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Abstract

Adversarial Training (AT) has been widely proved to be an effective method to
improve the adversarial robustness against adversarial examples for Deep Neural
Networks (DNNs). As a variant of AT, Adversarial Robustness Distillation (ARD)
has demonstrated its superior performance in improving the robustness of small
student models with the guidance of large teacher models. However, both AT
and ARD encounter the robust fairness problem: these models exhibit strong
robustness when facing part of classes (easy class), but weak robustness when
facing others (hard class). In this paper, we give an in-depth analysis of the potential
factors and argue that the smoothness degree of samples’ soft labels for different
classes (i.e., hard class or easy class) will affect the robust fairness of DNNs from
both empirical observation and theoretical analysis. Based on the above finding,
we propose an Anti-Bias Soft Label Distillation (ABSLD) method to mitigate the
adversarial robust fairness problem within the framework of Knowledge Distillation
(KD). Specifically, ABSLD adaptively reduces the student’s error risk gap between
different classes to achieve fairness by adjusting the class-wise smoothness degree
of samples’ soft labels during the training process, and the smoothness degree
of soft labels is controlled by assigning different temperatures in KD to different
classes. Extensive experiments demonstrate that ABSLD outperforms state-of-the-
art AT, ARD, and robust fairness methods in the comprehensive metric (Normalized
Standard Deviation) of robustness and fairness.

1 Introduction

Deep neural networks (DNNs) have achieved great success in various tasks, e.g., classification
[10], detection [6], and segmentation [24]. However, DNNs are vulnerable to adversarial attacks
[30; 35; 33; 34], where adding small perturbations to the input examples will lead to misclassification.
To enhance the robustness of DNNs, Adversarial Training (AT) [20; 41; 32; 14] is proposed and has
been proven to be an effective method to defend against adversarial examples. To further improve the
robustness, Adversarial Robustness Distillation (ARD) [7] as a variant of AT is proposed and aims to
transfer the robustness of the large models into the small models based on Knowledge Distillation
(KD), and further researches [44; 45; 43; 12; 42] show the excellent performance of ARD.

Although AT and ARD can remarkably improve the adversarial robustness, some researches [2; 31;
39; 19; 28; 38] demonstrate the robust fairness problem: these models perform strong robustness
on part of classes (easy class) but show high vulnerability on others (hard class). This phenomenon
will raise further attention to class-wise security. Specifically, an overall robust model appears to
be relatively safe for model users, however, the robust model with poor robust fairness will lead
to attackers targeting vulnerable classes of the model, which leads to significant security risks to
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Figure 1: The comparison between the sample-based fair adversarial training and our label-based
fair adversarial training. For the former ideology in (a), the trained model’s bias is avoided by
re-weighting the sample’s importance according to the different contribution to fairness. For the latter
ideology in (b), the trained model’s bias is avoided by re-temperating the smoothness degree of soft
labels for different classes.

potential applications. Different from simply improving the overall robustness, some methods are
proposed to address the robust fairness problem in AT and ARD [39; 36; 38; 19; 28] (i.e., improving
the worst-class robustness as much as possible without sacrificing too much overall robustness).
However, the robust fairness problem still exists and requires further to be explored.

For that, we give an in-depth analysis of the potential factors to influence robust fairness in the
optimization objective function. From the perspective of the training sample, the sample itself has
a certain degree of biased behavior, which is mainly reflected in the different learning difficulties
and various vulnerabilities to adversarial attacks. For this reason, previous works apply the re-
weighting ideology to achieve robust fairness for different types of classes in the optimization process
[39; 36; 38]. However, as another important factor in the optimization objective function, the role
of the labels applied to guide the model’s training is ignored. Labels can be divided into two
types, including one-hot labels and soft labels, where the soft labels are widely studied [29; 11]
and have been proven effective in improving the performance of DNNs. Inspired by this, we try
to explore robust fairness from the perspective of samples’ soft labels. Interestingly, we first find
that the smoothness degree of soft labels for different classes (i.e., hard and easy class) can affect
the robust fairness of DNNs from both empirical observation and theoretical analysis. Intuitively
speaking, sharper soft labels mean larger supervision intensity, while smoother soft labels mean
smaller supervision intensity, so it is helpful to improve robust fairness by assigning sharp soft labels
for hard classes and smooth soft labels for easy classes.

Based on the above finding, we further propose an Anti-Bias Soft Label Distillation (ABSLD) method
to mitigate the adversarial robust fairness problem within the framework of knowledge distillation.
ABSLD can adaptively adjust the smoothness degree of soft labels by re-temperating the teacher’s
soft labels for different classes, and each class has its own teacher’s temperatures based on the
student’s error risk. For instance, when the student performs more error risk in some classes, ABSLD
will compute sharp soft labels by assigning lower temperatures, and the student’s learning intensity
for these classes will relatively increase compared with other classes. After the optimization, the
student’s robust error risk gap between different classes will be reduced. The code can be found in
https://github.com/zhaoshiji123/ABSLD.

Our contribution can be summarized as follows:

• We explore the labels’ effects on the adversarial robust fairness of DNNs, which is different
from the existing sample perspective. To the best of our knowledge, we are the first one to
find that the smoothness degree of samples’ soft labels for different types of classes can
affect the robust fairness from both empirical observation and theoretical analysis.

• We propose the Anti-Bias Soft Label Distillation (ABSLD) to enhance the adversarial robust
fairness within the framework of knowledge distillation. Specifically, we re-temperate
the teacher’s soft labels to adjust the class-wise smoothness degree and further reduce the
student’s error risk gap between different classes in the training process.
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• We empirically verify the effectiveness of ABSLD. Extensive experiments on different
datasets and models demonstrate that our ABSLD can outperform state-of-the-art methods
against a variety of attacks in the comprehensive metric (Normalized Standard Deviation) of
robustness and fairness.

2 Related Work

2.1 Adversarial Training

To defend against the adversarial examples, Adversarial Training (AT) [20; 41; 32; 13; 25] is regarded
as an effective method to obtain robust models. AT can be formulated as a min-max optimization
problem as follows:

min
θ

E(x,y)∼D[max
δ∈Ω

L(f(x+ δ; θ), y)], (1)

where f(·; θ) represents a deep neural network with weight θ, D represents a data distribution with
clean example x and the ground truth label y. L represents the optimization loss function, e.g.
the cross-entropy loss. δ represents the adversarial perturbation, and Ω represents a bound, which
can be defined as Ω = {δ : ||δ|| ≤ ϵ} with the maximum perturbation scale ϵ. To further improve
the performance, some variant methods of AT appear including regularization [21; 41; 32], using
additional data [27; 22], and optimizing iteration process [15; 23]. Different from the above methods
for improving the overall robustness, in this paper, we focus on solving the robust fairness problem.

2.2 Adversarial Robustness Distillation

Knowledge Distillation [11] as a training method can effectively transfer the large model’s knowledge
into the small model’s knowledge, which has been widely applied in different areas. To enhance
the adversarial robustness of small DNNs, Goldblum et al. [7] first propose Adversarial Robustness
Distillation (ARD) by applying the clean prediction distribution of strong robust teacher models to
guide the adversarial training of student models. Zhu et al. [44] argue that the prediction of the teacher
model is not so reliable, and composite with unreliable teacher guidance and student introspection
during the training process. RSLAD [45] applies the teacher clean prediction distribution as the
guidance to train both clean examples and adversarial examples. MTARD [43; 42] applies clean
teacher and adversarial teacher to enhance both accuracy and robustness, respectively. AdaAD [12]
adaptively searches for optimal match points by directly applying the teacher adversarial prediction
distribution in the inner maximization. In this paper, we explore how to enhance robust fairness
within the framework of knowledge distillation.

2.3 Adversarial Robust Fairness

Some researchers address the robust fairness problem from different views [39; 18; 36; 38; 19; 37; 28]
and improve the fairness without losing too much robustness. The most intuitive idea is to give
different weights to the sample of different classes in the optimization process, and Xu et al. [39]
propose Fair Robust Learning (FRL), which adjusts the loss weight and the adversarial margin based
on the prediction accuracy of different classes. Ma et al. [19] finds the trade-off exists between
robustness and fairness and propose Fairly Adversarial Training to mitigate this phenomenon by
adding a regularization loss to control the variance of class-wise adversarial error risk. Sun et al.
[28] propose Balance Adversarial Training (BAT) to achieve both source-class fairness (different
difficulties in generating adversarial examples from each class) and target-class fairness (disparate
target class tendencies when generating adversarial examples). Wu et al. [37] argue that the maximum
entropy regularization for the model’s prediction distribution can help to achieve robust fairness. Wei
et al. [36] propose Class-wise Calibrated Fair Adversarial Training (CFA) to address fairness by
dynamically customizing adversarial configurations for different classes and modifying the weight
averaging operation. To enhance the ARD robust fairness, Yue et al. [38] propose Fair-ARD by
re-weighting different classes based on the vulnerable degree. Different from these sample-based
fairness methods, we try to solve this problem from the perspective of samples’ labels, by adjusting
the class-wise smoothness degree of samples’ soft labels in the optimization process.
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(a) Class-wise and average Robustness
of ResNet-18 on CIFAR-10.
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(b) Class-wise and average Robustness
of MobileNet-v2 on CIFAR-10.

Figure 2: The class-wise and average robustness of DNNs guided by soft labels with the same
smoothness degree (SSD) and different smoothness degree (DSD) for different classes, respectively.
For the soft labels with different smoothness degrees, we use sharper soft labels for hard classes
and use smoother soft labels for easy classes. We select two DNNs (ResNet-18 and MobileNet-v2)
trained by SAT [20] on CIFAR-10. The robust accuracy is evaluated based on PGD. The checkpoint
is selected based on the best checkpoint of the highest mean value of all-class average robustness and
the worst class robustness following [36]. We see that blue lines and red lines have similar average
robustness, but the worst robustness of blue lines are remarkably improved compared with red lines.

3 Robust Fairness via Smoothness Degree of Soft Labels

As an important part of the model optimization, label information used to guide the model plays an
important role. The label can be divided into one-hot labels and soft labels, where one-hot labels
only contain one class’s information and soft labels can be considered as an effective way to alleviate
over-fitting and improve the performance [29]. Previous methods usually ignore the class-wise
smoothness degree of soft labels, either applying the same smoothness degree [29], or uniformly
changing the smoothness degree of soft labels for all the classes without deliberate adjustments
[11]. Different from previous methods, we are curious about if we adjust the class-wise smoothness
degree of soft labels, will it influence the class-wise robust fairness of the trained model? Intuitively
speaking, different smoothness degree of soft labels denote different supervision intensity, which
means that it is possible to achieve fairness by adjusting the smoothness degree of soft labels. Here
we try to explore the relationship between class-wise smoothness degree of soft labels and the robust
fairness from both empirical observation and theoretical analysis.

3.1 Empirical Observation

Here, we focus on the impact of the class-wise smoothness degree of soft labels on adversarial
training. First, we train the model with soft labels that have the same smoothness degree for all types
of classes (smoothing coefficient2 is 0.2). Then we assign different smoothness degrees of soft labels
for hard classes and easy classes: specifically, we manually use sharper soft labels for hard classes
(smoothing coefficient is 0.05) and smoother soft labels for easy classes (smoothing coefficient is
0.35). We conduct the experiment based on the SAT [20] shown in Figure 2.

The result shows that the class-wise smoothness degree of soft labels has an impact on class-wise
robust fairness. When we apply the sharper smoothness degree of soft labels for hard classes and the
smoother smoothness degree of soft labels for easy classes, the class-wise robust fairness problem
can be alleviated. More specifically, for the two worst classes (class 4, 5), the robust accuracy of
ResNet-18 guided by the soft label distribution with the same smoothness degree is 24.2%, and 30.9%,
and the robust accuracy of ResNet-18 guided by the soft label distribution with different smoothness
degree is 30.2%, and 39.1%, which exists an obvious improvement for the class-wise robust fairness,
and the average robust accuracy has a slight improvement (52.12% vs 52.36%). Similar performance
can also be observed in MobileNet-v2. This phenomenon indicates that appropriately assigning
class-wise smoothness degrees of soft labels can be beneficial to achieve robust fairness.

2For N-class one-hot ground truth labels, after processing by the smoothing coefficient γ, the highest probability (correct class) decreases
from 1 to 1 − γ, and the other probability (wrong class) increases from 0 to γ

n−1 .
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3.2 Theoretical Analysis

Here we try to theoretically analyze the impact of the smoothness degree of soft labels on class-wise
fairness. Firstly, we want to analyze the model bias performance with the guidance of the soft label
distribution with the same smoothness degree. Then we give Corollary 1 by extending the prediction
distribution of binary linear classifier into the prediction distribution of DNNs based on the theoretical
analysis in [39] and [19].

Corollary 1. A dataset (x, y) ∼ D contains 2 classes (hard class c+ and easy class c−). Based on
the label distribution y, the soft label distribution with same smoothness degree Pλ1 = {pλ1c+ , p

λ1
c−}

can be generated and satisfies:

1 > pλ1c−(xc−) = pλ1c+(xc+) > 0.5, (2)

If a DNN model f is optimized by minimizing the average optimization error risk in D with the
guidance of the equal soft labels Pλ1 = {pλ1c+ , p

λ1
c−}, and obtain the relevant parameter θλ1, where

the optimization error risk is measured by Kullback–Leibler divergence loss (KL):

f(x; θλ1) = argmin
f

E(x,y)∼D(KL(f(x; θλ1);Pλ1)), (3)

then the error risks (the expectation that samples are wrongly predicted by the model) for classes c+
and c− have a relationship as follows:

R(f(xc+ ; θλ1)) > R(f(xc− ; θλ1)), (4)

where the error risks can be defined:

R(f(xc+ ; θλ1)) = E(x,y)∼D(CE(f(xc+ ; θλ1); yc+)),

R(f(xc− ; θλ1)) = E(x,y)∼D(CE(f(xc− ; θλ1); yc−)). (5)

Corollary 1 demonstrates that when optimizing hard and easy classes with equal intensity, the model
will inevitably be biased, and this bias mainly comes from the characteristics of the sample itself
and is not related to the optimization method. Based on the Corollary 1, we can further analyze the
performance differences with the guidance of the different types of soft labels. Here we provide
Theorem 1 about the relationship between class-wise smoothness degree of soft labels and fairness.

Theorem 1. Following the setting in Corollary 1, for a dataset D containing 2 classes (c+ and
c−), two soft label distribution (Pλ1 = {pλ1c+ , p

λ1
c−} and Pλ2 = {pλ2c+ , p

λ2
c−}) exist, where Pλ2 have a

correct prediction distribution but have a limited different class-wise smoothness degree of soft labels
(v1 > 0, v2 > 0):

1 > pλ2c+(xc+) =pλ1c+(xc+) + v1 > pλ1c+(xc+) =

pλ1c−(xc−) > pλ2c−(xc−) = pλ1c−(xc−)− v2 > 0.5, (6)

then the model is trained with the guidance of the soft label distribution Pλ1 and soft label distribution
Pλ2 and obtains the trained model parameters θλ1 and θλ2, respectively. If the model parameter θλ2
still satisfies: R(f(xc+ ; θλ2)) > R(f(xc− ; θλ2)), then the model’s error risk for hard classes c+ and
easy classes c− has a relationship as follows:

R(f(xc+ ; θλ1))−R(f(xc− ; θλ1)) > R(f(xc+ ; θλ2))−R(f(xc− ; θλ2)). (7)

The proof of Theorem 1 can be found in Appendix A.1. Based on Theorem 1, the class-wise
smoothness degree of soft labels theoretically has an impact on class-wise robust fairness. If the soft
label distribution with different smoothness degree Pλ2 is applied to guide the model training, where
the sharper smoothness degree of soft labels for hard classes and smoother smoothness degree of
soft labels for easy classes, the model will appear smaller error risk gap between easy and hard class
compared with the soft label distribution with same smoothness degree Pλ1, which demonstrates
better robust fairness. The Theorem 1 theoretically demonstrates that if we appropriately adjust the
class-wise smoothness degree of soft labels, the model can achieve class-wise robust fairness.

5

89129 https://doi.org/10.52202/079017-2828



4 Anti-Bias Soft Label Distillation

4.1 Overall Framework

Based on the above finding, adjusting the class-wise smoothness degree of soft labels can be regarded
as a potential way to obtain robust fairness. Then we consider introducing this ideology into
Knowledge Distillation (KD), which has been proven to be an effective method to improve the
robustness of small models [44; 45; 43; 12; 42]. Since the core idea of KD is to use the teacher’s soft
labels to guide the student’s optimization process, we can adjust the class-wise smoothness degree of
soft labels and obtain the student with both strong robustness and fairness.

Here we propose the Anti-Bias Soft Label Distillation (ABSLD) to obtain a student with adversarial
robust fairness. We formulate the optimization objective function for ABSLD as follows:

argmin
fs

E(x,y)∼D(Labsld(x̃, x; fs, f
′

t )), (8)

s.t. R(fs(x̃k)) =
1

C

C∑
i=1

R(fs(x̃i)), (9)

where xi and x̃i are the clean examples and adversarial examples of the i-th class, fs denotes the
student model, f

′

t denotes the teacher model with Anti-Bias Soft Labels, C is the total number of
classes, Labsld is the loss function, and R(fs(x̃k)) denotes the robust error risk of k-th class in
student model fs. Here we apply the Cross-Entropy loss CE(fs(x̃k), y) as the evaluation criterion
of the optimization error risk R(fs(x̃k)) following [19].

4.2 Re-temperate Teacher’s Soft Labels

In order to adjust the class-wise smoothness degree of soft labels in ARD, two options exist: one is
to use student feedback to update the teacher parameter in the process of optimizing students, but
this option requires retraining the teacher model, which may bring the pretty optimization difficulty
and computational overhead; the other is to directly adjust the smoothness degree of soft labels for
different classes. Inspired by [42], we apply the temperature as a means of directly controlling the
smoothness degree of soft labels during the training process. Here, we provide Theorem 2 about the
relationship between the teacher’s temperature and the student’s class-wise error risk gap.

Theorem 2. If the teacher f
′

t has a correct prediction distribution, the teacher temperature τ tc+
of hard class c+ is positively correlated with the error risk gap for student fs, and the teacher
temperature τ tc− of easy class c− is negatively correlated with the error risk gap for student fs.

The proof of Theorem 2 can be found in Appendix A.2. In particular, just as the conclusion in [38]:
The teacher has a more correct prediction distribution than the student even in the worst classes,
which means Theorem 2 holds in most cases. Theorem 2 demonstrates that the different temperatures
can influence the student robust fairness: when the student’s error risk of k-th class is larger than
the average error risk, we think that this type of class is relatively hard compared with others, then
the teacher temperature for k-th class will reduce and the smoothness degree of soft labels will be
sharper, and the optimization gap between teacher distribution and student distribution in k-th class
will corresponding increase, leading to stronger learning intensity for k-th class and final reduce the
student’s class-wise optimization error risk gap.

To achieve the above optimization goal, we adjust the teacher’s k-th class temperature τ̃ tk for the
guidance of adversarial examples as follows:

τ̃ tk = τ̃ tk − β ·
R(fs(x̃k))− 1

C

∑C
i=1 R(fs(x̃i))

max(|R(fs(x̃k))− 1
C

∑C
i=1 R(fs(x̃i))|)

, (10)

where β is the learning rate, max(.) denotes taking the maximum value, and |.| represents taking
the absolute value, max(|.|) is applied for regularization to maintain the stability of optimization.
The update operation in Eq.(10) can change the teacher temperature τ̃ tk based on the gap between the
student’s k-th class error risk R(fs(x̃k)) and the average error risk 1

C

∑C
i=1 R(fs(x̃i)).

Meanwhile, according to [39], both clean and adversarial examples exist the fairness problems and
can affect each other, so it is necessary to achieve fairness for both types of data. Since clean and
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Algorithm 1 Overview of ABSLD

Require: the train dataset D, Student fs with random initial weight θs and temperature τs, pretrained
robust teacher ft, the initial temperature τ ty and τ̃ ty for the teacher’s soft labels for clean examples
x and adversarial examples x̃, where y = {1, . . . , C}, the max training epochs max-epoch.

1: for 0 to max-epoch do
2: for k in y = {1, . . . , C} do
3: R(fs(x̃k)) = 0, R(fs(xk)) = 0. // Initialize the clean and robust error risk for each class.
4: end for
5: for Every minibatch(x, y) in D do
6: x̃ = argmax

||x̃−x||≤ϵ

KL(fs(x̃; τ
s), f

′
t (x; τ̃

t
y)). // Get adversarial examples with teacher’s soft labels.

7: θs = θs − η · ∇θLabsld(x̃, x; fs, f
′
t ). // Update student weight θs with teacher’s soft labels.

8: R(fs(x̃y)) = R(fs(x̃y)) + CE(fs(x̃), y). // Calculate robust error risk for each class.
9: R(fs(xy)) = R(fs(xy)) + CE(fs(x), y). // Calculate clean error risk for each class.

10: end for
11: for k in y = {1, . . . , C} do
12: Update τ̃ t

k and τ t
k based on Eq.(10). // Re-temperate teacher’s soft labels for x̃ and x.

13: end for
14: end for

adversarial examples of the same classes may have different error risks during the training process, it
is unreasonable to use the same set of class temperatures to adjust both clean and adversarial examples.
Here we simultaneously optimize the student’s clean error risk R(fs(xk)) and the student’s robust
error risk R(fs(x̃k)), in other words, we apply two different sets of teacher temperatures: τ tk and τ̃ tk,
for the adjustment of the teacher’s soft labels for clean and adversarial examples, respectively.

Then we extend the Anti-Bias Soft Label Distillation based on [45] and the loss function Labsld in
Eq.(8) can be formulated as follows:

Labsld(x̃, x; fs, f
′

t ) = α
1

C

C∑
i=1

KL(fs(x̃i; τ
s), f

′

t (xi; τ̃
t
i )) + (1− α)

1

C

C∑
i=1

KL(fs(xi; τ
s), f

′

t (xi; τ
t
i )),

(11)

where KL represents Kullback–Leibler divergence loss, α is the trade-off parameter between accuracy
and robustness, f(x; τ) denotes model f predicts the output probability of x with temperature τ in
the final softmax layer. It should be mentioned that the teacher is frozen and we apply the teacher’s
predicted soft labels f

′

t (xk; τ̃
t
k) for k-th class to generate adversarial examples x̃k as follows:

x̃k = argmax
||x̃k−xk||≤ϵ

KL(fs(x̃k; τ
s), f

′

t (xk; τ̃
t
k)), (12)

and the complete process can be viewed in Algorithm 1.

5 Experiments

5.1 Experimental Settings

We conduct our experiments on three datasets: CIFAR-10 [16], CIFAR-100, and Tiny-ImageNet [17].
The results about CIFAR-100 and Tiny-ImageNet are in Appendix A.4 and A.5, respectively.

Baselines. We consider the standard training method and eight state-of-the-art methods as comparison
methods: AT methods: SAT [20], and TRADES [41]; ARD methods: RSLAD [45], and AdaAD
[12]; Robust Fairness methods: FRL [39], BAT [28], CFA [36], and Fair-ARD [38].

Student and Teacher Networks. For the student model, here we consider two networks for CIFAR-
10 and CIFAR-100 including ResNet-18 [10] and MobileNet-v2 [26]. For the teacher model, we
follow the setting in [45], and we select WiderResNet-34-10 [40] trained by [41] for CIFAR-10 and
WiderResNet-70-16 trained by [9] for CIFAR-100. The teacher’s performance is in Appendix A.7.

Training Setting. For ABSLD, we train the model using the Stochastic Gradient Descent (SGD)
optimizer with an initial learning rate of 0.1, a momentum of 0.9, and a weight decay of 2e-4. The

7
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Table 1: Result in average robustness(%) (Avg.↑), worst robustness(%) (Worst↑), and normalized
standard deviation (NSD↓) on CIFAR-10 of ResNet-18.

Method Clean FGSM PGD CW∞ AA
Avg. Worst NSD Avg. Worst NSD Avg. Worst NSD Avg. Worst NSD Avg. Worst NSD

Natural 94.57 86.30 0.035 18.60 9.00 0.436 0 0 - 0 0 - 0 0 -
SAT[20] 84.03 63.90 0.118 56.71 26.70 0.283 49.34 21.00 0.332 48.99 19.90 0.352 46.44 16.80 0.385

TRADES[41] 81.45 67.60 0.113 56.65 36.60 0.267 51.78 30.40 0.301 49.15 27.10 0.341 48.17 25.90 0.350
RSLAD[45] 82.94 66.30 0.122 59.51 34.70 0.244 54.00 28.50 0.276 52.51 27.00 0.296 51.25 25.50 0.304
AdaAD[12] 84.73 68.10 0.114 59.70 34.80 0.246 53.82 29.30 0.285 52.30 26.00 0.312 50.91 24.70 0.322

FRL[39] 82.29 64.60 0.114 55.03 37.10 0.230 49.05 31.70 0.248 47.88 30.40 0.266 46.54 28.10 0.280
BAT[28] 86.72 72.30 0.092 60.97 33.80 0.255 49.60 22.70 0.325 47.49 19.50 0.354 48.18 20.70 0.341
CFA[36] 78.64 63.60 0.123 57.95 36.80 0.231 54.42 33.30 0.258 50.91 27.50 0.288 50.37 26.70 0.296

Fair-ARD[38] 83.81 69.40 0.112 58.41 38.50 0.251 50.91 29.90 0.296 49.96 28.30 0.312 47.97 25.10 0.338
ABSLD 83.04 68.10 0.103 59.83 40.50 0.202 54.50 36.50 0.216 51.77 32.80 0.249 50.25 31.00 0.256

Table 2: Result in average robustness(%) (Avg.↑), worst robustness(%) (Worst↑), and normalized
standard deviation (NSD↓) on CIFAR-10 of MobileNet-v2.

Method Clean FGSM PGD CW∞ AA
Avg. Worst NSD Avg. Worst NSD Avg. Worst NSD Avg. Worst NSD Avg. Worst NSD

Natural 93.35 85.20 0.036 12.21 0.90 0.750 0 0 - 0 0 - 0 0 -
SAT[20] 82.30 65.80 0.131 56.19 34.60 0.279 48.52 24.90 0.334 47.22 23.80 0.361 44.38 18.50 0.410

TRADES[41] 79.37 59.00 0.131 54.94 31.60 0.297 50.03 27.20 0.330 47.02 23.20 0.367 46.25 22.10 0.379
RSLAD[45] 82.96 66.30 0.130 59.84 34.30 0.256 53.88 28.20 0.288 52.28 25.70 0.316 50.67 23.90 0.333
AdaAD[12] 83.72 66.90 0.123 57.63 33.70 0.262 51.89 26.90 0.300 50.34 24.70 0.317 48.81 22.50 0.334

FRL[39] 81.02 70.50 0.089 53.84 40.50 0.207 47.71 35.00 0.241 44.96 30.90 0.276 43.53 28.40 0.292
BAT[28] 83.01 70.30 0.102 53.01 32.10 0.284 44.08 25.00 0.344 41.85 21.60 0.397 42.65 23.40 0.369
CFA[36] 80.34 64.60 0.112 56.45 32.20 0.260 52.34 28.10 0.292 48.62 23.20 0.320 50.68 23.90 0.331

Fair-ARD[38] 82.44 69.40 0.100 56.29 38.60 0.226 50.91 29.90 0.263 48.18 30.80 0.286 46.62 27.60 0.302
ABSLD 82.54 69.50 0.102 58.55 41.40 0.207 52.99 35.70 0.224 50.39 31.90 0.254 48.71 30.30 0.259

learning rate β of temperature is initially set as 0.1. For CIFAR-10 and CIFAR-100, we set the training
epochs to 300. The learning rate is divided by 10 at the 215-th, 260-th, and 285-th epochs; We set the
batch size to 128 for both CIFAR-10 and CIFAR-100 following [45]. For the inner maximization, we
use a 10-step PGD with a random start size of 0.001 and a step size of 2/255, and the perturbation is
bounded to the L∞ norm ϵ = 8/255. The more training setting can be found in Appendix A.3.

Metrics. We apply two metrics to evaluate the robust fairness: Normalized Standard Deviation
(NSD3) [38] and the worst-class robustness [36]. NSD can reflect robust fairness while also
considering the average robustness. The smaller standard deviation means better fairness, and the
larger average means better robustness, so the smaller NSD means better comprehensive performance
in terms of fairness and robustness. The worst-class robustness is easy to understand, and a larger
value means better fairness. For CIFAR-10, we directly report the worst class robust accuracy; For
CIFAR-100 and Tiny-ImageNet, due to the poor performance of the worst class robustness and only
100 images (CIFAR-100) or 50 images (Tiny-ImageNet) for each class in the test set, we follow the
operation in CFA [36] and report the worst 10% class robust accuracy. Besides, we also report the
average robustness as a reference. The attack setting for evaluation can be found in Appendix A.3.

5.2 Robust Fairness Performance

The performances of ResNet-18 and MobileNet-v2 trained by our ABSLD and other baseline methods
under the various attacks are shown in Table 1, Table 2 for CIFAR-10. The results demonstrate
that ABSLD achieves the state-of-the-art worst-class robustness on CIFAR-10. For ResNet-18 on
CIFAR-10, ABSLD improves the worst class robustness by 2.0%, 3.2%, 2.4%, and 2.9% compared
with the best baseline method against the FGSM, PGD, CW∞, and AA. Moreover, ABSLD shows
relevant superiority on MobileNet-v2 compared with other methods.

Moreover, ABSLD can also show the best comprehensive performance of fairness and robustness
(NSD) on CIFAR-10. For ResNet-18 on CIFAR-10, ABSLD reduces the NSD by 0.028, 0.032, 0.017,
and 0.024 compared with the best baseline method against the FGSM, PGD, CW∞, and AA. The
result indicates that although the trade-off between robustness and fairness still exists as [19] say, we
obtain the highest robust fairness while sacrificing the least average robustness.

Meanwhile, we visualize the class-wise robustness in Figure 3, and the result shows that the robustness
of harder classes (class 3, 4, 5, 6) have different levels of improvement, which demonstrates that our
method is beneficial to the overall robust fairness but not only to the worst class. Moreover, combined

3NSD is a metric applied in [38] to measure the robust fairness. NSD = SD/Avg., where SD is the Standard Deviation of class-wise
robustness and Avg. is the average robustness.
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(a) Class-wise Robustness of
ResNet-18 on CIFAR-10.
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(b) Class-wise Robustness of
MobileNet-v2 on CIFAR-10.

Figure 3: The class-wise robustness (PGD) of models guided by RSLAD and ABSLD on CIFAR-10.
We can see that the harder classes’ robustness (class 3, 4, 5, 6) of ABSLD (blue lines) have different
levels of improvement compared with RSLAD (red lines).

with Figure 2, we can find that the trend of class-wise bias is similar in different training strategies,
indicating that the bias may be sourced from the dataset itself, which further confirms Corollary 1.

In particular, we compare ABSLD with Fair-ARD [38], which is an adaptive re-weighting method
on ARD. From the results, ABSLD has better robust fairness performance, which means that our
proposed re-temperating method has superiority compared to the re-weighting method.
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of class-wise adversarial opti-
mization error risk.

5.3 Ablation Study

To certify the effectiveness of our method, we perform ablation experiments on every component
of ABSLD. First, based on the baseline method [45], we re-temperate the teacher’s soft labels for
the adversarial examples but do not re-temperate the teacher’s soft labels for the clean examples
(Baseline+ABSLDadv); then we re-temperate the teacher’s soft labels for both the adversarial
examples and clean examples (ABSLD). The results are shown in Figure 4. The results demonstrate
the effectiveness of our ABSLD, and pursuing fairness for clean examples can also help robust
fairness for adversarial examples as claimed in [39].

Meanwhile, to verify the optimization effect of our method, we visualize the standard deviation of
class-wise optimization error risk in the training process (the optimization error risk is normalized by
dividing the mean), which can reflect the optimization gap between different classes. We visualize
the standard deviation of both the clean and adversarial optimization error risk, and the results are
shown in Figure 5 and Figure 6. We can notice that the standard deviation of the baseline increases as
the training epoch increases, which demonstrates that the baseline pays more attention to reducing
the error risk of easy class, but the error risk of hard class is ignored, eventually leading to robust
unfairness. On the contrary, our ABSLD can remarkably reduce the standard deviation of student’s
class-wise optimization error risk, which demonstrates the effectiveness of our method.
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6 Conclusion

In this paper, we comprehensively explored the potential factors that influence robust fairness in the
model optimization process. We first found that the smoothness degrees of soft labels for different
classes can be applied to eliminate the robust fairness based on empirical observation and theoretical
analysis. Then we proposed Anti-Bias Soft Label Distillation (ABSLD) to address the robust fairness
problem by adjusting the class-wise smoothness degree of soft labels. We adjusted the teacher’s soft
labels by assigning different temperatures to different classes based on the performance of student’s
class-wise error risk. A series of experiments proved that ABSLD was superior to state-of-the-art
methods in the comprehensive metric (NSD) of robustness and fairness.
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A Appendix

A.1 The proof of Theorems 1 in Sec. 3

For the initial state of the DNN model f with random distribution I , the DNN model has no preference
for any examples. So for the dataset containing hard class c+ and easy class c−, we have a relationship
between class-wise error risk as follows:

R(f(xc+ ; θI)) = R(f(xc− ; θI)), (13)

in other words, the model has the same error risk for easy class c− and hard class c+, so we set the
model’s prediction distribution f(x; θI) = {pIc−(x), p

I
c+(x)} and has the relationship as follows:

E(pI(x)) = E(pIc+(xc+)) = E(pIc−(xc−)) = 0.5. (14)

Then we analyze the process of knowledge distillation, we assume that DNN model f is optimized
with the guidance of the soft label distribution with the same smoothness degree Pλ1, which satisfies:

pλ1c−(xc−) = pλ1c+(xc+) > 0.5 > pλ1c−(xc+) = pλ1c+(xc−). (15)

And the updated parameter θλ1 guided by the soft label distribution Pλ1 can formulated as follows:

θλ1 = θI − η · ∂KL(f(x; θI), Pλ1)

∂θ
, (16)

here we divide the partial derivative of the optimization function KL with respect to the student
parameter θ into two parts:

∂KL(f(x; θI), Pλ1)

∂θ
=

C=2∑
c=1

∂zc(x)

∂θ
· ∂KL(f(x; θI), Pλ1)

∂zc(x)
, (17)

where zc(x) denotes the c-th dimension output logits of the model before the softmax layer (denote
the prediction logits of c-th class).

The first part ∂zc(x)
∂θ can be regarded as the impact of the class itself on model weight optimization, in

a practical sense, this part reflects the inner relationship between DNN and sample, more specifically,
it can reflect the difficulty of the sample itself for the model and not relate to the optimization object.

The second part ∂KL(f(x;θI),Pλ1)
∂zc(x)

can be regarded as the impact of the optimization object on the
different classes. Although adjusting the optimization goal is not enough to change the bias derived
from the sample itself, it can be adjusted to make the model perform as fair as possible.

Here we further extend the partial derivative of optimization object KL(f(x; θI), Pλ1) toward the
prediction logit zc(x) of class c and obtain:

∂KL(f(x; θI), Pλ1)

∂zc(x)

=

C=2∑
i=1

∂pi(x)

∂zc(x)
· ∂KL(f(x; θI), Pλ1)

∂pi(x)

=

C=2∑
i=1

pλ1i (x)pIc(x)− pλ1c (x)

=pIc(x)− pλ1c (x), (18)

so we can easily obtain:

E(
∂KL(f(xc−; θI), Pλ1)

∂zc−(xc−)
) = E(

∂KL(f(xc+; θI), Pλ1)

∂zc+(xc+)
)

= E(pIc(xc)− pλ1c−(xc−)) = E(pIc(xc)− pλ1c+(xc+)), (19)
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E(
∂KL(f(xc+; θI), Pλ1)

∂zc−(xc+)
) = E(

∂KL(f(xc−; θI), Pλ1)

∂zc+(xc−)
)

= E(pIc(xc)− pλ1c−(xc+)) = E(pIc(xc)− pλ1c+(xc−)). (20)

Based on the Corollary 3.1, the DNN model with parameter θλ1 has different the error risk of the
hard class c+ and the easy class c−, so we have:

R(f(xc+ ; θλ1)) > R(f(xc− ; θλ1)), (21)

from the optimization perspective, the optimization gradient toward the model parameter for different
classes directly influences the class error risk, more specifically, the easy class error risk is less than
the hard class error risk, so the gradient expectation of the easy class is higher than the gradient
expectation of hard class, and the proof is as follows:

In the initial state, we assume that the model is a uniform distribution, and in this case, the error
optimization risk is the same for the easy and hard classes:

E(KL(f(xc−; θI), Pλ1)) = E(KL(f(xc+; θI), Pλ1)), (22)

then we will simplify the optimization of the model into a one-step gradient iteration process, which
means we only consider the initial state before optimization and the last state after optimization. The
model parameter is updated from initial θI to optimized θopt, since easy classes perform better than
hard classes after the optimization process, the easy class error risk is smaller than hard class error
risk:

E(KL(f(xc−; θopt), Pλ1)) < E(KL(f(xc+; θopt), Pλ1))

< E(KL(f(xc−; θI), Pλ1)) = E(KL(f(xc+; θI), Pλ1)), (23)

based on the above result, we can have the result as follows:

E(|KL(f(xc−; θopt), Pλ1)−KL(f(xc−; θI), Pλ1)|)
> E(|KL(f(xc+; θopt), Pλ1)−KL(f(xc+; θI), Pλ1)|) (24)

at this time, we assume that model’s parameter θ is differentiable and continuous, then we
can approximate the gradient expectation of the partial derivative E(∂KL(f(xc−;θI),Pλ1)

∂θ ) and
E(∂KL(f(xc+;θI),Pλ1)

∂θ ) as follows:

E(
∂KL(f(xc−; θI), Pλ1)

∂θ
)

≈ E(
KL(f(xc−; θopt), Pλ1)−KL(f(xc−; θI), Pλ1)

θopt − θI
), (25)

E(
∂KL(f(xc+; θI), Pλ1)

∂θ
)

≈ E(
KL(f(xc+; θopt), Pλ1)−KL(f(xc+; θI), Pλ1)

θopt − θI
), (26)

combined with the relationship between easy class error risk and hard class error risk, we can obtain
the result that the gradient absolute value expectation of partial derivative about the easy class’s
optimization goal toward the model parameter (E(|∂KL(f(xc−;θI),Pλ1)

∂θ |)) is higher than the gradient
absolute value expectation of partial derivative about the hard class’s optimization goal toward the
model parameter (E(|∂KL(f(xc+;θI),Pλ1)

∂θ |)) as follows:

E(|∂KL(f(xc−; θI), Pλ1)

∂θ
|) > E(|∂KL(f(xc+; θI), Pλ1)

∂θ
|), (27)

so we can obtain the assumption: If the model is a uniform distribution before the optimization
process and the easy class error risk is less than the hard class error risk after optimization process,
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then the gradient expectation absolute value of partial derivative about the easy class’s optimization
goal toward the model parameter is higher than the gradient expectation absolute value of partial
derivative about the hard class’s optimization goal toward the model parameter.

Then we can decouple the gradient into two parts based on the class types: ∂KL(f(xc−;θI),Pλ1)
∂θ and

∂KL(f(xc+;θI),Pλ1)
∂θ .

Here we take the hard class as an example, the gradient can be divided into two parts:
∂zc+(xc+)

∂θ
∂KL(fs(xc+;θI),Pλ1)

∂zc+
and ∂zc−(xc+)

∂θ
∂KL(fs(xc+;θI),Pλ1)

∂zc−
, where the first part represents the

ability to make hard class’s samples more like hard class, and the second part represents the ability to
make hard class’s samples less like easy class. The final prediction performance of hard class c+ is
influenced by both parts of the optimization gradient due to the softmax operation.

Based on the above analysis, the relationship between the sum value of the above two parts of gradient
for hard class (∇+

f∼λ1) and easy class (∇−
f∼λ1) can be assumed under a more stringent condition as

follows:

∇−
f∼λ1 = E(|∂zc−(xc−)

∂θ

∂KL(fs(xc−; θI), Pλ1)

∂zc−
|+ |∂zc+(xc−)

∂θ

∂KL(fs(xc−; θI), Pλ1)

∂zc+
|) >

∇+
f∼λ1 = E(|∂zc−(xc+)

∂θ

∂KL(fs(xc+; θI), Pλ1)

∂zc−
|+ |∂zc+(xc+)

∂θ

∂KL(fs(xc+; θI), Pλ1)

∂zc+
|).

(28)

Combined with Eq.(19), Eq.(20) and Eq.(28), we have a relationship about the derivative of zc toward
model parameter θ, which can reflect the bias of sample for the model:

E(|
∂zc−(xc−)

∂θ
|+ |∂zc+(xc−)

∂θ
|) > E(|

∂zc−(xc+)

∂θ
|+ |

∂zc+(xc+)

∂θ
|). (29)

After the analysis of the model characteristic with the guidance of soft label distribution Pλ1, we
try to compare the model characteristic difference between soft label distribution Pλ1 and soft label
distribution Pλ2. Initially, we can obtain the following relationship for the probabilities of different
distributions:

pλ2c+(xc+) = pλ1c+(xc+) + v1 > pλ1c+(xc+) =

pλ1c−(xc−) > pλ2c−(xc−) = pλ1c−(xc−)− v2 > 0.5, (30)

then we further analyze the model class-wise error risk gap guided by label distribution. The total
optimization gradient for different classes can reflect the bias degree, so we get the class optimization
gradient gap guided by label distribution Pλ1 and label distribution Pλ2, respectively:

Bf∼λ1 = ∇−
f∼λ1 −∇+

f∼λ1

=E(|∂zc−(xc−)

∂θ

∂KL(fs(xc−; θI), Pλ1)

∂zc−
|+ |∂zc+(xc−)

∂θ

∂KL(fs(xc−; θI), Pλ1)

∂zc+
|−

|∂zc−(xc+)

∂θ

∂KL(fs(xc+; θI), Pλ1)

∂zc−
| − |∂zc+(xc+)

∂θ

∂KL(fs(xc+; θI), Pλ1)

∂zc+
|)

=E(|∂zc−(xc−)

∂θ
|(pλ1c−(xc−)− pIc) + |∂zc+(xc−)

∂θ
|(pIc − pλ1c+(xc−))−

|∂zc−(xc+)

∂θ
|(pIc − pλ1c−(xc+))− |∂zc+(xc+)

∂θ
|(pλ1c+(xc+)− pIc)), (31)

Bf∼λ2 = ∇−
f∼λ2 −∇+

f∼λ2

=E(|∂zc−(xc−)

∂θ
|(pλ2c−(xc−)− pIc) + |∂zc+(xc−)

∂θ
|(pIc − pλ2c+(xc−))−

|∂zc−(xc+)

∂θ
|(pIc − pλ2c−(xc+))− |∂zc+(xc+)

∂θ
|(pλ2c+(xc+)− pIc)), (32)
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if the model parameter θλ2 still satisfies: R(f(xc+ ; θλ2)) > R(f(xc− ; θλ2)), then we can obtain
Bf∼λ2 > 0, and the relationship between Bf∼λ1 and Bf∼λ2 is as follows:

Bf∼λ1 − Bf∼λ2

=E(|∂zc−(xc−)

∂θ
|(pλ1c−(xc−)− pλ2c−(xc−)) + |∂zc+(xc−)

∂θ
|(pλ2c+(xc−)− pλ1c+(xc−))

− |∂zc−(xc+)

∂θ
|(−pλ2c−(xc+) + pλ1c−(xc+))− |∂zc+(xc+)

∂θ
|(pλ2c+(xc+)− pλ1c+(xc+)))

=E(|∂zc−(xc−)

∂θ
|v2 + |∂zc+(xc−)

∂θ
|v2 + |∂zc−(xc+)

∂θ
|v1 + |∂zc+(xc+)

∂θ
|v1) > 0, (33)

so we can have the following conclusion:

Bf∼λ1 > Bf∼λ2. (34)

Based on the above results, the model total gradient expectation gap of different classes trained by
soft label distribution Pλ1 is larger than gradient expectation gap between different classes trained by
soft label distribution Pλ2, so the bias degree of model trained by the soft label distribution Pλ1 is
greater than by the bias degree of model trained by the guidance of soft label distribution Pλ2, we
can get the conclusion as follows:

R(f(xc+ ; θλ1))−R(f(xc− ; θλ1)) > R(f(xc+ ; θλ2))−R(f(xc− ; θλ2)). (35)

Then the Theorem 1 is proved.

A.2 The proof of Theorems 2 in Sec. 4

Based on the correct prediction distribution assumption about the teacher model, we can obtain the
relationship of probability toward k-th class as follows:

E(ptk(xk; τ
t
k)) >E(ptc̸=k(xk; τ

t
k)). (36)

Then we extend the temperature into the mathematical formula of the prediction probability, we can
obtain:

ptk(xk; τ
t
k) =

exp(zk(xk)/τ
t
k)∑C

j=1 exp(zj(xk)/τ tk)
, (37)

where zk(x) denotes the k-th dimension output logits of model before softmax layer. Since∑C
j=1 exp(zj(xk)/τ

t
k) is applied as a normalization application, here we mainly focus the change

exp(z(xk)/τ
t
k) with the temperature τ tk. exp(·) is a monotonic increasing function, so based on the

Eq.(36), we can easily obtain:

E(zk(xk)) > E(zc ̸=k(xk)), (38)

here we mainly focus the change exp(z(xk)/τ
t
k) with the temperature τ tk. We assume the τ tk increase

into τ tk+∆τ
k(∆

τ
k > 0), then we have the partial derivative of exp(z(xk)/τ

t
k)−exp(z(xk)/(τ

t
k+∆τ

k))
with respect to z(xk) as follows:

∂(exp(z(xk)/τ
t
k)− exp(z(xk)/(τ

t
k +∆τ

k)))

∂(z(xk))
,

=
(exp(z(xk)/τ

t
k)

τ tk
− (exp(z(xk)/(τ

t
k +∆τ

k)))

τ tk +∆τ
k

> 0, (39)

so we have the conclusion as follows:

exp(zk(xk)/τ
t
k)− exp(zk(xk)/(τ

t
k +∆τ

k)) >

exp(zc̸=k(xk)/τ
t
k)− exp(zc ̸=k(xk)/(τ

t
k +∆τ

k)), (40)

then we can have relationship between the prediction distribution of different temperature as follows:

E(ptk(xk; τ
t
k))− E(ptc̸=k(xk; τ

t
k)) >

E(ptk(xk; τ
t
k +∆τ

k))− E(ptc ̸=k(xk; τ
t
k +∆τ

k)). (41)
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Based on the above analysis, we assume that the teacher’s temperature of the easy class and hard
class increase into τ tc− +∆τ

c− and τ tc+ +∆τ
c+ and obtain teacher model with soft label prediction f

′

t ,
then following the Derivation in Theorem 1, we can obtain:

Bfs∼ft − Bfs∼f
′
t

=E(|∂zc−(xc−)

∂θ
|(ptc−(xc−; τ

t
c−))− ptc−(xc−; τ

t
c− +∆τ

c−))

+ |∂zc+(xc−)

∂θ
|(ptc+(xc−; τ

t
c− +∆τ

c−)− ptc+(xc−; τ
t
c−))

− |∂zc−(xc+)

∂θ
|(ptc−(xc+; τ

t
c−)− ptc−(xc+; τ

t
c+ +∆τ

c+))

− |∂zc+(xc+)

∂θ
|(ptc+(xc+; τ

t
c+ +∆τ

c+)− ptc+(xc+; τ
t
c−))). (42)

Then we can further analyze the relationship between the temperature and the error risk gap. Here
we assume that the teacher’s temperature of easy class τkc− is unchanged (∆τ

c− = 0), the teacher’s
temperature of hard class τkc+ increases into τkc+ +∆τ

c+ (∆τ
c+ > 0), we can obtain:

Bfs∼ft < Bfs∼f
′
t
, (43)

following the analysis in Appendix A.1, DNN model fs is optimized with the guidance of the
teacher’s soft label distribution ft and f

′

t , and can obtain the model parameter θt and θ
′

t, respectively.
We can get the conclusion as follows:

R(fs(xc+ ; θt))−R(fs(xc− ; θt) < R(f(xc+ ; θ
′

t))−R(f(xc− ; θ
′

t)). (44)

Then we assume that the teacher’s temperature of hard class τkc+ is unchanged (∆τ
c+ = 0), the

teacher’s temperature of easy class τkc− increases into τkc− +∆τ
c− (∆τ

c− > 0), we can obtain:

Bfs∼ft > Bfs∼f
′
t
, (45)

and following the analysis in Appendix A.1, we can get the conclusion as follows:

R(fs(xc+ ; θt))−R(fs(xc− ; θt) > R(f(xc+ ; θ
′

t)−R(f(xc− ; θ
′

t)). (46)

Based on the above results, we can obtain the teacher temperature τ tc+ of hard class c+ is positively
correlated with the error risk gap for student fs, and the teacher temperature τ tc− of easy class c− is
negatively correlated with the error risk gap for student fs.

Then the Theorem 2 is proved.

A.3 Additional Experimental Setting

As discussed in [36], the worst class robust accuracy changes drastically when the average robustness
convergence, so we follow [36] and select the best checkpoint of the highest mean value of all-class
average robustness and the worst class robustness (where the worst class for CIFAR-10 and the worst
10% class for CIFAR-100) in all baselines and our method for a fair comparison.

For ABSLD, to maintain stability when adjusting the teacher prediction distribution, we hold the
student temperature τs constant, and the student’s optimization error risk for each class can be
compared under the same standard. The teacher temperature of τ tk and τ̃ tk are initially set as 1 for
all the classes. The student temperature τs is set to constant 1 without additional adjustment. With
additional instruction, the maximum and minimum values of temperature are 5 and 0.5, respectively;
For ResNet-18 on CIFAR-100, the maximum and minimum values of temperature are 3 and 0.8,
respectively. All the experiments are conducted in a single GeForce RTX 3090, and our ABSLD
takes approximately one GPU day for training a model.

For the baselines, we strictly follow original setting if without additional instruction. For FRL [39],
we use the Reweight+Remargin under the threshold of 0.05. For CFA [36], we select the best version
(TRADES+CFA) as reported in the original article. For the training of CFA on CIFAR-100, we set
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Table 3: Result in average robustness(%) (Avg.↑), worst-10% robustness(%) (Worst↑), and normalized
standard deviation (NSD↓) on CIFAR-100 of ResNet-18.

Method Clean FGSM PGD CW∞ AA
Avg. Worst NSD Avg. Worst NSD Avg. Worst NSD Avg. Worst NSD Avg. Worst NSD

Natural 75.17 53.80 0.155 7.95 0 1.106 0 0 - 0 0 - 0 0 -
SAT[20] 57.18 29.30 0.292 28.95 5.60 0.607 24.56 3.20 0.682 23.78 3.10 0.697 21.78 2.30 0.747

TRADES[41] 55.33 28.40 0.303 30.50 7.30 0.559 27.71 5.60 0.655 24.33 3.50 0.736 23.55 3.20 0.756
RSLAD[45] 57.88 29.40 0.302 34.50 9.20 0.550 31.19 7.40 0.598 28.13 4.70 0.669 26.46 3.70 0.703
AdaAD[12] 58.17 29.20 0.301 34.29 8.50 0.566 30.49 6.60 0.623 28.31 5.00 0.683 26.60 4.20 0.721

FRL[39] 55.49 30.30 0.282 28.00 7.20 0.559 24.04 5.00 0.642 22.93 3.70 0.673 21.10 2.80 0.721
BAT[28] 62.71 34.40 0.267 33.41 7.90 0.555 28.39 5.30 0.626 23.91 3.00 0.716 22.56 2.50 0.755
CFA[36] 59.29 33.80 0.245 33.88 10.30 0.520 31.15 8.40 0.563 26.85 5.20 0.655 25.83 4.90 0.679

Fair-ARD[38] 57.19 29.40 0.303 34.06 8.40 0.558 30.57 7.00 0.598 27.96 4.50 0.666 26.15 3.90 0.713
ABSLD 56.76 31.90 0.258 34.93 12.40 0.470 32.44 10.50 0.500 26.99 6.40 0.578 25.39 5.60 0.601

Table 4: Result in average robustness(%) (Avg.↑), worst-10% robustness(%) (Worst↑), and normalized
standard deviation (NSD↓) on CIFAR-100 of MobileNet-v2.

Method Clean FGSM PGD CW∞ AA
Avg. Worst NSD Avg. Worst NSD Avg. Worst NSD Avg. Worst NSD Avg. Worst NSD

Natural 74.86 53.90 0.150 5.95 0 1.423 0 0 - 0 0 - 0 0 -
SAT[20] 56.70 22.90 0.338 32.10 7.00 0.580 28.61 5.30 0.650 26.55 3.50 0.706 24.36 2.40 0.764

TRADES[41] 57.10 30.00 0.284 31.70 8.20 0.584 29.43 6.20 0.618 25.25 3.70 0.716 24.39 3.20 0.739
RSLAD[45] 58.71 27.10 0.311 34.30 8.30 0.565 30.58 6.30 0.621 28.11 4.30 0.683 26.32 3.30 0.724
AdaAD[12] 54.59 24.50 0.343 31.40 6.10 0.616 27.96 4.80 0.677 25.72 2.10 0.752 23.80 1.60 0.807

FRL[39] 56.30 26.50 0.311 31.03 8.00 0.548 27.52 6.10 0.602 25.40 3.70 0.657 23.28 2.70 0.714
BAT[28] 65.39 38.70 0.228 33.31 5.30 0.577 27.08 2.90 0.683 22.80 1.50 0.790 21.28 1.10 0.823
CFA[36] 59.15 34.10 0.255 32.50 8.80 0.551 29.38 7.00 0.601 25.16 4.00 0.690 23.78 3.20 0.727

Fair-ARD[38] 58.97 31.40 0.289 33.76 9.30 0.542 30.07 7.30 0.607 27.64 5.60 0.651 25.79 4.00 0.700
ABSLD 56.66 32.00 0.252 33.87 12.80 0.448 31.24 11.40 0.489 26.41 7.50 0.564 24.57 6.70 0.597

the fairness threshold to 0.02 for FAWA operation based on the worst-10% class robustness. For
Fair-ARD [38], we select the best version (Fair-ARD on CIFAR-10 and Fair-RSLAD on CIFAR-100)
as reported in the original article. Due to the different strategy of selecting checkpoint, the baselines
may have slight differences from the results in their original papers.

Following previous studies [45; 42; 38], we evaluate the trained model against white-box adversarial
attacks: FGSM [8], PGD [20], CW∞ [3]. For PGD, we apply 20 steps with a step size of 2/255; For
CW∞, we apply 30 steps with a step size of 2/255. Meanwhile, we apply a strong attack: AutoAttack
(AA) [5] to evaluate the robustness, which includes four attacks: Auto-PGD (APGD), Difference of
Logits Ratio (DLR) attack, FAB-Attack [4], and the black-box Square Attack [1]. The maximum
perturbation of all generated adversarial examples is 8/255.

A.4 The Robustness on CIFAR-100

The performances of ResNet-18 and MobileNet-v2 trained by our ABSLD and other baseline methods
under the various attacks are shown in Table 3, Table 4 for CIFAR-100.

The results demonstrate that ABSLD achieves the state-of-the-art worst-class robustness on CIFAR-
100. For ResNet-18 on CIFAR-100, ABSLD improves the worst-10% class robustness by 2.1%,
2.1%, 1.2%, and 0.7% compared with the best baseline method against the FGSM, PGD, CW∞, and
AA. Moreover, ABSLD shows relevant superiority on MobileNet-v2 compared with other methods.

Moreover, ABSLD can also show the best comprehensive performance of fairness and robustness
(NSD) on CIFAR-100. For ResNet-18 on CIFAR-100, ABSLD reduces the NSD by 0.05, 0.063,
0.077, and 0.078 compared with the best baseline method against the FGSM, PGD, CW∞, and AA.

A.5 The Robustness on Tiny-ImageNet

We select the subset of ImageNet: Tiny-ImageNet as the additional dataset. We train with
PreActResNet-18 with 100 epochs, while other settings are the same as CIFAR-100. For our
ABSLD, the teacher model is PreActResNet-34 trained by TRADES [41], and the maximum and
minimnum values of temperature are 1.1 and 0.9. We select RSLAD [45] (the baseline method)
and CFA[36] (the second-best method proven in Table 1 and Table 3) as the comparison method.
The results in Table 5 show ABSLD has the best performance under the metric of the worst class
robustness and NSD under different attacks, verifying our effectiveness and generalization.
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Table 5: Result in average robustness(%) (Avg.↑), worst robustness(%) (Worst↑), and normalized
standard deviation (NSD↓) on Tiny-ImageNet of PreActResNet-18.

Method Clean FGSM PGD CW∞ AA
Avg. Worst NSD Avg. Worst NSD Avg. Worst NSD Avg. Worst NSD Avg. Worst NSD

RSLAD 47.95 15.60 0.194 26.82 4.60 0.314 24.68 4.10 0.334 20.58 1.50 0.385 18.78 0.90 0.425
CFA 46.75 17.50 0.189 23.19 3.00 0.357 20.73 2.30 0.385 16.83 1.20 0.448 15.99 0.90 0.468

ABSLD 47.70 17.90 0.171 25.93 5.80 0.291 23.41 4.60 0.313 19.62 3.40 0.353 17.70 2.30 0.386

A.6 The Necessity of Adaptive Adjustment

To demonstrate the effectiveness of our self-adaptive temperature adjustment strategy, we manually re-
temperate with the static temperature for different classes based on the prior knowledge. Specifically,
We set the teacher temperature for difficult class to be small (τ tk = 0.5) and set the teacher temperature
for easy class to be large (τ tk = 5), which is the minimum and maximum values of temperature,
respectively. The experiment in Table 6 shows that our adaptive strategy has a better performance
than this manual strategy on CIFAR-10. Moreover, the manual strategy needs to be carefully designed
and lacks operability for more complex datasets, e.g., 100 classes on CIFAR-100 or 200 classes on
Tiny-ImageNet, so we finally apply the adaptive adjustment strategy for ABSLD.

Table 6: Result in average robustness(%) (Avg.↑), worst robustness(%) (Worst↑), and normalized
standard deviation (NSD↓) on CIFAR-10 of ResNet-18.

Method Clean FGSM PGD CW∞ AA
Avg. Worst NSD Avg. Worst NSD Avg. Worst NSD Avg. Worst NSD Avg. Worst NSD

Manual 81.31 66.20 0.106 57.47 34.00 0.210 49.47 27.80 0.232 48.13 25.40 0.249 45.34 24.40 0.251
Adaptive 83.04 68.10 0.103 59.83 40.50 0.202 54.50 36.50 0.216 51.77 32.80 0.249 50.25 31.00 0.256

A.7 The Robustness of Teacher Models

Here we report the performance of Teacher models, we select WiderResNet-34-10 [40] trained by
[41] for CIFAR-10 and WiderResNet-70-16 trained by [9] for CIFAR-100 following [45; 43]. For
Tiny-ImageNet, the teacher model is PreActResNet-34 trained by TRADES [41]. The performance is
shown in Table 7.

Table 7: Robustness (%) of the teachers in our experiments.
Dataset Model Clean FGSM PGD CW∞ AA

CIFAR-10 WideResNet-34-10 84.91 61.14 55.30 53.84 53.08
CIFAR-100 WideResNet-70-16 60.96 35.89 33.58 31.05 30.03

Tiny-ImageNet PreActResNet-34 52.76 27.05 24.00 20.07 18.92

A.8 Limitations

At present, although we have improved the fairness of model adversarial robustness with minimal
cost, the overall robustness remains unchanged or slightly decreases compared to previous methods
in some cases, and how to solve the trade-off between robustness and fairness is one of the directions
that will be further explored in the future. Meanwhile, our method is based on the adjustment towards
the smoothness degree of soft labels, and cannot be directly applied to adversarial training methods
based on one-hot labels but needs to be combined with label smoothing operations.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: See Sec. 1.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See Appendix A.8.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: See Appendix A.1 and Appendix A.2.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: See Sec. 5 and Appendix A.3.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Justification: The code is available at supplemental material, and the code will be open
access after revision.
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• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.
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parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
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Justification: See Sec. 5 and Appendix A.3.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Since adversarial training and adversarial robustness distillation are time-
consuming, we only ran one time.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See Appendix A.3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We do not find any discrepancieswith the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: See Sec. 6.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite the original paper that produced the code package or dataset.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The code (new assets) can be found in supplemental material.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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