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Abstract

Cryo-electron microscopy (cryo-EM) is a powerful technique for determining
high-resolution 3D biomolecular structures from imaging data. Its unique ability to
capture structural variability has spurred the development of heterogeneous recon-
struction algorithms that can infer distributions of 3D structures from noisy, unla-
beled imaging data. Despite the growing number of advanced methods, progress
in the field is hindered by the lack of standardized benchmarks with ground truth
information and reliable validation metrics. Here, we introduce CryoBench, a suite
of datasets, metrics, and benchmarks for heterogeneous reconstruction in cryo-EM.
CryoBench includes five datasets representing different sources of heterogeneity
and degrees of difficulty. These include conformational heterogeneity generated
from designed motions of antibody complexes or sampled from a molecular dynam-
ics simulation, as well as compositional heterogeneity from mixtures of ribosome
assembly states or 100 common complexes present in cells. We then analyze state-
of-the-art heterogeneous reconstruction tools, including neural and non-neural
methods, assess their sensitivity to noise, and propose new metrics for quantitative
evaluation. We hope that CryoBench will be a foundational resource for accelerat-
ing algorithmic development and evaluation in the cryo-EM and machine learning
communities. Project page: https://cryobench.cs.princeton.edu.

1 Introduction
Single particle cryo-electron microscopy (cryo-EM) is a widely used imaging technique for visual-
izing biomolecular complexes at near-atomic resolution. A major challenge in cryo-EM structure
determination is the task of reconstructing 3D density maps from an experimentally-derived dataset
of 2D images [1]. These images characteristically exhibit extremely low signal-to-noise ratios (SNR),
with unknown poses (3D orientations and 2D translations) of individual images, and there is often het-
erogeneity in both conformational and compositional aspects of the target protein complex (Fig. 1a).
Despite these challenges, cryo-EM holds significant promise due to its ability to capture structural
heterogeneity of intrinsic biological interest, which is typically inaccessible to structure prediction
tools such as AlphaFold [2, 3]. Consequently, numerous heterogeneous reconstruction methods have
been proposed in recent years to address these challenges [4, 5, 6, 7, 8, 9, 10].

Several state-of-the-art heterogeneous reconstruction methods leverage deep learning to capture
the structural heterogeneity through a continuous latent variable, allowing structural changes to be
represented as trajectories on a manifold [11, 12]. However, current research on heterogeneous
reconstruction methods has two main limitations: 1) the absence of common benchmarks comparable
to MNIST [13] or ImageNet [14] in computer vision that drove tremendous progress for the field and
2) the lack of metrics suitable for evaluation and comparison of methods.
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Figure 1: Overview of CryoBench. a) Image formation model. In cryo-EM, each imageXi captures
a molecule Vi projected at an unknown pose ϕi. A latent variable zi models the conformational space
V that describes the heterogeneity among the set of molecules {Vi}. b) Datasets. CryoBench includes
5 synthetic datasets of varying difficulty, characterized by heterogeneity arising from conformational
(i.e. shape) or compositional (i.e. identity) changes. c) Methods. Methods can be grouped into using
either a continuous latent variable z or discrete latent variable π for modeling heterogeneity. Hidden
variables assumed to be known are shown in gray. Volumes are represented as a neural field (NF),
voxel array (VA), neural volume (NV), or tetrahedral mesh (TM). Generative models are colored
blue for nonlinear neural methods; orange for linear generative models, pink for mixture models; and
green for density-preserving motion models. d) Metrics. Summary of metrics used to assess both
latent inference and volume reconstruction quality.

Previous methods development has relied on various types of datasets for benchmarking and validation.
These include: a) real datasets known to have sensible conformal trajectories, allowing experts
to perform qualitative benchmarking by visually assessing reconstructed volumes, b) datasets of
synthetic blob-like volumes used to demonstrate that models’ conformational latent spaces can
represent simple 1D and 2D motions as parameterized motions, and c) pseudo-real motions, where
real molecular structures are used, but simple motions such as rotations are applied to the subregions
of the structure to generate a continuum of conformations. The lack of realistic and common
benchmarks poses challenges in training models whose performance can generalize well across
different datasets or in comparing existing heterogeneous reconstruction methods without relying
on expert intuition. Moreover, because each method has been applied to different datasets designed
to showcase different types of heterogeneity, practitioners cannot compare and determine the most
promising method for their application. Finally, since these methods are mostly tested on real datasets
with no ground truth, it’s hard to assess whether a given method produces accurate results on a new
dataset, or how much to trust its scientific conclusions.

In this work, we design new challenging datasets and evaluation metrics for the heterogeneous cryo-
EM reconstruction task. Our datasets contain a range of types of heterogeneity and are synthetically
generated in order to have ground truth poses, conformational states, and imaging parameters for
quantitative evaluation. Our datasets range from having simple heterogeneity for diagnostic use to
more challenging forms of heterogeneity for motivating new methods in cryo-EM (Fig. 1b). Using
these datasets, we conduct extensive experiments on existing state-of-the-art methods (Fig. 1c). We
introduce metrics for both qualitative and quantitative comparison of methods (Fig. 1d) and suggest
new directions for methods development. CryoBench, including tools for dataset generation and
model evaluation, is available at https://cryobench.cs.princeton.edu/.

2 Background and Related Work
Heterogeneous reconstruction. Over the past decade, advances in cryo-EM technology have led to
major increases in data quality, enabling atomic resolution structure determination of static protein
structures [15]. The ability to image heterogeneous systems both presents a unique opportunity for
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structural biology, and poses a major computational challenge for 3D reconstruction. To address
this opportunity, there has recently been an explosion of methods for heterogeneous cryo-EM
reconstruction [4, 6, 7, 16, 8, 9, 17, 18, 19, 10, 20, 21, 22, 23, 24, 25]. Methods take a variety of
approaches, with differences in volume representation (real, Fourier; explicit voxel grids, meshes,
or implicit neural representations; Gaussian kernels in coordinate spaces; other basis functions),
inference approach (statistical inference approaches, end-to-end gradient-based methods, minimax
optimization), use of physically informed priors, and assumed inputs to the task [11, 12]. However,
these methods typically use different datasets to illustrate their algorithm’s efficacy, making it difficult
to judge which methods outperform the others, and for which cases.

Past Benchmarks. While standard benchmarks in this field have yet to be established, there are some
consistent datasets that have been used. For example, an experimental dataset that has been used
for compositional heterogeneity is the different assembly states of the large subunit of a bacterial
ribosome (EMPIAR-10076) [26], and a commonly used real dataset for conformational heterogeneity
is the pre-catalytic spliceosome (EMPIAR-10180) [27]. However, it is also common to generate
simulated cryo-EM datasets for which a ground truth is known [28, 6, 29, 30], but so far these are
generated ad hoc for a given study, and not taken from a standard benchmark dataset for which
the performance of other methods is known. There have been attempts at benchmark studies for
heterogeneity where many methods are applied to a single dataset [31, 32], but this approach does
not address performance across different types of heterogeneity such as conformational motions or
compositional changes. Ideally, a common set of diverse benchmark datasets can be used by the
community to compare different methods. Here, we focus on synthetic but challenging datasets
where ground truth information is available for all latent variables, allowing for rigorous, quantitative
benchmarking.

Metrics. In addition to benchmark datasets, metrics with which to assess heterogeneity methods
themselves are also lacking. Metrics for assessing homogeneous 3D reconstruction methods, where
only a single volume is achieved from a cryo-EM image stack, are more mature and often incorporate
the Fourier shell correlation (FSC) to judge resolution [33, 34], and a gold standard approach for
computing FSC [35] has been widely adopted by the community (though this has its own degree
of controversy [36]). However, when it comes to evaluating heterogeneous reconstructions, metrics
become much less straightforward, and the standard FSC-based approach is flawed as it provides
a global assessment of resolution and is typically performed on independent half-sets and thus is
only a self-consistency measure. Recent work has introduced new metrics either to improve priors
for variational autoencoders or to disentangle latent embeddings based on ground truth [37, 38, 39].
However, analysis metrics that can compare different methods remain challenging. Here, we choose
to use metrics that depend on knowing ground truth from synthetic datasets, which either use
(a) a distributional volume reconstruction quality metric based on the FSC or (b) applying local
neighborhood comparisons and clustering accuracy on latent representations [40, 41].

3 CryoBench Design
We generate CryoBench datasets by designing an ensemble of atomic models to serve as ground truth
structures, followed by simulating the cryo-EM forward process to generate synthetic images.

3.1 Image Formation Model
Cryo-EM density volumes are first generated from each atomic model by simulating the electron
scattering potential of each atom. From the volumes, we generate cryo-EM images Ii following the
standard image formation model in the Fourier domain:

Ii = CiPϕV + ηi (1)

where Ci is the Contrast Transfer Function (CTF), Pϕ is a slice operator corresponding to an
tomographic projection of the volume V according to the pose ϕ = (R, t) ∈ SO(3)× R2, and ηi is
additive white Gaussian noise. Images are sampled on a D ×D grid with D = 128 by default unless
otherwise specified. Additional details for each dataset are below with full dataset generation details
given in Appendix A.

3.2 Conformational Heterogeneity
IgG-1D. We use an atomic model of the human immunoglobulin G (IgG) antibody complex (PDB:
1HZH). Conformational heterogeneity is produced by rotating a dihedral angle connecting one of
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Figure 2: IgG-1D results. a) Dataset design. Conformational heterogeneity of an IgG antibody
complex produced from a simple, 1D continuous circular motion. b) Representative reconstructed
and ground truth (G.T.) volumes. c) Latent embeddings visualized by UMAP and colored by the G.T.
dihedral angle parameterizing the circular motion. Discrete class assignments are plotted by G.T.
dihedral angles. d) Latent embedding analysis by neighborhood similarity and information imbalance.
e) Per-Image FSC curves. Each curve shows the average FSC curve across all conformations with
error bars indicating the standard deviation. Colors in b), d), and e) correspond to methods shown in
the legend. Additional results shown in Figure S15.

the fragment antibody (Fab) domains (Fig. 2a), simulating a simple one-dimensional continuous
circular motion. This process yields 100 atomic models approximating the continuous dihedral
rotation (at 3.6-degree intervals). We simulate 1,000 projection images for each conformation, apply
CTF and add noise at a signal-to-noise (SNR) ratio of 0.01 to produce a dataset of 100k images.

Figure 3: IgG-1D with noise. a) Per-Image
FSC for each method at different noise levels.
Markers correspond to the legend in Figure 2.
b) Example cryo-EM images for different
noise levels and latent embeddings visualized
by UMAP for CryoDRGN-AI. Additional re-
sults shown in Figure S13, S18, and S19.

IgG-1D-noisier and -noisiest. As one of the
most salient characteristics of cryo-EM images is the
high degree of noise, we also create versions of the
IgG-1D dataset at SNR 0.005 for IgG-1D-noisier
and 0.001 for IgG-1D-noisiest to test the robust-
ness of each method to the amount of noise.

IgG-RL. Many protein complexes, including IgG,
possess relatively rigid domains connected by a dis-
ordered peptide linker (e.g. exemplifying “beads on
a string”). To model this more realistic and complex
motion and provide a challenging case of heterogene-
ity, we generate random conformations for the linker
connecting the Fab to the rest of the IgG complex
(Fig. 4b). We identified a sequence of 5 residues as
the linker and generated random realizations of its
structure by sampling the backbone dihedral angles

according to the Ramachadran distributions of disordered peptides [42], using rejection sampling
to eliminate structures with steric clashes. We generate 100 such atomic models and simulate 1k
projections per conformation, apply CTF and add noise at an SNR of 0.01 to produce a dataset of
100k images.

4

89471https://doi.org/10.52202/079017-2840



Figure 4: IgG-RL results. a) Dataset design. Conformational heterogeneity is produced by sampling
100 configurations of a peptide linker, randomly orienting the FAb domain in the IgG antibody
complex. b) Representative reconstructed and ground truth (G.T.) volumes. c) The UMAP plots
of RECOVAR and OPUS-DSD latent spaces colored by the distance between the FAb and the
Fc domain in the G.T. volumes. d) Latent embedding analysis by neighborhood similarity and
information imbalance. e) Per-Image FSC curves. Each curve shows the average FSC curve across all
conformations with error bars indicating the standard deviation. Colors in (d), (e), and (f) correspond
to methods shown in the legend. Additional results shown in Figure S14 and S16.

Spike-MD. For a challenging dataset containing detailed motions, we use a long-timescale molecular
dynamics simulation as a source of ground truth models for dataset construction. Specifically, we
use a simulation of the activating SARS-CoV-2 spike protein from Wieczór et al. [43]. Images for
Spike-MD are generated at a higher resolution (D = 256) to assess the ability of methods to capture
high-resolution motions. We generate a dataset of 100k projection images at an SNR of 0.1.

3.3 Compositional Heterogeneity
Ribosembly. We create a dataset modeling ribosome assembly as a simple example of compositional
heterogeneity. In particular, these structures contain a common core that is successively grown through
the addition of proteins and ribosomal RNA. We use the bacterial ribosome assembly states from Qin
et al. [44] consisting of 16 different atomic models, which we color in groups according to structural
similarity in Figure 6a. We generate a non-uniform number of images for each ground truth structure
following the distribution in the original publication, apply the CTF, and add noise to an SNR of 0.01
to produce a dataset of 335,240 images.

Tomotwin-100. While cryo-EM is typically performed on purified samples or simple mixtures, in
principle, the technique can be used to image complex mixtures e.g. from cellular lysates or in situ
samples from cryo-ET. To create a challenging dataset of modeling compositional heterogeneity of
this scale, we use atomic models from the curated set of cellular complexes in Rice et al. [45]. Here
we use 100 out of the original set of 120 after excluding the 15 smallest and 5 largest complexes.
Figure 7a shows 10 out of 100 ground truth volumes colored by size.

4 Evaluation Framework
As part of CryoBench, we consider methods for heterogeneous reconstruction with fixed (ground truth)
poses, and the more challenging task of ab initio reconstruction where no input poses are provided. We
evaluate seven fixed pose state-of-the-art methods and three ab initio variants. The fixed pose methods
include 3D Classification (3D Class) in cryoSPARC [46], 3DVA [8], 3DFlex [9], CryoDRGN [7],
CryoDRGN-AI-fixed [47], Opus-DSD [18], and RECOVAR [19]. For ab initio methods, we use
multiclass ab initio reconstruction in cryoSPARC (3D Class abinit) [46], CryoDRGN2 [48], and
CryoDRGN-AI [47]. An overview of these methods and training details can be found in Appendix B.
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Figure 5: Spike-MD results. a) Dataset design. 46,789 structures were sampled from a MD
simulation of the SARS-COV-2 spike protein, including opening of the receptor binding domain
(RBD, shown in red). The motion in the MD simulation can be described with two collective variables
(CV), corresponding to opening and twisting of the RBD. b) The population density of molecular
states projected onto these CVs. c) Representative reconstructed and ground truth (G.T.) volumes. d)
Latent embeddings visualized by UMAP and colored by the first and second CV. Additional results
shown in Figure S9, S17, and S24.

4.1 Analysis and Metrics
We present analyses and metrics for comprehensive comparison of existing state-of-the-art methods,
addressing both qualitative and quantitative aspects. For qualitative evaluation, we visualize each
method’s distribution of latent embeddings, which collectively define a low-dimensional manifold
capturing conformational and compositional variability in the particle images. We additionally sample
representative density volumes for visual inspection.

For quantitative evaluation, we propose three metrics for comparison of embeddings: 1) Neighborhood
Similarity, 2) Information imbalance, and 3) Adjusted Rand Index (ARI). To assess reconstructed
volumes, we use “Per-Image Fourier Shell Correlation (FSC)” as a metric that jointly evaluates image
conformation estimation and reconstruction quality [6]. Moreover, we compute the pose error for ab
initio methods in Appendix C.7.

4.1.1 Embedding Comparisons
Neighborhood Similarity. To quantify the similarity between local neighborhoods of the learned
embedding spaces and a ground truth heterogeneity embedding, we first use a generalization of
neighborhood similarity [40]. We quantify the percentage of matching neighbors (pMN) with respect
to the ground truth that are found within a neighborhood radius k,

pMN(k) =
100

kN

∑
i

S(NNk
i , gt

k
i ) , (2)

where NNk
i and gtki are the k-neighbors of point i in the embedding and ground truth, respectively;

S is the number of neighbor matches between the two lists and N is the total number of data
points. Each data point is an image projected onto the embedding space. The details of ground truth
embeddings are described in Appendix B.8. The local neighbors are defined using Euclidean distance
on embeddings. We plot pMN as a function of the neighborhood radius in terms of the percentage of
k-points relative to the entire the dataset. pMN values close to 100% indicate that ground truth and
embedding neighborhoods are very similar at the given radius k, pinpointing that the local proximity
between the points is preserved relative to the ground truth. See Appendix B.9 for more details.

Information imbalance. Information imbalance is a statistical test that compares how much one fea-
ture space, A, is contained in another, B, within a k-sized local neighbourhood, using the embedding
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Figure 6: Ribosembly results. a) Dataset design. 16 ground truth (G.T.) ribosome assembly states.
b) Representative reconstructed and G.T. volumes. c) Latent embeddings visualized by UMAP
and colored by the 16 G.T. states. d) Latent embedding analysis by neighborhood similarity and
information imbalance. e) Per-Image FSC curves. Each curve shows the average FSC curve across all
conformations with error bars indicating the standard deviation. Colors in (b), (d), and (e) correspond
to methods shown in the legend. Additional results shown in Figure S20.

distances dA and dB [41]. In the context of cryo-EM, this is a way of quantifying disentanglement of
latent variables [38]. Information imbalance ranges between 0 and 1 and is defined as

∆(dA → dB ; k) = ∆AB =
2

N2k

∑
i,j

s.t.rAij<k

rBij , (3)

where rAij is the rank from point i to j under distance dA, and rBij is the rank from point i to j
under distance dB . This comparison is not symmetric in general, i.e. ∆AB ̸= ∆BA. Ref. [41]
characterized four regimes of ∆AB plotted against ∆BA: A and B have equivalent information
with 0 ≈ ∆AB ≈ ∆BA; A and B have orthogonal information with 1 ≈ ∆AB ≈ ∆BA; B
is contained in A with 0 ≈ ∆AB and ∆BA ≈ 1, and thus B could be better predicted from A
using some classifier, than predicting A from B; A and B contain both identical and independent
information with 0 ≪ ∆AB ≈ ∆BA ≪ 1 along the diagonal. Here, we compared the ground
truth heterogeneity coordinate for each dataset (see Appendix B.10 for details) to the inferred latent
embeddings from the various cryo-EM heterogeneity methods. We use Euclidean distance for d. If
the inferred heterogeneity latent embedding and the ground truth heterogeneity latent embedding
have an information imbalance of (0,0) then they are locally equivalent. The information imbalance
plot can also be used to assess whether the latent embeddings capture other non-structural sources of
image heterogeneity such as pose and CTF (See Appendix C.5 for more details).

Clustering Accuracy. To assess each method’s ability to separate compositional states, we first use k-
means clustering on the latent embeddings with k equal to the number of ground truth states (k = 16
for Ribosembly and k = 100 for Tomotwin-100). We then compare these cluster assignments to
the true structural labels for each particle using the Adjusted Rand Index (ARI) and Adjust Mutual
Information (AMI) [49] [50]. We note that this metric is sensitive to the performance of the clustering,
and might differ with alternative algorithms to k-means.

4.1.2 Volume Metrics
We use Fourier Shell Correlation (FSC), a standard volume comparison metric in cryo-EM, to evaluate
reconstruction quality against ground truth structures. Typically, FSC compares two independent
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Method IgG-1D IgG-RL Ribosembly Tomotwin-100 Spike-MD

Mean (std) Median Mean (std) Med Mean (std) Med Mean (std) Med Mean (std) Med

CryoDRGN 0.351 (0.028) 0.356 0.331 (0.016) 0.333 0.412 (0.023) 0.415 0.316 (0.046) 0.321 0.340 (0.009) 0.340
CryoDRGN-AI-fixed 0.364 (0.002) 0.364 0.348 (0.012) 0.350 0.372 (0.032) 0.375 0.202 (0.044) 0.207 0.301 (0.012) 0.303

Opus-DSD 0.335 (0.026) 0.339 0.343 (0.016) 0.346 0.362 (0.083) 0.382 0.237 (0.049) 0.251 0.229 (0.027) 0.242
3DFlex 0.335 (0.003) 0.335 0.337 (0.007) 0.337 - - - - 0.304 (0.011) 0.306
3DVA 0.349 (0.004) 0.350 0.333 (0.014) 0.335 0.375 (0.038) 0.375 0.088 (0.04) 0.077 0.324 (0.010) 0.323

RECOVAR 0.386 (0.005) 0.388 0.363 (0.011) 0.363 0.429 (0.018) 0.432 0.258 (0.109) 0.254 0.362 (0.011) 0.365
3D Class 0.297 (0.019) 0.291 0.309 (0.01) 0.307 0.289 (0.081) 0.288 0.046 (0.026) 0.037 0.307 (0.023) 0.308

CryoDRGN2 0.32 (0.062) 0.342 0.301 (0.03) 0.306 0.341 (0.059) 0.356 0.076 (0.016) 0.072 0.245 (0.042) 0.260
CryoDRGN-AI 0.351 (0.01) 0.352 0.329 (0.028) 0.333 0.341 (0.083) 0.367 0.072 (0.015) 0.072 0.279 (0.017) 0.281
3D Class abinit 0.13 (0.046) 0.119 0.184 (0.022) 0.188 0.144 (0.036) 0.138 0.032 (0.012) 0.031 0.206 (0.009) 0.208

Table 1: Area under the Per-Image FSC Curve. FSC curves are computed after masking out
background noise. See Appendix C.1.3 and Figure S6 for unmasked performance. We also provide
results for IgG-1D with a mask only around the FAb in Table S3, Table S4, and Figure S7.

reconstructions from separate dataset halves, with resolution determined at an FSC cutoff of 0.143 [35].
Here, we compare reconstructed volumes against ground truth volumes and compute the Area Under
the FSC Curve (FSCAUC) as a summary statistic. We show that compared to an FSC cutoff, the
AUC is more sensitive to structural differences amongst the ground truth volumes (Appendix C.1.2,
Fig S5).

For heterogeneity analysis, we use the Per-Image FSC [6] as a distributional metric that jointly
assesses conformation estimation and reconstruction quality. Here, we use a set of N images from
the dataset (either sampled at random or uniformly for each conformation). For each image, we
reconstruct an associated volume at its inferred latent coordinate. We then compute the FSCAUC
between the reconstructed volume and the ground truth volume for the image. We also investigated
two alternative methods for sampling representative volumes to compute volume metrics: Sample
FSC and Per-Conformation FSC. See Appendix C.2 and Figure S8-S11 for more details.

5 Results

We present the benchmarking results for each dataset in Figures 2-7, and we report summary statistics
of volume metrics in Table 1.

IgG-1D. All methods generally demonstrate interpretable latent spaces (Fig. 2c) and well-preserved
local neighborhoods relative to the ground truth quantified by a high neighborhood similarity and
close to the equivalent region, (0,0), in the information imbalance plane (Fig. 2d). RECOVAR exhibits
a latent space structure most consistent with the ground truth manifold, as shown by the embedding
metrics in Figure 2d, while also achieving the highest reconstruction quality as shown in Table 1. In
contrast, the rotating Fab domain is not well captured by 3DFlex (Fig. 2b), indicating limitations in
effectively representing intricate conformal motions. With increasing noise levels, we find that the
volume metrics decrease as expected (Fig. 3a). Ab initio methods fail to reconstruct at the lowest
SNR (Fig. 3b).

IgG-RL. The overall performance of IgG-RL in Table 1 is lower than that of IgG-1D, attributed to
the more challenging dataset design. In particular, Fab orientation inference is challenging, limiting
the resolution of the moving Fab (Fig. 4c). Nonetheless, some methods, such as Opus-DSD or
CryoDRGN-AI-fixed, are able to conserve high neighborhood similarity and equivalent information
with the ground truth for small radii (Fig. 4d). RECOVAR demonstrates superior performance in the
FSC metric. Among ab initio methods, CryoDRGN-AI generally outperforms the others. Despite the
random orientations of the moving Fab, ab initio methods are able to align on the fixed region.

Spike-MD. The high number of unique structures (46k) makes this dataset comparatively challenging
with some methods modeling the continuous motion better than others by visual inspection (Fig. 5c).
UMAP visualizations of the latent space reveal that methods have learned a variety of topologies, with
neither of the ground truth coordinates correlating well with the different UMAP embeddings (Fig. 5d).
As shown in Figure S24, the neighborhood similarity metric also shows a poor local neighborhood
overlap (<35%) at small-to-intermediate radii suggesting that there is low neighborhood correlation
with the ground truth, indicating that the flexibility is indeed a challenging inference task. The
Per-Image FSC plot for Spike-MD is provided in Figure S12. Future work could explore more custom
analyses and metrics for MD data, and we hope to enable future methods development connecting
MD simulations with cryo-EM.
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Figure 7: Tomotwin-100 results. a) Dataset design. Density maps for 10 out of 100 ground truth
volumes and a histogram of molecular weights. b) Representative reconstructed and ground truth
(G.T.) volumes. c) Latent embeddings visualized by UMAP and colored by the 100 G.T. molecular
weight. d) Latent embedding analysis by neighborhood similarity and information imbalance. e)
Per-Image FSC curves. Each curve shows the average FSC curve across all conformations with error
bars indicating the standard deviation. Colors in (b), (d), and (e) correspond to methods shown in the
legend. Additional results shown in Figure S21.

Method Ribosembly Tomotwin-100
ARI AMI ARI AMI

CryoDRGN 0.873 0.935 0.956 0.983
CryoDRGN-AI-fixed 0.624 0.771 0.791 0.906

Opus-DSD 0.891 0.934 0.500 0.781
3DVA 0.666 0.823 0.058 0.335

RECOVAR 0.968 0.976 0.315 0.649

CryoDRGN2 0.529 0.618 0.116 0.374
CryoDRGN-AI 0.644 0.729 0.086 0.275

Table 2: Clustering Accuracy. Adjusted
Rand Index (ARI) and Adjusted Mutual In-
formation (AMI) between ground truth labels
and predicted labels for each particle image.
Predicted labels are obtained by k-means clus-
tering the particle latent embeddings, with k
set to the number of ground truth structures.

Ribosembly. Methods are largely capable of recon-
structing the ground truth states (Fig. 6b,e). How-
ever, latent embeddings do not perfectly cluster each
ground truth assembly state (Fig. 6c), quantified in
Table 2. The neighborhood similarity ranges are inter-
mediate, from 50-80%, for a neighborhood clustering
size k corresponding to the true number of images
belonging to each state (Fig. 6d). Here, the neigh-
borhood similarity uses a rank-size embedding for
ground truth heterogeneity, while information imbal-
ance uses the voxel intensities, where similar assem-
bly states would have a close distance. RECOVAR
demonstrates better clustering, with CryoDRGN-AI
also performing well amongst ab initio methods. In
contrast, both 3D Class and 3D Class abinit exhibit
a mixture of ground truth states within each class,
leading to lower volume accuracy as indicated in Table 1.

Tomotwin-100. Ab initio and 3D Classification-based methods fail to resolve the Tomotwin-100
dataset (Fig. 7b, Table 1). Linear methods (i.e., 3DVA and RECOVAR) also exhibit limited capacity
to represent small-sized proteins (200 kDa) (Fig. 7b). Surprisingly, some fixed pose methods are
able to cluster structures according to the ground truth (Fig. 7c, d), e.g. cryoDRGN has an almost
perfect k-means clustering performance (Table 2). However, we note that fixed pose heterogeneous
reconstruction is an unrealistic setting for cryo-EM of complex mixtures (where a common structural
core is typically needed for upstream pose estimation). Current ab initio reconstruction methods
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are not capable of recovering the 100 ground truth structures, posing a challenge for future methods
development.

6 Conclusion and Future Directions
CryoBench presents: 1) five synthetic datasets containing conformational and compositional hetero-
geneity; 2) comprehensive analyses of ten existing state-of-the-art tools across these datasets; and 3)
quantitative metrics and qualitative visualizations to compare these baselines. Our metrics assess
representation learning, reconstruction quality, and the end-to-end heterogeneous reconstruction task.
Overall, we find that quantification of the reconstruction performance aligns well with qualitative
observations.

In addition to simple datasets that provide interpretable results for development and validation, we
propose challenging datasets that push the frontiers of heterogeneous cryo-EM reconstruction. We
anticipate that these datasets and metrics could inspire the exploration of new tasks for methods
development, both in cryo-EM and within related areas of computer vision and computational imaging.
These tasks may include generalization beyond training dataset distributions, high-resolution neural
rendering, and the incorporation of biophysical priors into models. Our datasets are designed such that
methods geared towards these challenges will also address key frontiers in cryo-EM and structural
biology.

In future work, we aim to explore several limitations of the current benchmark. For example,
we could use more complex or realistic noise statistics in image formation or simulate the joint
presence of compositional and conformational heterogeneity. To explore realistic noise statistics in
image formation, we tested cisTEM’s (Computational Imaging System for Transmission Electron
Microscopy) [51] multislice simulator, which considers artifacts from sample thickness, noise from
explicitly modeled water molecules, and the effects of sample motion and radiation damage as a
function of electron dose. However, we note that this simulator requires several minutes to generate
each image. Since the images it produced and the performance of each method were qualitatively
similar to those generated using our simpler Gaussian noise model, we did not follow this procedure
for the benchmark datasets.

Through the active use of these datasets by the community, we anticipate that custom metrics designed
for each type of heterogeneity will be fruitful, such as analyses of free energy landscapes and
atomic-level motions in the case of MD data. Lastly, while the presented synthetic datasets provide
a challenging setting for methods development, future versions of the benchmark could include
non-structural sources of heterogeneity found in real cryo-EM datasets, such as junk particles and
non-uniform pose distributions. We anticipate that these developments will facilitate the application
of novel methods towards biological discovery on real data.

7 Data and Software Availability

CryoBench datasets and tools are available at https://cryobench.cs.princeton.edu/.

7.1 Data Availability

CryoBench datasets are deposited to Zenodo with the following DOIs:

• Conf-het: https://doi.org/10.5281/zenodo.11629428

• Comp-het: https://doi.org/10.5281/zenodo.12528292

• MD: https://doi.org/10.5281/zenodo.12528784

We include the downsampled images (D = 128) analyzed in this study (D = 256 for Spike-MD) in
.mrcs, .txt, and .star file formats, along with CTFs and pose data in Python pickle files. We also
include the consensus volume (needed for some methods) and the mask used for FSC computation.
Full-resolution images (D = 256, 384) and ground truth PDB files and volumes will be deposited
to BioImage Archive [52]. We provide the datasets under the Creative Commons Attribution 4.0
International license.
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7.2 Software Availability

Scripts for simulating cryo-EM images and computing metrics are available at https://github.
com/ml-struct-bio/CryoBench.
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Figure S1: Additional details for IgG-RL dataset design. a) The dihedral angles of a linking
peptide are chosen to randomly orient one arm of the IgG molecule in 100 unique conformations.
b) The distribution of the 100 structures across coordinates can be characterized by the angle and
distance between the rotating arm and the rigid arms.

A Dataset Design

A.1 Generating IgG-1D

Starting from an atomic model of the human immunoglobulin G (IgG) antibody (PDB: 1HZH),
conformational heterogeneity is produced by rotating a dihedral angle connecting one of the fragment
antibody (Fab) domains (Fig. 2a), simulating a simple one-dimensional continuous circular motion.
Specifically, we rotate the backbone ψ angle of residue 230 in the heavy chain H. We sample 100
atomic models at 3.6 degree intervals to approximate a continuous 360 degree dihedral rotation. For
each atomic model, the molmap command in ChimeraX [53] was used to generate the corresponding
density volume at a resolution of 3 Å with a bounding box of dimension D = 256 pixels and a pixel
size of 1.5 Å. Poses in Eq. 1 were uniformly sampled from R ∈ SO(3) and t was sampled uniformly
from [20, 20]2 pixels. For the CTF, the accelerating voltage was set at 300 kV, spherical aberration
at 2.7 mm, and amplitude contrast at 0.1. Defocus parameters were sampled randomly without
replacement from EMPIAR-11247 [54]. Noise was added at a signal-to-noise (SNR) ratio of 0.01.
See Appendix A.6 for a definition of the SNR. We simulate 1,000 images for each conformation to
produce a dataset of 100k images. The dataset is then downsampled to D = 128 by Fourier cropping.
We use the same projection images but increase the amount of added noise to SNR 0.005 and SNR
0.001 for IgG-1D-noisier and IgG-1D-noisiest, respectively.

A.2 Generating IgG-RL

For IgG-RL, we identified a sequence of 5 residues (D232, K235, T236, H237, T238) from 1HZH PDB
as the linker and generated 100 random realizations of its structure by sampling the backbone dihedral
angles according to the Ramachadran distributions of disordered peptides from Towse et al. [42],
using rejection sampling to eliminate structures with steric clashes. Details are provided in S1. For
each atomic model, the molmap command in ChimeraX [53] was used to generate the corresponding
density volume at a resolution of 3 Å with a bounding box of dimension D = 256 pixels and a
pixel size of 1.5 Å. Poses in Eq. 1 were uniformly sampled from R ∈ SO(3) and t was sampled
uniformly from [20, 20]2 pixels. For the CTF, the accelerating voltage was set at 300 kV, spherical
aberration at 2.7 mm, and amplitude contrast at 0.1. Defocus parameters were sampled randomly
without replacement from EMPIAR-11247 [54]. Noise was added at a signal-to-noise (SNR) ratio of
0.01. We simulate 1,000 images for each conformation to produce a dataset of 100k images. The
dataset is then downsampled to D = 128 by Fourier cropping.

A.3 Generating Spike-MD

We sourced the individual MD structures from the enhanced sampling molecular dynamics simulations
performed in [43]. Using the free-energy landscape calculated with these simulations for the wild-type
Spike, we sampled molecular structures assuming a Boltzmann distribution with T = 6000 K. By
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using an artificially high temperature, we were able to increase the number of sampled conformations—
particularly in regions with a high free energy barrier connecting the receptor binding domain (RBD)
open and closed states. This process resulted in 46,789 unique conformations. For each atomic model,
the molmap command in ChimeraX [53] was used to generate the corresponding density volume at a
resolution of 3 Å with a bounding box of dimension D = 256 pixels and a pixel size of 1.5 Å. Poses
in Eq. 1 were uniformly sampled from R ∈ SO(3) and t was sampled uniformly from [20, 20]2 pixels.
For the CTF, the accelerating voltage was set at 300 kV, spherical aberration at 2.7 mm, and amplitude
contrast at 0.1. Defocus parameters were sampled randomly without replacement from Walls et al.
[55]. Noise was added at a signal-to-noise (SNR) ratio of 0.1. We simulated 100,000 images in total
with at least 1 image per sampled conformation, resulting in approximately two images for each
unique conformation.

A.4 Generating Ribosembly

For Ribosembly, we used the 16 atomic models of the bacterial ribosome assembly states from
Qin et al. [44]. We first centered all atomic models using the move in ChimeraX. Subsequently, the
models were aligned to the last state (PDB: 8C8X) using matchmaker in ChimeraX. For each atomic
model, the molmap command in ChimeraX [53] was used to generate the corresponding density
volume at a resolution of 3 Å with a bounding box of dimension D = 256 pixels and a pixel size
of 1.5 Å. Poses in Eq. 1 were uniformly sampled from R ∈ SO(3) and t was sampled uniformly
from [20, 20]2 pixels. For the CTF, the accelerating voltage was set at 300 kV, spherical aberration
at 2.7 mm, and amplitude contrast at 0.1. Defocus parameters were sampled randomly without
replacement from EMPIAR-10076 [26]. Noise was added at a signal-to-noise (SNR) ratio of 0.01.
We simulate images with a non-uniform distribution following Qin et al. [44] listed below, totaling
335,240 particle images. The dataset is then downsampled to D = 128 by Fourier cropping.

PDB: 8C9C, 8C9B, 8C9A, 8C99, 8C98, 8C97, 8C96, 8C95, 8C94, 8C93, 8C92, 8C91,
8C90, 8C8Z, 8C8Y, 8C8X
Nparticles: [9076, 14378, 23547, 44366, 30647, 38500, 3915, 3980, 12740,
11975, 17988, 5001, 35367, 37448, 40540, 5772]

A.5 Generating Tomotwin-100

We created Tomotwin-100 from the curated set of cellular complexes in Rice et al. [45]. Here we
use 100 out of the original set of 120 after excluding the 15 smallest and 5 largest complexes by
molecular weight. We centered all atomic models using the move in ChimeraX. Then, the molmap
command in ChimeraX [53] was used to generate the corresponding volume map. For each atomic
model, the molmap command in ChimeraX [53] was used to generate the corresponding density
volume at a resolution of 3 Å with a bounding box of dimension D = 384 pixels and a pixel size of
1.5 Å. Poses in Eq. 1 were uniformly sampled from R ∈ SO(3) and t was sampled uniformly from
[20, 20]2 pixels. For the CTF, the accelerating voltage was set at 300 kV, spherical aberration at 2.7
mm, and amplitude contrast at 0.1. Defocus parameters were sampled randomly without replacement
from EMPIAR-11247 [54]. Noise was added at a signal-to-noise (SNR) ratio of 0.01. Figure S2
illustrates all 100 ground truth volumes, with PDB codes listed below.

PDB: 2CG9, 6VGR, 5A20, 1UL1, 5LJO, 5CSA, 7WBT, 7SGM, 7BLR, 6ZQJ, 7NIU, 1U6G,
3ULV, 5JH9, 3D2F, 3CF3, 6LMT, 2RHS, 1BXN, 1N9G, 5H0S, 6CES, 7K5X, 7JSN,
6VN1, 1QVR, 2WW2, 6U8Q, 6KRK, 6Z80, 6LXK, 6WZT, 3MKQ, 6KSP, 2XNX, 7B7U,
6CNJ, 1SS8, 6X5Z, 7KJ2, 6KLH, 6PIF, 2DFS, 6AHU, 6F8L, 2VZ9, 7NHS, 6TGC,
6M04, 4XK8, 7E1Y, 7R04, 6I0D, 6BQ1, 7LSY, 7DD9, 3LUE, 7SFW, 7NYZ, 5O32,
6YT5, 6SCJ, 7EGE, 5VKQ, 6VZ8, 6W6M, 7T3U, 6TAV, 7E8H, 7ETM, 7AMV, 1G3I,
6Z3A, 7EGD, 7Q21, 6XF8, 6EMK, 6TA5, 6TPS, 7QJ0, 7KDV, 7EGQ, 6LXV, 6GYM,
7O01, 5G04, 7BKC, 6MRC, 6JY0, 7WOO, 7EEP, 7MEI, 6GY6, 6DUZ, 7VTQ, 7EY7,
6Z6O, 4CR2, 6ID1, 6UP6

A.6 Signal to Noise Ratio (SNR)

We define SNR as the ratio between the variance of the signal and the variance of the noise. We
calculate the variance of the signal over all CTF-applied projection images for a given dataset where
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Figure S2: Tomotwin-100. All 100 ground truth structures of the Tomotwin-100 dataset, colored by
molecular weight as in Figure 7.

we define the entire D ×D image as the signal. We apply Gaussian white noise to the desired SNR
level based on the computed variance. As SNR values can be arbitrarily set based on the definition of
the signal, we additionally visualize example cryo-EM images for all datasets in Figure S3.
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IgG-1D IgG-RL Ribosembly (First)

Ribosembly (Last) Tomotwin-100 (Smallest) Tomotwin-100 (Largest)

IgG-1D noiser IgG-1D noisestSpike-MD

Figure S3: Example cryo-EM images for all datasets. Images from the first structure are shown for
IgG-1D and IgG-RL, and images from the first and last structures are shown for Ribosembly and
Tomotwin-100.
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B Experimental Settings

B.1 Mask Generation

Some reconstruction methods require as input a volume mask defining the region of interest. For
mask generation, we first aggregated all ground truth volumes using the volume add in ChimeraX.
Subsequently, we then applied the Volume Tools in CryoSPARC. Specifically, for IgG-1D, IgG-RL,
and Ribosembly, the Dilation radius (pix) and Soft padding width (pix) were set at 8
and 5, respectively. For Tomotwin-100, these parameters were adjusted to a Dilation radius
(pix) of 5 and a Soft padding width (pix) of 3. For Spike-MD, we take the union of all
binarized volumes and use the cryoDRGN gen_mask command with a dilation of 25 Å and soft
cosine edge of 15 Å. Masks for each dataset are shown in Figure S4b.

B.2 CryoDRGN, CryoDRGN2

CryoDRGN [7] is a deep generative network-based method where the input images are encoded in
the (conformational) latent space and the latent coordinates are decoded into 3D volumes in Fourier
domain via an implicit neural representation [6]. In its second version cryoDRGN2 [48], better ab
initio capabilities were improved with changes to the hierarchical pose search (HPS) algorithm for
image pose inference. In our benchmark, we use cryoDRGN for fixed, and cryoDRGN2 for ab initio
purposes.

We trained cryoDRGN and cryoDRGN2 using the official PyTorch implementation1, version 3.0.0b.
We used the default settings with the z-dimension set to 8. For the total number of training epochs,
20 and 30 were used for cryoDRGN and cryoDRGN2, respectively. For Ribosembly, we trained
cryoDRGN using 50 epochs. We used one V100 GPU for training.

B.3 CryoDRGN-AI, CryoDRGN-AI-fixed

CryoDRGN-AI [47] is a deep generative network-based method, inspired by cryoDRGN. CryoDRGN-
AI uses both HPS and stochastic gradient descent in pose estimation, while utilizing a differential
lookup table instead of an encoder network to encode the pose and conformational latent variable
information. We denote the fixed pose mode of operation with “CryoDRGN-AI-fixed” and ab initio
with “CryoDRGN-AI.”

We trained CryoDRGN-AI and CryoDRGN-AI-fixed using the official PyTorch implementation2,
version 0.2.2b0. We used the default settings with the z-dimension set to 4 and the total number of
training epochs set to 100. We used one A100 GPU for training.

B.4 Opus-DSD

Opus-DSD [18] is also a deep generative network-based method, built upon cryoDRGN. The network
architecture is similar to cryoDRGN except that it uses a 3D Convolutional Neural Network (CNN)
and priors for the latent conformational variable.

We trained Opus-DSD using the official PyTorch implementation3, commit ID 6bc7b86 in GitHub.
We used the default settings with the z-dimension set to 12, valfrac of 0.25, downfrac of 0.75, and
lamb of 1.0, bfactor of 4.0, and templateres of 192 as recommended on the official GitHub. For
the Spike-MD dataset, we use a downfrac of 1.00 and templateres of 256. The total number of
training epochs was set to 20. The volumes reconstructed by Opus-DSD are smaller than the original
image dimensions. Consequently, to compute the volume comparison metric (Per-Conformation
FSC), we zero-padded the volumes to match the original image dimension. Since the volumes are
also misaligned, we aligned them as we did for ab initio methods to compute the FSC. We used four
A100 GPUs for training.

1https://github.com/ml-struct-bio/cryodrgn
2https://github.com/ml-struct-bio/drgnai
3https://github.com/alncat/opusDSD
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Figure S4: Consensus volumes and masks. (a) Consensus volumes for each dataset generated via
homogeneous voxel-based backprojection. (b) Mask for each dataset. 10 G.T. volumes are shown
within the mask for Spike-MD, and all G.T. volumes are shown for other datasets.

B.5 RECOVAR

RECOVAR [19] is a white-box approach that utilizes principal component analysis (PCA), which
is computed through regularized covariance estimation, and an adaptive spatial and fourier domain
kernel regression for volume reconstruction.

We trained RECOVAR using the official JAX implementation4, commit ID 1977aa9 in GitHub.
We used the default settings with the z-dimension set to 10 and provided the mask described in
Section B.1 as an input. We used one V100 GPU for training.

B.6 CryoSPARC

We used cryoSPARC5 version 4.4.0 to train 3DFlex, 3DVA, 3D Classification (fixed, ab initio). Some
methods in cryoSPARC require a consensus volume, in addition to the masks described in Section B.1.
We created the consensus volume for each dataset by backprojecting all images of a given dataset in
cryoDRGN [7] with ground truth poses. These volumes are shown in Figure S4a.

3DFlex. 3DFlex [9] is a deep learning-based method for heterogeneous reconstruction designed to
model conformational heterogeneity. 3DFlex models a single canonical 3D volume represented by a
tetrahedral mesh and its deformation through training a flow field as a function of conformational
latent space coordinates.

To train 3DFlex, the particle stack was normalized such that the mean of each image was 0 and the
variance was 1. In the mesh preparation phase (Flex Mesh Prep job), we provided the consensus
volume and mask as inputs. We adjusted the Min.rigidity weight to 1. For training (3D Flex
Training job), we use all default settings. The latent dimension is 2.

Spike-MD required additional modifications to produce reasonable results. A 3DFlex model was
trained with consensus poses and volume from ab initio reconstruction in cryoSPARC, and the
following hyperparameters. The number of latent dimensions was 3, the MLP neural network which
models the deformations of the consensus volume had 256 hidden layers, and we trained the model
for 32 epochs beyond the standard training time. All other parameters were left to their default values.

3DVA. 3DVA [8] is a heterogeneous reconstruction algorithm that is formulated as a probabilistic
PCA approach and uses Expectation-Maximization (E-M) to fit a linear subspace model.

We provided the particle images and mask as inputs and set the latent dimension to 3 (default). The
Filter resolution was set to 5 for Spike-MD, 10 for IgG-1D, IgG-RL, and Ribosembly, and
15 for Tomotwin-100.

4https://github.com/ma-gilles/recovar
5https://cryosparc.com
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Method Number of Latent Dimensions

CryoDRGN 8
CryoDRGN-AI-fixed 4

Opus-DSD 12
3DFlex 2 (3 for MD-Spike)
3DVA 3

RECOVAR 10
3D Class 10

CryoDRGN2 8
CryoDRGN-AI 4
3D Class abinit 20 (16 for Ribosembly, 10 for Tomotwin-100)

Table S1: Number of latent dimensions modeling heterogeneity for each method

3D Classification. 3D Classification is a standard method for analyzing and filtering heterogeneous
cryo-EM datasets due to its ease of use and interpretability [4, 56, 57, 46, 51]. This approach models
heterogeneity as originating from a discrete mixture model of K independent voxel arrays, where
class assignment probabilities are jointly optimized with the molecular volumes via E-M. While
use of 3D classification is ubiquitous, the method requires ad hoc, user-driven choices such as the
number of classes and initialization for E-M, which leads to complex processing pipelines and often
misses conformations, especially when the simple model of heterogeneity is mismatched with the
true distribution.

For fixed pose classification in cryoSPARC, we set a Target resolution to 3 for Spike-MD and
9 for Tomotwin-100. We used 20 classes for Spike-MD and 10 classes for all other datasets. All
other parameters were left at their defaults. For ab initio classification, the Target resolution
was set to 6 for Spike-MD. We used 10 classes for Tomotwin-100, 16 classes for Ribosembly, and
20 classes for IgG-1D, IgG-RL, and Spike-MD. All other parameters were left at their defaults.

The z-dimension, for the purposes of the latent space analysis, was defined as the class poste-
rior, whose length was dataset dependent: 10 (fixed) and 20 (abinit) for IgG-1D, IgG-RL, and
Ribosembly, 10 (fixed and abinit) for Tomotwin-100, and 20 (fixed and abinit) for Spike-MD.

B.7 Number of Latent Dimensions

An overview of the number of latent dimensions for each method is given in Table S1.

B.8 Ground Truth Heterogeneity Embeddings

Here we define the ground truth heterogeneity embeddings used to compute Neighborhood Similarity
scores and Information Imbalance. The ground truth embedding for each IgG-1D structure is a 2D
vector of the sine and cosine of the rotation angle. The embedding for each IgG-RL conformation is
a 3D vector of the centre of mass, and the sine and cosine of the dihedral angle. The Ribosembly
embeddings are defined in two different ways: i) size rank of the atomic models or ii) 4096D vector
of voxel intensity (real spaced cropped to 1563 and downsampled via Fourier cropping to 163 = 4096
voxels). The Tomotwin-100 embeddings are defined as the size rank of the atomic models. The
embeddings for Spike-MD are defined as CV1 and CV2 as in Wieczór et al. [43] and Figure 5.

B.9 Neighborhood Similarity

The percentage of matching neighbors (pMN) (Eq. 2) was calculated using Python with JAX GPU
acceleration [58] as a function of the neighborhood radius. All datasets, except for Ribosembly,
were divided into five independent sets (Ribosembly was divided into three). The mean pMN and
the standard deviation of its mean were computed using these independent sets. The neighborhood
radius, expressed as a percentage of the total number of images, was k = 100n

Ns
, where Ns the

total number of structures in the dataset and n = 1, . . . , Ns. Note that the pMN for n = 1 (i.e.,
k = 100

Ns
[%]) evaluates how well the embeddings cluster images originating from each structure,

effectively measuring structural clustering. In contrast, the pMN for n > 1 provides insights into how
the connections between ground truth structures relate to the embeddings generated by each method,
revealing how images from different structures are interconnected.
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B.10 Information Imbalance

Information imbalance was computed via the implementation in DADApy [59], using a maxk (max-
imum number of neighbors to be considered for the calculation of distances) of the total number
of points (335,240 for Ribosembly and 100,000 for the other datasets), and a subset_size of
2,000. Error was defined by computing the standard deviation of information imbalances computed
with different neighborhood sizes, and here we used k = 1, 3, 10, 30 (0.05, 0.015, 0.5, 1.5%) of
neighborhood size (k = 1, 3, 10 for Tomotwin-100). Error bars are visible in Tomotwin-100 (Fig. 7d),
but smaller than marker size for other datasets.

Small amounts of random noise were applied to average over the 1000-fold duplication of the
ground truth heterogeneity embeddings for each image. Additive noise from a uniform distribution,
u ∼ U [−ϵ, ϵ] was added according to Table S2.

The ground truth pose embedding is a 9-dimensional flattened vector of the rotation matrix (translation
neglected). The ground truth CTF embedding is a 4-dimensional vector of the two defocus values and
the sine and cosine of the angle of astigmatism, normalized by subtracting off the mean and dividing
by the standard deviation.

Dataset Collective Variable ϵ

IgG-1D angle in degrees (noise added before sine / cosine transform) 0.05
IgG-RL center of mass (Å), angle in degrees (noise added before sine / cosine transform) 0.1

Ribosembly voxel intensity 0.1
Tomotwin-100 rank size 0.1

MD CV1 and CV2: opening and twisting of the RBD; cf. Fig 5 0.1

Table S2: Random noise with distribution U [−ϵ, ϵ] added to the ground truth heterogeneity embed-
dings.
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Figure S5: Metric validation. (a) AUC-FSC between one G.T and all 100 G.T.s of the IgG-1D
dataset. Each plot corresponds to the reference G.T volume, indicated by the number above the plot.
(b) Heatmap comparing all 100 G.Ts against all 100 G.Ts.

C Supplementary Results

C.1 Volume Metrics

C.1.1 Fourier Shell Correlation

We use metrics based on the Fourier Shell Correlation (FSC) curve to quantify how well the distribu-
tion of reconstruction volumes compares to the ground truth set of conformations.

The Fourier Shell Correlation (FSC) curve is a standard method for comparing two volumes in
cryo-EM. For two volumes Û and V̂ , the FSC curve measures the correlation between Û and V̂ as a
function of spherically-averaged radial shells in the Fourier domain:

FSC(k) =

∑
s∈Sk

ÛsV̂
∗
s√

(
∑

s∈Sk
|Ûs|2)(

∑
s∈Sk

|V̂s|2)
(4)

where V̂ ∗ is the complex conjugate of V̂ , and Sk represents the set of Fourier voxels in a spherical
shell at a distance k from the origin. We note that FSC is typically used in a two-fold cross validation
approach, where independent reconstructions of random halves of the dataset are compared. The
resolution of the final volume is often reported as 1/k0 where k0 = argmaxk FSC(k) < C and C
is some fixed threshold (C = 0.143 for the gold standard FSC). This “half-map” FSC metric has
sufficed in the absence of ground truth, however, as it is only a consistency check, it is not sensitive
to bias in the model.

Here, we use FSC to compare reconstructed volumes against ground truth volumes, and report the
area under the FSC curve as a summary statistic (max 0.5; higher is better).
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Figure S6: Unmasked vs. masked FSC calculations for IgG-1D. Histogram comparing Per-
Conformation FSC for each method, with (blue) and without (orange) applying a mask around the
particle before computing the FSC.

Full Mask Fab Mask

Figure S7: Full vs Fab Mask. Different masks with all IgG-1D 100 G.T volumes. The full mask
covers all volumes, while the Fab mask covers only the Fab region.

C.1.2 Sensitivity to Structural Heterogeneity

We first validate that our volume comparison metric, the area under the Fourier Shell Correlative
curve (FSCAUC), is sensitive to structural differences between ground truth volumes. In Figure S5,
we compute FSCAUC between different ground truth volumes for the IgG-1D dataset. The FSC-AUC
between a given volume and all other volumes reaches its highest point (0.5) at the ground truth index
and is unimodal across the ground truth conformational coordinate (note that IgG-1D describes a
circular 1D motion and thus the x-axis is cyclic) (Fig. S5a). Figure S5b summarizes the all-to-all
comparison.

C.1.3 Unmasked vs. Masked FSC

Following standard convention in cryo-EM, we apply a mask around the particle to zero out low-
isosurface background volume when computing FSC metrics to avoid spurious correlations with
solvent noise. Here, we provide an analysis comparing the use of a mask versus no mask in our
Per-Conformation FSC metric (Fig. S6). The generation of the masks is described in Section B.1.
Masking out background noise generally enhances performance when computing volume metrics.
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Method CryoDRGN CryoDRGN-AI-fixed Opus-DSD 3DFlex 3DVA RECOVAR 3D Class
Full (Mean) 0.366 (0.003) 0.366 (0.001) 0.34 (0.006) 0.336 (0.002) 0.351 (0.003) 0.391 (0.001) 0.297 (0.019)

Full (Median) 0.366 0.366 0.341 0.336 0.351 0.391 0.291
Fab Only (Mean) 0.349 (0.005) 0.349 (0.002) 0.335 (0.009) 0.292 (0.003) 0.321 (0.005) 0.385 (0.002) 0.238 (0.032)

Fab Only (Median) 0.349 0.349 0.336 0.189 0.32 0.385 0.228

Table S3: (IgG-1D) Full vs Fab mask for fixed pose methods. Per-Conformation FSC for both the
full and Fab masks.

Method CryoDRGN2 CryoDRGN-AI 3D Class abinit
Full (Mean) 0.344 (0.003) 0.356 (0.002) 0.13 (0.046)

Full (Median) 0.344 0.356 0.119
Fab Only (Mean) 0.328 (0.003) 0.339 (0.003) 0.114 (0.031)

Fab Only (Median) 0.329 0.339 0.122

Table S4: (IgG-1D) Full vs Fab mask for ab initio methods. Per-Conformation FSC for both the
full and Fab masks.

C.1.4 Full vs. Fab Mask

We also investigate the effect of applying a mask only on the moving Fab region when computing
FSC-AUC values for IgG-1D. Table S3 and S4 shows the Per-Conformation FSC of IgG-1D dataset
for both the full and Fab masks. The overall performance decreases, and although the performance
ranking between 3DVA and Opus-DSD changes, the others remain the same. This indicates that the
performance of 3DVA is largely stems from non-Fab regions. Figure S7 illustrates each mask with all
ground truth volumes. The full mask was used unless otherwise mentioned.

C.2 Volume FSC metrics for heterogeneous reconstruction

To evaluate the quality of reconstructed volumes from a heterogeneous reconstruction, we sample a
set of representative structures for each method and compare them against the set of ground truth
volumes. We provide three different approaches for sampling volumes from the latent representation:
Per-Conformation FSC, Sample FSC, and Per-Image FSC.

Per-Conformation FSC. For each ground truth conformation V , we compute a corresponding
latent coordinate by averaging all latent embeddings z̄ of images generated by V . To remain on the
data manifold, we identify the closest latent coordinate z∗ to z̄. Using this coordinate, we reconstruct
the associated volume and evaluate its FSCAUC against the ground truth volume. Figure S8 and S9
provides Per-Conformation FSC curves for each method across all datasets and Table S5 shows the
FSCAUC values. We additionally show all 100 FSC curves for the IgG-1D dataset for each method in
Figure S10.

Sample FSC. While Per-Image FSC is the main metric we report, it may leverage information from
the ground truth clustering when computing representative latents/volumes. As an alternative, we
also generate volumes after unsupervised clustering of the latent embeddings to yield representative
samples (without any use of G.T. information). However, as there is then no obvious correspondence
between the sampled volume and its G.T. conformation, we compute the FSCAUC for each sampled
volume against all G.T. volumes and take the max value. We call this quantification the Sample FSC
and Table S5 shows the FSCAUC values.

Specifically, we use k-means clustering to cluster the latent embeddings for each method, and
use the k centroids as representative for evaluation. We choose k=20 for IgG-1D, IgG-RL, and
Tomotwin-100, and k=16 for Ribosembly.We show Sample FSC curves for each method across
the four datasets in Figure S11.

Per-Image FSC. Finally, we use Per-Image FSC as a metric that jointly assesses conformation
estimation and reconstruction quality. Here, we use a set ofN images from the dataset (either sampled
at random or uniformly for each conformation). For each image, we reconstruct an associated volume
at its inferred latent coordinate. We then compute the FSC AUC for the reconstructed volume to the
image’s ground truth volume. Thus, unlike Per-Conformation FSC and Sample FSC, Per-Image FSC
assesses how well each method has reconstructed the distribution of volumes. We use 100 images for
each dataset to compute Per-Image FSC with one random image per ground truth conformation.
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Figure S8: Per-Conformation FSC. Each curve shows the average FSC curve across all conforma-
tions with error bars indicating the standard deviation.

Figure S9: Per-Conformation FSC for Spike-MD. Each curve shows the average FSC curve across
all conformations with error bars indicating the standard deviation.

We present FSC curves averaged across all ground truth conformations for all methods for IgG-1D,
IgG-RL, Ribosembly, and Tomotwin-100 in Figures 2, 4, 6, 7, respectively. FSC curves for
Spike-MD are shown in Figure S12.

C.3 Additional Noise Comparison Results

Figure S13 shows extended results on IgG-1D-noisier and IgG-1D-noisiest (SNR 0.005, 0.001)
as compared to the IgG-1D dataset. With increasing noise levels, there is a noticeable reduction in
volume metrics, and the capability to differentiate between different conformations decreases.

C.4 Additional Qualitative Results

For additional qualitative evaluation, we provide visualizations of the reconstructed volumes and
latent spaces for each method and dataset in CryoBench. Figure S14 shows the latent spaces colored
by dihedral angle (CV1) and center of mass distance (CV2) for IgG-RL dataset. Figures S15-S21
display volumes from k-means cluster centers, with points in the UMAP visualization of the latent
space corresponding to each center.
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Figure S10: Per-Conformation FSC curves. All 100 FSC curves for the IgG-1D dataset. Masks
were applied when computing FSCs.

Figure S11: Sample FSC. Each curve shows the average FSC curve across all conformations with
error bars indicating the standard deviation.

C.5 Additional Information Imbalance Results

CTF and Pose: Information imbalance with respect to the ground truth latent pose (rotation only,
not translation) and CTF parameters is generally in the orthogonal region (1,1) for all methods (Figs.
S22, S23). However, zooming in, for pose, CryoDRGN and Opus-DSD are off the shared information
x=y line, indicating their minor entanglement is more pronounced than other methods. For CTF, the
trends are less clear, but Opus-DSD and 3D Class abinit are generally the furthest away from the
orthogonal region.
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Method IgG-1D IgG-RL Ribosombly Tomotwin-100

Mean (std) Med Mean (std) Med Mean (std) Med Mean (std) Med

CryoDRGN 0.356 (0.016) 0.364 0.346 (0.011) 0.345 0.419 (0.019) 0.4 0.277 (0.064) 0.3
CryoDRGN-AI-fixed 0.367 (0.001) 0.367 0.356 (0.007) 0.355 0.385 (0.029) 0.4 0.183 (0.027) 0.184

Opus-DSD 0.292 (0.062) 0.311 0.291 (0.069) 0.313 0.321 (0.128) 0.378 0.177 (0.036) 0.186
3DFlex 0.341 (0.001) 0.341 0.348 (0.005) 0.348 - - - -
3DVA 0.354 (0.002) 0.354 0.319 (0.051) 0.344 0.407 (0.019) 0.413 0.176 (0.051) 0.168

RECOVAR 0.391 (0.001) 0.391 0.371 (0.007) 0.369 0.433 (0.013) 0.433 0.331 (0.094) 0.385
3D Class 0.363 (0.001) 0.363 0.338 (0.006) 0.335 0.303 (0.148) 0.413 0.221 (0.032) 0.221

CryoDRGN2 0.294 (0.089) 0.342 0.312 (0.02) 0.318 0.312 (0.088) 0.356 0.081 (0.013) 0.079
CryoDRGN-AI 0.352 (0.014) 0.355 0.324 (0.036) 0.336 0.319 (0.069) 0.32 0.071 (0.01) 0.072
3D Class abinit 0.161 (0.072) 0.118 0.204 (0.054) 0.225 0.24 (0.014) 0.244 0.068 (0.011) 0.065

Table S5: AUC of Sample FSC. The metrics are computed after masking out background noise.
Standard deviation of all FSC-AUCs per method is given in parentheses.

Figure S12: Per-Image FSC for Spike-MD. Each curve shows the average FSC curve across 100
sampled images with error bars indicating the standard deviation.

C.6 Additional Spike-MD embedding analysis

Neighborhood Similarity and Information Imbalance plots for Spike-MD are shown in Figure S24.
We observe a relatively low similarity in neighborhoods between the embeddings and the ground truth
molecular dynamics collective variables for small neighbhoorhood radii, consistent with qualitative
observations from UMAP visualizations (Fig. 5). Information imbalance of the Spike-MD dataset
(Fig. S24-right) shows 3DVA on the shared information line at (0.5,0.5) - a very similar result as in
IgG-1D. Opus-DSD and CryoDRGN2 are near (0.9,0.6), the closest to the orthogonal region for the
Spike-MD dataset compared with other methods. For Opus-DSD, this is the closest to the orthogonal
region compared with its information imbalance on the other datasets. For CryoDRGN2, this is a
similar value as the challenging datasets (IgG-RL and Tomotwin-100). The other methods employed
in these experiments (CryoDRGN, CryoDRGN-AI-fixed, 3DFlex, RECOVAR, CryoDRGN-AI) are
closer to the equivalent zone and cluster together near (0.5,0.2).

C.7 Pose Error

We compute the pose error for ab initio methods (Table S7). CryoDRGN-AI generally exhibits the
lowest pose error. The distribution of pose errors are plotted in Figure S25-S31.

30

89497https://doi.org/10.52202/079017-2840



Method IgG-1D IgG-RL Ribosembly Tomotwin-100 Spike-MD

Mean (std) Med Mean (std) Med Mean (std) Med Mean (std) Med Mean (std) Med

CryoDRGN 0.366 (0.003) 0.366 0.349 (0.008) 0.348 0.415 (0.019) 0.415 0.321 (0.034) 0.322 0.340 (0.009) 0.340
CryoDRGN-AI-fixed 0.366 (0.001) 0.366 0.355 (0.007) 0.354 0.372 (0.032) 0.374 0.206 (0.041) 0.212 0.301 (0.012) 0.304

Opus-DSD 0.34 (0.006) 0.341 0.346 (0.029) 0.349 0.372 (0.046) 0.382 0.256 (0.038) 0.266 0.228 (0.030) 0.242
3DFlex 0.336 (0.002) 0.336 0.339 (0.007) 0.339 - - - - 0.304 (0.010) 0.306
3DVA 0.351 (0.003) 0.351 0.341 (0.006) 0.341 0.375 (0.038) 0.372 0.095 (0.04) 0.083 0.324 (0.010) 0.325

RECOVAR 0.391 (0.001) 0.391 0.372 (0.008) 0.371 0.43 (0.016) 0.432 0.306 (0.093) 0.33 0.363 (0.011) 0.366
3D Class 0.297 (0.019) 0.291 0.309 (0.01) 0.307 0.289 (0.081) 0.288 0.046 (0.026) 0.037 0.307 (0.023) 0.308

CryoDRGN2 0.344 (0.003) 0.345 0.294 (0.022) 0.296 0.314 (0.09) 0.348 0.076 (0.016) 0.074 0.253 (0.037) 0.265
CryoDRGN-AI 0.356 (0.002) 0.356 0.341 (0.01) 0.342 0.351 (0.052) 0.369 0.073 (0.014) 0.073 0.281 (0.009) 0.282
3D Class abinit 0.13 (0.046) 0.119 0.184 (0.022) 0.188 0.144 (0.036) 0.138 0.032 (0.012) 0.032 0.206 (0.010) 0.207

Table S6: AUC of Per-Conformation-FSC. The metrics are computed after masking out background
noise. Standard deviation of all FSC-AUCs per method is given in parentheses.

Figure S13: IgG-1D with noise. (a) Histogram of Per-Conformation FSC for each method at SNR
levels of 0.01, 0.005, 0.001. (b) UMAP visualizations colored by G.T. dihedral conformations of
each method.

Figure S14: IgG-RL latent spaces colored by collective variables (CVs) describing the IgG-RL
conformations.
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Figure S15: Qualitative Results (IgG-1D). Representative volumes and UMAP visualization of the
latent embeddings for each method. Volumes correspond to k-means cluster centers with k=20 and
are colored according to the associated point. Class volumes and particle counts are shown for 3D
Classification.
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Figure S16: Qualitative Results (IgG-RL). Representative volumes and UMAP visualization of the
latent embeddings for each method. Volumes correspond to k-means cluster centers with k=20 and
are colored according to the associated point. Class volumes and particle counts are shown for 3D
Classification.
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Figure S17: Qualitative Results (Spike-MD). Representative volumes and UMAP visualization of
the latent embeddings for each method. Volumes correspond to k-means cluster centers with k=20
and are colored according to the associated point. Class volumes and particle counts are shown for
3D Classification.
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Figure S18: Qualitative Results (IgG-1D noisier). Representative volumes and UMAP visualization
of the latent embeddings for each method. Volumes correspond to k-means cluster centers with k=20
and are colored according to the associated point. Class volumes and particle counts are shown for
3D Classification.
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Figure S19: Qualitative Results (IgG-1D noisiest). Representative volumes and UMAP visualization
of the latent embeddings for each method. Volumes correspond to k-means cluster centers with k=20
and are colored according to the associated point. Class volumes and particle counts are shown for
3D Classification.
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Figure S20: Qualitative Results (Ribosembly). Representative volumes and UMAP visualization of
the latent embeddings for each method. Volumes correspond to k-means cluster centers with k=16
and are colored according to the associated point. Class volumes and particle counts are shown for
3D Classification.

37

89504 https://doi.org/10.52202/079017-2840



Figure S21: Qualitative Results (Tomotwin-100). Representative volumes and UMAP visualization
of the latent embeddings for each method. Volumes correspond to k-means cluster centers with k=20
and are colored according to the associated point. Class volumes and particle counts are shown for
3D Classification.
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Figure S22: Pose Information Imbalance. In full view ([0, 1]2; top row) and zoomed in (bottom
row).
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Figure S23: CTF Information Imbalance. In full view ([0, 1]2; top row) and zoomed in (bottom
row).

Figure S24: Embedding metric results for the Spike-MD dataset (left) Neighborhood similarity as
a function of the neighborhood radius [%]. (right) Information Imbalance. Opus-DSD (not visible) is
underneath cryoDRGN2. DRGN-AI fixed is underneath RECOVAR and DRGN-AI.
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Method IgG-1D IgG-1D noisier IgG-1D noisiest IgG-RL Ribosembly Tomotwin-100 Spike-MD
Rot Trans Rot Trans Rot Trans Rot Trans Rot Trans Rot Trans Rot Trans

CryoDRGN2 6.601 1.056 6.282 1.035 55.876 2.707 6.546 2.527 1.847 0.728 109.581 2.156 3.457 2.022
CryoDRGN-AI 5.216 0.412 5.884 0.435 82.657 4.264 2.712 0.215 2.032 0.872 110.987 5.347 1.562 0.265
3D Class abinit 3.403 0.933 4.312 1.009 82.621 3.583 4.658 0.742 2.834 1.492 113.629 8.980 1.783 0.489

Table S7: Pose Error. Errors are quantified by the median rotation and translation errors compared to
the ground truth image poses after global reference frame alignment. The rotation errors are defined
as the median of the Geodesic error in units of degrees and the translation errors are defined as the
median of the L2 distance in units of pixels after alignment. For the Tomotwin-100 dataset, each
structure was aligned separately for all 100 different structures.

Figure S25: Pose error for IgG-1D. Histogram of rotation and translation errors. The first row shows
rotation errors, and the second row shows translation errors.

Figure S26: Pose error for IgG-1D noisier. Histogram of rotation and translation errors. The first
row shows rotation errors, and the second row shows translation errors.

40

89507https://doi.org/10.52202/079017-2840



Figure S27: Pose error for IgG-1D noisiest. Histogram of rotation and translation errors. The first
row shows rotation errors, and the second row shows translation errors.

Figure S28: Pose error for IgG-RL. Histogram of rotation and translation errors. The first row
shows rotation errors, and the second row shows translation errors.

41

89508 https://doi.org/10.52202/079017-2840



Figure S29: Pose error for Spike-MD. Histogram of rotation and translation errors. The first row
shows rotation errors, and the second row shows translation errors.

Figure S30: Pose error for Ribosembly. Histogram of rotation and translation errors. The first row
shows rotation errors, and the second row shows translation errors.
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Figure S31: Pose error for Tomotwin-100. Histogram of rotation and translation errors. The first
row shows rotation errors, and the second row shows translation errors.
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D Glossary of Terms from Single-Particle Electron Cryo-Microscopy

D.1 Sample

• Biomolecular: Pertaining to molecules involved in the biological processes of living
organisms, such as proteins and nucleic acids.

• Protein: Large, complex molecules made up of amino acids, essential for various biological
functions like catalyzing metabolic reactions and DNA replication.

• Nucleic Acid: A type of biomolecule, including (deoxy)ribonucleic acid (DNA, RNA,
respectively). This term can refer to a single unit that can polymerize (form a long chain).

• Complex: In the context of biomolecular complexes, the term ‘complex’ refers to a stable
association of two or more biomolecules that interact with each other, typically to perform
a specific biological function. The interactions that hold these molecules together can
be non-covalent, such as hydrogen bonds, ionic interactions, van der Waals forces, and
hydrophobic effects, or covalent, such as disulfide bonds.

• Subunit: a part of a larger whole. The part (domain, polypeptide) is contextual to the whole
(domain, protein complex).

D.2 Heterogeneity

• Heterogeneity: The presence of variations in shape or the presence or absence of mass
within a sample. Coming in two main sub-classes

– Compositional: Related to the total amount of mass and their proportions within a
sample or structure. Often used in the context of discrete differences in total mass.

– Conformational: Pertaining to the various shapes or structures that a molecule can
adopt. Often used in the context of continuous movement in 3D space.

• Conformation: The specific three-dimensional arrangement of atoms in a molecule. Often
employed in the plural to refer to the different shapes a particular biomolecule can adopt.

• (Biomolecular) Ensemble: The collection of multiple conformations of a biomolecule.
Biomolecules are typically dynamic and change conformations due to thermal fluctuations
and interactions to carry out function [60, 61]. This concept is related to microstates and
macrostates in statistical thermodynamics. A microstate represents a specific arrangement of
particles at a given moment, while a macrostate describes the overall properties of a system,
encompassing many possible microstates. Similarly, a biomolecular ensemble in cryo-EM
represents the collection of microstates (individual conformations) that contribute to the
observed macrostate (overall structural and functional behavior) of the biomolecule.

• Collective Variable (CV): A parameter used to describe the state of a system, typically in
terms of a few degrees of freedom. Further distinguished into geometric (centre of mass,
angle, distance) and abstract [62]. The term CV is related to ‘order parameter’, and ‘reaction
coordinate’, which is often used in the context of reactants and products in chemical catalysis
[63]. However, as employed in the biomolecular simulation community, CVs typically relate
to distinguishing metastable states [64].

D.3 Model and Representation

• Angstrom (Å): A unit of length equal to 0.1 nm, or 10−10 m. Often used in chemistry
because the diameter of an atom and the distance between atoms is close to 1 Å.

• Voxel: A volume element representing an intensity value on a regular grid in three-
dimensional space, similar to a pixel in 2D images but for a 3D array. A typical voxel
volume ranges 0.53 − 23 Å3.

• 3D Map, Volume, Density: A representation of structural data, in cryo-EM this typically
refers to the 3D Coulombic (electric, electrostatic) potential instead of the electron density
in other structural biology techniques based on X-ray diffraction. [65, 66]

• Latent: Hidden variables inferred from observed data, representing underlying structures or
features in the model not directly observed.
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• Embedding: A representation of data, for example a continuous n-dimensional vector space.
Used to concretely parametrize or otherwise numerically represent a latent variable.

• White Gaussian Noise: noise with a flat power spectral density, meaning that its power is
uniformly distributed across all frequencies. This implies that the noise has equal intensity
at different frequencies, making it ‘white’ by analogy to white light, which contains all
visible wavelengths.

D.4 Microscopy

• Point Spread Function (PSF): A function describing the response of an imaging system to
a point source, indicating, for example, the system’s resolution and blur characteristics.

• Contrast Transfer Function (CTF): The Fourier transform of the point spread function.
A mathematical description of how an electron microscope transfers contrast from the
specimen to the image, influenced by various microscope parameters. We employ a common
parametric form which depends on beam energy (electron wave length via the de Broglie
relation), defocus and its astigmatism, spherical aberration, and amplitude contrast (ratio)
[67].

• Microscope Effects: Artifacts and distortions introduced by the electron microscope during
image acquisition. At times used in a phenomenological sense to describe effects not
modelled well by the PSF/CTF.

• Camera Effects: Distortions or noise introduced by the optical system used to capture
images. Can be used in a wide sense beyond detector effects for the entire optical system.

D.5 Image Acquisition and Analysis

• Micrograph: A two dimensional image obtained using an electron microscope, typically
showing a field of view that includes multiple particles. Often the image contains tempo-
ral frames in a ‘movie’ format, which is corrected for motion. A typical micrograph is
approximately 40002 pix2, at 0.5− 2 Å per pixel.

• Particle: Individual biomolecular structures captured within a patch of micrograph, which
is typically boxed out of the wide frame image. Can refer to the physical entity in the image,
or the recorded measurement. A typical particle is approximitely 642−5122 pix2, at 0.5−2
Å per pixel.

• Reconstruction: a 3D volume, typically in a real spaced voxelized array form, generated
by processing data from a series of two-dimensional 2D images. Distinguished further to
homogeneous (one 3D volume) and heterogeneous (multiple 3D volumes).
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