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Abstract

Zero-shot learning methods typically assume that the new, unseen classes encoun-
tered during deployment come from the same distribution as the the classes in the
training set. However, real-world scenarios often involve class distribution shifts
(e.g., in age or gender for person identification), posing challenges for zero-shot
classifiers that rely on learned representations from training classes. In this work,
we propose and analyze a model that assumes that the attribute responsible for
the shift is unknown in advance. We show that in this setting, standard training
may lead to non-robust representations. To mitigate this, we develop an algo-
rithm for learning robust representations in which (a) synthetic data environments
are constructed via hierarchical sampling, and (b) environment balancing penal-
ization, inspired by out-of-distribution problems, is applied. We show that our
algorithm improves generalization to diverse class distributions in both simulations
and experiments on real-world datasets.

1 Introduction

Zero-shot learning systems [14, 27] are designed to classify instances of new, previously unseen
classes at deployment, a scenario known as open-world classification. These systems are widely
applied in extreme multi-class applications, such as face or voice recognition [19] for matching
observations of the same individual, and more generally, for learning data representations [2].

Class distribution shifts typically refer to changes in the prevalence of a fixed set of classes between
training and testing. In zero-shot learning, however, a different challenge arises: the appearance
of entirely new classes at test time. This raises a critical question – are these new classes drawn
from the same distribution as the training classes? Most zero-shot methods assume that they are,
an assumption that not only shapes the design of test sets [57, 16] but also plays an explicit role in
assessing the generalization capabilities of zero-shot classifiers [59, 48].

In practice, training classes are often chosen based on convenience and accessibility during data
collection. Even when data is carefully collected, the distribution of classes may shift over time,
leading to a different distribution. For instance, this could occur when a face recognition system is
deployed in a building located in a neighborhood undergoing demographic changes.

Class distribution shifts pose significant challenges to zero-shot classifiers, since they rely on learning
data representations from the training classes to distinguish new, unseen ones. Typically, these
classifiers are trained by minimizing the loss on the training set to effectively separate the training
classes. However, this approach may result in poor performance when confronted with data from
distributions that differ significantly from the class distribution in the training data. Notably, in person
re-identification, this concern gained attention from a fairness perspective with respect to gender
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[15, 23], age [5, 33, 50], and racial [39, 54] bias. In all these studies the variable (i.e., gender, age,
race) expected to cause the distribution shift was known in advance.

In contrast, in real-world scenarios, the attribute responsible for a future distribution shift is usually
unknown during training. In such cases, existing approaches based on collecting balanced datasets or
re-weighting training examples [54, 41, 53] are inapplicable. Furthermore, while class distribution
shifts have been extensively studied in the standard setting of supervised learning (see Appendix A),
previous research assumed a closed-world setting that does not account for new classes at test time.
Instead, it only addressed changes in the prevalence of fixed classes between training and testing.
Consequently, class distribution shifts in zero-shot learning remain largely unaddressed.

In this paper we first address these limitations by examining the effects of class distribution shifts on
constrastive zero-shot learning, by proposing and analyzing a parametric model (§3). We identify
conditions where minimizing loss in this model leads to representations that perform poorly when a
distribution shift has occurred.

We then use the insights gained from this model to present our second contribution (§4): an algorithm
for learning representations that are robust against class distribution shifts in zero-shot classifica-
tion. In our proposed approach, artificial data environments with diverse attribute distributions
are constructed using hierarchical subsampling, and an environment balancing criterion inspired
by out-of-distribution (OOD) methods is applied. We assess our method’s effectiveness in both
simulations and experiments on real-world datasets, demonstrating its enhanced robustness in §5.

1.1 Problem Setup

Let {zi, ci}Nz
i=1 be a labeled set of training data points z ∈ Z and classes c ∈ C, such that ci is the

class of zi.

In this work, we focus on verification algorithms that enable open-world classification by determining
whether two data points xij := (zi, zj) belong to the same class. For instance, in person re-
identification the task is to identify whether two data points (e.g., face images or voice recordings)
belong to the same person. We denote this by yij , where yij = 1 if ci = cj and yij = 0 otherwise.
When the identity of each data point in the pair is not important, a single index is used for simplicity,
namely (xk, yk).

We assume that each class c is characterized by some attribute A. We further assume that the training
classes are sampled from PC(c), the test classes are sampled according to QC(c), and the two
distributions differ solely due to a shift in the distribution of an attribute A:

PC(c) =

ˆ
PC|A(c|a)PA(a) da, QC(c) =

ˆ
PC|A(c|a)QA(a) da. (1)

Importantly, we assume that the attribute A is unknown, and that both during training and testing,
data points z ∈ Z for each class are sampled according to PZ|C(z|c). For instance, revisit the person
identification example where each person is a class. If the attribute A is binary (e.g., a1 is blond
and a2 is dark-haired), then P (C|A = a1) represents the distribution of people with blond hair, and
P (C|A = a2) of individuals with other hair colors. The training classes might be predominantly
sampled from the blond population P (A = a1) = ρtr = 0.8, while test classes are predominantly
sampled from Q(A = a1) = ρte = 0.1.

We focus on verification techniques based on deep metric learning methods (for surveys see [43, 34])
such as contrastive-learning [17], Siamese neural networks [24], triplet networks [20], and other
more recent variations [35, 49, 56, 58]. These methods learn a representation function that maps data
points to a representation space g : Z → Ẑ , so that examples from the same class are close (in a
predefined distance function d(·, ·)), while those from different classes are farther apart.

We assume that g is a neural network trained by optimizing a deep-metric-learning loss, such as the
contrastive loss [17]:

ℓ (zi, zj , yij ; dg) :=yijd
2
g (zi, zj) + (1− yij)max {0,m− dg (zi, zj)}2 (2)

where m ≥ 0 is a predefined margin, and dg(zi, zj) := d(g(zi), g(zj)) is the distance between
the representations of the datapoints zi, zj . In our theoretical analysis, we examine the no-hinge
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contrastive loss (see Appendix B for additional details):

ℓ̃ (zi, zj , yij ; dg) := yijd
2
g (zi, zj) + (1− yij) (m− dg (zi, zj))2 . (3)

To evaluate the class separation capability of a representation, we treat the distances between
representations, dg(zi, zj), as classification scores. Following common practice in the field (e.g.,
[47, 22]), we use the area under the receiver operating characteristic curve (AUC) to evaluate the
representation, enabling threshold-agnostic assessment:

AUC(g) := P (dg(zi, zj) < dg(zu, zv)|yij = 1, yuv = 0). (4)

Our goal is to learn a representation g that is robust to class attribute shifts. That is, such that for an
unknown shifted distribution QA, the performance EQA

[AUC(g)] does not significantly deteriorate
compared to the performance obtained on the training distribution PA.

2 Background on Environment Balancing Methods in OOD Generalization

The field of OOD generalization gained attention since the work of Peters et al. [36], [37], which
deals with closed-world classification where training data is gathered from multiple environments
Etrain. In this setting it is assumed that in each environment e ∈ Etrain examples share the same joint
distribution P eC,Z(c, z), but across environments the joint distribution changes, often due to variations
in P eZ|C(z|c). A well-known example [1] involving the classification of images of cows and camels
demonstrates how an algorithm relying on background cues during training (e.g., cows in green
pastures, camels in deserts) performs poorly on new images of cows with sandy backgrounds.

Several approaches that rely on access to diverse training environments were proposed to identify
stable relations between the data point z and its class c. Examples of such stable relations include
choosing causal variables using statistical tests [42], leveraging conditional independence induced by
the common causal mechanism [9], and using multi-environment calibration as a surrogate for OOD
performance [52].

Most relevant to our work are methods that aim to balance the loss over multiple environments. These
methods consider a representation g = gθ that is a neural network parameterized by θ trained to
optimize an objective of the form

min
θ

∑
e∈Etrain

ℓe(gθ) + λR(gθ, Etrain) (5)

where ℓe(gθ) is the empirical loss obtained on the environment e, Etrain is the set of all training
environments,R is a regularization term designed to balance performance over multiple environments,
and λ is a regularization factor balancing the tradeoff between the empirical risk minimization (ERM)
term and the balance penalty. Below, we describe three such methods, which we will refer to later in
the paper.

Invariant risk minimization (IRM) presented in [1], aims to find data representations gθ such that
the optimal classifier w on top of the data representation w ◦ gθ is shared across all environments.
Therefore, the authors proposed minimizing the sum of environment losses ℓe(w◦gθ) over all training
environments such that w ∈ argminw′ ℓe(w′ ◦ gθ) for all e ∈ Etrain. However, since this objective is
too difficult to optimize, a relaxed version was also proposed, taking the form of Equation 5 with a
penalty that measures how closew is to minimizing ℓe(w◦gθ): ReIRMv1(gθ) =

∥∥∇w|w=1ℓ
e (w · gθ)

∥∥2.

Note that for loss functions for which optimal classifiers can be expressed as conditional expectations,
the original IRM objective is equivalent to the requirement that for all environments e, e′ ∈ Etrain,
EP e

C,Z
[c|g(z) = h] = EP e′

C,Z
[c|g(z) = h] , where P eC,Z and P e

′

C,Z are the joint data distributions in
the respective environments.

Calibration Loss Over Environments (CLOvE) presented in [52], leverages the equivalence
above to establish a link between multi-environment calibration and invariance for binary predictors
(c ∈ {0, 1}). The proposed regularizer is based on the maximum mean calibration error (MMCE)
[26]. Let s : Ẑ → [0, 1] be a classification score function applied on the representation s ◦ g, and
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si = max{s ◦ g(zi), 1− s ◦ g(zi)} be the confidence on the i-th data point. Denote the correctness
as bi = 1{|ci − si| < 1

2}, and let K : R× R→ R be a universal kernel. Let Ze denote the training
data in the environment e. The authors proposed using the MMCE as a penalty in an objective that
takes the form of Equation 5 with ReMMCE (s, gθ) =

1
m2

∑
zi,zj∈Ze(bi − si) (bj − sj)K (si, sj) .

Variance Risk Extrapolation (VarREx) proposed by Krueger et al. [25], is based on the observation
that reducing differences in loss (risk) across training domains can reduce a model’s sensitivity to a
wide range of distribution shifts. The authors found that using the variance of losses as a regularizer
is stabler and more effective compared to other penalties. Therefore, they propose the following
regularization term for n training environments: RVarREx (gθ, Etrain) = Var (ℓe1(gθ), . . . , ℓen(gθ)) .

While simple and intuitive, this approach assumes that losses across different environments accurately
reflect the classifier’s performance. However, as discussed in §4, this is often not true for deep
metric learning losses, where significant changes in loss may correspond to only minor variations in
performance.

3 Parametric Model of Class Distribution Shifts in Zero-Shot Learning

In this section, we introduce a parametric model of class distribution shifts. Our model shows that
in zero-shot learning, even if the conditional distribution of data given the class P (z|c) remains the
same between training and testing, a shift in the class distribution from P (c) to Q(c) can cause poor
performance on newly encountered classes sampled from the shifted distribution Q(c).

Assume that for all classes, the data points zi ∈ Rd are sampled from zi|ci ∼ N (ci,Σz), where
Σz = νz · Id, and Id is the identity matrix. Let the attribute A indicate the type of a class c, with
two possible types: a1 and a2. Assume that the classes ci are drawn according to ci ∼ N (0,Σa)
for a ∈ {a1, a2}. Finally, assume that in training, a1 is the majority type with P (a1) = ρtr ≫ 0.5,
whereas at test time, a2 is the majority type with Q(a1) = ρte ≪ 0.5.

We construct the model such that differences between the training class distribution P (c) and the test
distribution Q(c) stem solely from a shift in the mixing probabilities of an unknown attribute A (see
Equation 1). Therefore, we define Σa as a diagonal matrix with replicates of three distinct values on
its diagonal: ν0, ν+, ν−. Let 0 < ν− < νz ≤ ν0 < ν+. Then, in the coordinates corresponding to ν0
and ν+ data points from different classes are well separated, whereas in the coordinates corresponding
to ν− they are not. Assume the coordinates corresponding to ν0 are shared by both types, but ν+ and
ν− are swapped:

Σa1 = diag
( d0︷ ︸︸ ︷
ν0 , . . . , ν0,

d1︷ ︸︸ ︷
ν+, . . . , ν+,

d2︷ ︸︸ ︷
ν−, . . . , ν−

)
,

Σa2 = diag
(
ν0, . . . , ν0 , ν

−, . . . , ν−, ν+, . . . , ν+
)
.

An illustration with one replicate of each value is shown in Figure 1.

The following proposition shows that if the number of dimensions d1 that allow good separation for
classes of type a1 is relatively similar to the number of dimensions d2 that enable good separation
for classes of type a2, specifically if hl (ρ, νz, ν0, ν1, ν2) < d2+2

d1+2 < hu (ρ, νz, ν0, ν1, ν2), then the
optimal solution for the training distribution prioritizes the components (features) corresponding
to ν+ for classes of type a1. Thus, the prioritized features allow good separation for classes from
the majority type in training, but offer poor separation for the shifted test distribution, where most
classes are of type a2. Note that if d2 is large, when combined, the corresponding components may
still provide reasonable separation. We define hl and hu in Equation 35 and provide the proof of
Proposition 1 in Appendix B.2.

Proposition 1. Consider a weight representation g(z) = Wz, where W ∈ Rd×dis a diagonal
matrix, and the squared Euclidean distance dg (zi, zj) = ∥W (zi − zj)∥2. Let W ∗ = diag(w∗) ∈
argminW E

[
ℓ̃ (·, ·, ·; dg)

]
. Denote w∗2

1 = 1
d1

∑d1
k=d0+1 w

∗
k and w∗2

2 = 1
d2

∑d
k=d1+1 w

∗2
k . Then, for

all ρ > 1
2 and νz, ν0, ν1, ν2, d1, d2 satisfying hl (ρ, νz, ν0, ν1, ν2) < d2+2

d1+2 < hu (ρ, νz, ν0, ν1, ν2) it
holds that d2w∗2

2 ≤ d1w∗2
1 .

4
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Figure 1: Illustration of the parametric
model. Classes of each type are best sep-
arated along specific axes: classes of type
a1 along the red axis (z(1)) and classes of
type a2 along the green axis (z(2)). On
axis z(0) both types can be separated but
not as effectively as on their respective
optimal axes.
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Figure 2: Optimal weights. Top row: d0 is fixed, d1 and
d2 vary. Middle and bottom rows: d0, d1, d2 are fixed.
Middle: ν0/ν− varies. Bottom: ν0/ν+ varies.

Note that the conditions outlined in Proposition 1 are sufficient but not necessary. Accordingly, in
Appendix B.3, we provide the complete analytical solution for w∗ that minimizes the expected loss
E
[
ℓ̃ (·, ·, ·; dg)

]
for the weight representation g(z) = Wz, using the squared Euclidean distance.

According to Proposition 1, larger d2 values favor ν− for better aggregated separation. Increasing
ν0/ν

+ leads to increased differences between w∗2
1 and w∗2

2 , and vice versa for ν0/ν−.

These relationships in the optimal solution are illustrated in Figure 2, showcasing different scenarios.
The top row shows that when d1 = d2 = 10 dimensions favoring classes of type a1 are prioritized
for ρ > 0.5, while those favoring type a2 are prioritized for ρ < 0.5. When d1 = 10 while d2 = 5,
dimensions favoring type a1 are prioritized for all values of ρ, and vice versa when d2 is significantly
larger than d1. The middle and the bottom row further explore the d1 = d2 case, showing how
differences in separability between shared dimensions (ν0) and type-favoring dimensions impact
weight allocation.

Since components corresponding to ν+ for classes of type a1 align with ν− for classes of type a2,
the optimal representation for the training distribution results in poor separation for the shifted test
distribution. Therefore, a robust representation should prioritize dimensions that provide effective
separation for both class types, corresponding to ν0.

This aligns with a common principle in the OOD generalization field, where robust representations
are those that rely on features shared across environments (see §2). This principle is often referred to
as invariance.

4 Proposed Approach

Motivated by our analysis of the parametric model, we propose a new approach for tackling class
distribution shifts in zero-shot learning. Our approach revolves around two key ideas: (i) during
training, different mixtures of the attribute A can be produced by sampling small subsets of the
classes, forming artificial environments, and (ii) penalizing for differences in performance across
these environments is likely to increase robustness to the class mixture encountered at test time.

4.1 Synthetic Environments

Standard ERM training involves sampling pairs of data points (zi, zj) uniformly at random from all
Nc classes available during training. However, as discussed in §3, this is prone to overfitting to the
attribute distribution of the training data. Since the identity of the attribute is unknown, weighted
sampling (and similar approaches) cannot be used to create environments with different attribute
mixtures.

5

89217 https://doi.org/10.52202/079017-2831



Yet, our goal is to design artificial environments with diverse compositions of the (unknown) attribute
of interest. To do so, we leverage the variability in small samples: while class subsets of similar size
to Nc maintain attribute mixtures similar to the overall training set, smaller subsets with k ≪ Nc
classes are likely to exhibit distinct attribute mixtures. Therefore, we propose creating multiple
environments, composed of examples from few sampled classes.

This results in a hierarchical sampling scheme for the data pairs: first, sample a subset of k classes,
S = {c1, . . . , ck}. Then, for each c ∈ S sample 2r pairs of data points as follows: r pairs from
within the class c, {zi; ci = c}, uniformly at random (positive pairs); and r negative pairs, where
one point is sampled uniformly at random from c, and the other from all other data points in S,
{zi; ci ̸= c, ci ∈ S}.1

Across multiple class subsets S = {S1, . . . , Sn}, this hierarchical sampling results in diverse mixtures
of any unknown attribute (see Figure 3). In particular, in some of the class subsets, classes from the
overall minority type constitute the majority in the environment.
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Figure 3: Illustration of the proposed hierarchical sampling. Top: Nc = 6 classes, with 2 minority-
type classes D, F (in purple). Middle: synthetic environments formed by sampling small (k = 3)
class subsets; in 1/5 of the environments, minority-type classes become the majority constituting
2/3 of the classes. Bottom: sampling r = 1 positive and r = 1 negative pairs for each class in the
environment.

4.2 Environment Balancing Algorithm for Class Distribution Shifts

Our goal is to learn data representations that will allow separation between classes without knowing
which attribute is expected to change and how significantly. Therefore, we require the learned data
representation to perform similarly well on all mixtures obtained on the synthetic environments.

To achieve this, inspired by OOD performance balancing methods (see §2), we optimize a penalized
objective:

min
θ

n∑
l=1

ℓSl(gθ) + λR (S1, . . . , Sn) (6)

where R (S1, . . . , Sn) is any balancing term between the constructed synthetic environments.

Note that computing R (S1, . . . , Sn) often involves evaluating some value on each environment
separately. For a general balancing term, we denote the value in the l-th environment as f(Sl) and
accordingly express R (S1, . . . , Sn) = f̊ (f(S1), . . . , f(Sn)), where f̊ represents the corresponding
aggregation function. Our approach2 for balancing performance across synthetic environments of
class subsets, is outlined in Algorithm 1.

4.3 Balancing Performance Instead of Loss

In multiple OOD penalties (e.g., IRM and VarREx), f represents the loss in each environment,
which, in deep metric learning algorithms, is based on distance. This presents a challenge in zero-

1Here, for simplicity we create balanced environments, but different proportions of positive examples can be
considered instead.

2For notation simplicity we assume that the unpenalized training loss is applied to pairs of data points
(xij , yij) = ((zi, zj),1ci=cj ), but it can easily be adapted for any tuple size (e.g., triplets).

6

89218https://doi.org/10.52202/079017-2831



Algorithm 1 Robust Zero-Shot Representation

Input: Labeled data D = {zi, ci}Nz
i=1, number of synthetic environments n, number of classes

within subset k, number of pairs per class 2r, neural network g(·; θ), loss ℓ, distance function d,
regularization functions f , f̊ , initial weights θ0, number of training iterations T , learning rate η
Output: Learned representation g(·; θT )
Compute unique classes C∗ = {c(1), . . . , c(Nc)}
for t = 1 to T do

for l = 1 to n do
Sample k classes from C∗ without replacement: S(t)

l = {c(1)l , . . . , c
(k)
l }.

From each class in S(t)
l sample r positive and r negative data pairs. Denote the set by D(t)

l .
Compute f(S(t)

l ).
Compute average unpenalized loss over (xm, ym) ∈ D(t)

l : ℓ̄
(t)
l = 1

2rk

∑2rk
m=1 ℓ(xm, ym).

end for
ComputeR(t) :=R

(
S
(t)
1 , . . . , S

(t)
n

)
= f̊

(
f(S

(t)
1 ), . . . , f(S

(t)
n )
)

.
Update network parameters performing a gradient descent step:
θ(t) ← θ(t−1) − η∇θ

(
1
n

∑n
l=1 ℓ̄

(t)
l +R(t)

)
end for
Return: g(·; θT )

shot verification, where sampled tuples often include numerous easy negative examples, leading to
performance plateau early in the learning process, although the distances themselves still exhibit
considerable variations. Strategies like selecting the most difficult tuples [18] were proposed to
address this issue, however these methods have been found to generate noisy gradients and loss values
[34].

We therefore propose to balance performance directly instead of relying on the losses in the training
environments. Denote the set of negative pairs in a synthetic environment by D0

l = {xij = (zi, zj) :
ci, cj ∈ Sl, yij = 0} and the set of positive pairs by D1

l = {xij = (zi, zj) : ci, cj ∈ Sl, yij = 1}.
An unbiased estimator of the AUC on a given synthetic environment Sl is given by

ÃUC (Sl; dg) =
1

|D0
l | |D1

l |
∑
xij

∑
xuv

1 [dg(xij) < dg(xuv)] (7)

for xij ∈ D1
l and xuv ∈ D0

l . Since this estimator is non-differentiable and therefore cannot be used
in gradient-descent-based optimization, we use soft-AUC as an approximation [7]

ÂUC (Sl; dg)
1

|D0
l | |D1

l |
∑
xij

∑
xuv

σβ (dg(xuv)− dg(xij)) (8)

where a sigmoid σβ(t) = 1
1+e−βt approximates the step function. Note that when β → ∞, σβ

converges pointwise to the step function. Consequently, we propose the penalty:

RVarAUC (S1, . . . , Sn; gd) = V̂ar
(

ÂUC (S1; g, d) , . . . , ÂUC (Sn; g, d)
)
. (9)

4.4 How Many Environments Are Needed?

The proposed hierarchical sampling scheme allows for the construction of many synthetic environ-
ments with various attribute mixtures, influenced by the number of classes in each environment.
As shown in the analysis below, this ensures that with high probability there will be at least one
environment with a pair of minority type classes, thereby supporting learning to separate negative
pairs within the minority type.

In each training iteration, we consider n class subsets (environments) of size k. Our goal is to achieve
robustness to all attribute values a that are associated with at least ρmin ∈ (0, 1) of the training classes.
Note that ρmin is specified by the practitioner without knowledge of the true attribute that may cause
the shift or its true prevalence ρ in the training set.

7
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We compute the number of synthetic environments n, such that with high probability of (1 − α),
S1, . . . , Sn will include at least one subset with at least two classes associated with a (otherwise
none of the subsets would contain negative pairs with the attribute a). Denote the probability of a
given subset not to contain any class associated with a by ϕ0 = (⌈(1−ρmin)Nc⌉

k )/(Nc
k ) and the probability

of a given subset to contain exactly one such class by ϕ1 = ρminNc(⌈(1−ρmin)Nc⌉
k−1 )/(Nc

k ). Therefore, the
required number of environments needed to ensure that at least two minority-type classes appear
together in the same environment is

n ≈ log (α)

log (ϕ0 + ϕ1)
. (10)

Note that that n is typically much smaller than
(
Nc

k

)
.

5 Empirical Results

Our method enhances standard training with two components: a hierarchical sampling scheme
and a balancing term for synthetic environments. To the best of our knowledge, this is the first
work addressing OOD generalization for class distribution in zero-shot learning. We therefore
benchmark our algorithm against the ERM baseline (uniform random sampling with an unpenal-
ized score) and a hierarchical sampling baseline (hierarchical sampling with unpenalized score).
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Figure 4: Average AUC over 10 simulation repeti-
tions for majority attribute proportion ρ = 0.9 in
training (and 0.1 in test). Solid lines: distribution-
shift. Dashed lines: in-distribution. Our method
improves robustness for shifts, without compro-
mising training distribution results.

Additionally, we tested standard regularization
techniques including dropout and the L2 norm,
which did not yield notable improvements in the
distribution shift scenario, and are therefore not
shown.

To ensure a comprehensive comparison, in addi-
tion to the proposed VarAUC penalty, we evalu-
ate variants of our algorithm in which the IRM,
CLOvE, and VarREx penalties are used instead.
While we show that VarAUC consistently outper-
forms other penalties, the crucial improvement
lies in its performance compared to the ERM
baseline: application of existing OOD penalties
is enabled by the construction of synthetic en-
vironments in our algorithm. As discussed in
Appendix C, this construction facilitates the for-
mulation of class distribution shifts in zero-shot
learning within the OOD setting.

In all of the experiments performed, we trained the network with contrastive loss (Equation 2) and the
normalized cosine distance: dg(z1, z2) = 1

2

(
1− g(z1)·g(z2)

∥g(z1)∥∥g(z2)∥

)
. The specific setups are detailed

below (additional details can be found in Appendix F), and code to reproduce our results is available
at https://github.com/YuliSl/Zero_Shot_Robust_Representations .

5.1 Simulations: Revisiting the Parametric Model

We now revisit the parametric model presented in §3. To increase the complexity of the problem, we
add dimensions where classes from both types are not well separated. That is, Σa includes additional
dimensions set to zero.

Setup We used 68 subsets in each training iteration, each consisting of two classes. This cor-
responds to choosing ρmin = 0.1 (desired sensitivity, regardless of the true unknown parameter
ρ ∈ {0.05, 0.1, 0.3}), with a low α value of 0.5, resulting in the construction of fewer environments
according to Equation 10. For each class, we sampled 2r = 10 pairs of data points. The representation
was defined as g(z) = wz for w ∈ Rd×p 3. Here we focus on the case of p = 16, νz = ν0 = 1,

3A linear representation is chosen to facilitate an analysis of the learned representation space.
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ν− = 0.1, ν+ = 2, d0 = 5, d1 = d2 = 10. The results for additional representation sizes p, noise
ratios ν+

ν− and varying proportions of positive and negative examples are presented in Appendix D.1.

To assess the importance assigned to each dimension, we examine weight values relative to other

weights: Importancei =
∣∣∣∣ ∑p

j=1 wij∑d
i′=1

∑p

j′=1
wi′j′

∣∣∣∣ . (11)
Results In Figure 5 we examine the learned representation. The analysis indicates that ERM
prioritizes dimensions 5-15, providing good separation for a1, the dominant type in training,
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Figure 5: Average feature importance for ρ = 0.9,
10 repetitions. Our VarAUC penalty favors shared
features (blocks 1 and 3), while deprioritizing ma-
jority features (block 2). All methods assign low
weight to noise features (block 4).

but leading to poor separation after the shift.
ERM assigns low weights to dimensions benefi-
cial for both types (0-5) and those suitable for a2
(15-25). In contrast, our algorithm, particularly
with the two variance-based penalties, assigns
the lowest weights to dimensions corresponding
to a1 and higher weights to shared dimensions
and those that effectively separate a2 classes.

In Figure 4, the learning progress is depicted for
ρ = 0.9 (a similar analysis for ρ = 0.95 and ρ =
0.7 can be found in Appendix D). Performance
on the same distribution as the training data is
similar for ERM and our algorithm, suggesting
that applying our algorithm does not negatively
impact performance when no distribution shift
occurs. However, when there is a distribution
shift our algorithm achieves much better results.
The VarREx penalty achieves high AUC values
more quickly than the VarAUC penalty, but the
VarAUC penalty attains higher overall accuracy. IRM shows noisier convergence, since it is applied
directly on the gradients, which have been shown to be noisy in contrastive learning due to high
variance in data-pair samples [34]. Means and standard deviations are reported in Appendix D.1, as
well as the results for additional data dimensions, positive proportions, and variance ratios.

5.2 Experiments on Real Data

Hier. IRM CLOvE VarREx VarAUC
15.0%
10.0%
5.0%
0.0%
5.0%

10.0%
15.0%

Hier. IRM CLOvE VarREx VarAUC
15.0%
10.0%
5.0%
0.0%
5.0%

10.0%
15.0%

Figure 6: Average percentage changes of our
method compared to ERM across 10 repetitions
are shown for the ETHEC (top) and CelebA (bot-
tom) datasets. Error bars represent ± one std-dev.

Experiment 1 - Species Recognition We used
the ETHEC dataset [11] which contains 47,978
butterfly images from six families and 561
species (example of the images are provided in
Appendix D). We filtered out species with less
than five images and focused on images of butter-
flies from the Lycaenidae and Nymphalidae fam-
ilies. In the training set, 10% of the species were
from the Nymphalidae family, while at test time,
90% of the species were from the Nymphalidae
family. For each class we sampled 2r = 20
pairs.

Experiment 2 - Face Recognition We used the
CelebA dataset [30] which contains 202,599 im-
ages of 10,177 celebrities. We filtered out peo-
ple for which the dataset contains less than three
images. Following Vinyals et al. [51], we im-
plemented g as a convolutional neural network
which has four modules with 3× 3 convolutions
and 64 filters, followed by batch normalization,
a ReLU activation, 2 × 2 max-pooling, and a
fully connected layer of size 32. We used the attribute blond hair for the class distribution shift: for
training, we mainly sampled people without blond hair (95%), while at test time, most people (95%)
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had blond hair. Each training iteration had 150 synthetic environments of two classes and 2r = 20
data points per class.

We trained the models on 200 synthetic environments at a time, each of two classes. We implemented
g as a fully connected neural network with layers of sizes 128, 64, 32 and 16, and ReLU activations
between them.

Experimental Results As can be seen in Figure 6, while all versions of our algorithm show some
improvement over ERM, the best results are achieved with the VarAUC penalty (exact means and
standard deviations are reported in Table 3 in Appendix D). One-sided paired t-tests show that
the improvement over ERM achieved by our algorithm with the VarAUC penalty is statistically
significant, with p-values of < 0.04 on both datasets; p-values for other penalties are reported in
Table 4. All p-values were adjusted with FDR [4] correction.

In Appendix D we also provide additional analysis confirming that the main improvement of our
algorithm over the ERM baseline stems from improved performance on negative minority pairs.

6 Discussion

In this study, we examined class distribution shifts in zero-shot learning, with a focus on shifts
induced by unknown attributes. Such shifts pose significant challenges in zero-shot learning where
new classes emerge in testing, causing standard techniques trained via ERM to fail on shifted class
distributions, even when the conditional distribution of the data given class remains the same.

Previous research (see Appendix A) assumes closed-world classification or a known cause, making
these methods unsuitable for zero-shot learning or shifts caused by unknown attributes. In response,
we introduced a framework and the first algorithm to address class distribution shifts in zero-shot
learning using OOD environment balancing methods.

In the causal terminology of closed-world OOD generalization, our framework employs synthetic
environments to intervene on attribute mixtures by sampling small class subsets, thereby manipulating
the class distribution. This facilitates the creation of diverse environments with varied attribute mix-
tures, enhancing the distinction between negative examples. A further comparison of our framework
with OOD environment balancing methods is provided in Appendix C. Additionally, our proposed
VarAUC penalty, designed for metric losses, enhances the separation of negative examples.

Our results demonstrate improvements compared to the ERM baseline on shifted distributions,
without compromising performance on unshifted distributions, enabling the learning of more robust
representations for zero-shot tasks and ensuring reliable performance.

While the proposed framework is general, our current experiments address shifts in a binary attribute.
We defer exploration of additional scenarios, such as those involving shifts in multiple correlated
attributes, to future work. An additional promising direction for future work is the consideration of
shifts where the responsible attribute is strongly correlated with additional attributes or covariates.
This opens up possibilities to explore structured constructions of synthetic environments that leverage
such correlations.
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A Related Work on Class Distribution Shifts in Closed-World Settings

In class-imbalanced learning [28, 10, 8] it is assumed that some classes are more dominant in training,
while in deployment this is no longer the case. Therefore, solutions classically include data or loss
re-weighting [46, 6, 40, 32] and calibration of the classification score [44, 60]. A popular framework
for addressing class distribut ion shifts is distributionally robust optimization (DRO) [3, 13, 12, 55],
where instead of assuming a specific probability distribution, a set or range of possible distributions
is considered, and optimization is performed to achieve the best results on the worst-case distribution.
A special case known as group DRO [45, 38], involves a group variable that introduces discriminatory
patterns among classes within specific groups. The framework to address this includes methods
that assume that the classifier does not have access to the group information, and therefore propose
re-weighting high loss examples [29], and data sub-sampling to balance classes and groups [21].
Nevertheless, the methods mentioned above rely on the training and test class sets being identical,
making them unsuitable for direct application in zero-shot learning scenarios.

B Analysis of the Parametric Model

B.1 Derivation of the Loss

We begin by revisiting the parametric model introduced in §3. Let zi|ci ∼ N (ci,Σz), where
Σz = νzId, 0 < νz ∈ R, and Id is the d dimensional identity matrix. Classes ci are drawn according
to a Gaussian distribution ci ∼ N (0,Σa) corresponding to their type a ∈ {a1, a2}. Here, we use a
simpler (although less intuitive) notation for the values of the diagonal matrices Σa:

Σa1 = diag
( d0︷ ︸︸ ︷
ν0, . . . , ν0,

d1︷ ︸︸ ︷
ν1, . . . , ν1,

d2︷ ︸︸ ︷
ν2, . . . , ν2

)
,

Σa2 = diag
(
ν0, . . . , ν0 , ν2, . . . , ν2, ν1, . . . , ν1

)
,

where 0 < ν2 < νz < ν0 < ν1.

We consider a weight representations g(z) = Wz, where W is a diagonal matrix with diagonal
w ∈ Rd.

Since Σz is of full rank, it suffices to consider the no-hinge version of the contrastive loss, that is

ℓ̃ (zi, zj , yij ; dg) := yij ∥W (zi − zj)∥4 + (1− yij)
(
m− ∥W (zi − zj)∥2

)2
, (12)

where dg (zi, zj) := ∥g (zi − zj)∥2 = ∥W (zi − zj)∥2 (∥ · ∥ denotes the Euclidean norm4).

For a balanced sample of positive and negative examples, the expected loss is given by

E
[
ℓ̃ (zi, zj , yij ; dg)

]
=

1

2
Eyij=1

[
∥W (zi − zj)∥4

]
+

1

2
Eyij=0

[
m2 − 2m ∥W (zi − zj)∥2 + ∥W (zi − zj)∥4

]
. (13)

To calculate the expression above, we begin by proving the following lemma:

Lemma 1. Let µ ∈ Rd be a random variable and let t|µ ∼ N (µ,Σ). If µ ≡ 0 (constant), then

1. E ∥t∥4 = 2 tr(Σ2) + tr2(Σ) .

If µ ∼ N (0,Σµ), then

2. E ∥t∥2 = tr(Σ) + tr(Σµ) ,

3. E ∥t∥4 = 2 tr(Σ2) + 4 tr(ΣΣµ) + tr2(Σ) + 2 tr(Σ) tr(Σµ) + 2 tr(Σ2
µ) + tr2(Σµ) .

4Squared distance is selected for its simplicity in computing the expected value of even powers of the
Euclidean norm of Gaussian variables.
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Proof. For any random variable u ∈ Rd, such that u ∼ N (µu,Σu), and any symmetric matrix A,
we have

Eu[uTAu] = tr(AΣu) + µTuAµu, (14)

Eu[uTAu]2 = 2 tr
(
(AΣu)

2
)
+ 4µTuAΣuAµu +

(
tr(AΣu) + µTuAµu

)2
(15)

(see, for example, Thm. 3.2b.2 in [31]).

First, letting µu = 0, Σu = Σ and A = Id in (15) we get

E ∥t∥4 = E[tT t]2 = 2 tr(Σ2) + tr2(Σ). (16)

Now, assume that µ ∼ N (0,Σµ). From (14) we get Eµ ∥µ∥2 = Eµ[µTµ] = tr(Σµ), and thus

E ∥t∥2 = Eµ
[
Et|µ[tT t | µ]

]
= Eµ

[
tr(Σ) + µTµ

]
= tr(Σ) + tr(Σµ). (17)

Similarly, from (15) we have

E ∥t∥4 = Eµ
[
Et|µ[[tT t]2 | µ]

]
= 2 tr(Σ2) + 4Eµ[µTΣµ] + tr2(Σ) + 2 tr(Σ)Eµ ∥µ∥2 +Eµ ∥µ∥4.

(18)
By substituting A = Σ in (14) we get Eµ[µTΣµ] = tr(ΣΣµ), and from (15) we have

Eµ ∥µ∥4 = 2 tr(Σ2
µ) + tr2(Σµ). (19)

Therefore,

E ∥t∥4 = 2 tr(Σ2) + 4 tr(ΣΣµ) + tr2(Σ) + 2 tr(Σ) tr(Σµ) + 2 tr(Σ2
µ) + tr2(Σµ). (20)

Note that W (zi − zj) ∼ N (µ,Σ), with µ =W (ci − cj) and Σ = 2νzW
TW .

If yij = 1, then zi and zj are from the same class, meaning that ci = cj and thus µ = 0. Therefore,
by Lemma 1.(1) we have

Eyij=1 ∥W (zi − zj)∥4 = 2 tr
(
Σ2
)
+ tr2 (Σ)

= 2 · 4ν2z tr
([
WTW

]2)
+ 4ν2z tr

2
(
WTW

)
= 8ν2z

d∑
i=1

w4
i + 4ν2z

(
d∑
i=1

w2
i

)2

. (21)

However, for pairs from different classes, that is, when yij = 0, the mean µ is itself a Gaussian
random variable distributed according to N (0,Σµ), where

Σµ =


WT (2Σa1)W ci, cj are both of type a1
WT (2Σa2)W ci, cj are both of type a2
WT (Σa1 +Σa2)W ci, cj are of different types .

(22)

Therefore, by Lemma 1.(2) we have

Eyij=0 ∥W (zi − zj)∥2 = Eyij=0 [tr (Σµ) + tr (Σ)] = Eyij=0 [tr (Σµ)] + tr (Σ)

= ρ2 tr
(
2WTΣa1W

)
+ (1− ρ)2 tr

(
2WTΣa2W

)
+ 2ρ(1− ρ) tr

(
WT (Σa1 +Σa2)W

)
+ tr (Σ)

= 2

[
(ν0 + νz)

d0∑
i=1

w2
i + (α1 + νz)

d0+d1∑
i=d0+1

w2
i + (α2 + νz)

d∑
i=d0+d1+1

w2
i

]
,

(23)
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where

α1 := ρ2ν1 + (1− ρ)2ν2 + ρ(1− ρ) (ν1 + ν2) = ρν1 + (1− ρ) ν2,
α2 := ρ2ν2 + (1− ρ)2ν1 + ρ(1− ρ) (ν1 + ν2) = ρν2 + (1− ρ) ν1,
β1 := 2ρ2ν21 + 2(1− ρ)2ν22 + ρ(1− ρ) (ν1 + ν2)

2
,

β2 := 2ρ2ν22 + 2(1− ρ)2ν21 + ρ(1− ρ) (ν1 + ν2)
2
. (24)

By Lemma 1.(3) we have

Eyij=0 ∥w (zi − zj)∥4 =Eyij=0

[
2 tr

(
Σ2
)
+ 4 tr (ΣΣµ) + tr2(Σ) + 2 tr (Σ) tr (Σµ)

+2 tr
(
Σ2
µ

)
+ (tr (Σµ))

2
]

=2 tr(Σ2) + 4Eyij=0[tr(ΣΣµ)] + tr2(Σ) + 2 tr(Σ)Eyij=0[tr(Σµ)]

+ 2Eyij=0[tr(Σ
2
µ)] + Eyij=0[tr

2(Σµ)], (25)

where

Eyij=0 [tr (ΣΣµ)] =2νz tr
(
WTW

[
2ρ2WTΣa1W + 2(1− ρ)2WTΣa2W

+ 2ρ(1− ρ)WT (Σa1 +Σa2)W
])

=4νz

[
ν0

d0∑
i=1

w4
i + α1

d0+d1∑
i=d0+1

w4
i + α2

d∑
i=d0+d1+1

w4
i

]
; (26)

Eyij=0 [tr (Σµ)] =ρ
2 tr
(
2WTΣa1W

)
+ (1− ρ)2 tr

(
2WTΣa1W

)
+ 2ρ(1− ρ) tr

(
WT (Σa1 +Σa2)W

)
=2

[
ν0

d0∑
i=1

w2
i + α1

d0+d1∑
i=d0+1

w2
i + α2

d∑
i=d0+d1+1

w2
i

]
, r (27)

and so

tr (Σ)Eyij=0 [tr (Σµ)] = 4νz

(
d∑
i=1

w2
i

)[
ν0

d0∑
i=1

w2
i + α1

d0+d1∑
i=d0+1

w2
i + α2

d∑
i=d0+d1+1

w2
i

]
; (28)

Eyij=0

[
tr
(
Σ2
µ

)]
=ρ2 tr

(
(2WTΣa1W )2

)
+ (1− ρ)2 tr

(
(2WTΣa2W )2

)
+ 2ρ(1− ρ) tr

(
(WT (Σa1 +Σa2)W )2

)
=2

[
2ν20

d0∑
i=1

w4
i + β1

d0+d1∑
i=d0+1

w4
i + β2

d∑
i=d0+d1+1

w4
i

]
; (29)

and similarly

Eyij=0

[
tr2 (Σµ)

]
=2

[
2ν20

(
d0∑
i=1

w2
i

)2

+ β1

(
d0+d1∑
i=d0+1

w2
i

)2

+ β2

(
d∑

i=d0+d1+1

w2
i

)2

+ 4γ0,1

d0∑
i=1

w2
i

d0+d1∑
i=d0+1

w2
i + 4γ0,2

d0∑
i=1

w2
i

d∑
i=d0+d1+1

w2
i

+ 4γ1,2

d0+d1∑
i=d0+1

w2
i

d∑
i=d0+d1+1

w2
i

]
, (30)
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where we denote for short

γ0,1 := ρ2ν0ν1 + (1− ρ)2ν0ν2 + ρ(1− ρ)ν0 (ν1 + ν2) ,

γ0,2 := ρ2ν0ν2 + (1− ρ)2ν0ν1 + ρ(1− ρ)ν0 (ν1 + ν2) ,

γ1,2 := ρ2ν1ν2 + (1− ρ)2ν1ν2 +
1

2
ρ(1− ρ) (ν1 + ν2)

2
. (31)

Finally, due to symmetry, at the optimal solution we have

wi =


u0 0 ≤ i ≤ d0
u1 d0 + 1 ≤ i ≤ d0 + d1
u2 d0 + d1 + 1 ≤ i ≤ d,

(32)

and by combining these results, we get

E
[
ℓ̃ (zi, zj , yij ; dg)

]
= d0u

4
0

(
8ν2z + 8νzν0 + 4ν20 + 2ν20d0

)
+ d1u

4
1

(
8ν2z + 8νzα1 + 2β1 + β1d1

)
+ d2u

4
2

(
8ν2z + 8νzα2 + 2β2 + β2d2

)
− 2d0u

2
0 (ν0 + νz)− 2d1u

2
1 (α1 + νz)− 2d2u

2
2 (α2 + νz)

+ 4ν2z
(
d0u

2
0 + d1u

2
1 + d2u

2
2

)2
+

1

2
m

+ 4νz
(
d0u

2
0 + d1u

2
1 + d2u

2
2

) [
ν0d0u

2
0 + α1d1u

2
1 + α2d2u

2
2

]
+ 4γ0,1d0d1u

2
0u

2
1 + 4γ0,2d0d2u

2
0u

2
2 + 4γ1,2d1d2u

2
1u

2
2. (33)

B.2 Analysis of the Optimal Solution (Proof of Proposition 1)

Proposition 1 shows that when d1 and d2 are relatively similar, the optimal solution on the training
distribution, assigns more weight to components with high variance in the training data than to those
with high variance in the shifted test distribution.

We begin by defining the required condition on d1 and d2. Denote

ψ1 := 2ν2z + 2νzα1 + β1

ψ2 := 2ν2z + 2νzα2 + β2

η01 := 4ν2z + 2νz (α1 + ν0) + 2γ0,1

η02 := 4ν2z + 2νz (α2 + ν0) + 2γ0,2

η12 := 4ν2z + 2νz (α1 + α2) + 2γ1,2. (34)

Then for α, β, γ values as in equations 24 and 31, we define

hl (ρ, νz, ν0, ν1, ν2) :=
ψ1

ψ2

(α2 + νz)

(α1 + νz)
, hu (ρ, νz, ν0, ν1, ν2) :=

ψ1

ψ2

η02
η01

, (35)

and the corresponding condition

hl (ρ, νz, ν0, ν1, ν2) <
d2 + 2

d1 + 2
< hu (ρ, νz, ν0, ν1, ν2) . (36)

While this condition is sufficient, it is not necessary.Values of ρ, νz, ν0, ν1, ν2 and d1, d2 that satisfy
35 provide an example requiring only a simple analysis, without a full characterization of the optimal
solution, for the failure of optimization over the training distribution. However, such failures can
occur for additional parameter values, and the full characterization is provided in Appendix B.3.
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Proof. Without loss of generality assume m=1. Then,

∂E
[
ℓ̃ (zi, zj , yij ; dg)

]
∂u20

= 2d0u
2
0

(
8ν2z + 8νzν0 + 4ν20 + 2ν20d0

)
− 2d0 (ν0 + νz)

+ 8d0ν
2
z

(
d0u

2
0 + d1u

2
1 + d2u

2
2

)
+ 4d0νz

(
ν0d0u

2
0 + α1d1u

2
1 + α2d2u

2
2

)
+ 4d0νzν0

(
d0u

2
0 + d1u

2
1 + d2u

2
2

)
+ 4γ0,1d0d1u

2
1 + 4γ0,2d0d2u

2
2 (37)

and by setting the partial derivative to zero we get

2u20 (2 + d0)
(
2ν2z + 2νzν0 + ν20

)
=2d1u

2
1

(
2ν2z + νz (α1 + ν0) + γ0,1

)
+2d2u

2
2

(
2ν2z + νz (α2 + ν0) + γ0,2

)
− (ν0 + νz) . (38)

Therefore,

u20 =
ν0 + νz − η01d1u21 − η02d2u22
2 (2 + d0) (2ν2z + 2νzν0 + ν20)

. (39)

and similarly

u21 =
(α1 + νz)− η01d0u20 − η12d2u22
2 (2 + d1) (2ν2z + 2νzα1 + β1)

(40)

u22 =
(α2 + νz)− η02d0u20 − η12d1u21
2 (2 + d2) (2ν2z + 2νzα2 + β2)

. (41)

Hence,

d1u
2
1 − d2u22 =

(2 + d2)
(
2ν2z + 2νzα2 + β2

) [
d1 (α1 + νz)− η01d1d0u20 − η12d1d2u22

]
2 (2 + d1) (2 + d2) (2ν2z + 2νzα1 + β1) (2ν2z + 2νzα2 + β2)

−
(2 + d1)

(
2ν2z + 2νzα1 + β1

) [
d2 (α2 + νz)− η02d2d0u20 − η12d1d2u21

]
2 (2 + d1) (2 + d2) (2ν2z + 2νzα1 + β1) (2ν2z + 2νzα2 + β2)

. (42)

Denoting

ξ := 2 (2 + d1) (2 + d2)
(
2ν2z + 2νzα1 + β1

) (
2ν2z + 2νzα2 + β2

)
= 2 (2 + d1) (2 + d2)ψ1ψ2

we have

d1u
2
1

[
1− 1

ξ
(2 + d1)ψ1η12

]
=d2u

2
2

[
1− 1

ξ
(2 + d2)ψ2η12

]
+
1

ξ
(2 + d2)ψ2 (α1 + νz)−

1

ξ
(2 + d1)ψ1 (α2 + νz)

+d0u
2
0

[
1

ξ
(2 + d1)ψ1η02 −

1

ξ
(2 + d2)ψ2η01

]
and therefore

d1u
2
1 − d2u22 =d2u

2
2

(
1− 1

ξ (2 + d2)ψ2η12

1− 1
ξ (2 + d1)ψ1η12

− 1

)

+
1

2 (2 + d1) (2 + d2)ψ1ψ2

(2 + d2)ψ2 (α1 + νz)− (2 + d1)ψ1 (α2 + νz)

1− 1
ξ (2 + d1)ψ1η12

+d0u
2
0

1

2 (2 + d1) (2 + d2)ψ1ψ2

[
(2 + d1)ψ1η02

1− 1
ξ (2 + d1)ψ1η12

− (2 + d2)ψ2η01

1− 1
ξ (2 + d1)ψ1η12

]
.

(43)
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Denote

∆ =(2 + d1)
[
d2u

2
2η12ψ1 − (α2 + νz)ψ1 + d0u

2
0ψ1η02

]
− (2 + d2)

[
d2u

2
2η12ψ2 − (α1 + νz)ψ2 + d0u

2
0ψ2η01

]
, (44)

and thus

d1u
2
1 − d2u22 =

1

2 (2 + d1) (2 + d2)ψ1ψ2

1

1− 1
ξ (2 + d1)ψ1η12

∆. (45)

Note that for d1, d2 such that


(2 + d1)ψ1 − (2 + d2)ψ2 > 0 ⇒ d2+2

d1+2 <
ψ1

ψ2

(2 + d2) (α1 + νz)ψ2 − (2 + d1) (α2 + νz)ψ1 > 0 ⇒ d2+2
d1+2 >

ψ1

ψ2

(α2+νz)
(α1+νz)

(2 + d1)ψ1η02 − (2 + d2)ψ2η01 > 0 ⇒ d2+2
d1+2 <

ψ1

ψ2

η02
η01

we have ∆ > 0. Since η02
η01

< 1, this reduces to the last two conditions and therefore, in particular for

ψ1

ψ2

(α2 + νz)

(α1 + νz)
<
d2 + 2

d1 + 2
<
ψ1

ψ2

η02
η01

(46)

we have ∆ > 0. Additionally, note that

1− 1

ξ
(2 + d1)ψ1η12 = 1− η12

2 (2 + d1) (2 + d2)ψ1ψ2
(2 + d1)ψ1 =

2 (2 + d2)ψ2 − η12
2 (2 + d2)ψ2

(47)

and thus 1− 1
ξ (2 + d1)ψ1η12 > 0 iff

d2 + 2 >
1

2

η12
ψ2

. (48)

Combining these conditions reduces to

ψ1

ψ2

(α2 + νz)

(α1 + νz)
<
d2 + 2

d1 + 2
<
ψ1

ψ2

η02
η01

, (49)

and therefore, for νz, ν0, ν1, ν2, d1, d2 satisfying

ψ1

ψ2

(α2 + νz)

(α1 + νz)
<
d2 + 2

d1 + 2
<
ψ1

ψ2

η02
η01

. (50)

we have d1u21 − d2u22 > 0.5

5Similarly, the condition obtained for 1 − 1
ξ
(2 + d1)ψ1η12 < 0 and ∆ < 0 is ψ1

ψ2
(2 + d1) < 2 + d2 <

ψ1
ψ2

(α2+νz)
(α1+νz)

(2 + d1), which cannot be achieved since α2 < α1.

20

89232https://doi.org/10.52202/079017-2831



B.3 Explicit Expression for the Optimal Representation

In order to derive the optimal representation, we differentiate the expected loss with respect to the
squared values in the diagonal of W , that is, w2

i :

∂

∂ (w2
i )

tr
(
Σ2
)
= 8ν2zw

2
i (51)

∂

∂ (w2
i )

tr2 (Σ) = 8ν2z

d∑
j=1

w2
j (52)

∂

∂ (w2
i )

Ey=0 [tr (ΣΣµ)] =


8νzν0w

2
i , 1 ≤ i ≤ d0

8νzα1w
2
i , d0 + 1 ≤ i ≤ d0 + d1

8νzα2w
2
i , d0 + d1 + 1 ≤ i ≤ d

(53)

∂
[
tr(Σ)Ey=0[tr Σµ]

]
∂ (w2

i )
= (54)

4νz

[
2ν0

d0∑
j=1

w2
j + (α1 + ν0)

d0+d1∑
j=d0+1

w2
j + (α2 + ν0)

d∑
j=d0+d1+1

w2
j

]
1 ≤ i ≤ d0

4νz

[
(ν0 + α1)

d0∑
j=1

w2
j + 2α1

d0+d1∑
j=d0+1

w2
j + (α2 + α1)

d∑
j=d0+d1+1

w2
j

]
d0 + 1 ≤ i ≤ d0 + d1

4νz

[
(ν0 + α2)

d0∑
j=1

w2
j + (α1 + α2)

d0+d1∑
j=d0+1

w2
j + 2α2

d∑
j=d0+d1+1

w2
j

]
d0 + d1 + 1 ≤ i ≤ d

(55)

∂

∂ (w2
i )

Ey=0

[
tr
(
Σ2
µ

)]
=


8ν20w

2
i 1 ≤ i ≤ d0

4β1w
2
i d0 + 1 ≤ i ≤ d0 + d1

4β2w
2
i d0 + d1 + 1 ≤ i ≤ d

(56)

∂

∂ (w2
i )

Ey=0

[
tr2 (Σµ)

]
= (57)

8ν20
d0∑
j=1

w2
j + 8γ0,1

d0+d1∑
j=d0+1

w2
j + 8γ0,2

d∑
j=d0+d1+1

w2
j 1 ≤ i ≤ d0

8γ0,1
d0∑
j=1

w2
j + 4β1

d0+d1∑
j=d0+1

w2
j + 8γ1,2

d∑
j=d0+d1+1

w2
j d0 + 1 ≤ i ≤ d0 + d1

8γ0,2
d0∑
j=1

w2
j + 8γ1,2

d0+d1∑
j=d0+1

w2
j + 4β2

d∑
j=d0+d1+1

w2
j d0 + d1 + 1 ≤ i ≤ d

(58)

Combining these results, we get for 1 ≤ i ≤ d0

∂0 :=
∂

∂ (w2
i )
ℓ̃ (zi, zj , yij ; dg) =

1

2

2 · 8ν2zw2
i + 8ν2z

d∑
j=1

w2
j

−m [2 (ν0 + νz)]

+ 8ν2zw
2
i + 4ν2z

d∑
j=1

w2
j + 2 · 8νzν0w2

i

+ 4νz

2ν0 d0∑
j=1

w2
j + (α1 + ν0)

d0+d1∑
j=d0+1

w2
j + (α2 + ν0)

d∑
j=d0+d1+1

w2
j


+ 8ν20w

2
i +

1

2

8ν20 d0∑
j=1

w2
j + 8γ0,1

d0+d1∑
j=d0+1

w2
j + 8γ0,2

d∑
j=d0+d1+1

w2
j

 ,
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for d0 + 1 ≤ i ≤ d0 + d1

∂1 :=
∂

∂ (w2
i )
ℓ̃ (zi, zj , yij ; dg) =

1

2

2 · 8ν2zw2
i + 8ν2z

d∑
j=1

w2
j

−m [2 (α1 + νz)]

+ 8ν2zw
2
i + 4ν2z

d∑
j=1

w2
j + 2 · 8νzα1w

2
i

+ 4νz

(ν0 + α1)

d0∑
j=1

w2
j + 2α1

d0+d1∑
j=d0+1

w2
j + (α2 + α1)

d∑
j=d0+d1+1

w2
j


+ 4β1w

2
i +

1

2

8γ0,1 d0∑
j=1

w2
j + 4β1

d0+d1∑
j=d0+1

w2
j + 8γ1,2

d∑
j=d0+d1+1

w2
j

 ,
and similarly for d0 + d1 + 1 ≤ i ≤ d

∂2 :=
∂

∂ (w2
i )
ℓ̃ (zi, zj , yij ; dg) =

1

2

2 · 8ν2zw2
i + 8ν2z

d∑
j=1

w2
j

−m [2 (α2 + νz)]

+ 8ν2zw
2
i + 4ν2z

d∑
j=1

w2
j + 2 · 8νzα2w

2
i

+ 4νz

(ν0 + α2)

d0∑
j=1

w2
j + (α1 + α2)

d0+d1∑
j=d0+1

w2
j + 2α2

d∑
j=d0+d1+1

w2
j


+ 4β2w

2
i +

1

2

8γ0,2 d0∑
j=1

w2
j + 8γ1,2

d0+d1∑
j=d0+1

w2
j + 4β2

d∑
j=d0+d1+1

w2
j

 .
Thus, we can write for the symmetric solution

∂0 = −2m (ν0 + νz) + u20G0,0 + u21G0,1 + u22G0,2, (59)

∂1 = −2m (α1 + νz) + u20G1,0 + u21G1,1 + u22G1,2, (60)

∂2 = −2m (α2 + νz) + u20G2,0 + u21G2,1 + u22G2,2, (61)

where

G0,0 = 16ν2z + 8ν2zd0 + 16νzν0 + 8νzν0d0 + 8ν20 + 4v20d0

G0,1 = 8ν2zd1 + 4νz (α1 + ν0) d1 + 4γ0,1d1

G0,2 = 8ν2zd2 + 4νz (α2 + ν0) d2 + 4γ0,2d2

G1,0 = 8ν2zd0 + 4νz (ν0 + α1) d0 + 4γ0,1d0

G1,1 = 16ν2z + 8ν2zd1 + 16νzα1 + 8νzα1d1 + 4β1 + 4β1d1

G1,2 = 8ν2zd2 + 4νz (α2 + α1) d2 + 4γ1,2d2

G2,0 = 8ν2zd0 + 4νz (ν0 + α2) d0 + 4γ0,2d0

G2,1 = 8ν2zd1 + 4νz (α1 + α2) d1 + 4γ1,2d1

G2,2 = 16ν2z + 8ν2zd2 + 16νzα2 + 8νzα2d2 + 4β2 + 4β2d2.

Therefore, the optimal representation is given by the solution to the following set of linear equations: u20
u21
u22

 = 2mG−1

(
ν0 + νz
α1 + νz
α2 + νz

)
, (62)
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Table 1: Simulation results. For each mixture ratio we report the mean AUC and the standard
deviation across 10 repetitions of the experiment. Results are reported for in-distribution scenario
(PC), and class distribution shift (QC). Best result is marked in bold.

ρ = 0.05 ρ = 0.1 ρ = 0.3

In Distribution

ERM 0.948±0.013 0.948±0.007 0.913±0.017
Hier 0.945±0.013 0.949±0.010 0.917±0.016
IRM 0.945±0.013 0.947±0.009 0.909±0.018

CLOvE 0.944±0.008 0.949±0.011 0.911±0.020
VarREx 0.949±0.013 0.948±0.009 0.910±0.022
VarAUC 0.950±0.017 0.947±0.008 0.912±0.022

Distribution Shift

ERM 0.731±0.007 0.808±0.015 0.883±0.014
Hier 0.727 ± 0.009 0.810 ± 0.014 0.882 ± 0.020
IRM 0.724±0.017 0.806±0.019 0.880±0.023

CLOvE 0.745±0.020 0.807±0.018 0.878±0.020
VarREx 0.729±0.005 0.811±0.018 0.880±0.026
VarAUC 0.767±0.008 0.838±0.019 0.881 ±0.024

where

G =

(
G0,0 G0,1 G0,2

G1,0 G1,1 G1,2

G2,0 G2,1 G2,2

)
. (63)

C Comparison to OOD Environment Balancing Methods

Previous methods in the field of OOD generalization (see §2) exhibit several key differences compared
to our setting: (i) They address closed-world classification, whereas in zero-shot learning, new classes
are encountered. (ii) The presumed shift is typically in the conditional distribution of the data given
the class (e.g., the background given the class being a cow or a camel), whereas we consider shifts in
the class distribution P (c). (iii) Existing methods often assume that training data comes from various
data environments, providing explicit information about how the distribution might shift, while we
assume the attribute A causing the shift is unknown.

Despite these differences, in this work we recast class distribution shifts in zero-shot learning into
environment balancing OOD setting, by making the following observations. First, when posed as
verification methods, zero-shot classifiers in fact perform a binary (closed-world) classification task,
predicting whether a pair of data points xij := (zi, zj) belong to the same class yij = 1ci=cj .

Note that the distribution of possible pairs xij = (zi, zj) given the label yij changes with variations in
class attribute probabilities, and therefore across synthetic environments S. Thus, in this formulation
the shift occurs in the conditional distribution of the data given the class p(xij |yij).
Another distinction lies in data availability: in the setting of closed-world OOD environment balanc-
ing methods, a main drawback is the challenge of securing a sufficient number of diverse training
environments. This is essential to ensure that a representation performing well on observed environ-
ments, will likely perform similarly on unobserved ones. In contrast, our framework allows for the
construction of many synthetic environments via sampling.

D Additional Empirical Results

D.1 Additional Simulation Results

Simulations Exact mean and standard deviations matching Figure 4 are provided in table 1.

AUC progress during training iterations and feature importance results for the majority class propor-
tion of ρ = 0.1 were shown in the main text. Here, we provide analogous results for ρ = 0.05 and
ρ = 0.3. These are summarized in Figure 8.
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Figure 7: Additional simulation results. Top row: Additional dimensions of the representation.
Middle row: additional rations of the attribute variances. Bottom row: unbalanced sets of positive and
negative examples. Bars show mean AUC values on the test set across 5 repetitions of the experiment,
whiskers show ± standard deviation.

For ρ = 0.05 the convergence results are similar to those obtained for ρ = 0.1 – under distribution-
shift the two variance based methods show significantly better results compared to other approaches.
Our algorithm with the VarREx penalty achieves high AUC values more quickly than the VarAUC
penalty, but the VarAUC penalty attains higher accuracy overall. The CLOvE penalty achieves
improvement over ERM, but smaller compared to the variance based methods. IRM converges to the
same AUC as ERM. In contrast, on in-distribution data all methods perform well.

For ρ = 0.3 the distribution shift is milder and therefore ERM performs very well (0.902 AUC
is achieved on distribution shift scenario compared to 0.932 on in-distribution setting). Therefore
encouragement of similar performance across different data subsets does not benefit the learning
process. Slightly better result is achieved with VarREx penalty (0.911).

The analysis of feature importance for ρ = 0.05 yields results similar to those for ρ = 0.1. At
ρ = 0.3 the analysis remains mostly unchanged, except that VarREx assigns higher importance to
features corresponding to ν0 (0-5) compared to VarAUC, while in more extreme distribution shifts
VarAUC assigns higher importance to the shared features.

D.2 Additional Representation Sizes, Noise Ratios and Positive Proportions

In §5.1 we explored varying values of ρ in a setting where ν+ = 2, ν− = 0.1 ( ν
+

ν− = 20). We
now focus on the case of ρ = 0.1 and examine additional representation sizes p, and noise ratios
( ν

+

ν− ∈ {10, 40}). Additionally, we examine the original setting where p = 16 and ν+ = 2, ν− = 0.1,
with varying proportions of positive and negative examples.

The results in Figure 7 show that in all the additional settings our methods provides statistically
significant improvement over the baseline. FDR adjusted p-values for multiple comparisons are
provided in Table 2.

24

89236https://doi.org/10.52202/079017-2831



Table 2: FDR adjusted p-values for the results reported in Figure 7

Experiment IRM CLOvE VarREx VarAUC

p = 4 0.7339 0.0112 0.0003 0.0001
p = 8 0.8552 0.0005 0.0003 0.0001

ν1 = 2, ν2 = 0.2 0.9995 0.9995 0.0002 <0.0001
ν1 = 4, ν2 = 0.1 0.9989 0.9971 0.0041 0.0041

30% negative 0.9939 0.9939 <0.0001 <0.0001
70% negative 1.0 1.0 <0.0001 0.0002

Experiments In Table 3, we provide the means and standard deviations for the experiments detailed
in §5.2. Additionally, Table 4 presents the adjusted p-values for assessing the performance increase
over the ERM baseline achieved by our algorithm with the explored penalties.

Table 3: Experimental results. Mean and standard deviation of AUC values over 5 repetitions are
reported for in distribution scenario (PC), and class distribution shift (QC). Best result is marked in
bold.

IN DISTRIBUTION DISTRIBUTION SHIFT

CELEBA

ERM 0.826 ± 0.001 0.666 ± 0.001
IRM 0.843 ± 0.009 0.659 ± 0.087

CLOVE 0.853 ± 0.002 0.677 ± 0.012
VARREX 0.834 ± 0.002 0.676 ± 0.004
VARAUC 0.836 ± 0.002 0.697 ± 0.027

ETHEC

ERM 0.869 ± 0.004 0.786 ± 0.030
IRM 0.879 ± 0.004 0.795 ± 0.034

CLOVE 0.888 ± 0.004 0.800 ± 0.040
VARREX 0.877 ± 0.007 0.805 ± 0.033
VARAUC 0.872 ± 0.004 0.838 ± 0.049

Table 4: Adjusted p-values for one-sided paired t-tests for testing the improvements over the ERM
baseline.

CELEBA ETHEC

HIERARCHICAL 0.0154 0.7677
IRM 0.6117 0.1290

CLOVE 0.0119 0.0383
VARREX < 0.0001 0.0383
VARAUC 0.0058 0.0383

D.3 Analysis of Loss Values

Here we present an analysis of the unpenalized loss after convergence in both real-data experiments.
We performed separate analyses on pairs of data points from the dominant type during training
(majority), and those from the other type (minority). Additionally, we separated positive pairs (y = 1)
and negative pairs (y = 0). Figure 9 displays histograms illustrating the differences between losses
on the training set obtained with the representation learned using ERM (gERM), and those obtained
using our algorithm with VarAUC penalty (gVarAUC):

Diffij = ℓ(xij , yij ; dgERM) − ℓ(xij , yij ; dgVarAUC).

Positive values of the differences correspond to higher losses for ERM.

In both experiments, when examining negative pairs from the minority group, as shown in the top-left
histograms, most of the observed differences are positive. This indicates that the ERM losses for
these pairs are higher compared to the losses obtained for the representation trained with the VarAUC
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penalty. The disparities are smaller for the other three groups: majority negative pairs, minority
negative pairs, and minority positive pairs. Among these groups, ERM performs better on positive
pairs.
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Figure 8: Additional Simulation Results. Top row: ρ = 0.05, Bottom row: ρ = 0.3. Left: Average
AUC progress over 10 repetitions of the simulation. Solid lines correspond to performance on test
data (distribution shift scenario), dashed lines show performance on data sampled from the same
distribution as training data (in-distribution scenario). Right: Average feature importance results over
10 repetitions.
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Figure 9: Analysis of Loss Differences. Histograms of differences between ERM and our algorithm
with VarAUC penalty are shown for two experiments in separate sub-figures: (a) CelebA dataset,
(b) ETHEC dataset. The top rows show differences for negative pairs (y = 0), bottom ones show
differences for positive pairs (y = 1). In each sub-figure the left column corresponds to the minority
type and right one to the majority. A dotted black line marks a difference of 0. Positive values
correspond to higher losses for ERM.
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Figure 10: Sample Images from the CelebA Dataset. Top: a random sample of the training data with
95% non-blond people. Bottom: a random sample of the test data with 95% blond people.
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Figure 11: Sample Images from the ETHEC Dataset. Top: a sample of the the training data – 9
species of the Lycaenidae family and 1 from the Nymphalidae family. Bottom: a sample of the test
data where the proportion of the families is reversed. Nymphalidae species names are marked in bold.

F Implementation Details

A link to a permanent repository with code to reproduce our results is included in the main text.

The data-related parameters of our experiments are described in the main text. In all our experiments
we used margin of m = 0.5 for the contrastive loss and Adam (Kingma & Ba, 2014) optimizer to
train all models.

For the CLOvE penalty we used a Laplacian kernel k(r, r′) = e
1

width −|r−r′| with width of 0.4 as
originally suggested by Kumar et al. (2018).

For optimization of the VarAUC objective we disregard the finite sample correction Ns−n
Ns−1 in the

implementation since n is very small compared to Ns. In practice, we minimize the standard
deviation instead of the variance in both variance based penalties, and the hyperparameters are
reported accordingly.

In our scenario where the attribute of interest is unknown, we generated a synthetic attribute for
hyperparameter selection using Principle Components (PC). We ranked examples based on their first
PC component values, classifying the top 10% as positive and the rest as negative. Hyperparameters
for all methods were chosen via grid-search in a single experiment repetition, ensuring robustness
against this synthetic attribute. Notably, the experiments themselves did not involve the PC attribute;
instead, they focused on dimension swapping in simulations and attributes like hair color or species
family in CelebA and ETHEC experiments.

The grid search produced almost identical hyperparameters for all three ρ values. We observed that
performance converged to the same value when employing hyperparameters derived from cross-
validation for one ρ value, as those selected for another. Therefore, for simplicity we repeated
simulations using the same hyperparameters, determined based on the grid search results for ρ = 0.1
(the intermediate parameter value). Similarly, minimal differences in optimal learning rates were
observed among the methods within an experiment and therefore a shared learning rate was used
for each experiment. To emphasize the improvement of OOD methods over the ERM baseline, we
used the learning rate optimized for the ERM method. Large differences were observed in optimal
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regularization factors, and therefore these parameters (as well as method-specific parameters) were
not shared. All hyper-parameters are reported in Table 5.

All models were initialized with identical weights, and trained on identical data splits.

All the code in this work was implemented in Python 3.10. We used the TensorFlow 2.13
and TensorFlow Addons 0.21 packages. For evaluation we used the auc function from scikit-
learn 1.2. The CelebA dataset was loaded through TensorFlow Datasets 4.9 and pandas 1.5
was used to process the ETHEC dataset. Statistical tests were performed using ttest_rel and
false_discovery_control functions from scipy.stats 1.11.4. All figures were generated using
Matplotlib 3.7.

The IRM implementation was adapted from the source code of the paper, available at
https://github.com/facebookresearch/InvariantRiskMinimization.

We ran all experiments on a single A100 cloud GPU. For simulations, each full repetition of the
experiment (comparing all methods) required on average 2.06 hours. Each repetition on the ETHEC
dataset took 7.38 hours on average, and on the CelebA dataset 11.52 hours.

Table 5: Hyper Parameters.

ERM IRM CLOVE VARREX VARAUC

SIMULATIONS
LEARNING RATE η 0.01 0.01 0.01 0.01 0.01
REGULARIZATION FACTOR λ – 0.01 0.05 3.0 1.5
NETWORK WEIGHT REGULARIZER – 0.01 – – –

CELEBA
LEARNING RATE η 10−5 10−5 10−5 10−5 10−5

REGULARIZATION FACTOR λ – 0.1 0.085 0.01 0.2
NETWORK WEIGHT REGULARIZER – 0.01 – – –

ETHEC
LEARNING RATE η 10−3 10−3 10−3 10−3 10−3

REGULARIZATION FACTOR λ – 0.02 0.05 0.1 0.2
NETWORK WEIGHT REGULARIZER – 0.01 – – –
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes] ,
Justification: Both abstract and the introduction (last 2 paragraphs) accurately state the main
contributions of the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Main limitations are discussed in §6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: All assumptions are clearly stated and full proofs to the theoretical claims
appear in Appendix B
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All the details are provided in Section §5 and Appendix F.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: The datasets are publicly available and code implementing all our results is
submitted with the paper.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We specify all hyperparameters and training details in Appendix F.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We perform statistical testing to provide significance of our results and report
FDR adjusted p-values. For all reported results we include either error bars in the main
text, or when other visualizations are chosen we report means and standard deviations in
Appendix D.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: All resources including GPU information and run times are provided in
Appendix F.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The paper conforms with the provided code of ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This paper presents work whose goal is to advance the field of learning robust
data representations. It is not tied to any particular applications and therefore we do not see
an immediate risk for negative societal impact.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not release any new data or models.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The only asset used is the IRM implementation. The corresponding paper is
cited and we explicitly mention this in Appendix F, while providing also reference for the
code itself.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We do not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve human subjects and did not use crowd sourcing.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve human subjects and did not use crowd sourcing.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

35

89247 https://doi.org/10.52202/079017-2831

paperswithcode.com/datasets


• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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