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Abstract
Large language models (LLMs) have exhibited impressive performance in language
comprehension and various reasoning tasks. However, their abilities in spatial
reasoning, a crucial aspect of human cognition, remain relatively unexplored.
Human possess a remarkable ability to create mental images of unseen objects and
actions through a process known as the Mind’s Eye, enabling the imagination of
the unseen world. Inspired by this cognitive capacity, we propose Visualization-
of-Thought (VoT) prompting. VoT aims to elicit spatial reasoning of LLMs by
visualizing their reasoning traces, thereby guiding subsequent reasoning steps. We
employed VoT for multi-hop spatial reasoning tasks, including natural language
navigation, visual navigation, and visual tiling in 2D grid worlds. Experimental
results demonstrated that VoT significantly enhances the spatial reasoning abilities
of LLMs. Notably, VoT outperformed existing multimodal large language models
(MLLMs) in these tasks. While VoT works surprisingly well on LLMs, the ability
to generate mental images to facilitate spatial reasoning resembles the mind’s eye
process, suggesting its potential viability in MLLMs. Please find the dataset and
codes in our project page.
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Figure 1: Humans can enhance their spatial awareness and inform decisions by creating mental
images during the spatial reasoning process. Similarly, large language models (LLMs) can create
internal mental images. We propose the VoT prompting to elicit the "mind’s eye" of LLMs for spatial
reasoning by visualizing their thoughts at each intermediate step.
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1 Introduction

Recently, large language models (LLMs) [BCE+23, BMR+20, TLI+23, JSM+23] have achieved
remarkable performance on various language-related tasks. However, despite their success in math
reasoning [KGR+23], common sense reasoning [LKH+22], and other reasoning tasks such as
symbolic reasoning or logic reasoning [KGR+23], their abilities in spatial reasoning still remain
underexplored [RFD+21, YBL+23, MHV+24].

Spatial reasoning is an essential function of human cognition, allowing us to interact with the envi-
ronment. It facilitates tasks that require understanding and reasoning about the spatial relationships
between objects and their motions. The spatial reasoning of language models largely relies on
language to reason about spatial information, whereas human cognitive capabilities extend far beyond
verbal reasoning. Humans can not only create task-relevant abstract representations from visual
perception [BK18, KC22], but also imagine unseen scenes through their mind’s eye. It remains
a research topic called mental image [She78] in domains of neuroscience, philosophy of mind,
and cognitive science. Building upon this cognitive function, humans facilitate spatial reasoning
by mental image manipulation, such as navigation [Tol48], mental rotation [SM71], mental paper
folding [SF72], and mental simulation [MK09]. Figure 1 illustrates the human process involved in
a navigation task. Humans enhance their spatial awareness and inform their decisions by creating
mental images of a route, utilizing various sensory inputs such as navigation instructions or a map
image. Subsequently, they simulate route planning through the mind’s eye.

Inspired by this cognitive mechanism, we conjecture that LLMs possess the ability to create and
manipulate mental images in the mind’s eye for spatial reasoning. As illustrated in Figure 1, LLMs
could potentially process and understand spatial information in various formats. They might be
capable of visualizing internal states and manipulating these mental images through their mind’s eye,
thereby guiding subsequent reasoning steps to enhance spatial reasoning. Therefore, we propose the
Visualization-of-Thought (VoT) prompting to elicit this ability. This method leverage LLMs to
visualize their reasoning steps and inform subsequent steps, implementing the concept of visuospatial
sketchpad [Bad92]. VoT adopts zero-shot prompting instead of relying on few-shot demonstrations
or text-to-image visualization with CLIP [RKH+21]. This choice stems from LLMs’ ability to
acquire various mental images from text-based visual art [SB14, SMM21, Reg19].

To evaluate the effectiveness of VoT in spatial reasoning, we selected three tasks that require spatial
awareness in LLMs, including natural-language navigation [YBL+23], visual navigation, and visual
tiling. These tasks require an understanding of space, direction, and geometric shape reasoning. To
emulate human-like multisensory perception, we designed 2D grid worlds using special characters
as enriched input formats for the LLMs in visual navigation and visual tiling tasks. We compared
different models (GPT-4, GPT-4V) and prompting techniques across these three tasks. The findings
reveal that the VoT prompting proposed in this paper consistently induces LLMs to visualize their
reasoning steps and inform subsequent steps. Consequently, this approach achieved significant
performance improvements on the corresponding tasks.

The main contributions of this paper include:

1. We shed light on LLMs’ mental image for spatial reasoning from a cognitive perspective,
conducting quantitative and qualitative analyses on the mind’s eye of LLMs and its limitations. We
also explore cues about the origin of this generalized ability from code pre-training.

2. We develop two tasks of "visual navigation" and "visual tiling", along with corresponding
synthetic datasets, emulating various sensory inputs for LLMs. These tasks are structured to support
varying levels of difficulty, offering a well-designed testbed for the research on spatial reasoning.

3. We propose Visualization-of-Thought (VoT) prompting to elicit the mind’s eye of LLMs
for spatial reasoning and provide empirical evaluations on three tasks. Experiment results prove the
effectiveness of VoT prompting compared with other prompting methods and existing MLLMs. This
ability to generate mental images to facilitate spatial reasoning resembles the mind’s eye process,
suggesting its potential viability in MLLMs.
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2 Spatial Reasoning

Spatial reasoning refers to the ability to comprehend and reason about the spatial relationships among
objects, their movements, and interactions with the environment. This skill is vital for a wide range of
real-world applications such as navigation, robotics, and autonomous driving. These fields necessitate
action planning based on visual perception and a concrete understanding of spatial dimensions.

Although several tasks and datasets [WBC+15, SZL22, MK22, LB18, RAB+20] have been devel-
oped to probe the spatial semantics embedded in text, existing research efforts often focus on how
spatial terms are linguistically structured. Recently, significant achievements and impressive results
have been achieved in these benchmarks by converting spatial terms to logical forms through LLMs
and adopting logic programming [YIL23]. This implies that excelling in these tasks does not nec-
essarily equate to a genuine understanding of spatial information by LLMs, nor does it provide an
accurate measure of their spatial awareness.

Spatial awareness involves understanding spatial relationships, directions, distances, and geometric
shapes, all of which are essential for action planning in the physical world. To evaluate the spatial
awareness and spatial reasoning abilities of LLMs, we have selected tasks that test navigation and
geometric reasoning skills, including natural language navigation, visual navigation and visual tiling.

2.1 Natural Language Navigation

Natural language navigation task [YBL+23] was inspired by prior research on human cogni-
tion [GDB17] presenting participants with sequential transitions sampled from a graph structure.

In this context, a square map is defined by a sequence of random walk instructions and associated
objects at each location, denoted as W = {(l1, o1), (l2, o2), . . . , (ln, on)}. Given a square map W ,
and sequence of navigation instructions I = {i1, . . . , ik}, the task for the model is to identify the
associated object o ∈W at the specified location l which is determined by the navigation instructions,
as detailed in Equation 1 and exemplified in Appendix B.2.

o ∼ p(o ∈W |W = {(l1, o1), (l2, o2), . . . , (ln, on)}, I) (1)

2.2 Visual Navigation

Visual navigation task presents a synthetic 2D grid world to LLM, challenging it to navigate using
visual cues. The model must generate navigation instructions to move in four directions (left, right,
up, down) to reach the destination from the starting point while avoiding obstacles. This involves two
sub-tasks: route planning and next step prediction, requiring multi-hop spatial reasoning, while the
former is more complex. Task instructions are available in Figure 6 in appendix.

Formulation The model is presented with a grid map M consisting of k consecutive edges
E = {e(s0, s1), e(s1, s2), · · · , e(sk−1, sk)}, where the starting point and destination are s0 and sk
respectively, as shown in Figure 2. Route planning task is to generate a sequence of correct directions
D = {d(s0, s1), d(s1, s2), · · · , d(sk−1, sk)}, as defined in Equation 2. Given M and t navigation
instructions Dt,0<t<k = {d(s0, s1), · · · , d(st−1, st)}, next step prediction task is to identify the
correct direction d(st, st+1) of the next step, as defined in Equation 3.

D ∼ p({d(s0, s1), d(s1, s2), · · · , d(sk−1, sk)} |M) (2)

(a) k=2 (b) k=3 (c) k=4 (d) k=5 (e) k=6 (f) k=7

Figure 2: Examples of a navigation map under different settings of k, with emoji of house indicating
the starting point, and emoji of office indicating the destination.
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d ∼ p(d(st, st+1) |M,Dt,0<t<k) (3)

Implementation The navigation map’s underlying graph is semi-Eulerian, alternating between
horizontal and vertical edges, with 2k+1 possible spatial configurations for a k-hop navigation map.
For each map and set of k navigation instructions, k − 1 question-and-answer (QA) instances,i.e.
"what is the next step?" are created. Further implementation details are in Appendix A.1.

2.3 Visual Tiling

Introduced by [Gol66], polyomino tiling is a classic spatial reasoning challenge. We extend this
concept to test the LLM’s ability to comprehend, organize, and reason with shapes in a confined area,
thus enhancing the evaluation of spatial reasoning skills. As depicted in Figure 3, the task involves a
rectangle with unfilled cells and various polyomino pieces, like the I-tetromino made of four aligned
squares. The model must select the appropriate polyomino variant, such as choosing the orientation
for the I-tetromino, to solve the QA puzzle. Task instructions are provided in Figure 7 in appendix.

Formulation The model is presented with a rectangle R masked with k unique polyominoes
MP = {mp1, · · · ,mpk}, 2 corresponding variants of each polyomino vi<=k = {vi1, vi2}, and a
polyomino query q ∈MP . Visual tiling task is to identify the correct variant of q, as defined in
Equation 4.

v ∼ p(vq | R, {mp1, · · · ,mpk}, {v11, v12 · · · , vk1, vk2}, q) (4)

Implementation The dataset comprises valid spatial arrangements generated through existing
algorithms[ES03, GN07], with random masking of polyominoes to create QA puzzles. Details are
provided in Appendix A.2.

(a) Fit 2 pieces into a masked rectangle (b) Fit 3 pieces into a masked rectangle

Figure 3: Example of visual tiling with masked polyomino pieces. Variants of those polyomino
pieces including rotation and reflection are not shown in this figure.

3 Visualization-of-Thought Prompting

Considering the way humans process spatial information during tasks like navigation, it’s common
to create mental images , such as maps, to enhance spatial awareness or simulating movements to
inform decision-making. Our objective is to elicit the spatial awareness of LLMs and ground their
reasoning by visualizing the consequence of their intermediate reasoning steps.

We introduce Visualization-of-Thought (VoT) prompting: "Visualize the state after each rea-
soning step." This new paradigm for spatial reasoning aims to generate reasoning traces and
visualizations in an interleaved manner. Qualitative results of this approach are presented in Figure 4.

We use pθ to denote a pre-trained LM with parameters θ, x, y, z to denote a language sequence, and
v to denote a visualization sequence in text form. In a multi-hop spatial reasoning task with input x,
CoT prompting generates a series of intermediate steps z1, · · · , zn, each step zi ∼ pθ(zi | x, z1···i−1)
is sampled sequentially, followed by the output y ∼ pθ(y|x, z1···n). As shown in Figure 1, VoT
prompting enhances this process by adding a visuospatial sketchpad to each intermediate step zi,
then the subsequent step zi+1 is sampled conditioned on prior steps z1···i and visualizations v1···i.

As defined in the Equation 5 and 6, it forms interleaved reasoning traces and visualizations. A
qualitative comparison between outputs of VoT and CoT is provided in Figure 8a in appendix.

vi ∼ pθ(vi | promptV oT , x, z1···i, v1···i−1) (5)
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Starting from      , provide the steps to navigate 

to       .

Provided: I        T        L

To fit all the provided polyominoes into the 

empty squares, what's the correct variation of 

Tetromino T?

Visualize the state after each reasoning step.

Visual Navigation Visual Tiling Natural Language Navigation

You have been given a 3 by 3 square grid. Initially, 

you are at the bottom-left corner…find a cassette 

player…go right…a wool, go right…a conch, go 

up…a moving van, go left…a confectionery store, 

go left…a pot pie, go up…a siamang, go right…a 

black-and-white colobus, go right…a minivan. 

Now you have all the information on the map. You 

start at where the cassette player is located, then 

you go right by one step, go right…go up…go 

left…go left…go up…go right…go down by one 

step. What will you find?

Visualize the state after each reasoning step. Visualize the state after each reasoning step.

1. Place I 2. Place L 3. Place T

1. Move right 2. Move down 3. Move left

4. Move down 5. Move left 6. Move down

Analyze I Analyze L Analyze T

…

Figure 4: Examples of VoT prompting in three tasks, where LLM generates 2D grids as text-form
mental images. The generated reasoning traces and visualizations form an interleaved sequence to
track the state over time. The 2D grids in the input and responses are composed of special characters.
Full responses could be found in Appendix B.

zi+1 ∼ pθ(zi+1 | promptV oT , x, z1···i, v1···i) (6)

This reasoning paradigm enables LLMs with visual state tracking. We introduce the concept of a
state, denoted as si = [x, z1···i, v1···i−1] representing a partial solution at step i with the input, the
sequence of intermediate steps z1···i and the sequence of visualizations v1···i−1.

vi ∼ pθ(vi | promptV oT , x, z1···i, v1···i−1)

∼ pθ(vi | promptV oT , si)
(7)

As shown in Equation 7, visual state tracking is implemented by generating the visualization vi
as representation of the internal state si after each reasoning step zi (e.g. vi could be a grid of the
navigation map marked with path or a filled rectangle). Grounded by the visual state tracking sequence,
the subsequent state is derived by si+1 ∼ pθ(si+1 | promptV oT , x, si, vi). This mechanism allows
for the derivation of subsequent states, reflecting spatiotemporal causality and enhancing the spatial
reasoning capabilities of LLMs in a grounded context.

4 Experiment

4.1 Setup

For the visual tasks where a counterpart image exists for each text input, we conduct additional exper-
iments with a multimodal model. Specifically, we adopt GPT-4 [OA+23] and GPT-4 Vision [Ope23]
via Azure OpenAI API as they’re state of the art LLM and multimodal model respectively. API
settings are temperature 0 as greedy decoding and top p 1, with model versions of 1106-preview and
vision-preview. For all experiments we adopt zero-shot prompting.

Depending on whether the LLM is explicitly prompted to visualize intermediate steps, we experiment
with three settings of GPT-4, including zero-shot CoT prompting(GPT-4 CoT), GPT-4 w/o Viz where
visualization is explicitly disabled during reasoning, and VoT prompting (GPT-4 VoT). Additional
setting of GPT-4 Vision with counterpart image input is GPT-4V CoT. Prompts are as following:

5
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• GPT-4 CoT: Let’s think step by step.
• GPT-4 w/o Viz: Don’t use visualization. Let’s think step by step.
• GPT-4V CoT: Let’s think step by step.
• GPT-4 VoT: Visualize the state after each reasoning step.

Task instructions and examples could be found in Appendix B.

4.2 Dataset

Natural Language Navigation We generate 200 square maps of size 3x3 which is described by 9
landmarks in snake order traversal, and a set of navigation instructions.

Visual Navigation We generate 496 navigation maps and 2520 QA instances in total, covering
various map sizes, up to 7×9 and 9×7. The data distribution is provided in Table 4 in appendix.

Visual Tiling We first generate multiple unique configurations to fill a 5 x 4 rectangle with 5
polyomino pieces including two I tetrominoes, two T tetrominoes and one L tetromino. Then we
randomly masked two or three pieces of different types and generate QA instance for each masked
pieces. The total number of QA instances is 796, and we show dataset details in Table 5 in appendix.

4.3 Metric

We extract the answer from model output by pattern matching. For tasks except for route planning,
we calculate accuracy by Equation 8. We adopted sub-string matching† as fcorrect to determine
correctness.

acc =

n∑
i

fcorrect(extracted_answer, ground_truth)/n (8)

For the route planning task which predicts a sequence of navigation instructions, we reject any
sequences exceeding 100 instructions, considering them to be random guesses. We then normalize
the navigation instructions by executing each navigation instruction. Those instructions which violate
navigation rules will be ignored. The length t of normalized instruction sequence is considered as the
temporal distance against the starting point. Given the ground-truth of k navigation instructions, the
completing rate of route planning is t/k. For the dataset of n maps, we report two metrics including:

1. Average completing rate:
∑n

i ti/ki/n. Average completing rate among all instruction
sequences, reflecting LLM’s effectiveness of route planning.

2. Success rate:
∑n

i (ti == ki)/n. This metric represents the proportion of instruction se-
quences with t = k, i.e., reaching the destination.

4.4 Results

As illustrated in Table 1, GPT-4 VoT significantly outperforms other settings in all tasks across
all metrics. The significant gap when comparing GPT-4 VoT with GPT-4V CoT and GPT-4 w/o
Viz demonstrates that effectiveness of visual state tracking, which allows LLMs visually interpret
their actions within an grounded world. And in the natural language navigation task, GPT-4 VoT
outperforms GPT-4 w/o Viz by 23.5%. In the visual tasks, the noticeable performance gap between
GPT-4 CoT and GPT-4V CoT indicates that LLM grounded with 2D grid could possibly outperform
a MLLM in challenging spatial reasoning tasks.

On the other hand, performance of GPT-4 VoT is still far from perfect in all tasks, especially in the
most challenging route planning task. Despite these tasks are relatively easy for humans, performance
of LLMs drops significantly as task difficulty increases. Details on performance trends across
difficulty levels are provided in figure 9 and table 6 in appendix.

†We use this term for simplicity. In natural language navigation tasks, LLMs often output additional words
in the extracted answer besides the expected object name. For example, "Answer: You will find ...". In this
case, sub-string matching is adopted without affecting the correctness. Otherwise, exact matching is adopted for
multiple choice questions in visual tasks.
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Settings
Visual Navigation

Visual Tiling Natural-Language
NavigationRoute Planning Next Step

PredictionCompleting Rate Succ Rate

GPT-4 CoT 37.02 9.48 48.61 54.15 54.00
GPT-4 w/o Viz 37.17 10.28 48.49 46.98 35.50
GPT-4V CoT 33.36 5.65 46.59 49.62 /
GPT-4 VoT 40.77 14.72 55.28 63.94 59.00

Table 1: Performance of different GPT-4/4V settings in all tasks. Underline denotes statistical
significance with p < 0.05 when comparing GPT-4 VoT against all baselines using two-sample z-test,
while p < 0.16 is observed compared with GPT-4 CoT in natural language navigation task.

5 Analysis

As explained in section 3, one of the core aspects of VoT lies in enabling LLMs with visual state
tracking. During the experiments, it was observed that GPT-4 CoT occasionally exhibited this reason-
ing pattern across several tasks with exception of route planning. Besides, incorrect visualizations of
VoT are commonly observed in model outputs. In this section, our analysis of VoT primarily focuses
on three questions: (1) Do visual state tracking behaviors differ among prompting methods? (2) How
visualizations enhance final answers? (3) Can VoT benefit less powerful language models?

5.1 Do visual state tracking behaviors differ among prompting methods?

For each model output, we extract the sequence of visualizations sampled prior to generating the final
answer and discard any visualizations generated thereafter. Then we compare the sequence length lv
with the number of reasoning steps ls. We calculate Complete Tracking

∑n
i (lv == ls)/n when a

visualization vi corresponds to each state si. Similarly, we calculate the Partial Tracking metric
as

∑n
i (lv > 0)/n when at least one visualization is present before the final answer is generated.

Figure 5 shows the significant differences between these settings. In the GPT-4 CoT setting, it
demonstrated noticeable tracking rate across almost all tasks except route planning. This observation
implies that LLMs inherently exhibit the capability of visual state tracking when spatiotemporal
simulation is integral to reasoning.

On the other hand, the visual state tracking behavior is sensitive to prompts to varying degrees. As
showcased in Figure 8 in appendix, after removing "reasoning" from the prompt of VoT, the visualiza-
tions are sampled after GPT-4 generates the wrong answer. Consequently, explicitly prompting LLMs
to visualize their reasoning traces with VoT markedly improves the visual tracking rate, thereby
enhancing overall performance. The potential contribution of code pre-training to this emergent
capability is further explored in Appendix C.
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Figure 5: tracking rate of different settings across all tasksk.

5.2 How visualizations enhance final answers?

Ideally, VoT is supposed to generate an accurate visualization vi at each step, so that subsequent step
zi+1 could be determined correctly. This relies on the spatial visualization and spatial understanding
capability of LLMs. To evaluate these capabilities of LLMs in these tasks, we extract the final
visualization from each model output under the setting GPT-4 VoT in visual navigation and polyomino
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tiling task. Specifically, for visual navigation task, we extract the visualized map where LLM
completed all navigation instructions. For polyomino tiling, we extract the rectangle filled with
corresponding polyomino piece. The spatial visualization capability is measured by two criteria:
(1) Compliance, indicating whether the manipulation of mental image satisfies requirements such
as avoiding overlap and navigating around obstacles. (2) Accuracy, indicating whether the mental
image aligns with the corresponding state. The spatial understanding capability is measured by the
proportion of correct answers when the corresponding visualization is generated accurately.

As could be seen from Table 2, LLMs demonstrate promising potential in performing multi-hop
visualization while adhering to spatial constraints, with compliance rates of approximately 51-52%.
However, the relatively low accuracy of state visualization (around 24%-26%) indicates a need for
significant improvements in this area. Despite this limitation, LLMs are able to make correct
decisions in 65%-77% of the cases when accurate internal state visualizations are generated,
which enhances groundedness and contributes to notable performance gains. Several case studies are
provided in Appendix E for interested readers.

Task Spatial Visualization Spatial Understanding

Compliance Accuracy Accuracy

Visual Navigation 51.14 26.48 65.16
Visual Tilling 52.01 24.25 77.20

Table 2: Spatial visualization/understanding evaluation in visual navigation and visual tiling task.

On the other hand, VoT prompting might underperform in those tasks where LLMs can leverage
logical reasoning without visualizing internal states. We conducted experiments in natural language
navigation within a ring [YBL+23], where navigation instructions are either clockwise or counter-
clockwise movements. By normalizing each instruction to a signed number, GPT-4 converts this task
to mathematical calculation of adding and modulus operation. For example, instructions of 15 steps
clockwise and 3 steps counter-clockwise are normalized to (15 - 3) % 12. Results show that GPT-4
CoT outperforms GPT-4 VoT with 52.5% VS 49.5% among 200 test instances with ring size of 12.

5.3 Can VoT benefit less powerful language models?

To evaluate the efficacy of VoT on less powerful language models, we conducted experiments across
various model families [BMR+20, OA+23, TLI+23] and model sizes, including GPT-3.5 turbo,
LLAMA3-8B-Instruct and LLAMA3-70B-Instruct. We access GPT-3.5 via Azure OpenAI API
with model version 1106-preview and apply greedy decoding to all models.

As shown in Table 3, within the same model family, performance improves across all tasks with
increases in model size. LLAMA3-70B VoT significantly outperforms the baseline across all tasks
except for visual tiling, where it aligns closely with results observed in GPT-4. This consistency
suggests that VoT offers a scaling advantage when applied to more advanced models, markedly
enhancing performance in larger models. In contrast, less capable models tend to rely on random
guessing, especially in spatial reasoning tasks. For instance, in the route planning task, GPT-3.5
CoT often resorts to speculative responses, random guessing in nearly half of the instances, which
leads to exhaustion of output tokens. While GPT-3.5 VoT effectively minimizes random guesses,
such occurrences become increasingly rare with GPT-4 CoT as the model size expands. On the
other hand, the reliance on random guessing introduces unpredictability in performance trends for
less powerful models. It suggests their limitations in sustaining reliable reasoning processes across
different difficulty levels. Details on performance trends are provided in Appendix D.

6 Related Works

Spatial Reasoning over Text Spatial reasoning and spatial language understanding [KPM20] in
NLP domain mainly focus on semantic representation [CBGG97, Bat10, HK11], spatial information
extraction [RMK18, KVOM11], learning and reasoning [KM15, SLYA17, KFP19]. Recent advance-
ments have further explored spatial reasoning within the context of large language models (LLMs).
To improve multi-hop spatial reasoning skills of language models, several works [MFNK21, MK22]
proposed to pretrain language models with synthetic datasets. An increasing number of dataset were
then developed to covers various type of spatial relations in 2D visual scenes [WBC+15, SZL22],

8
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Settings
Visual Navigation

Visual Tiling Natural-Language
NavigationRoute Planning Next Step

PredictionCompleting Rate Succ Rate

GPT-3.5 CoT 16.10 2.62 17.42 44.10 8.50
GPT-3.5 VoT 19.02 1.61 13.10 47.99 9.00

LLAMA3-8B CoT 4.65 0 28.73 47.24 16.50
LLAMA3-8B VoT 4.97 0.2 26.75 46.73 15.50

LLAMA3-70B CoT 19.90 2.62 49.01 56.41 26.00
LLAMA3-70B VoT 30.24 5.85 54.09 56.03 32.50

Table 3: Performance of VoT in GPT-3.5 and LLAMA3 models. Underline denotes statistical
significance with p < 0.05 compared to corresponding CoT baseline using two-sample z-test.

geometric patterns [Cho19] and 3D spatial information [AMKK21, HZC+23]. [FML+22] investi-
gated spatial reasoning capabilities of transformer-based models in the UI grounding setting. On the
other hand, some works adopted in-context learning, leveraging LLMs for general purpose reasoning
to convert spatial information to logic forms [YIL23], or as a general pattern machine for sequence
transformation [MXF+23]. Recently, several works focused on evaluating spatial reasoning of LLMs
as cognitive capability on navigation [YBL+23] and planning tasks [MHV+24] among various spatial
structures. While most existing works rely on linguistic semantics and verbal reasoning, and might
not always necessitate spatial awareness, we propose to elicit mind’s eye of LLMs in spatial reasoning
tasks with various formats from a cognitive perspective. The VoT prompting induces LLMs to create
mental images for visualizing their internal states and inform subsequent reasoning step.

World Models of LLMs While there have been many theoretical debates about whether LLMs
can effectively learn an internal world model from ungrounded form alone [BHT+20, MGSS21],
[LeC22] advocated that world models should represent percepts and action plans at multiple levels
of abstraction and multiple time scales, with the capability of planning, predicting, and reasoning.
[LWG+22] proposed to ground LLM in the physical world by reasoning over the experimental results
predicted by external simulation. [HGM+23] further leveraged LLMs as world models to predict the
subsequent states by action simulation, given predefined states and actions per task. On the other
hand, an increasing number of studies focus on investigating internal representations of LLMs. [PP22,
AKH+21] showed that by utilizing in-context learning, LLMs’ learned representations can be mapped
to grounded perceptual and conceptual structure in color and spatial domains. Moreover, [GT23]
and [NLW23] discovered linear representations of space, time and game state in specifically trained
LLMs, which are important for dynamic causal world models. Our work does not probe the internal
representations of specialized LLMs, nor does it depend on external simulation engine or state
definitions. We demonstrate LLMs’ zero-shot capability of representing their precepts at an abstract
level, predicting and tracking the internal states over time to generate action plans in multi-hop spatial
reasoning tasks, which possibly mirrors the causal world model within LLMs.

7 Conclusion

This study introduces Visualization-of-Thought Prompting (VoT), inspired by the human cognitive
function of visualizing and manipulating mental images through the mind’s eye. We have demon-
strated that VoT enables LLMs to exhibit the mechanism of "the mind’s eye", as evidenced by their
performance in multi-hop spatial reasoning tasks and our comprehensive analysis of the reasoning
traces. Remarkably, VoT enable LLMs to outperform state-of-the-art multimodal large language
models (MLLMs) in the tested visual tasks. While VoT demonstrates impressive efficacy in LLMs,
this emergent capability to create mental images to enhance spatial reasoning resembles the mind’s
eye process, suggesting its promise in MLLMs.

Building on the success of experiments with GPT-4, we plan to investigate how VoT can futher elicit
"the mind’s eye" in MLLMs to enhance their spatial awareness. Additionally, our future efforts will
focus on automatic data augmentation from real-world scenarios, aiming to identify effective methods
for learning generalized internal representations of mental images. This will further improve the
mind’s eye of LLMs, ultimately contributing to the advancement of their cognitive and reasoning
abilities.
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Limitations

This work only scratches the surface of spatial reasoning of LLMs. Both mental images and visual
state tracking rely on the emergent ability of advanced LLMs. Therefore, it might cause performance
deterioration in less advanced language models or more challenging tasks. Besides, due to the limited
data exposure and a lack of explicit instruction tuning, visual state tracking of current LLMs are
sensitive to prompts. For example, when explicitly prompted with "use ascii-art", the tracking rate
will significantly increase thereby boosting performance, while removing "reasoning" from the VoT
prompt will cause a decrease of tracking rate. Moreover, the mental images tested in our work are
limited to 2D grid. To strength the mind’s eye of LLMs, more diverse and complicated representation
should be explored in the future, such as complex geometric shapes and even 3D semantics shown in
Figure 11 in appendix.
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A Synthetic Data

A.1 Visual Navigation

As depicted in 1, given a specific k, the process of generating a 2D navigation map is composed
of 3 steps, which are instruction generation, instruction simulation, map rendering. In instruction
generation step, we enumerate all possible instruction sets navigating from the starting point to the
destination (e.g move up, then move right). During this step, only the direction of each instruction is
determined, while the moving distance is undetermined until next step. In instruction simulation step,
simulation is applied in the 2D coordinate system with origin (0, 0) as the starting point. To guarantee
an unique answer in each navigation map, the moving distance of each instruction is dynamically
calculated to avoid overlapping. Each time when an overlapping is detected, the moving distance
of previous instruction will be increased by 1 unit recursively until overlapping is resolved. As
the distance is determined, those corresponding points are added to the navigating path. After all
instructions are completed, the final point is marked as the destination. In the map rendering step, the
bounding box of those points is adopted and normalized to a 2D square grid. The starting point and
destination are marked with dedicated squares, and cells along the path are marked by empty squares,
while other untouched cells are marked by obstacle squares.

Algorithm 1: Navigation Map Generation
Input :k
Output :Csolution = {s1, s2, ..., sn}, Ctextual_map = {t1, t2, ..., tn},

Cvisual_map = {v1, v2, ..., vn}; where n = 2k+1

1 dirs← [up, left, down, right]
2 instruction_sets← gen_instruction(dirs, k)
3 for dir_instructs in instruction_sets do
4 cur_pos, path_points,moves← initialize() // origin as the starting point
5 for direction in dir_instructs do

// instruction simulation
6 if not validate_plan(cur_pos, direction, path_points) then
7 increase_previous_move(cur_pos,moves, path_points)
8 end
9 cur_pos, path_points← step_forward(cur_pos, direction, path_points)

10 moves← moves ∪ direction
11 end
12 si ← moves
13 ti, vi ← render_map(extract_bounding_box(path_points))
14 Csolution ← Csolution ∪ si
15 Ctextual_map ← Ctextual_map ∪ ti
16 Cvisual_map ← Cvisual_map ∪ vi
17 end

Since the direction of each navigation instruction is alternating, there are 4 ∗ 2k−1 = 2k+1 kinds
of spatial configurations for a k-hop navigation map. During the implementation, we simplify the
recursive implementation with an early quit when path overlapping could not be resolved within one
iteration, the main consideration of which is the size of the map. So the number of generated map is
slightly lower than 2k+1 as the navigating step k increases.

A.2 Visual Tiling

The data generation process comprises 3 stages, including configuration generation, question gen-
eration and polyomino rendering. In the configuration generation stage, to generate valid spatial
configurations of a rectangle and the corresponding polyomino set, we convert a tiling problem to
existing formalized problems. One of the problems is an exact cover problem leveraging dancing
link algorithm [Knu00], which could be described as: given a matrix of 0s and 1s, find a set of rows
containing exactly one 1 in each column. The conversion is to construct a matrix of 0s and 1s, each
row of which represents a possible arrangement of placing a specific polyomino in a rectangle. As
illustrated in Equation 9, given k polyomino pieces, and a rectangle of n units to be filled, the first k
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columns compose an one-hot vector indicating the corresponding polyomino, and the last n columns
are marked with 0 or 1 depending on whether the corresponding unit is filled by that polyomino. Then
finding a set of polyomino arrangements in a rectangle equals to find a set of rows containing exactly
one 1 in each column. Another adaptable problem is the boolean satisfiability problem (commonly
known as SAT), for which efficient solvers exist [ES03, GN07]. A tiling problem can be converted to
SAT by introducing a boolean variable for each possible arrangement of each piece, and then adding
clauses comprising of those boolean variables that ensure at least one arrangement of each piece is
achieved, while avoiding conflicts between arrangements of one piece or two different pieces.

Given the size of a rectangle and polyominoes to be fit, multiple corresponding solutions are generated
by applying those algorithms. Then in the question generation stage, we randomly mask several
polyomino pieces in the rectangle, and generate a question answer(QA) pair for each masked
polyomino. Finally the rectangle and each polyomino piece are rendered with emoji squares.



C1 Ck Ck+1 Cn+k

1 0 1 0 0 1
1 0 0 1 1 0

0 1 1 1 0 0
0 1 0 0 1 1

P1

Pk

 (9)

A.3 Visual Data Rendering

After gathering the textual dataset of 2D square grid, we generate the corresponding visual dataset by
drawing text onto an image. Specifically we adopt color emojis for a fair comparison as they’re more
visual friendly to a multimodal model.

A.4 Dataset Details

Data distribution among various difficulty levels for visual navigation tasks and visual tiling tasks are
provided in Table 4 and 5. It provides flexible difficulty control across different tasks. For visual tiling
task, the difficulty is controlled by the number of masked polyomino pieces. As the number increases,
the more spatial arrangements LLMs need to consider. Regarding the visual navigation task, as
illustrated in figure2, we use the number of roads k to control difficulty, which is corresponding to
the size of the map.

Task
K Step

Total
2 3 4 5 6 7

Route Planning 8 16 32 64 128 248 496
Next Step Prediction 8 32 96 256 640 1488 2520

Table 4: Data distribution of visual navigation dataset with
the total navigating step of k indicating difficulty level. The
reason why the number of generated map is slightly lower
than 2k+1 for k > 5 is explained in Appendix A.1.

Mask count
Total

2 3
Configuration 248 124 376
QA Instance 489 307 796

Table 5: Details of visual tiling
dataset. Some QA instances are
discarded when multiple solutions
exist and all answers are correct.

B Examples

For visual navigation and visual tiling tasks, the structured input template is comprised of task
instruction, input parameters and prompt of specific setting.

B.1 Visual Tasks

Task instructions and responses of each visual task under setting GPT-4 VoT are provided as following:

• Route Planning Task instruction in Figure 6, response in Figure 12 .
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• Next Step Prediction Task instruction in Figure 6, response in Figure 13.

• Visual Tiling Task instruction in Figure 7, response in Figure 14.

Navigation Task: for a provided map,  is the home as starting point,  is the 

office as the destination.       means the road,  means the obstacle. There exists 

one and only one viable route for each map. Each step you choose a direction and 

move to the end of the continuous road or the destination.

map:

```

```

Starting from , provide the steps to navigate to .

Visualize the state after each reasoning step.

```

Starting from , to navigate to , you made following movements: 

1. Move right to the end of continuous road.

2. Move down to the end of continuous road.

3. Move left to the end of continuous road.

What's the direction of next movement?

A. Up

B. Left

C. Down

D. Right

Visualize the state after each reasoning step.

Navigation Task: for a provided map,  is the home as starting point,  is the 

office as the destination.       means the road,  means the obstacle. There exists 

one and only one viable route for each map. Each step you choose a direction and 

move to the end of the continuous road or the destination.

map:

```

Route Planning Next Step Prediction

Figure 6: Task Instruction of visual navigation.

Task: given a set of polyominoes and corresponding 

variations of each polyomino, fit them into the empty 

squares (      ) in the target rectangle without overlapping any 

existing polyominoes or going outside the rectangle. The 

variations allow only translation, not rotation or reflection. 

It's guaranteed that there always exists a solution.

-------------------------

Target rectangle with 12 empty squares:

```

```

Provided polyominoes:

1. Tetromino I (       )

2. Tetromino L  (       )

3. Tetromino T  (       )

-------------------------

Variations for Tetromino I:

Variation 1 fitting into its bounding box:

```

Variation 2 fitting into its bounding box:

```

```

-------------------------

Variations for Tetromino L:

Variation 3 fitting into its bounding box:

```

```

Variation 7 fitting into its bounding box:

```

```

-------------------------

Variations for Tetromino T:

Variation 2 fitting into its bounding box:

```

Variation 3 fitting into its bounding box:

```

```
-------------------------

To fit all the provided polyominoes into the empty squares 

(       ), what's the correct variation of Tetromino T?

A. 2

B. 3

C. Neither

Visualize the state after each reasoning step.

```

```

Figure 7: Task Instruction of visual tiling.

B.2 Natural Language Navigation

Prompt Example You have been given a 3 by 3 square grid. Starting from a vertex, you will move
along the edges of the grid. Initially, you are positioned at the bottom-left corner of the grid, where
you will find a torch, then you go right, where you will find an infant bed, then you go right, where
you will find an American dipper. Then you go up, where you will find a jay, then you go left, where
you will find a terrapin, then you go left, where you will find a microwave oven. Then you go up,
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First, let's look at the target rectangle and identify the empty squares (     ) 

where we need to fit the polyominoes:

We have two polyominoes to fit into this rectangle: Tetromino I ( ) and 

Tetromino T ( ). The Tetromino I can only fit in the bottom row since it's 

the only place with four consecutive empty squares, either horizontally or 

vertically. Let's place the Tetromino I ( ) in the bottom row:

…..

We can see that Variation 2 of Tetromino T ( ) fits perfectly into the 

remaining empty squares, as it matches the T shape formed by the empty 

squares. Let's place Variation 2 of Tetromino T ( ) into the target rectangle:

The correct variation of Tetromino T to fit into the empty squares is Variation 2.

Answer: A. 2

First, let's look at the empty spaces in the target rectangle. We have a 4x1 space at the 

bottom and three single squares above it. The Tetromino I ( ) can only fit in the 4x1 

space at the bottom, so we'll use Variation 2 of the Tetromino I to fill that space.

Now, let's consider the Tetromino T ( ) variations. We have three single empty squares 

that are not in a straight line, so Variation 2 of the Tetromino T, which is a straight line 

with a protrusion, will not fit. However, Variation 3 of the Tetromino T has a 

configuration that can fit into the three remaining empty squares with one square 

protruding to the side, which matches the layout of the empty squares.

Therefore, the correct variation of Tetromino T to fit into the remaining empty squares is:

B. 3

The final configuration would look like this:

Visualize the state after each reasoning step Let’s think step by step.

(a) Common behaviors of VoT and CoT prompting in visual tiling task, with the overall track rate of 87.1% and
57.4% respectively.

To navigate from  to , we need to find the path that avoids obstacles 

( ) and follows the roads (     ). Here's the step-by-step navigation:

1. Move down from  to the end of the continuous road.

After the move:

2. Move left from the current position to the office .

After the move:

The has now reached the , completing the navigation task.

Visualize the state after each reasoning step Visualize the state after each reasoning step

To navigate from  to  on the provided map, follow these instructions:

1. Move down to the end of the continuous road.

2. Move right to the end of the continuous road.

3. Move up to reach the destination .

Here's the visualization after each step:

Starting point:

After Step 1 (Move down):

After Step 2 (Move right):

After Step 3 (Move up):

(b) Route planning task is sensitive to prompts. After deleting the word "reasoning" from the VoT prompt, final
answer and state is derived without conditioning on state visualization in many cases. The left example provides
a correct solution with imperfect intermediate visualization, while the right example provides a wrong solution.

Figure 8: Example cases of visual state tracking behaviors in different tasks. We provide side-by-side
comparisons to show how visual state tracking is influenced by prompt, where bold texts on the top
are prompts to compare. Case on the left exhibits visual state tracking in an interleaved manner,
where next state is conditioned on visualization of previous states. Case on the right disentangles
verbal reasoning and state visualization, which leads to a drop in tracking rate and task performance.
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where you will find a baseball player, then you go right, where you will find a harvestman, then you
go right, where you will find a neck brace. Now you have all the information on the map. You start at
the position where the torch is located, then you go right by one step, then you go right by one step,
then you go up by one step, then you go up by one step, then you go left by one step, then you go
down by one step, and then you go down by one step. What will you find?

Response Example See Figure 15.

C Visual State Tracking

As for where this emergent ability stems from, it might derive from tabular data, city grid naviga-
tion, maze exploration related coding problems [YBL+23]. These tasks involves understanding and
manipulating objects in a 2D square grid. Besides, we conjecture the exposure of ascii-art com-
ments [Reg19] during LLMs’ code pre-training possibly enhances this generalized ability. As a fact
to support this conjecture, the visual tiling task is different from navigation tasks because it requires
shape understanding and spatial manipulation ability. While tabular data and square grid navigation
data boost row-wise or column-wise attention, ascii-art supplements intricate spatial attention to
understand and manipulate 2D shapes. Additionally, ascii-art in code comments is presented in
various formats, one of which is interleaved ascii diagrams, natural language and programming
language. It require LLMs to generate the interleaved mental images and text sequence, thereby
enhancing spatial visualization ability and spatiotemporal causality. Interestingly in the natural
language navigation task, when GPT-4 is prompted with "use ascii-art to visualize", the complete
tracking rate increases to 98.5% (+78.5%), boosting task performance to 62.5% (+3.5%).

C.1 Ascii-art in Code Comments

Ascii-art is commonly used in code comments to represent data structure, diagram, geometry and
so on, which could benefit LLMs’ spatial understanding and visualization capability. Besides, it’s
also used to illustrate how an algorithm works or simulate an operation, where reasoning traces and
corresponding visualization are presented in an interleaved manner. Below are several examples in
open-source projects.

• Spatial Causality:Double-ended queue in Rust, Scrolling web pages and tree rotation
present triplets of previous visual state, instruction, and updated state of instruction follow-
ing.

• Temporal Causality: Undo systems from emacs provides various temporal states of the undo
system when undo operation happens in different timelines and corresponding visualizations
in an interleaved manner. Each visualization reflects the temporal casuality of the system
state.

This kind of interleaved sequence tracks the system state over time, thus reflecting spatiotemporal
casuality.

D Performance Trends Across Levels

In this analysis, we examine performance trends across varying difficulty levels in the next-step
prediction task for models utilizing either CoT or VoT methods. These trends are crucial for
understanding the inherent unpredictability associated with random guessing. As k increases from 2
to 7 in a k-step navigation map, distinct performance patterns emerge among different models, as
depicted in Figure 9. Larger language models such as GPT-4 and LLAMA3-70B demonstrate a more
predictable decrease in accuracy with increasing k. This trend indicates a robust ability to handle
progressively challenging tasks, despite the overall decrease in performance. Detailed statistics are
provided in table 6. In contrast, less powerful models like GPT-3.5 and LLAMA3-8B exhibit an
irregular performance trajectory. These models show variable accuracy, with significant fluctuations
at higher difficulty levels, suggesting a reliance on random guessing, particularly under conditions of
increased task difficulty. This behavior highlights their limitations in sustaining reliable reasoning
processes through more complex scenarios. Furthermore, the VoT method seems to offer a modest
improvement in performance for the less powerful models, particularly in scenarios of lower difficulty.
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This observation suggests that VoT might be advantageous for enhancing reliable reasoning in simpler
spatial reasoning tasks, potentially compensating for the inherent weaknesses of smaller language
models.
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Figure 9: Performance Trends of CoT and VoT Models Across difficulty levels in next-step-prediction
task.

Model K-step Map Map Count CoT Accuracy (%) VoT Accuracy (%)
2 8 75.00 75.00
3 32 68.75 62.50

GPT-4 4 96 60.42 68.75
5 256 50.78 64.06
6 640 52.34 55.16
7 1488 45.30 52.69
2 8 62.50 62.50
3 32 68.75 65.63

LLama3-70B 4 96 60.42 62.50
5 256 56.25 57.42
6 640 48.59 54.84
7 1488 46.71 52.35

Table 6: CoT and VoT performance of advanced models in next-step-prediction task across various
difficulty levels. While performance drops as difficulty level increases, VoT method generally
maintains a higher accuracy compared to CoT, highlighting its robustness in more challenging
scenarios.

E Case study

We consider visual state tracking similar to spatiotemporal simulation. During the simulation in those
tasks, we discovered several interesting behaviors of LLM.

1. Diverse visualization formats for state tracking: Nearly 30 different symbols found in the
navigation tasks to track the navigation progress, including marking the path, marking the current
location. Among those diverse representations, LLM succeeded in some challenging cases where it
used directional arrow emojis to indicate both the location and moving direction at each step. More
examples could be found in Appendix E.1.

2. Inconsistency between language and visualization: This is commonly observed across all tasks.
Due to the limited visualization capability, sometimes LLM generates accurate language instruction
but inaccurate visualization. And in other cases, LLM generates wrong answers even the visualization
is generated correctly, which reflects its limitation of spatial understanding as discussed in previous
section. More examples could be found in Appendix E.2.
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3. Self-refine mechanism: We found several cases in visual tiling tasks where spatial hallucination
happens due to the inconsistency or inaccurate visualization. Subsequently, LLM refined its reasoning,
resulting in an accurate visualization and the correction of the final answer. More examples could be
found in Appendix E.3.

E.1 mental images for State Tracking

In the visual navigation task, LLM adopted various symbols and representations to track the state of
navigation progress. As shown in Figure 10, there’re several tracking styles.

• Mark the path: adopting an identical symbol to mark current location or part of the path.
• Mark path and direction: using directional arrows to mark current location and indicate the

moving direction simultaneously, which is more challenging than simply marking the path.
• Mark path with temporal steps: using numbers to demonstrate both temporal steps and

current location.
• Remove road: turning roads into obstacles to avoid turning back, instead of adopting

additional symbols to mark the path.

E.2 Inconsistency between Language and Visualization

In the visual tiling task, two inconsistent steps are highlighted in Figure 16. One is the inconsistent
visualization with the language instruction of "place Variation 6 of Tetromino L". Another is the
wrong decision to chose "Variation 2 of Tetromino I" given the visualization of the valid state.

E.3 Self-refine Mechanism

We found visualization could enhance LLM’s reasoning by self-grounding and refining subsequent
reasoning steps in some cases. As shown in Figure 17, despite successfully identifying variation 1 of
tetromino L as incorrect option, GPT-4 excluded the correct option of variation 6 even it’s placed
accurately due to spatial hallucination (overlapping with yellow pieces), which led to a impossible
solution. Then it detected the mistake and re-evaluate the placement of variation 6. Finally it placed
the correct piece into the top left corner and validated the answer by filling the remaining space.
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1. Move rightOriginal map 2. Move down

3. Move right 4. Move down 5. Move left

Use arrows to reflect direction 

Original map 1. Move down 2. Move right

3. Move down 4. Move right 5. Move down

Use round pin

Original map 1. Move left 2. Move down

3. Move right 4. Move down 5. Move right

Use numbers for temporal steps 

Original map Move down

Use checklist 

Original map Move right

Remove road to avoid turning back 

Figure 10: Mental images for state tracking in visual navigation tasks. We found diverse visualization
formats in LLMs to track the navigation progress, including marking the path, marking the current
location, marking directional steps, and marking temporal steps. More details are available in
Appendix E.1
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Now, let's unfold the front face (1, 2, 6, 5) downwards:  

```  

    0       3   

     *-------*   

    /       /|  

   *-------* |  

 4|       | |7  

   |      | *  

   |      |/  

   *-------*  

   |     |  

   |      |  

   *-------*  

  1       2  

```  

Here, the face with vertices 1, 2, 6, and 5 has been unfolded downwards. The vertical lines connecting the top 

face to the front face have now become horizontal, indicating that the front face is lying flat. The cube is now 

represented as a two-dimensional net, with the front face unfolded. Keep in mind that this is a simplified 

representation and that in an actual net, the faces would be connected at the edges without the gaps shown in the 

ASCII art.

The ASCII art you've provided represents a three-dimensional cube with labeled vertices from 0 to 7. To unfold 

the front face (which appears to be the face connecting vertices 1, 2, 6, and 5), we would lay it flat. Assuming 

that the front face is the one with vertices 1, 2, 6, and 5, and we unfold it downwards, the net might look 

something like this:  

```  

    0       3   

     *-------*   

    /|     /|  

   *-------* |  

 4| |     | |7  

   | *----- |-*  

   |/     |/  

  *-------*  

 1       2  

```  

Ascii cube:

```

```

Unfold the front face

0       3 

     *-------* 

  1 / |    2 /|

   *-------* |

   | |4   | |7

   | *-----|-* 

   |/     | /

  *-------*

  5       6

Figure 11: Representation for 3D semantics and qualitative results of GPT-4 manipulating the mental
image correctly.

Starting from , let's navigate step by step to the .

Initial map:

```

```

Step 1: Move right from  to the end of the continuous road.

```

```

Step 2: Move down to the end of the continuous road.

```

```

Step 3: Move left to the end of the continuous road.

```

```

Step 4: Move down to the end of the continuous road.

```

```

Step 5: Move left to the end of the continuous road.

```

Step 6: Move down to reach the .

```

```

The steps to navigate from  to  are:

1. Right

2. Down

3. Left

4. Down

5. Left

6. Down

We have now reached the destination, .

```

Figure 12: Responses of Route Planning
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Let's visualize the state after each movement:

Initial map:

```

```

1. Move right to the end of the continuous road:

```

```

2. Move down to the end of the continuous road:

```

3. Move left to the end of the continuous road:

```

```

Now, the next movement options are:

A. Up - This would lead back to a previous position, which is not a viable route to the destination.

B. Left - This is not possible as there is an obstacle ( ) immediately to the left.

C. Down - This would lead to the destination ( ).

D. Right - This is not possible as there is an obstacle ( ) immediately to the right.

The correct direction for the next movement is:

C. Down

Moving down will take us to the destination, which is the office ( ). Here's the final visualization:

```

```

Figure 13: Response of Next Step Prediction
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Let's start by examining the empty spaces in the target rectangle and the provided 
polyominoes and their variations. We need to fit the Tetromino I, Tetromino L, and 
Tetromino T into the empty spaces without overlapping any existing polyominoes or going 
outside the rectangle. 

The target rectangle with 12 empty squares looks like this: 

``` 

 

``` 

We have two variations for Tetromino I ( ), which can either be placed vertically or 
horizontally. Given the configuration of the empty spaces, the only way to place the 
Tetromino I is horizontally at the top row, as the vertical placement would not fit anywhere. 

 

After placing Tetromino I ( ), the target rectangle looks like this: 

``` 

 

``` 

Next, we have two variations for Tetromino L ( ). We can see that Variation 3 of Tetromino 
L can fit in the bottom left corner, while Variation 7 would not fit anywhere without 
overlapping or going outside the rectangle. 

 

After placing Tetromino L ( ), the target rectangle looks like this: 

``` 

(a) Response of Visual Tiling - Page 1
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``` 

Now, we have two variations for Tetromino T ( ). We need to fit this into the remaining 
empty spaces. Variation 2 of Tetromino T cannot fit because it would require two empty 
spaces next to each other vertically, which we do not have. However, Variation 3 of 
Tetromino T fits perfectly into the remaining space. 

 

After placing Tetromino T ( ), the target rectangle looks like this: 

``` 

 

``` 

The correct variation of Tetromino T that fits into the empty squares is: 

B. 3 

(b) Response of Visual Tiling - Page 2

Figure 14: Responses of Visual Tiling
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(a) Response of Natural Language Navigation - Page 1
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(b) Response of Natural Language Navigation - Page 2

Figure 15: Responses of Natural Language Navigation
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(c) Response of Natural Language Navigation - Page 3

Figure 15: Responses of Natural Language Navigation
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First, let's look at the target rectangle and identify the empty squares (  ): 

``` 

 

``` 

We have two polyominoes to fit into this rectangle: Tetromino L ( ) and Tetromino I ( ). 
We need to use the variations provided to fill the empty squares without overlapping the 
existing polyominoes or going outside the rectangle. 

Let's start with Tetromino L ( ) because it has a unique shape that can fit into corners or 
protrusions. Looking at the variations of Tetromino L: 

Variation 1: 

``` 

 

``` 

Variation 6: 

``` 

 

``` 

We can see that Variation 6 of Tetromino L fits perfectly into the top left corner of the target 
rectangle, filling three empty squares vertically and turning to fill one horizontally. Let's 
place Variation 6 of Tetromino L into the target rectangle: 

``` 

(a) Inconsistency between language and visualization - Page 1
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``` 

Now, we have four empty squares remaining in a straight line, which matches the shape of 
Tetromino I. Let's look at the variations of Tetromino I: 

Variation 1: 

``` 

 

``` 

Variation 2: 

``` 

 

``` 

Since the remaining empty squares are in a horizontal line, Variation 2 of Tetromino I will fit 
perfectly. Let's place Variation 2 of Tetromino I into the target rectangle: 

``` 

 

``` 

The correct variation of Tetromino I that fits into the target rectangle is: 

B. 2 

(b) Inconsistency between language and visualization - Page 2

Figure 16: Inconsistency between language and visualization
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Let's start by visualizing the target rectangle with the empty squares (  ) and the existing 
polyominoes: 

``` 

 

``` 

We have two polyominoes to fit into this rectangle: Tetromino L ( ) and Tetromino I ( ). 
We need to determine which variation of Tetromino L will fit without overlapping any 
existing polyominoes or going outside the rectangle. 

Let's consider the variations for Tetromino L: 

Variation 1: 

``` 

 

``` 

Variation 6: 

``` 

 

``` 

We also have the variations for Tetromino I, but since it's a straight line, it can only fit in one 
way in the remaining space after placing Tetromino L. 

 

Let's try to fit Variation 1 of Tetromino L first: 

``` 

(a) Example case of Self-refine - Page 1
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``` 

As we can see, Variation 1 of Tetromino L does not fit because it overlaps with the existing 
yellow ( ) polyomino. 

Now let's try Variation 6 of Tetromino L: 

``` 

 

``` 

Variation 6 of Tetromino L does not fit either because it goes outside the rectangle. 

Since neither Variation 1 nor Variation 6 of Tetromino L fits into the target rectangle without 
overlapping existing polyominoes or going outside the rectangle, the correct answer is: 

 

C. Neither 

 

However, there seems to be a mistake because the task guarantees that there always 
exists a solution. Let's re-evaluate the placement of Tetromino L. 

We can see that the Tetromino L must fit in the top left corner because that's the only place 
with enough space for its shape. Let's try placing Variation 1 of Tetromino L in the top left 
corner: 

``` 

(b) Example case of Self-refine - Page 2

Figure 17: Example case of Self-refine
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``` 

This time, Variation 1 of Tetromino L fits perfectly in the top left corner. Now, we can place 
the Tetromino I in the remaining space: 

``` 

 

``` 

The Tetromino I fits perfectly in the remaining space using Variation 1 (vertical placement). 
Therefore, the correct variation of Tetromino L that fits into the target rectangle is: 

 

A. 1 

 

The initial attempt to place Variation 1 of Tetromino L was incorrect because it was not 
placed in the top left corner. Upon correcting the placement, we find that Variation 1 does 
indeed fit, and the Tetromino I can be placed afterward to complete the puzzle. 

(c) Example case of Self-refine - Page 3

Figure 17: Example case of Self-refine
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We confirm that the main claims made in the abstract and introduction accu-
rately reflect the paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We confirm the limitations of the work has been fully discussed, which could
be find in the Section 7.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: We theoretically formulate the research topic we investigate in the Section 3.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We confirm that this paper does fully disclose all the information needed to
reproduce the main experimental results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The data and code associated with this study is publicly available and the link
is provided in the paper.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We do include all the details of the experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We do conduct a significance test on the experiments, and make explanations
in Table 1 and 3.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We have clearly reported the version of the API used, and the calculation time
can be obtained based on the API version.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We confirm that our research conform with the NeurIPs Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: Our work focuses on one of the fundamental reasoning capabilities of LLMs.
The tasks developed include navigation and geometric shape reasoning, which is very
unlikely to cause negative societal impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All external assets, including models and algorithms utilized in this paper, are
duly cited, ensuring proper credit to the original creators. Furthermore, we have meticulously
adhered to the specified licensing agreements and terms of use associated with these assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The paper provides comprehensive documentation, including implementation
details, prompt template and the distribution of the dataset. See Appendix A and B.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We do not involve crowdsourcing nor research with human subjects
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our research do not have any potential risks to human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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