
DiffHammer: Rethinking the Robustness of
Diffusion-Based Adversarial Purification

Kaibo Wang1, Xiaowen Fu1, Yuxuan Han1, Yang Xiang1,2∗
1Department of Mathematics, The Hong Kong University of Science and Technology

2HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute
{kwangbi, xfuak, yhanat}@connect.ust.hk, maxiang@ust.hk

Abstract

Diffusion-based purification has demonstrated impressive robustness as an adver-
sarial defense. However, concerns exist about whether this robustness arises from
insufficient evaluation. Our research shows that EOT-based attacks face gradient
dilemmas due to global gradient averaging, resulting in ineffective evaluations.
Additionally, 1-evaluation underestimates resubmit risks in stochastic defenses. To
address these issues, we propose an effective and efficient attack named DiffHam-
mer. This method bypasses the gradient dilemma through selective attacks on
vulnerable purifications, incorporating N -evaluation into loops and using gradient
grafting for comprehensive and efficient evaluations. Our experiments validate that
DiffHammer achieves effective results within 10-30 iterations, outperforming other
methods. This calls into question the reliability of diffusion-based purification after
mitigating the gradient dilemma and scrutinizing its resubmit risk.

1 Introduction

The vulnerability of deep neural networks (DNNs) to adversarial samples hinders their application
in security-critical domains, where attackers can deceive DNNs by introducing carefully crafted
noises [25, 9]. To mitigate this issue, numerous defense strategies have been proposed to enhance
their robustness, among which diffusion-based purification has emerged as a promising approach [22,
26, 3]. Diffusion models [11, 24] are designed to construct stochastic processes from noisy data
distributions to cleaner ones. As a result, the presence of small adversarial noise can be drowned out
by larger noise, which can then be iteratively denoised using the diffusion model [22, 26] or purified
through a diffusion-involved optimization [3]. The iterative algorithm and stochasticity of diffusion
enhance their purification capabilities empirically, yet they also present a challenge in evaluating their
robustness [16, 13]. There are ongoing concerns regarding their effectiveness:

Whether their effectiveness originated from inherent robustness or insufficient evaluation?

The Expectation of Transformation (EOT) [2] method allows attacks to adapt across stochastic
purifications by averaging the gradients of sampled purifications. It maximizes attack success rate
under the assumption that most purifications share a common vulnerability, i.e., susceptible to a
same adversarial noise. However, high stochasticity in diffusion-based purification challenges this
assumption, rendering EOT-based attacks ineffective. Purifications with unshared vulnerability (S0,
shown in Figure 1) will provide inconsistent gradients in the attack, leading to a gradient dilemma.
Moreover, obtaining gradients for purification is time-consuming, and this dilemma further increases
computational overhead.

∗Corresponding author

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

89535 https://doi.org/10.52202/079017-2842

Success

(b) Loss on 𝒮𝒮𝟏𝟏:

(c) Loss on 𝒮𝒮𝟎𝟎⋃𝒮𝒮𝟏𝟏:

Fail

𝑥𝑥𝑎𝑎𝑎𝑎𝑎𝑎
(d) E-step: Identification

(a)

Non-shared
vulnerability

Shared
vulnerability

(e) M-step: Aggregation

𝒈𝒈𝒈𝒈𝒈𝒈𝒅𝒅𝟏𝟏
(𝒕𝒕)𝒈𝒈𝒈𝒈𝒈𝒈𝒅𝒅𝟐𝟐

(𝒕𝒕)

𝒈𝒈𝒈𝒈𝒈𝒈𝒅𝒅𝟑𝟑
(𝒕𝒕)𝒈𝒈𝒈𝒈𝒈𝒈𝒅𝒅𝟒𝟒

(𝒕𝒕) 𝒈𝒈𝒈𝒈𝒈𝒈𝒅𝒅(𝒕𝒕+1)

𝒈𝒈𝒈𝒈𝒈𝒈𝒅𝒅(𝒕𝒕)

Figure 1: Illustration of DiffHammer. From left to right: (a) Set of purifications with unshared (S0) /
shared (S1) vulnerabilities. (b,c) Maximizing the loss function on S0 ∪ S1 may lead to less effective
attacks than on S1. (d,e) Selective attack targets on S1 to avoid the gradient dilemma. We identify
purifications from S1 in the E-step and aggregate the gradients of these purifications in the M-step.

To address this, we introduce a selective attack method, DiffHammer2, based on expectation maxi-
mization (EM) [5]. As shown in Figure 1, our algorithm bypasses the gradient dilemma by iteratively
identifying vulnerable purifications in the E-step and aggregating their gradients in the M-step. This
approach focuses on shared vulnerabilities, akin to using a hammer on weak spots rather than the
entire structure. Additionally, we enhance attack efficiency by reducing the diffusion process’s
backpropagation complexity from O(N) to O(1) through gradient grafting.

Another issue with diffusion-based purification is insufficient evaluation. Attackers aiming for a single
success, such as logging in, can achieve a higher chance of success by resubmitting an adversarial
sample to the stochastic defense [20]. This resubmit risk is underestimated in 1-evaluation tailored
for deterministic defenses, especially given the high stochasticity of the diffusion process. To address
this, we upgraded 1-evaluation to N -evaluation and seamlessly integrated it into our DiffHammer
framework, offering a more comprehensive risk assessment without extra time costs.

We revisit the robustness of diffusion-based purification within the DiffHammer framework. DiffHam-
mer surpasses other state-of-the-art attacks [4, 21, 13, 16, 1, 2] by circumventing the gradient dilemma
and achieving near-optimal effectiveness within 10-30 iterations. Under N -evaluation protocol and
our selective attack, we find that the risk associated with diffusion-based purification is significantly
underestimated. Mainstream purifications [22, 26, 3] fail to withstand even 10 resubmit attacks and
may degrade the performance of robust models, indicating that their robustness potential remains
underutilized. We hope that DiffHammer’s insights into evaluating diffusion-based purification
robustness will foster more robust defenses. Our main contributions are summarized as follows:

• We identified the limitation of EOT-based attacks and proposed an efficient and effective
evaluation, termed DiffHammer, to comprehensively diagnose the adversarial risks of
diffusion-based purification.

• We introduce a selective attack that avoids the gradient dilemma by targeting the shared
vulnerabilities, with the process expedited by gradient grafting.

• We validate the effectiveness of DiffHammer through extensive experiments on mainstream
purifications, revealing underestimated risks through standardized N -evaluation.

2 Preliminary

2.1 Adversarial attacks

Given an image x ∈ Rd and its label y ∈ [K], a classifier f : Rd → RK with a preprocessor
ϕ : Rd → Rd will classify it as f [ϕ(x)] = argmaxk=1,...,K fk[ϕ(x)], where K is the number of
classes. The attacker aims to add an imperceptible adversarial noise r on the image to make it
misclassified, i.e., f [ϕ(x+ r)] ̸= y. Adversarial noise is typically obtained by maximizing the loss

2The codes are publicly available at https://github.com/Ka1b0/DiffHammer.

2

89536https://doi.org/10.52202/079017-2842

https://github.com/Ka1b0/DiffHammer

function L while imposing ℓp-norm constraint for imperceptibility. For instance, projected gradient
descent (PGD) [21] updates ∥r∥∞ ≤ ϵ bounded adversarial samples as:

r(t+1) = Π∥r∥∞≤ϵ(r
(t) + αsign∇xL(f [ϕ(x+ r(t))], y)), (1)

where α is step size and Π indicates a projection operator.

Preprocessors tailored to defend against adversarial noise may lead to vanishing, exploding, or
inaccurate gradients. Attackers can resort to approximating the gradient using Backward Pass
Differentiable Approximation (BPDA) [1], where the preprocessor is typically treated as an identity
mapping during the backpropagation:

∇xL(f [ϕ(x+ r(t))], y) |x+r(t)≈ ∇xL(f [ϕ(x+ r(t))], y) |ϕ(x+r(t)) . (2)

EOT [2] can be utilized as an additional approach to estimate gradients of stochastic preproces-
sors, whose effectiveness is derived from the assumption that different preprocessors have shared
vulnerabilities. Given N sampled preprocessors ϕi, the estimated gradient is:

∇xL(f [ϕ(x+ r(t))], y) ≈ 1

N

N∑
i=1

∇xL(f [ϕi(x+ r(t))], y). (3)

2.2 Diffusion-based purification

The diffusion model [11, 24, 14] establishes a link between the clean data distribution p0(x) and the
noisy distribution p1(x) through forward (noising) and backward (denoising) processes. The forward
process xt can be expressed as a stochastic differential equation (SDE) for t from 0 to 1 [24]:

dx = f(x, t)dt+ g(t)dw, (4)

where x0 ∼ p0(x), wt ∈ Rd is a standard Wiener process, f : Rd × Rd → Rd is the drift coefficient
and g : R → R is the diffusion coefficient which is designed so that p1(x) follows a standard
Gaussian distribution N (0, Id). DDPM [11] can be viewed as a special case of f(x, t) := −β(t)x/2
and g(t) :=

√
β(t), where β(t) is the noise scheduler, usually set as a linear function w.r.t. t.

The evolution of reverse-time SDE (t from 1 to 0) then corresponds to the generation of samples:

dx̂ = [f(x̂, t)− g(t)2∇x̂pt(x̂)]dt+ g(t)dw̄, (5)

where dt is an infinitesimal negative time step and w̄t is a standard reverse-time Wiener process, and
∇x̂pt(x̂) is known as time-dependent score function and is typically estimated by the neural network.

Well-trained diffusion models possess the ability to accurately model the score function and denoise
noisy samples, enabling adversarial purification. Considering the small magnitude of adversarial noise,
Diffpure [22] therefore floods the adversarial noise while preserving the semantic information by
running a forward process from 0 to t∗, and then purifies it through a denoising process. GDMP [26]
leverages the distance from the initial samples as guidance to further preserve semantic information.
Leveraging the fact that diffusion model approximates the score function of x ∼ p0(x) more
accurately, likelihood maximization (LM) [3] optimizes adversarial samples to minimize estimation
error, aligning their distribution with p0(x).

3 DiffHammer

To address ineffectiveness in the attack phase and insufficiency in the evaluation phase, we propose
DiffHammer to assess the robustness of diffusion-based purification. First, DiffHammer overcomes
the gradient dilemma by designing a selective attack (Section 3.1) using the EM algorithm. Further-
more, we seamlessly integrate N -evaluation (Section 3.2) into the algorithm, enabling more accurate
resubmit risk diagnosis and facilitating the attack by providing approximate gradients.

3.1 Selective attack

3.1.1 EM algorithm

Notation and objective. For a sample x ∈ Rd with label y ∈ [K], we aim to design adversarial
noise r ∈ Rd to mislead a classifier f with a stochastic purification ϕ : Rd → Rd. Let A represent

3

89537 https://doi.org/10.52202/079017-2842

the misclassification event where f [ϕ(x + r)] ̸= y. Our goal is to maximize the probability of
misclassification, expressed as P (A | r) = Eϕp(A | r). Here P is the probability density associated
with the stochastic purification ϕ, and p denotes the probability density in logits of f given a specific
ϕ. We refer to the gradient of loss L(f [ϕ(x+r)], y) w.r.t. x, ϕ(x+r) as the full gradient (∇xLϕ) and
the approximate gradient (∇ϕ(x+r)Lϕ), respectively. Without ambiguity, we sometimes abbreviate
the loss as Lϕ and gradients as∇xLϕ, ∇ϕLϕ.

Assumption. We assume that diffusion-based purifications have unshared vulnerabilities, dividing ϕ
into two sets. We denote S1 as the largest set of ϕ with shared vulnerability, i.e., S1 = argmaxP ({ϕ :
f [ϕ(x+r⋆)] ̸= y for a same r⋆}) and S0 = S̄1 as the set of ϕ compromised by inconsistent adversarial
noise r. We assume that optimization towards ϕ ∈ S0 suffers from the gradient dilemma, leading to
ineffective attacks. Our task is to identify S1 and design r for ϕ ∈ S1.

Indicating whether a ϕ belongs to S1 or S0 by z = 1 or 0, we denote q(z) as the estimated distribution
for z for given ϕ. According to the Jensen’s inequality, we maximize a lower bound of our goal:

maxEϕ ln
∑
z=0,1

p(A, z | r) = Eϕ

∑
z=0,1

q(z) ln
p(A, z | r)

q(z)︸ ︷︷ ︸
Q(q,r)

−
∑
z=0,1

q(z) ln
p(z | A, r)

q(z)︸ ︷︷ ︸
KL(q∥p(z|A,r))

(6)

where Q(q, r) represents the evidence lower bound, and KL(q ∥ p(z | A, r)) is the KL divergence
between q and the posterior distribution of z. Given the coupling of variables r and z in the
optimization process, we employ the EM algorithm [5] as a solver that alternates between optimizing
r (maximizing Q(q, r)) in the M-step and estimating z (minimizing KL divergence) in the E-step.

M-step. During the M-step, we maximize Q(q, r) w.r.t. r to raise the objective’s lower bound
while keeping q(z) fixed. By omitting terms unrelated to r, i.e., q(z) ln q(z) and the priors ln p(z =
0), ln p(z = 1), the goal simplifies as

max
r
Q(q, r)⇔ max

r
q(z = 1) ln p(A | r, z = 1) + q(z = 0) ln p(A | r, z = 0) (7)

where the second term is further disregarded in the optimization according to our assumption.

In adversarial attacks, the objective Eϕ ln p(A | r, z = 1) is typically replaced by maximizing the loss
function Lϕ(x+ r), achieved through average gradient-based methods. Consequently, the M-step
update can be integrated into existing attack algorithms like PGD [21] and AA [4] as a plug-in, with
the difference being the reweighting of the gradient from each ϕ by q(z = 1). We further employ
stepwise-EM [18] to linearly interpolate the current gradient and the previous gradient with weight
t−α for online updating, where t is the number of iterations and α is a hyperparameter. This approach
intuitively optimizes the adversarial noise towards the shared vulnerability of S1, thus avoiding the
gradient dilemma in S0.

E-step. During the E-step, we update q(z = 1) to p(z = 1 | A, r) for a given r, thereby eliminating
the KL divergence, which is the gap between the objective and its lower bound. Notice that S1 is
defined as the largest set of ϕ susceptible to the same adversarial noise r⋆, where usually r⋆ ̸= r. We
can estimate p(z = 1 | A, r) by approximating r⋆ with by-products Lϕ(x + r) and ∇xLϕ

∣∣
x+r

in
the observation of misclassification event A. Denote the difference between r⋆ and r as ∆r, the loss
Lϕ(x+ r⋆) w.r.t. r⋆ can be linearly approximated since ∆r is not excessively large, with both r and
r⋆ bounded by ∥·∥p ≤ ϵ:

Lϕ(x+ r⋆) ≈ Lϕ(x+ r) + ∆rT∇xLϕ

∣∣
x+r

(8)

Higher loss increases the likelihood of misclassification, so we map Lϕ(x+ r⋆) to p(A | r⋆) using a
monotonically increasing function σ : R→ [0, 1]. By the definition of S1, r⋆ compromises as many
ϕ as possible. We find r⋆ through the following optimization:

r⋆ = r +∆r = r + argmaxEϕσ(Lϕ(x+ r) + ∆rT∇xLϕ

∣∣
x+r

) (9)

After determining r⋆, the probability q(z = 1) that ϕ belongs to S1 can be estimated as σ(Lϕ(x+r⋆)).

Remark. We use the empirical average w.r.t. N instances ϕi, i = 1, . . . , N in each iteration to
estimate expectations. In the E-step, we optimize r⋆ in a low-cost manner, as no model is involved.
We reweight the gradient by σ(Lϕi(x+ r⋆)) in the M-step and then use it in an off-the-shelf attack
algorithm to update the adversarial noise r. The primary time cost arises from calculating the gradient
∇xLϕi

due to the complexity of the purification process. In Section 3.1.2, we will describe how to
reduce the O(N) complexity to O(1) through gradient grafting.

4

89538https://doi.org/10.52202/079017-2842

Algorithm 1: DiffHammer
Input :Data (x, y), classifier f with stochastic purification ϕ,

number of resubmit M , off-the-shelf attack algorithm
Output :Robustness Rob in M resubmit attacks

1 Initialize r(0);
2 for t← 1 to T do
3 Evaluation for t− 1 iteration and input for t iteration;
4 Sample ϕi, i = 1, · · · , N ;
5 Rob(t−1) = Eval (r(t−1), M) // for evaluation;
6 Record L(t)

ϕi
,∇(t)

ϕi
Lϕi // for attack;

7 E-step: identify the set with shared vulnerability;
8 ∆r̃(t) = argmax

∑
i σ(L

(t)
ϕi

+∆r̃T∇(t)
ϕi
Lϕi) ;

9 q
(t)
i = σ(L(t)

ϕi
+∆r̃T∇(t)

ϕi
Lϕi) // probability of affiliation;

10 M-step: estimate the full gradients’ aggregation;
11 g̃(t) =

∑
i q

(t)
i ∇

(t)
ϕi
Lϕi/N // aggregation in ϕ stage;

12 Select ϕ̂ according to Equation 11 // representative ϕ;
13 g(t) = Backward (ϕ̂(x+ r(t−1))T g̃(t)) // gradient grafting;
14 g(t) = t−αg(t) + (1− t−α)g(t−1) // stepwise update;
15 r(t) = AttackAlgorithm (r(t−1), g(t));
16 end
17 Rob(T) = Eval (r(T), M) with ϕi, i = 1, · · · , N ;
18 return Rob = min(Rob(t), t = 1, · · · , T)

C
la

ss
ifi

er

Pu
rif

ic
at

io
n
𝜙𝜙 1

Lo
ssx

C
la

ss
ifi

er

Lo
ssx

C
la

ss
ifi

er

Pu
rif

ic
at

io
n
𝜙𝜙
3

Lo
ssx

𝑔𝑔�𝑟𝑟𝑟𝑟𝑑𝑑

Pu
rif

ic
at

io
n
� 𝜙𝜙
2𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

𝑔𝑔�𝑟𝑟𝑟𝑟𝑑𝑑1
× 0.2

𝑔𝑔�𝑟𝑟𝑟𝑟𝑑𝑑2
× 0.8

𝑔𝑔�𝑟𝑟𝑟𝑟𝑑𝑑3
× 0.5

Figure 2: Illustration of efficient
gradient aggregation.

3.1.2 Gradient grafting

To address the efficiency challenges in robustness evaluation for diffusion-based purification, we aim
to estimate the weighted gradient aggregation

∑
i qi(z = 1)∇xLϕi

with minimal computational cost.
Our approach aggregates low-cost approximate gradient ∇ϕiLϕi in the early stage to estimate the
weighted full gradient, which can be expressed as

N∑
i=1

qi(z = 1)∇xLϕi =

N∑
i=1

qi(z = 1)
∂ϕi

∂x
∇ϕiLϕi ≈

∂ϕ̂

∂x

N∑
i=1

qi(z = 1)∇ϕiLϕi , (10)

assuming ∂ϕi/∂x can be approximated by ∂ϕ̂/∂x. As illustrated in Figure 2, We first compute
the weighted approximate gradient

∑N
i=1 qi(z = 1)∇ϕiLϕi , which is then grafted onto ϕ̂ for

backpropagation to estimate the gradient expectation, reducing complexity in backpropagation
x← ϕi(x) to O(1). BPDA [1] uses I to approximate ∂ϕi/∂x, offering computational simplicity but
potentially compromising performance due to oversimplification. Our gradient grafting enhances
estimation with one additional backpropagation, achieving a better balance between efficiency and
effectiveness. Further related design details are discussed below.

E-step in ϕ stage. Although r⋆ in E-step (Equation 9) involves the full gradient ∇xLϕi , our main
interest is in σ(Lϕ(x + r⋆)). Therefore, we can optimize in the stage of ϕ rather than x to avoid
dependence on the full gradient. We express ∆r̃ in the stage of ϕ as ∆r̃ = ϕ(x+r⋆)−ϕ(x+r). The
optimization, aimed at attacking as many ϕ as possible, becomes maxEϕσ(Lϕ(x+r)+∆r̃T∇ϕLϕ),
relying only on the approximate gradient. We end up deriving σ(Lϕ(x+ r⋆)) from optimized ∆r̃.

Choice of ϕ̂. We aim to select a ϕ with representative vulnerability for backpropagation, whose
adversarial noise can also affect other ϕ. For a single-step attack on ϕ with adversarial noise g(∇ϕLϕ)

(e.g. sign(∇ϕLϕ) in ℓ∞ case), we choose ϕ̂ among ϕi using the strategy:

ϕ̂ = argmax
ϕ∈{ϕi,i=1,··· ,N}

N∑
i=1

σ[Lϕi(x+ r) + g(∇ϕLϕ)
T∇ϕiLϕi]. (11)

This consistent optimization goal of attacking as many ϕ as possible maintains the shared vulnerability
from the ϕ stage to the x stage. The choice of ϕ̂ involves discrete optimization within a finite set,
solvable by traversal when N is not very large.

5

89539 https://doi.org/10.52202/079017-2842

3.1.3 Discussion

Our selective attack (targeting S1) enhances both the effectiveness and efficiency of the EOT-based
attack (targeting S0 ∪ S1). (1) The EOT-based attack is a specific instance of our algorithm when
all ϕ share a common vulnerability. In this case, with S0 = ∅, q(z = 1) = 1, our selective attack
degenerates into an EOT-based attack without side effects. (2) The identification of S1 involves only
approximate gradients, making it nearly cost-free. The grafting trick further increases the efficiency
of gradient expectation. (3) The effectiveness of the selective attack arises from avoiding the gradient
dilemma, which can cause EOT-based attacks to fail even in simple binary cases.

Theorem 1 (Failure mode of EOT-based attacks, Proof in Appendix B.1). Suppose ϕ can be
divided into two sets, A and B. The loss functions w.r.t. r in these sets are defined as LA(r) :=
σ−1(Pϕ∈A(A | r)) and LB(r) := σ−1(Pϕ∈B(A | r)), which are mA and mB strongly concave,
respectively. If the distance between their optimal points rA and rB satisfies ∥rA − rB∥22 ≥
8max{P (A)LA(rA), P (B)LB(rB)}/m where m := min{P (A)mA, P (B)mB}, the EOT-based
attack is less effective than a simple attack targeting either A or B.

When rA and rB are significantly different, S1 tends to be A or B, whereas the other becomes S0
and provides neutralized gradients. Empirical results indicate that the gradient dilemma is common
in diffusion-based purification, highlighting the necessity of selective attacks.

3.2 In-loop N-evaluation

0%

30%

60%

90%

100%

Fail
Attacked

(a) DiffPure [22]

0%

20%80%

100%

FailAttacked

(b) GDMP [26]

0%

30%

60%

90%

100%
Fail

Attacked

(c) LM [3]

Figure 3: Distribution of attack results (ℓ∞ : 8/255) for 1-
evaluation (inner ring) and 10-evaluation (outer ring). 32.6%-
46.3% of the samples have unshared vulnerabilities, impos-
ing underestimated resubmit risk in 1-evaluation.

Traditional 1-evaluation is insuffi-
cient for assessing the robustness of
diffusion-based purification, particu-
larly against resubmit attacks. As
a stochastic defense, the model pro-
duces inconsistent results for even the
same queries, enabling attackers to
achieve desired outcomes through re-
submissions. In cases where attack
costs are manageable and even a sin-
gle success is advantageous, e.g., lo-
gin, defenders should focus on the
model’s robustness over M resubmis-
sions. Thus, we propose using N -
evaluation as a robustness evaluation
protocol for two reasons:

(1) As detailed in Theorem 2, 1-evaluation are significantly biased in estimating M -resubmit risk.
Due to high stochasticity, it is common for ϕ to have unshared vulnerabilities, as shown in Figure 3.
Merely success or failure record in 1-evaluation fails to capture critical probability information for
resubmit risk estimation. For instance, with DiffPure, 46.3% of samples have a attack success rate
(ASR) P (S1) ∈ (0, 1), leading to a 17.9% overestimation of 10-resubmit robustness in 1-evaluation

(R̂ob
(1)

MLE = 41.7%, and Rob = 59.6%).

Theorem 2 (Estimation of the resubmit risk, Proof in Appendix B.2). Let the sample’s robustness
in M resubmit attacks A1, · · · ,AM be denoted as Rob := P (A1 = · · · = AM = 0). There exists
a uniformly minimum-variance unbiased estimator (UMVUE) for Rob if and only if the number
of evaluation trials N ≥ M . When N ≤ M , the maximum likelihood estimator (MLE) tends to

overestimate Rob in expectation, i.e., E(R̂ob
(N)

MLE) ≥ Rob.

(2) N -evaluation can be integrated into the attack’s loop without extra burden. Samples ϕi, i =
1, · · · , N serve both as an evaluation for the previous iteration and input for the current, which will
not cause information leakage, as each evaluation involves unseen instances.

Our DiffHammer framework integrates selective attacks and N -evaluation, as detailed in Algorithm
1. Notably, our N -resubmit robustness extends the traditional 1-submit metric to better assess risks in
real-world deployments, orthogonal to our attack algorithm’s design. Consequently, DiffHammer
offers a more comprehensive risk assessment and enhances attack effectiveness across various metrics.

6

89540https://doi.org/10.52202/079017-2842

Table 1: Performance of attacks against diffusion-based purification on CIFAR10. Metrics include
Avg./Wor. Rob, (%) and iterations (it.) taken to reach 90% best performance (in parentheses, failure
to reach is noted as N/A). Attack algorithms include SOTA white-box attacks with EOT: BPDA [1],
PGD [21], AA [4], DA [13], and DiffHammer (DH, ours); and transfer-based attacks (denoted by †):
DMI [29], TMI [8], VMI [27], SVRE [30].

Defense DiffPure [22] GDMP [26] LM [3]
Metrics Avg.Rob (it.)↓ Wor.Rob (it.)↓ Avg.Rob (it.)↓ Wor.Rob (it.)↓ Avg.Rob (it.)↓ Wor.Rob (it.)↓

Clean 90.98 76.56 93.26 83.79 87.77 74.61

ℓ ∞
:
4
/
2
5
5 BPDA 76.27 (N/A) 40.82 (126) 80.61 (N/A) 52.34 (137) 69.57 (N/A) 38.67 (N/A)

DA/AA 71.52 (N/A) 40.04 (118) 73.52 (N/A) 50.78 (44) 46.29 (N/A) 25.78 (N/A)
PGD 69.80 (125) 41.02 (114) 72.32 (N/A) 50.00 (44) 40.55 (N/A) 20.90 (89)
DH 66.62 (26) 35.16 (26) 68.36 (18) 47.27 (13) 29.63 (21) 14.45 (16)

ℓ ∞
:
8
/
2
5
5

BPDA 70.74 (N/A) 36.72 (N/A) 80.57 (N/A) 51.95 (N/A) 55.27 (N/A) 27.54 (N/A)
DA/AA 57.60 (N/A) 33.79 (N/A) 52.83 (N/A) 37.70 (N/A) 32.56 (N/A) 17.97 (N/A)
PGD 52.73 (N/A) 31.05 (112) 49.41 (N/A) 36.91 (N/A) 17.99 (31) 9.38 (31)
DH 42.54 (20) 22.66 (17) 41.64 (17) 27.54 (13) 16.15 (17) 8.01 (14)
DMI† 45.64 (41) 25.20 (35) 43.40 (31) 32.42 (27) 38.81 (N/A) 23.83 (N/A)
TMI† 45.04 (39) 25.20 (38) 45.43 (37) 34.77 (30) 41.13 (N/A) 25.59 (N/A)
VMI† 50.55 (N/A) 28.71 (44) 50.76 (N/A) 37.11 (44) 21.97 (39) 11.72 (32)
SVRE† 59.12 (N/A) 32.81 (N/A) 60.37 (N/A) 42.77 (N/A) 36.11 (N/A) 19.53 (136)

ℓ 2
:
0
.5

BPDA 79.36 (N/A) 45.31 (110) 86.41 (N/A) 58.40 (N/A) 75.02 (N/A) 46.68 (147)
DA/AA 79.92 (N/A) 46.29 (121) 85.80 (N/A) 59.57 (N/A) 74.96 (N/A) 46.48 (135)
PGD 78.38 (N/A) 44.53 (100) 83.57 (N/A) 56.25 (96) 72.91 (N/A) 43.95 (75)
DH 74.49 (46) 41.41 (44) 78.83 (46) 53.12 (46) 68.54 (38) 41.02 (39)

4 Experiments

4.1 Experimental Setup

Baselines. We evaluated the robustness of three diffusion-based purification defenses: DiffPure [22],
GDMP [26], and LM [3]. For purification, we used a pre-trained score-based diffusion model [24] in
DiffPure and GDMP and an EDM model [14] in LM. To ensure a fair comparison, we employed the
WideResNet-70-16 [32] as the classifier across all tests.

We selected three state-of-the-art attack algorithms equipped with EOT [2] for baseline evaluation:
BPDA [1], PGD [21], and AA [4]. For DiffPure and GDMP, AA was upgraded to DA [13] by
incorporating deviated-reconstruction loss. Our Diffhammer adopts AA as the default attack algorithm.
We conducted three restarts totaling 150 iterations to thoroughly evaluate the robustness of the model.
Additional configurations for defense and attack are detailed in Appendix C.1. Substitute gradient
attacks [22, 31] tailored to diffusion-based processes are found to be inferior to PGD with full
gradients [16], so we leave comparisons with these methods in the Appendix C.4. Additionally, we
evaluate verifiable DiffSmooth classifiers [34], and the results are presented in the Appendix C.3.

Evaluation metrics. Consistent with prior work, we use subsets of the CIFAR10 [15], CI-
FAR100 [15], and ImageNettete [12] (a subset of 10 easily classified classes from Imagenet [6],
more suited for robustness evaluation) with sizes of 512, 512, and 256 as datasets, respectively.
The evaluation protocol is N -evaluation with N = 10, with the average robustness (Avg.Rob,
1−

∑
i,j A

(j)
i /NS) and worst-case robustness (Wor.Rob, 1−

∑
i(maxiA(j)

i)/S) as metrics. Here

A(j)
i indicates whether sample j was attacked at the i-th evaluation, and S is the dataset size. We

also reported the iterations taken to reach 90% of the best attack effect among all attacks as a metric
of efficiency. Experimental results for CIFAR100 can be found in Appendix C.2, and adversarial
samples visualization are shown in Appendix C.9.

7

89541 https://doi.org/10.52202/079017-2842

Table 2: Performance of attacks against diffusion-based purification on ImageNettete [12].

Defense DiffPure [22] GDMP [26] LM [3]
Metrics Avg.Rob (it.)↓ Wor.Rob (it.)↓ Avg.Rob (it.)↓ Wor.Rob (it.)↓ Avg.Rob (it.)↓ Wor.Rob (it.)↓

Clean 97.03 95.31 97.11 94.53 96.41 94.53
ℓ ∞

:
4
/
2
5
5 BPDA 58.98 (N/A) 50.78 (N/A) 57.66 (N/A) 51.56 (N/A) 28.28 (28) 22.66 (21)

DA/AA 53.12 (N/A) 46.09 (N/A) 46.64 (N/A) 39.06 (N/A) 51.41 (N/A) 42.19 (N/A)
PGD 54.30 (N/A) 46.88 (N/A) 48.28 (N/A) 38.28 (N/A) 55.31 (N/A) 45.31 (N/A)
DH 38.36 (14) 31.25 (11) 33.98 (11) 28.91 (14) 26.25 (14) 21.88 (11)

0 10 20 30 40 50 60 700%

20%

40%

60%

80%

100%

Avg.
Wor.

BPDA
PGD

DA
DH

(a) DiffPure [22]
0 10 20 30 40 50 60 700%

20%

40%

60%

80%

100%

Avg.
Wor.

BPDA
PGD

DA
DH

(b) GDMP [26]
0 10 20 30 40 50 60 700%

20%

40%

60%

80%

100%
Avg.
Wor.

BPDA
PGD

AA
DH

(c) LM [3]

Figure 4: Avg.Rob and Wor.Rob for the first 75 steps of different attacks with ℓ∞ : 8/255.

4.2 Effectiveness and efficiency of DiffHammer

We examine the effectiveness and efficiency of various attack methods under different settings,
with results for CIFAR and ImageNettete presented in Table 1,2, respectively. Our findings are as
follows. (1) DiffHammer shows superior attack effectiveness across datasets and different norms
(ℓ∞, ℓ2) or attack budgets. This effectiveness arises from selective gradient aggregation, which
avoids the gradient dilemma. Its performance improves significantly in high-stochasticity scenarios
with pronounced gradient dilemmas, e.g., large-scale datasets like ImageNettete or GDMP with
multiple purification rounds. (2) As shown in Figure 4 (other settings can be found in Appendix C.5),
DiffHammer typically requires only 10-30 iterations to reach near-optimal results, allowing for rapid
model robustness assessment. Other methods might occasionally bypass sampling from S0 for similar
effectiveness, which incurs unnecessary computational costs. (4) Most models show robustness below
50% with 10 resubmits, indicating that a limited number of resubmits can undermine diffusion-based
purification, raising concerns about their reliability in practical applications.

4.3 Gradient dilemma and transfer-based attack

We verify the gradient dilemma in diffusion-based purification by examining clustering effects
and forgetting phenomena. Our EM algorithm clusters the gradients ∇xLϕ into S0 and S1. The
distribution of silhouette coefficients (SC) using cosine similarity, as displayed in Figure 5(a),
indicates that gradients in these sets differ significantly. A direct result of this gradient dilemma
is attack forgetting—where gradients∇xLϕ in consecutive iterations are inconsistent, causing the
effects of previous attacks to be forgotten. As the ASR in t − 1 iteration shown in Figure 5(b),
DiffHammer maintains attack consistency by identifying S1, thus enhancing efficiency. We provide
a toy example explaining the gradient dilemma in Appendix C.6. This dilemma may arise from a
non-clustered data distribution (e.g., different breeds of dogs in the dataset), which imposes divergent
gravitational pulls for purification and inconsistent perturbations needed to corrupt their features.

Transfer-based attacks offer a potential solution by treating adversarial samples like models and
aiming to improve generalization on a dataset of ϕ. As shown in 1, Data augmentation-based
approaches, DMI [29] and TMI [8], provide improvement in some cases. VMI [27] and SVRE [30],
which aim to reduce gradient variance, perform worse. This unexpected outcome is attributed to
the gradient dilemma: generalizing to ϕ from S1 is beneficial, while generalizing to ϕ in S0 may be
harmful. Thus, DiffHammer acts as a data-selection approach, contributing to data-centric design in
transfer attacks.

8

89542https://doi.org/10.52202/079017-2842

Table 3: Effectiveness (Avg.Rob / Wor.Rob, %) of different attacks on robust model with purification
under ℓ∞ : 8/255 settings, including TRADES [33] and AWP [28]. The original adversarial
robustness (Rob) without purification is listed in parentheses.
Classifier AWP [28] (Avg.Rob / Wor.Rob, Rob:60.0) ↓ TRADES [33] (Avg.Rob / Wor.Rob, Rob:53.1) ↓
Purification DiffPure [22] GDMP [26] LM [3] DiffPure [22] GDMP [26] LM [3]

BPDA 53.53 / 35.15 58.40 / 45.70 56.87 / 42.38 50.50 / 31.82 54.98 / 41.38 53.15 / 39.26
PGD 53.30 / 36.32 58.57 / 47.26 69.37 / 56.84 50.70 / 35.54 52.73 / 41.60 64.37 / 52.54
DA/AA 51.75 / 35.54 58.71 / 47.85 65.27 / 52.34 49.27 / 34.37 52.65 / 42.38 59.78 / 49.02
DH 53.65 / 35.55 58.26 / 45.68 56.48 / 40.43 49.55 / 34.37 51.57 / 41.40 53.10 / 39.64

0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Silhouette Coefficient

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

De
ns

ity

DiffPure
GDMP
LM

(a) Distribution of SC in S0,S1

BPDA DA/AA PGD DH DMI TMI VMI SVRE
Attacks

0

20

40

60

AS
R

(%
)

DiffPure
GDMP
LM

(b) Attack successful rate (ASR) in previous (t− 1) iteration.

Figure 5: Clustering effects and forgetting phenomen in gradient dilemma (ℓ∞ : 8/255).

4.4 Robust classifier

Diffusion-based purification has been explored to enhance the robustness of adversarially trained
(AT) models [22]. We revisited this concept using N -evaluation with TRADES [33] and AWP [28] as
AT classifiers, as shown in Table 3. Our observations are as follows: (1) Robust models mitigate the
gradient dilemma, resulting in similar performance for most attacks. This occurs because adversarial
training implicitly regularizes the approximate gradient ∇ϕLϕ [23], reducing the full gradient
∇xLϕ of some ϕ towards zero. DiffHammer remains an effective evaluation tool, as diffusion-based
purification occasionally reintroduces the gradient dilemma. (2) In most cases, diffusion-based
purification weakens the robustness of the AT model. It improves robustness in a few instances but
increases the risk of resubmit attacks by 11.7%-24.8%. Therefore, finding a better combination of
diffusion-based purification and robust classifiers remains an open question.

4.5 Ablation study

Table 4: Performance difference (Avg.Rob / Wor.Rob, %)
from default settings with ℓ∞ : 8/255.

Ablations DiffPure [22] GDMP [26] LM [3]

Eqϕ∇ϕL +27.44 / +12.70 +30.02 / +17.38 +41.29 / +20.70
Eqϕ∇xL -3.52 / -1.17 -3.09 / -1.35 -0.63 / +0.32
α = 0.2 +2.19 / +1.37 +0.33 / -0.39 +1.17 / +0.59
α = 0.8 -0.16 / -0.39 +0.63 / +1.17 +1.23 / +1.17
N = 5 +1.44 / +2.34 +1.52 / +2.73 +7.48 / +4.89
N = 20 -1.41 / -1.77 -0.47 / -0.59 -0.51 / -0.47

We conducted ablation experiments
on different components in the
default settings (grafted gradient
∂ϕ̂/∂xE(qϕ∇ϕLϕ), α = 0.5, N =
10), with results shown in Table 4.
The use of a selective approximate
gradient E(qϕ∇ϕLϕ) leads to a sig-
nificant performance drop, highlight-
ing the importance of the purifica-
tion gradient ∂ϕ̂/∂x in attacks. The
grafted gradient causes only slight per-
formance degradation compared to the
full gradient E(qϕ∇xLϕ) but avoids
a ∼ 10× time burden. We quantify the time cost of different approaches in the Appendix C.7. A
smaller hyperparameter α makes the algorithm rely more on the current iteration’s gradient, and an
appropriate α = 0.5 achieves a better tradeoff in memorizing and learning. We tested effectiveness
at 10-evaluations with N samples of ϕ, finding that a proper N = 10 efficiently identifies S1 for

9

89543 https://doi.org/10.52202/079017-2842

evaluation. When N = 20, attack effectiveness is slightly boosted with more time overhead. The
importance of N -evaluation for resubmit risk estimation is verified in the Appendix C.8.

5 Discussion and Insights

Diffusion models remain a promising solution to the adversarial samples due to their fine-grained
modeling of data distributions. We advocate for enhancing the robustness of diffusion-based purifi-
cation through standardized and powerful evaluation methodologies. Here are some insights into
purification-based defense and attack:

(1) For deploying stochastic defenses, defenders should consider the potential number of
resubmissions M by attackers and are advised to assess resubmit risk with N -evaluation
where N ≥M . Additionally, robustness overestimation due to the gradient dilemma can be
avoided by using selective attacks.

(2) On the attack side, adversarial samples are sensitive to defenses with high stochasticity.
Thus, modern data-centric designs may help to enhance adversarial transferability.

(3) On the defense side, the goal of stochastic defense is to achieve P (S0)→ 1, meaning sample
x cannot be attacked for some purifications and cannot be attacked by a same adversarial
noise for others. Therefore, purification needs to be coordinated with adversarial training at
a more granular level.

6 Related Work

Evaluation for adversarial purification. As test-time adaptive defenses, the iterative process and
stochasticity of diffusion-based purification complicate robustness evaluation. Typically, evaluation
protocols report only the ASR from a single evaluation. The risk of resubmit attack, referred to the
nag factor, is considered in [20] but is not fully explored. Regarding evaluation methods, although
there are gradient estimators AdjAttack and attacks score-attack based on the characteristics of the
diffusion process, both were found to be inferior to attacks based on the exact gradient [16], such as
PGD [21], AA [4], or DiffAttack [13] with reconstruction loss. These methods mitigate stochasticity
through the EOT [2], which inevitably inherits its shortcomings.

Transfer-based attacks. Transfer-based attacks aim to generalize attacks from seen defenses
to unseen defenses. Data augmentation and improved optimization are the main approaches to
enhance transferability. Attackers can craft adversarial noise resistant to defenses through input
transformations [29] and gradient smoothing [8]. In the presence of multiple defenses, momentum [7],
variance reducing [27, 30] enhance generalizability. Most transfer-based attacks assume that most
defenses share vulnerabilities, enabling generalization in defenses, but this assumption may be invalid
in diffusion-based purification.

7 Conclusion

In this paper, we address the limitations of EOT-based attacks in diffusion-based purification, at-
tributed to the gradient dilemma, by introducing an effective and efficient method called DiffHammer.
First, we propose a selective attack strategy that targets vulnerable purifications without encountering
the gradient dilemma, enhancing evaluation efficiency through gradient grafting. Second, we incorpo-
rate N -evaluation within the loop to quantify the risk of achieving at least one successful attack in
practice. We demonstrate DiffHammer’s superior performance through comprehensive experiments
and anticipate it will offer valuable insights for future designs of robust diffusion-based purification
methods.

Acknowledgements

We would like to thank the anonymous reviewers for their valuable suggestions on theory and experi-
ments. This work is supported by the Project of Hetao Shenzhen-HKUST Innovation Cooperation
Zone HZQBKCZYB-2020083.

10

89544https://doi.org/10.52202/079017-2842

References
[1] Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a false sense

of security: Circumventing defenses to adversarial examples. In International conference on
machine learning, pages 274–283. PMLR, 2018.

[2] Anish Athalye, Logan Engstrom, Andrew Ilyas, and Kevin Kwok. Synthesizing robust adver-
sarial examples. In International conference on machine learning, pages 284–293. PMLR,
2018.

[3] Huanran Chen, Yinpeng Dong, Zhengyi Wang, Xiao Yang, Chengqi Duan, Hang Su, and Jun
Zhu. Robust classification via a single diffusion model. arXiv preprint arXiv:2305.15241, 2023.

[4] Francesco Croce and Matthias Hein. Reliable evaluation of adversarial robustness with an
ensemble of diverse parameter-free attacks. In International conference on machine learning,
pages 2206–2216. PMLR, 2020.

[5] Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from incomplete
data via the em algorithm. Journal of the royal statistical society: series B (methodological),
39(1):1–22, 1977.

[6] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern
recognition, pages 248–255. Ieee, 2009.

[7] Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun Zhu, Xiaolin Hu, and Jianguo
Li. Boosting adversarial attacks with momentum. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 9185–9193, 2018.

[8] Yinpeng Dong, Tianyu Pang, Hang Su, and Jun Zhu. Evading defenses to transferable adversarial
examples by translation-invariant attacks. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 4312–4321, 2019.

[9] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversar-
ial examples. arXiv preprint arXiv:1412.6572, 2014.

[10] Dongyoon Han, Jiwhan Kim, and Junmo Kim. Deep pyramidal residual networks. In Proceed-
ings of the IEEE conference on computer vision and pattern recognition, pages 5927–5935,
2017.

[11] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances
in neural information processing systems, 33:6840–6851, 2020.

[12] Jeremy Howard and Sylvain Gugger. Fastai: a layered api for deep learning. Information,
11(2):108, 2020.

[13] Mintong Kang, Dawn Song, and Bo Li. Diffattack: Evasion attacks against diffusion-based
adversarial purification. Advances in Neural Information Processing Systems, 36, 2024.

[14] Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space
of diffusion-based generative models. Advances in Neural Information Processing Systems,
35:26565–26577, 2022.

[15] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

[16] Minjong Lee and Dongwoo Kim. Robust evaluation of diffusion-based adversarial purification.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 134–144,
2023.

[17] Erich Leo Lehmann and Henry Scheffé. Completeness, similar regions, and unbiased estimation-
part i. In Selected works of EL Lehmann, pages 233–268. Springer, 2011.

11

89545 https://doi.org/10.52202/079017-2842

[18] Percy Liang and Dan Klein. Online em for unsupervised models. In Proceedings of human
language technologies: The 2009 annual conference of the North American chapter of the
association for computational linguistics, pages 611–619, 2009.

[19] Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate
and transfer data with rectified flow. arXiv preprint arXiv:2209.03003, 2022.

[20] Keane Lucas, Matthew Jagielski, Florian Tramer, Lujo Bauer, and Nicholas Carlini. Ran-
domness in ml defenses helps persistent attackers and hinders evaluators. arXiv preprint
arXiv:2302.13464, 2023.

[21] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083,
2017.

[22] Weili Nie, Brandon Guo, Yujia Huang, Chaowei Xiao, Arash Vahdat, and Anima Anandkumar.
Diffusion models for adversarial purification. arXiv preprint arXiv:2205.07460, 2022.

[23] Andrew Ross and Finale Doshi-Velez. Improving the adversarial robustness and interpretability
of deep neural networks by regularizing their input gradients. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 32, 2018.

[24] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and
Ben Poole. Score-based generative modeling through stochastic differential equations. arXiv
preprint arXiv:2011.13456, 2020.

[25] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfel-
low, and Rob Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199,
2013.

[26] Jinyi Wang, Zhaoyang Lyu, Dahua Lin, Bo Dai, and Hongfei Fu. Guided diffusion model for
adversarial purification. arXiv preprint arXiv:2205.14969, 2022.

[27] Xiaosen Wang and Kun He. Enhancing the transferability of adversarial attacks through variance
tuning. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pages 1924–1933, 2021.

[28] Dongxian Wu, Shu-Tao Xia, and Yisen Wang. Adversarial weight perturbation helps robust
generalization. Advances in Neural Information Processing Systems, 33:2958–2969, 2020.

[29] Cihang Xie, Zhishuai Zhang, Yuyin Zhou, Song Bai, Jianyu Wang, Zhou Ren, and Alan L
Yuille. Improving transferability of adversarial examples with input diversity. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pages 2730–2739, 2019.

[30] Yifeng Xiong, Jiadong Lin, Min Zhang, John E Hopcroft, and Kun He. Stochastic variance
reduced ensemble adversarial attack for boosting the adversarial transferability. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pages 14983–14992,
2022.

[31] Jongmin Yoon, Sung Ju Hwang, and Juho Lee. Adversarial purification with score-based
generative models. In International Conference on Machine Learning, pages 12062–12072.
PMLR, 2021.

[32] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint
arXiv:1605.07146, 2016.

[33] Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric Xing, Laurent El Ghaoui, and Michael Jordan.
Theoretically principled trade-off between robustness and accuracy. In International conference
on machine learning, pages 7472–7482. PMLR, 2019.

[34] Jiawei Zhang, Zhongzhu Chen, Huan Zhang, Chaowei Xiao, and Bo Li. {DiffSmooth}:
Certifiably robust learning via diffusion models and local smoothing. In 32nd USENIX Security
Symposium (USENIX Security 23), pages 4787–4804, 2023.

12

89546https://doi.org/10.52202/079017-2842

A Broader Impact and Limitations

Broader Impact. The vulnerability of deep neural networks to adversarial samples limits their
broader application. Diffusion-based purification has shown surprising robustness against EOT-
based attacks, making it a promising defense. In this paper, we identify that EOT-based attacks
often overestimate model robustness due to the gradient dilemma. Additionally, traditional 1-
evaluations are insufficient for assessing resubmit risk in stochastic defenses. We propose an
effective robustness evaluation framework, DiffHammer, which circumvents the gradient dilemma
and incorporates N -evaluation. Our selective attack approach applies to stochastic defenses beyond
diffusion-based purification, enhancing the understanding of stochasticity in robustness and inspiring
improved adversarial defenses. Our N -evaluation method uncovers resubmit risks in diffusion-based
purification, providing comprehensive insights into potential threats from stochastic defenses and
informing precautionary measures. Furthermore, we enhance attack efficiency through gradient
grafting, enabling rapid iteration of attacks and defenses. We believe that the insights and techniques
introduced in our work will guide the development of more robust diffusion-based purification
methods, ultimately enhancing the security of machine learning systems.

Limitations. In this work, we present a new attack algorithm called DiffHammer that is effective
against diffusion-based purification defenses. While this has potential misuse in safety-critical
domains like healthcare or finance, the core insights uncovered could also inform the development of
more robust diffusion-based defenses going forward. Specifically, we introduce a selective attack
strategy to overcome the challenge of the gradient dilemma. However, the underlying reasons
behind this gradient dilemma are still not fully understood. Our experiments are limited to image
classification, and while our approach can extend to other tasks, specific task-related designs need
exploration. Overall, this research uncovers vulnerabilities in current diffusion-based defenses, but
the findings could also spur innovations to make these defenses more secure in the future.

B Proofs

B.1 Proof of Thm. 1

Theorem (Thm. 1 in the main text). Suppose ϕ can be divided into two sets, A and B. The
loss functions w.r.t. r in these sets are defined as LA(r) := σ−1(Pϕ∈A(A | r)) and LB(r) :=
σ−1(Pϕ∈B(A | r)), which are mA and mB strongly concave, respectively. If the distance between
their optimal points rA and rB satisfies ∥rA − rB∥22 ≥ 8max{P (A)LA(rA), P (B)LB(rB)}/m
where m := min{P (A)mA, P (B)mB}, the EOT-based attack is less effective than a simple attack
targeting either A or B.

Proof. The obejective for EOT-based attacks is maxr P (A)LA(r) + P (B)LB(r), while the obejec-
tive for attacks targeting either A or B is maxr P (A)LA(r) or maxr P (B)LA(B) and the optimal
points are rA and rB , respectively. For any r ∈ Rd, there exist θ ∈ R s.t. r = rA + θ(rB − rA).
Therefore, the following inequality holds:

P (A)LA(r) + P (B)LB(r)

≤ P (A)LA(rA) + P (B)LB(rB)−
P (A)mA

2
∥r − rA∥22 −

P (B)mB

2
∥r − rB∥22 (strongly concave)

≤ 2max{P (A)LA(rA), P (B)LB(rB)} −
1

2
m(∥r − rA∥22 + ∥r − rB∥22)

= 2max{P (A)LA(rA), P (B)LB(rB)} −
1

2
m[θ2 + (1− θ)2]∥rA − rB∥22 (r = rA + θ(rB − rA))

≤ 2max{P (A)LA(rA), P (B)LB(rB)} −
1

8
m∥rA − rB∥22 (

[
θ2 + (1− θ)2

]
≥ 1

4
)

≤ max{P (A)LA(rA), P (B)LB(rB)}. (condition on ∥rA − rB∥22)
(12)

13

89547 https://doi.org/10.52202/079017-2842

B.2 Proof of Thm. 2

Theorem (Thm. 2 in the main text). Let the sample’s robustness in M resubmit attacksA1, · · · ,AM

be denoted as Rob := P (A1 = · · · = AM = 0). There exists a uniformly minimum-variance
unbiased estimator (UMVUE) for Rob if and only if the number of evaluation trials N ≥M . When
N ≤ M , the maximum likelihood estimator (MLE) tends to overestimate Rob in expectation, i.e.,

E(R̂ob
(N)

MLE) ≥ Rob.

Proof. First, we provide detailed proof for the uniformly minimum-variance unbiased estimator
(UMVUE) case, where we shall use the Lehmann–Scheffé theorem.

Theorem 3 (Lehmann–Scheffé theorem [17]). Let X1, · · · , XN be random variables from an
unknown distribution f(x; θ) where θ ∈ Ω is a parameter in the parameter space. Suppose T (X)
is a sufficient and complete statistic. If and only if condition for η(T) to be UMVUE of g(θ) is that
Eθ [η(T)] = g(θ).

We denote the results of N resubmissions as A1, · · · ,AN , and the probability of successful attack
for each resubmission as p. Then A1, · · · ,AN follows Bernoulli distribution, i.e. Ai

i.i.d.∼ Bin(1, p).
According to the definition, Rob = (1−p)M . Since the Bernoulli distribution is one of the exponential
family of distributions, the sample sum

∑N
i=1Ai is known to be the complete and sufficient statistics.

Naturally, we have
E [(1−A1) · · · (1−AM)] = (1− p)M , (13)

If N ≥M , the conditional expectation can be written as

E [(1−A1) · · · (1−AM) | A1 + · · · AN = n]

= P
(
A1 = · · · = AM = 0 | A1 + · · · AN = n

)
=

(
N−M

n

)
/
(
N
n

)
,

(14)

which do not depend on p since the sum A1 + · · · AN is sufficient, and therefore can be used as an
estimator according to Rao-Blackwell Theorem:

R̂ob
(N)

UMV UE =
(
N−M

n

)
/
(
N
n

)
. (15)

Due to the uniqueness of the UMVUE, the estimator is only available when N ≥M .

Next, we show that when N ≤M , the maximum likelihood estimator (MLE) tends to overestimate

Rob in expectation, i.e., E(R̂ob
(N)

MLE) > Rob. Following the notation above, the MLE estimator for p
is n/N . Due to the transformation invariance of the MLE, the MLE estimator for Rob := (1− p)M

is (1− n/N)M ; here, n follows binomial distribution Bin(N, p). Therefore, the expectation of the
MLE estimator is

E(R̂ob
(N)

MLE) = E(1− n

N
)M =

N∑
k=0

(
N
k

)
pk(1− p)N−k(1− k

N
)M

= (1− p)N +

N∑
k=1

(
N
k

)
pk(1− p)N−k(1− k

N
)M > (1− p)N ≥ (1− p)M .

(16)

Therefore, estimating resubmit risk with MLE requires a larger N . When N ≤ M , MLE will
underestimate such risk. When N goes larger, the MLE estimator is asymptotically normal. Since√
N(n/N − p)

d−→ N (0, p(1 − p)), the Delta method given function g(p) = (1 − p)M implies
√
N(g(n/N)− g(p))

d−→ N (0, p(1− p)g′(p)2), R̂ob
(N)

MLE is asymptotically normal:

√
N(R̂ob

(N)

MLE −Rob)
d−→ N (0,M2p(1− p)2M−1). (17)

14

89548https://doi.org/10.52202/079017-2842

C Experiments

C.1 Experimental Configuration

C.1.1 Defense configurations

DiffPure [22]. DiffPure adds noise to potentially adversarial samples x0 through the forward
process:

xt∗ =
√
ᾱt∗x0 +

√
1− ᾱt∗ϵ, (18)

where αt is a predefined scheduler and ᾱt =
∏t

i=1 αi, ϵ is a standard Gaussian noise from N (0, 1).

The reverse process gradually removes the Gaussian noise along with the adversarial noise:

xt−1 =
1
√
αt

[
xt −

1− αt

1− ᾱt
ϵθ(xt, t)

]
+ σtz (19)

where ϵθ(xt, t) is a parameterized neural networks, z is standard Gaussian noise in each step and
standard deviation σt =

1−ᾱt−1

1−αt
(1− ᾱt).

In the experiment, t∗ is set to 0.1 (ℓ∞) and 0.075 (ℓ2) in CIFAR [15], and in ImageNettete [12], t∗ is
set to 0.05. We use the surrogate process proposed in [16], i.e., applying different time intervals in
attack and defense to improve the efficiency. The time interval for the attack is set to 0.01 (CIFAR,
ℓ∞; ImageNettete), 0.015 (CIFAR, ℓ2). The time interval for defense is set to 0.002 (ImageNettete),
0.005 (CIFAR).

GDMP [26]. Compared to DiffPure, GDMP adds gradient guidance for image similarity D(xt, xt′)
in forward and reverse processes to preserve semantic information. The update of xt−1 can be written
as:

xt−1 =
1
√
αt

[
xt −

1− αt

1− ᾱt
ϵθ(xt, t)− sσt∇xtD(xt, xt′)

]
+ σtz (20)

where s is a scale of guidance and xt′ =
√
ᾱt′x0 +

√
1− ᾱt′ϵ. In addition, GDMP observes that

multiple rounds of purification with smaller t∗ help to improve robustness.

In the experiment, t∗ is set to 0.036 in CIFAR [15], and 0.03 in ImageNette [12]. The rounds of
purification are 4 and 2, respectively. The time interval for the attack is set to 0.006 (CIFAR) and
0.003 (ImageNette). The time interval for defense is set to 0.003 (CIFAR), 0.001 (ImageNette).

LM [3]. LM is the preprocessor in the robust diffusion classifier (RDC) that maximizes the lower
bound of the log-likelihood through the following optimization process:

min
x̂

Eϵ,t∥ϵ− ϵθ(x̂t, t)∥22, s.t. ∥x̂− x0∥∞ ≤ η. (21)

where x̂t =
√
ᾱt′ x̂+

√
1− ᾱt′ϵ and η is a predefined threshold.

The above optimization in the experiment was solved by the projected gradient method with a step
size of 0.1 and 5 iterations. t is uniformly sampled from a uniform distribution of 0.4-0.6. It is worth
noting that the RDC consists of the LM and a diffusion classifier (DC). We find that the purifier LM
is not sufficient to provide reliable robustness. We conjecture that the robustness of RDC mainly
stems from the diffusion-based classifier.

C.1.2 Attack configurations

Each attack is performed with three restarts, consisting of 50 iterations per restart, totaling 150
iterations. Samples with an attack success rate below 50% are restarted to save time. We utilize the
APGD [4] as the update algorithm for DiffHammer and BPDA [1]. The step size in PGD [21] is
set to 0.007, and the momentum coefficient is set to 1. In VMI [27] and SVRE [30], we replace the
gradient sampled from the neighborhood of x for variance estimation with approximate gradients
sampled on ϕ, adapting to stochasticity defense. Other attacks employ default parameter settings.

15

89549 https://doi.org/10.52202/079017-2842

Table 5: Performance of attacks against diffusion-based purification on CIFAR100.

Defense DiffPure [22] GDMP [26] LM [3]
Metrics Avg.Rob (it.)↓ Wor.Rob (it.)↓ Avg.Rob (it.)↓ Wor.Rob (it.)↓ Avg.Rob (it.)↓ Wor.Rob (it.)↓

Clean 53.18 26.52 64.20 40.23 68.09 46.29
ℓ ∞

:
4
/
2
5
5 BPDA 32.77 (37) 6.45 (7) 44.80 (N/A) 14.65 (16) 41.45 (12) 19.34 (7)

DA/AA 30.57 (18) 5.47 (5) 41.09 (26) 14.84 (11) 47.58 (N/A) 20.90 (20)
PGD 30.49 (16) 5.66 (5) 40.94 (24) 14.65 (11) 48.57 (N/A) 21.09 (20)
DH 27.83 (10) 4.69 (4) 37.64 (9) 12.50 (4) 41.11 (11) 18.75 (5)

Table 6: Performance of attacks against DiffSmooth [34] on CIFAR10.

Defense ℓ2 : 0.5 ℓ2 : 1.0

Metrics Avg.Rob (it.)↓ Wor.Rob (it.)↓ Avg.Rob (it.)↓ Wor.Rob (it.)↓

Clean 84.63 74.02 70.31 42.19

BPDA 74.40 (N/A) 53.13 (N/A) 49.84 (96) 12.50 (22)
DA 74.22 (N/A) 53.91 (N/A) 50.59 (123) 13.67 (38)
PGD 66.04 (89) 46.29 (82) 47.05 (39) 10.74 (29)
DH 63.18 (42) 42.58 (46) 45.29 (31) 10.16 (21)

C.2 Experimental results on CIFAR100

We evaluate the effectiveness of various attacks on diffusion-based purification using CIFAR-100 [15].
Unlike its predecessor, CIFAR10, which had 10 categories, CIFAR100 contains 100 categories,
providing a greater fine-grained classification challenge. For consistency, we employ the EDM
unconditional diffusion model [14] as the purifier and a pre-trained PyramidNet [10] as the classifier.
Given the increased complexity, we set the attack budget to 4/255. As shown in Table 5, DiffHam-
mer consistently achieves superior attack results and efficiency across all settings, indicating the
persistence of the gradient dilemma in finer-grained purification.

Notably, finer classifications seem benefit less from diffusion-based purification, with classifiers with
diffusion-based purification even demonstrating less than 50% robustness without adversarial attacks.
This may be due to current diffusion models’ limitations in fine-grained generation, potentially
introducing vulnerabilities during reconstruction. Thus, designing diffusion models with enhanced
alignment for improved robustness in fine-grained classification remains an open challenge.

C.3 Experimental results on DiffSmooth

DiffSmooth [34] enhances certified and empirical robustness through a purified classifier in the inner
loop and a sampling-based certification process in the outer loop. Since certified robustness provides
a theoretical lower bound on model robustness, we focus on attacking the inner-loop purified classifier.
DiffSmooth’s purification mechanisms involve single-step purification and majority voting, which
can mitigate the risk of resubmission. Unlike DiffPure, DiffSmooth uses a single update:

xt∗ =
√
ᾱt∗x0 +

√
1− ᾱt∗ϵ

x̂0 =
1√
ᾱt∗

(xt∗ −
√
1− ᾱt∗ϵθ(xt∗ , t

∗)),
(22)

where t∗ satisfies ᾱt∗σ
2 = (1 − ᾱt∗) and σ is a predifined noise scale. DiffSmooth applies local

smoothing through Gaussian sampling in the neighborhood of purified x̂0, and results are determined
by majority voting with scale σ′:

y = argmax

m∑
i=1

f(x̂0 + δi), δi ∼ N (0, σ′2I). (23)

16

89550https://doi.org/10.52202/079017-2842

Table 7: Performance of substitute gradient based attacks against diffusion-based purification on
CIFAR10.

Defense DiffPure [22] GDMP [26] LM [3]
Metrics Avg.Rob↓ Wor.Rob ↓ Avg.Rob↓ Wor.Rob↓ Avg.Rob↓ Wor.Rob↓

ℓ ∞
:
8
/
2
5
5 Score [31] 77.70 43.36 82.46 56.84 64.04 39.06

Full [31] 64.24 37.11 62.46 44.92 46.88 26.95
Adjoint [22] 58.61 32.03 57.66 40.43 N/A N/A
DH 42.54 22.66 41.64 27.54 16.15 8.01

Random smoothing models are primarily used to defend against adversarial noise under the ℓ2 norm.
We compared the impact of different attacks on DiffSmooth with settings of ℓ2 : 0.5 and ℓ2 : 1.0.
For the ℓ2 : 0.5 setting, we used σ = 0.5, σ′ = 0.25, applying ResNet-110 trained with Gaussian
smoothing as the classifier. For the 1.0 setting, σ = 0.25, σ′ = 0.12, with SmoothAdv-trained
ResNet-110 as the classifier. A pretrained score-based diffusion model [24] acted as the purifier. As
the result shown in Table 6, majority voting was found to suppress the gradient dilemma, reducing
DiffHammer’s impact, though it still achieved better attack results with significant efficiency gains.

While majority voting defends against occasional resubmissions, it also poses challenges: (1) It can
make the stochastic defense model resemble a deterministic one, potentially reducing stochasticity
benefits. (2) It imposes a significant time burden, intensified by the diffusion process’s duration.
DiffSmooth mitigates this with single-step purification, but this results in more fragile purification.

C.4 Comparison with substitute gradients

Stochastic and iterative algorithms for diffusion-based purification yield challenging gradients com-
putation, so a line of works aimed at approximating gradients in attack algorithms. This includes the
Adjoint method [22] and Joint methods (score / full) [31].

Adjoint method obtain the gradient ∇xL =
√
ᾱt∗∇xt∗L through an augmented SDE of Equation 5,

which is solved as: (
xt∗

∇xt∗L

)
= sdeint

((
ϕ(x)
∇ϕL

)
, f̃ , g̃, w̃, 0, t∗

)
(24)

where sdeint is an SDE solver that sequentially takes six inputs: initial value, drift coefficient,
diffusion coefficient, Wiener process, initial time, end time; and

f̃([x; z], t) =

(
f(x, t)
∂f(x,t)

∂x z

)
g̃(t) =

(
−g(t)1d

0d

)
w̃(t) =

(
−w(1− t)
−w(1− t)

)
with 1d and 0d representing the d-dimensional vectors of all ones and all zeros, respectively.

The gradient in the joint attack (score) is a weighted sum of the approximate gradient and the
estimated score function:

sign(∇xL) ≃ λsign[sθ(x)] + (1− λ)sign(∇ϕL), (25)

where sθ(x) is the estimated score function∇x log p(x),∇ϕL is the approximate gradient, and λ is a
balance factor set as 0.5 in the evaluation. The gradient in the joint attack (full) utilizes the difference
between the original sample and the purified sample:

sign(∇xL) ≃ λsign[ϕ(x)− x] + (1− λ)sign(∇ϕL). (26)

While substitute gradient methods can produce gradients based on diffusion purification with lower
time complexity, they have been found to inadequately evaluate robustness [16, 13]. We assess the

17

89551 https://doi.org/10.52202/079017-2842

0 10 20 30 40 50 60 700%

20%

40%

60%

80%

100%
Avg.
Wor.

DMI
VMI

DH
SVRE

TMI

(a) DiffPure [22]
0 10 20 30 40 50 60 700%

20%

40%

60%

80%

100%
Avg.
Wor.

DMI
VMI

DH
SVRE

TMI

(b) GDMP [26]
0 10 20 30 40 50 60 700%

20%

40%

60%

80%

100%
Avg.
Wor.

DMI
VMI

DH
SVRE

TMI

(c) LM [3]

Figure 6: Avg.Rob and Wor.Rob for the first 75 steps of transfer based attacks in CIFAR10 with
ℓ∞ : 8/255.

0 10 20 30 40 50 60 700%

20%

40%

60%

80%

100%

Avg.
Wor.

BPDA
PGD

DA
DH

(a) DiffPure [22]
0 10 20 30 40 50 60 700%

20%

40%

60%

80%

100%

Avg.
Wor.

BPDA
PGD

DA
DH

(b) GDMP [26]
0 10 20 30 40 50 60 700%

20%

40%

60%

80%

100%
Avg.
Wor.

BPDA
PGD

AA
DH

(c) LM [3]

Figure 7: Avg.Rob and Wor.Rob for the first 75 steps in CIFAR10 with ℓ∞ : 4/255.

0 10 20 30 40 50 60 700%

20%

40%

60%

80%

100%

Avg.
Wor.

DA
PGD

BPDA
DH

(a) DiffPure [22]
0 10 20 30 40 50 60 700%

20%

40%

60%

80%

100%

Avg.
Wor.

DA
PGD

BPDA
DH

(b) GDMP [26]
0 10 20 30 40 50 60 700%

20%

40%

60%

80%

100%

Avg.
Wor.

PGD
AA

DH
BPDA

(c) LM [3]

Figure 8: Avg.Rob and Wor.Rob for the first 75 steps in CIFAR10 with ℓ2 : 0.5.

0 10 20 30 40 50 60 700%

20%

40%

60%

80%

100%
Avg.
Wor.

PGD
DH

DA
BPDA

(a) DiffPure [22]
0 10 20 30 40 50 60 700%

20%

40%

60%

80%

100%
Avg.
Wor.

PGD
DH

DA
BPDA

(b) GDMP [26]
0 10 20 30 40 50 60 700%

20%

40%

60%

80%

100%
Avg.
Wor.

PGD
AA

DH
BPDA

(c) LM [3]

Figure 9: Avg.Rob and Wor.Rob for the first 75 steps in CIFAR100 with ℓ∞ : 4/255.

0 5 10 15 20 25 300%

20%

40%

60%

80%

100%

Avg.
Wor.

PGD
DH

DA
BPDA

(a) DiffPure [22]
0 5 10 15 20 25 300%

20%

40%

60%

80%

100%

Avg.
Wor.

PGD
DH

DA
BPDA

(b) GDMP [26]
0 5 10 15 20 25 300%

20%

40%

60%

80%

100%
Avg.
Wor.

DH
AA

BPDA
PGD

(c) LM [3]

Figure 10: Avg.Rob and Wor.Rob for the first 75 steps in ImageNette with ℓ∞ : 4/255.

18

89552https://doi.org/10.52202/079017-2842

(a) Illustration of a toy example

10 5 0 5 10

10

5

0

5

10

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(b) Proportion of S1

Figure 11: A toy model of Gaussian mixing. Diffusion-based purification can be attacked toward
unclustered features, leading to inconsistent gradients.

effectiveness of substitute gradients across different defenses, as shown in the Table 7. The substitute
gradient fails to achieve 90% of DiffHammer effect in all settings, indicating a notable overestimation
of model robustness. Specifically, the joint attack (score/full) only enhances the approximate gradient
by the difference between samples and score function, lacking information from the diffusion process.
Although the adjoint method theoretically provides an accurate gradient, in practice, numerical errors
accumulate, leading to inaccurate estimates.

To address this, we utilize computational graph reconstruction proposed in [13] to obtain accurate
gradients for DiffPure [22] and GDMP [26]. We progressively backpropagate the gradient by saving
intermediate variables during iterations. Additionally, we derive the gradient of the optimization
process in LM [3] using the Hessian vector product trick. This approach enhances existing gradient-
based attacks with accurate gradient computation, establishing a more reliable baseline.

C.5 Attack process with different settings

We present performance curves of the attack under various settings. Figure 6 compares DiffHam-
mer with a transfer-based attack, showing that DiffHammer achieves superior results and faster
convergence. Momentum-based attacks like DMI [29] and TMI [8] demonstrate good efficiency.
However, transfer-based attacks yield sub-optimal results due to attempts to generalize across all
purifications. Figure 7 and 8 illustrate performance curves under different constraints (ℓ∞ : 4/255
and ℓ2 : 0.5). Notably, DiffHammer significantly improves performance and efficiency under the
ℓ∞ : 4/255 setting. With a limited attack budget, DiffHammer leverages the EM algorithm’s fast
convergence to quickly identify vulnerable set of ϕ. In contrast, attack performances are more similar
under the ℓ2 : 0.5 setting, likely because the ℓ2 constraint allows greater attack intensity on certain
pixels, targeting shared vulnerabilities. Figure 9 and 10 compare attack effectiveness across datasets,
revealing that DiffHammer excels in the ImageNette task, where complex purification processes seem
more prone to introducing gradient dilemmas.

C.6 Toy example of the gradient dilemma

To investigate the origins of the gradient dilemma, we constructed a Gaussian mixture toy example
where the two diagonal components belong to the same category as shown in Figure 11(a). We use
ReFlow [19] as our diffusion model to produce near-linear purification trajectories. In this scenario,
diffusion-based purification pulls samples slightly towards the origin (dashed line in Figure 11(a))
before diffusing them back into the data distribution (pink line in Figure 11(a)). Given that the
optimal classifier is a heteroscedastic classifier aligned with the coordinate axes, a sample’s gradient
direction is either horizontal or vertical, depending on which cluster the noised sample is closer to.

We demonstrated the proportion of S1 for each sampled point x in Figure 11(a), where values nearing
50% indicate the presence of a gradient dilemma. Simulation results revealed that samples along
the diagonal experience severe gradient dilemmas, which is consistent with intuition. In this toy
example, the gradient dilemma arises from a non-clustered data distribution, which imposes divergent
gravitational pulls for purification. Consequently, we hypothesize that real-world data distributions

19

89553 https://doi.org/10.52202/079017-2842

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
N

0

10

20

30

40

50

60

70

Ti
m

e
pe

r s
te

p
(s

)

Ours
N-Grad
DiffPure
GDMP
LM

Figure 12: Time spent on gradient grafting and full gradient under different N .

1 2 3 4 5 6 7 8 9 10

40%

50%

60%

70%

80%

(a) DiffPure [22]
1 2 3 4 5 6 7 8 9 10

40%

50%

60%

70%

80%

(b) GDMP [26]
1 2 3 4 5 6 7 8 9 10

60%

70%

80%

90%

100%

(c) LM [3]

Figure 13: MLE estimation of the risk of 5 resubmit attacks for different N -evaluation. The reference
value is represented by the solid line and its standard deviation by the dashed line.

may also exhibit non-clustered features. For instance, in the misclassification of a cat as a dog,
considering the existence of various dog breeds, it is more efficient and effective to distort the features
of one specific breed rather than all breeds collectively.

C.7 Time complexity analysis

Our gradient grafting method enables the acquisition of gradients with lower time complexity for
efficient attacks. We utilize only byproducts of N -evaluation, with the primary overhead being the
computation of approximate gradients, which is less costly than full gradients. Our algorithm’s
computational cost involves N approximate gradients and one full gradient, whereas a full gradient-
based algorithm with 1-evaluation requires N full gradients. When comparing computational times
for varying N , we find that increasing N slightly raises costs as the result shown in Figure 12.
Compared to the N full gradient computations in the EOT-based attack, DiffHammer computes the
full gradient only once, and the cost of N approximate gradients is acceptable. As N increases, the
efficiency gain from gradient grafting becomes more significant.

C.8 Resubmit risk estimator

In a threat model where an attacker tries to obtain at least one successful attack by resubmitting,
inappropriate evaluation can lead to an underestimated risk. For example, in labs that use facial
recognition as authentication, users have up to five attempts. Therefore, the estimation of the 5-
resubmit risk is critical for the defender. The defender can perform N resubmit evaluations and
use MLE as an estimator. We quantify the MLE-estimated risk for DiffHammer with N -evaluation,
N = 1, . . . , 10 on a 5-resubmit attack, where the reference value is an empirical average of multiple
trials. As the results in Figure 13 show, as the number of resubmissions increases, the estimation
gets closer to the reference value with a smaller variance and tends to be stable and accurate when
N ≥M . It is worth noting that when N ≪M , the estimation is either significantly underestimated
(N = 1) or suffers from large variance (N = 2). Therefore, we recommend at least N -evaluation
with N ≥M as a means of evaluation.

20

89554https://doi.org/10.52202/079017-2842

deer deer ship dog truck dog airplane bird cat cat

dog bird airplane bird automobile cat truck frog horse horse

truck airplane frog truck deer airplane ship cat cat dog

airplane truck bird airplane bird ship airplane dog horse cat

Figure 14: Example of visualization of adversarial samples on CIFAR10 (ℓ∞ : 4/255). Original
labels are shown in green and adversarial labels are shown in red.

cat ship ship airplane frog frog automobile frog cat automobile

dog airplane airplane ship bird cat truck bird horse truck

airplane dog ship dog horse ship deer dog bird deer

dog cat airplane airplane deer airplane airplane cat truck truck

Figure 15: Example of visualization of adversarial samples on CIFAR10 (ℓ∞ : 8/255). Original
labels are shown in green and adversarial labels are shown in red.

C.9 Visualization

We visualize adversarial samples generated by DiffHammer against DiffPure [22] under various
settings (CIFAR: Figure 14,15,16; CIFAR100: Figure 17; ImageNette: Figure 18). These samples are
imperceptible even with a perturbation budget of 8/255. However, subtle adversarial perturbations
can lead to significant differences in model decisions, highlighting the need for stronger adversarial
defenses.

21

89555 https://doi.org/10.52202/079017-2842

airplane ship frog ship airplane dog airplane dog frog cat

ship airplane cat airplane frog bird ship cat bird horse

cat frog bird cat dog dog cat cat cat ship

airplane airplane horse horse cat cat horse horse horse airplane

Figure 16: Example of visualization of adversarial samples on CIFAR10 (ℓ2 : 0.5). Original labels
are shown in green and adversarial labels are shown in red.

rabbit elephant plain maple tree cloud bridge maple tree whale tank train

hamster telephone camel wolf turtle telephonewillow tree couch bridge bear

tank bicycle flatfish ray caterpillar turtle mountain bottle leopard willow tree

bus worm wolf dolphin tulip aquarium fish trout woman worm aquarium fish

Figure 17: Example of visualization of adversarial samples on CIFAR100 (ℓ∞ : 4/255). Original
labels are shown in green and adversarial labels are shown in red.

horn tench truck gas pump springer springer

golf ball golf ball church church golf ball golf ball

horn chain saw chain saw chain saw parachute tench

truck golf ball cassette cassette golf ball parachute

Figure 18: Example of visualization of adversarial samples on ImageNette (ℓ∞ : 4/255). Original
labels are shown in green and adversarial labels are shown in red.

22

89556https://doi.org/10.52202/079017-2842

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In the introduction, we summarize our main contributions in the last para-
graphs.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of the work in the second paragraph of Appendix A.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

23

89557 https://doi.org/10.52202/079017-2842

Justification: We state Theorem 1 and Theorem 2 with necessary assumptions in Section 3.1
and 3.2, and provide the proofs for them in Appendix B.1 and B.2.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Following the information in Section 4 and Appendix C, the experiments of
the paper can be reproduced.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

24

89558https://doi.org/10.52202/079017-2842

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Our codes are publicly available at https://github.com/Ka1b0/
DiffHammer.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Section 4 states the basic experimental settings and Appendix C.1 includes
more details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We include error bars in our experimental results shown in Figure 4 and 13.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

25

89559 https://doi.org/10.52202/079017-2842

https://github.com/Ka1b0/DiffHammer
https://github.com/Ka1b0/DiffHammer
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: All experiments are performed on 1 NVIDIA GeForce RTX 4090 with a
memory of 24564 MB.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the NeurIPS Code of Ethics and our research confirms it.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We make broader impacts in the first paragraph of Appendix A.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

26

89560https://doi.org/10.52202/079017-2842

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We don’t include data or models that have a high risk for misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite properly the dataset and code of original owners in Section 4.1
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

27

89561 https://doi.org/10.52202/079017-2842

paperswithcode.com/datasets

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

28

89562https://doi.org/10.52202/079017-2842

