows that ¢(X s) in Theorem[3. 1]is sufficient
for L(Xg) = 0.

When n > p, the L(Xg) = 0 means
Wso(X) =Y
Multiply ¢(X)™ on both sides, we have

W =Yo(X)"T =W.

This implies that Wg = W is a necessary condition for L(Xg) = 0. Since the ¢(X) in Theorem|5.1]
is sufficient and necessary for Wg = W. Therefore ¢(Xg) in Theorem is necessary for
L(Xgs) =0.

O

E.2 Privacy Preservation of Dataset Distillation

Proposition Suppose n > k and Y is rank k. Given \g, ¢, for a distilled dataset (Xg,Ys)
that can guarantee W g = W in Theorem we can reconstruct W from ¢(Xg). However, given
W, there are infinitely many solutions for ¢(X).

Proof. Since W = W g, we can reconstruct W by simply compute Wg.

Whenn > k, since W =Y¢ A(X)+ and Y is rank k, given W, there are infinitely many solutions
for ¢ (X) T,

¢,\(X)+ =YtW + (In — Y+Y) Z
for any Z € R™*P. Using a similar approach as the proof of Theorem 4.1} we can solve ¢(X) by

SVD and there are infinitely many solutions for ¢(X). Therefore it is impossible to recover ¢(X)
without additional information.

O

Theorem (6.2, Under the same setting of Theorem suppose that X = 0, all data are
bounded |x;||, < B, and the smallest singular value of the original datasets is bounded from
below 0., (X) > 09. Suppose Y is independent of X and unknown to the adversary. Let
(Y& denote its i-th row. Let €,6 € (0,1) and take the elements of Z ~ N(0,02) with

24/In(1.25/6)B|| [Y;]iYHz

oZe|[[tm—YIYs]

0 2> MaXic[m] , then each row of Xg is (e, 0)-differential private with

B

i

respect to X.
Proof. We prove that D = Y;W + (Im — Y;YS) Z is (e, 0)-differential private with respect to

X using the Gaussian mechanism [6]. Then it follows that X is (¢, §)-differential private since the
computation from D to X g is deterministic and independent with X.
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We first show the sensitivity of Y ' W is bounded and then use (I, — YY) Z as random Gaussian
to apply the Gaussian mechanism. Without loss of generality, suppose we have two datasets X =
[T1,22,...,2,], X' =[x}, X2, ..., T,] € R¥™ that differ only in the first point and their resulting
parameters are W and W', Since A = 0, W = YX™. For each row of Y;FW, we have

[[YE1W YW, = [[I¥ELy (x* - x7)],
< v 1oy, X - x|,
< vy, X - x|,
< D1 [, [ s = 24
< rvlv), 2
0

where the third inequality is due to Theorem 2.2 in Meng and Zheng [23]]. Therefore the sensitivity
of [Y£]; W is bounded. Suppose the elements of Z ~ N (0, 02), the elements of (I, — YY) Z

are also Gaussian. The i-th row of (I, — Y$Ys) Z is

(L, -YiYs] Z

i
. . . . 2
whose elements are independent Gaussian with the variance H [Im — Y;Ys] ; ||2 o2, Therefore, for

each row [Y{];W + [I,, — YY), Z, we can apply the Gaussian mechanism. Let € € (0, 1), by
Theorem 3.22 in [6], as long as

1 = Y3Xs] 0 2 VIL2578) ¥ E1Y ],
2B VY],

T T e[~ YY)

ill

YW + [L, — YgYSL Z is (e, ¢)-differential private. Take o to be the maximum one so that
all the rows are (¢, d)-differential private.
L 2VI(L25/0)B|[Y )Y,

N T oz [T~ Y i Y]

ill
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train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

* The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

It should be clear whether the error bar is the standard deviation or the standard error of the

mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should preferably
report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of
errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.
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8.

Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experi-
ments?

Answer: [Yes]
Justification: See Section [7]and Appendix

Guidelines:
» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud
provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual experimental
runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it
into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: There are no particular ethical concerns we are aware of.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a deviation
from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consideration due
to laws or regulations in their jurisdiction).

. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?

Answer: [Yes]

Justification: Our approach can be used to protect data privacy, which may have a positive societal
impact.

Guidelines:
» The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal impact or
why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses (e.g.,
disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied to par-
ticular applications, let alone deployments. However, if there is a direct path to any negative
applications, the authors should point it out. For example, it is legitimate to point out that
an improvement in the quality of generative models could be used to generate deepfakes for
disinformation. On the other hand, it is not needed to point out that a generic algorithm for
optimizing neural networks could enable people to train models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.
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» If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for
monitoring misuse, mechanisms to monitor how a system learns from feedback over time,
improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators,
or scraped datasets)?

Answer: [NA]
Justification: This paper will not release models and datasets that have a high risk for misuse.

Guidelines:
* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with necessary
safeguards to allow for controlled use of the model, for example by requiring that users adhere
to usage guidelines or restrictions to access the model or implementing safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.
12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?

Answer: [Yes]
Justification: We cited the datasets and packages used.

Guidelines:

» The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a URL.
* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of service of
that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the package should
be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

13. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their sub-
missions via structured templates. This includes details about training, license, limitations,
etc.

* The paper should discuss whether and how consent was obtained from people whose asset is
used.
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14.

» At submission time, remember to anonymize your assets (if applicable). You can either create
an anonymized URL or include an anonymized zip file.

Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well as
details about compensation (if any)?

Answer: [NA|
Justification: The paper does not involve crowdsourcing or research with human subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

* Including this information in the supplemental material is fine, but if the main contribution of
the paper involves human subjects, then as much detail as possible should be included in the
main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human Sub-

jects

Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution) were
obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly
state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

* For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.
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