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Abstract

Despite the widespread adoption of Graph Neural Networks (GNNs), these models
often incorporate off-the-shelf normalization layers like BatchNorm or Instan-
ceNorm, which were not originally designed for GNNs. Consequently, these
normalization layers may not effectively capture the unique characteristics of
graph-structured data, potentially even weakening the expressive power of the
overall architecture. While existing graph-specific normalization layers have been
proposed, they often struggle to offer substantial and consistent benefits. In this
paper, we propose GRANOLA, a novel graph-adaptive normalization layer. Unlike
existing normalization layers, GRANOLA normalizes node features by adapting to
the specific characteristics of the graph, particularly by generating expressive rep-
resentations of its nodes, obtained by leveraging the propagation of Random Node
Features (RNF) in the graph. We provide theoretical results that support our design
choices as well as an extensive empirical evaluation demonstrating the superior
performance of GRANOLA over existing normalization techniques. Furthermore,
GRANOLA emerges as the top-performing method among all baselines in the same
time complexity class of Message Passing Neural Networks (MPNNs).

1 Introduction

Graph Neural Networks (GNNs) have achieved remarkable success in several application domains [35,
61], showcasing their ability to leverage the rich structural information within graph data. Recently, a
plethora of different layer designs has been proposed, each tailored to address specific challenges in
the context of GNNs, such as limited expressive power [63, 41, 40] and oversmoothing [46]. Notably,
analogously to architectures in other domains [30, 18], these GNN layers are often interleaved with
normalization layers, as the integration of normalization methods has empirically proven beneficial
in optimizing neural networks, facilitating convergence and enhancing generalization [34, 7, 55].

In practice, most existing GNN architectures employ standard normalization techniques, such as
BatchNorm [34], LayerNorm [3], or InstanceNorm [58]. However, these widely adopted normaliza-
tion techniques were not originally designed with graphs and GNNs in mind. Consequently, they
may not effectively capture the unique characteristics of graph-structured data, and can also hinder
the expressive power of the overall architecture [11]. These observations highlight the need for
graph-specific normalization layers.
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Recent works have taken initial steps in this direction, mainly targeting oversmoothing [72, 64, 74]
or the expressive power of the overall architecture [11, 14]. Despite the promise shown by these
methods, a consensus on a single normalization technique best suited for diverse tasks remains elusive,
with no single normalization technique proving clearly superior across all benchmarks and scenarios.

Our approach. In this paper, we identify adaptivity to the input graph structure as a desirable
property for an effective normalization layer in graph learning. Intuitively, this property ensures that
the normalization is tailored to the specific input graph, capturing attributes such as the graph size,
node degrees, and connectivity. Importantly, we claim and demonstrate that, given the limitations
of practical GNNs, achieving full adaptivity requires expressive architectures that can detect and
disambiguate graph substructures, thereby better adapting to input graphs.

Guided by this desirable property, which is absent in existing normalization methods, we introduce
our proposed approach – GRANOLA (Graph Adaptive Normalization Layer). GRANOLA aims at
dynamically adjusting node features at each layer by leveraging learnable characteristics of the node
neighborhood structure derived through the utilization of Random Node Features (RNF) [44, 1, 51,
56, 17]. More precisely, GRANOLA samples RNF and uses them in an additional normalization GNN
to obtain expressive intermediate node representations. The intermediate representations are then
used to scale and shift the node representations obtained by the preceding GNN layer.

We present theoretical results that justify the primary design choices behind our method. Specifically,
we demonstrate that GRANOLA is fully adaptive to the input graph, which, in other words, means that
GRANOLA can predict different normalization values for non-isomorphic nodes. This property arises
from the maximal expressive power of the normalization GNN we employ (MPNN augmented with
RNF [1, 51]). In addition, we show that our method inherits this expressive power. Lastly, we show
that using standard MPNN layers without RNF within GRANOLA cannot result in a fully adaptive
method or in any additional expressive power.

Empirically, we show that GRANOLA significantly and consistently outperforms all existing standard
as well as GNN-specific normalization schemes on a variety of different graph benchmarks and
architectures. Furthermore, GRANOLA proves to be the best-performing method among all baselines
that have the same time complexity as the most widely adopted GNNs, namely the family of MPNNs.

Contributions. Our contributions are as follows: (1) We provide an overview of different normaliza-
tion schemes in graph learning, outlining adaptivity as a desirable property of normalization layers
that existing methods are missing, (2) We introduce GRANOLA, a novel normalization technique
adjusting node features based on learnable characteristics of their neighborhood structure, (3) We
present an intuitive theoretical analysis of our method, giving insights into the design choices we
have made, and (4) We conduct an extensive empirical study, providing a thorough benchmarking of
existing normalization methods and showcasing the consistently superior performance of GRANOLA.

2 Normalization layers for GNNs

2.1 Basic setup and definitions

Let G = (A,X) denote graph with N ∈ N nodes, where A ∈ RN×N is the adjacency matrix and
X ∈ RN×C is the node feature matrix, with C ∈ N the feature dimension. Consider a batch of
B ∈ N graphs encoded by the adjacency matrices {Ab}B−1

b=0 , and, for simplicity, assume that all
graphs in the batch have the same number of nodes N . We consider a model composed of L GNN
layers, with L ∈ N. Each GNN layer is followed by a normalization layer NORM and an activation
function ϕ. At any layer ℓ ∈ [L], the output of the GNN layer for a batch of graphs consists of
(intermediate) node representations, which can be gathered in a matrix H̃(ℓ) ∈ RB×N×C (since all
graphs have the same number of nodes per our assumption2). These undergo a normalization and
an activation layer, resulting in node representations denoted by H(ℓ) ∈ RB×N×C , which serve as
input of the next GNN layer, with H(0) := X.3 Throughout this paper, for any three-dimensional
tensor, we use subscripts to denote access to a corresponding dimension. For example, we denote
the intermediate node representations of graph b ∈ [B] by H̃

(ℓ)
b ∈ RN×C , and by h̃(ℓ)b,n,c the value of

feature c ∈ [C] in node n ∈ [N ] of graph b ∈ [B].
2It is always possible to meet this assumption by padding to the max number of nodes.
3For simplicity and without loss of generality, we assume that the feature dimension of all GNN layers is C.
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Figure 1: Illustration of normalization layers. We denote by B, N and C the number of graphs (batch
size), nodes, and channels (node features), respectively. For simplicity of presentation, we use the
same number of nodes for all graphs. We color in blue the elements used to compute the statistics
employed inside the normalization layer.

Formally, the intermediate, pre-normalized node features for the b-th graph in the batch are defined as

H̃
(ℓ)
b = GNN(ℓ−1)

LAYER

(
Ab,H

(ℓ−1)
b

)
. (1)

Then, the overall update rule for the batch of B graphs can be written as

H(ℓ) = ϕ
(

NORM
(
H̃(ℓ); ℓ

))
, (2)

for ℓ ∈ [L]. Equation (2) serves as a general blueprint, and in what follows we will show different
ways to customize it in order to implement different existing normalization techniques.

We consider normalization layers based on the standardization [38] of their inputs, as this repre-
sents the most common choice in widely used normalizations. Generally, a standardization-based
normalization layer first shifts each element h̃(ℓ)b,n,c by some mean µb,n,c, and then scales it by the
corresponding standard deviation σb,n,c, i.e.,

NORM(h̃
(ℓ)
b,n,c; H̃

(ℓ), ℓ) = γ(ℓ)c

h̃
(ℓ)
b,n,c − µb,n,c

σb,n,c
+ β(ℓ)

c , (3)

where γ(ℓ)c , β(ℓ)
c ∈ R are learnable affine parameters, that do not depend on b nor n.

2.2 Current normalization layers for GNNs

The difference among different normalization schemes lies in the set of values used to compute the
mean and standard deviation statistics for each element, or, more precisely, across which dimensions
of H̃(ℓ) they are computed. We present them below, and visualize them in Figure 1.

BatchNorm. BatchNorm [34] computes the statistics across all nodes and all graphs in the batch, for
each feature separately. Therefore, we have

µb,n,c =
1

BN

B∑
b=1

N∑
n=1

h̃
(ℓ)
b,n,c, σ

2
b,n,c =

1

BN

B∑
b=1

N∑
n=1

(h̃
(ℓ)
b,n,c − µb,n,c)

2, (4)

which implies that µb,n,c = µb′,n′,c for any b′ ∈ [B] and any n′ ∈ [N ] (and similarly for σ2
b,n,c).

Despite the widespread use of BatchNorm in graph learning [63], it is important to recognize scenarios
where alternative normalization schemes might be more suitable. A concrete example illustrating this
need is presented in Figure 2, focusing on the task of predicting the degree of each node.4 In this
example, BatchNorm, by subtracting the mean computed across the batch, results in negative values
for nodes with outputs below the mean. The subsequent ReLU application, as standard practice
[63, 37, 41], zeros out these negative values, leading to predictions of 0 for such nodes, irrespective of
their actual degree. Additional insights are further discussed in Example C.1 in Appendix C, where it
is demonstrated that relying on the affine parameter β(ℓ)

c to shift the negative output does not provide
a definitive solution, since β(ℓ)

c is the same for all graphs.
4The node degree is a fundamental feature in graph-based methods, see for example Newman [45].

3
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(a) Node degrees, computed by one message-passing
layer.
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(b) Subtraction of the mean node degree. The features
of nodes with degree less than average turn negative.
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(c) After ReLU, nodes with negative values are mapped
to the same value of 0, despite having different degrees.

Figure 2: A batch of two graphs, where subtracting the
mean of the node features computed across the batch, as
in BatchNorm and related methods, results in the loss
of capacity to compute node degrees.

InstanceNorm. InstanceNorm [58] is simi-
lar to BatchNorm, but considers each graph
separately, that is

µb,n,c =
1

N

N∑
n=1

h̃
(ℓ)
b,n,c,

σ2
b,n,c =

1

N

N∑
n=1

(h̃
(ℓ)
b,n,c − µb,n,c)

2,

(5)

which implies that µb,n,c = µb,n′,c for any
n′ ∈ [N ] (and similarly for σ2

b,n,c). No-
tably, the example in Figure 2 can be ex-
tended to InstanceNorm by considering all
graphs in the batch as disconnected com-
ponents in a single graph, as we show in
Example C.4 in Appendix C.

LayerNorm. LayerNorm [3] can be
defined in two ways in the context of
graphs [24]. The first, which we call
LayerNorm-node, behaves similarly to Lay-
erNorm in Transformer architectures [59],
and computes statistics across the features
for each node separately, that is

µb,n,c =
1

C

C∑
c=1

h̃
(ℓ)
b,n,c,

σ2
b,n,c =

1

C

C∑
c=1

(h̃
(ℓ)
b,n,c − µb,n,c)

2,

(6)

and therefore µb,n,c = µb,n,c′ for any c′ ∈ [C] (and similarly for σ2
b,n,c). The second variant, which

we call LayerNorm-graph, is similar to LayerNorm in Computer Vision [62], and computes statistics
across the features and across all the nodes in each graph, that is

µb,n,c =
1

NC

N∑
n=1

C∑
c=1

h̃
(ℓ)
b,n,c, σ2

b,n,c =
1

NC

N∑
n=1

C∑
c=1

(h̃
(ℓ)
b,n,c − µb,n,c)

2, (7)

and therefore µb,n,c = µb,n′,c′ for any n′ ∈ [N ] and any c′ ∈ [C] (and similarly for σ2
b,n,c).

Example C.5 in Appendix C presents a motivating example similar to Figure 2 for LayerNorm.

Graph-Specific normalizations. Several normalization methods tailored to graphs have been re-
cently proposed. We categorize them based on which dimensions (the batch dimension B, the node
dimension N within each graph, and the channel dimension C) are used to compute the statistics
employed within the normalization layer. We illustrate this categorization in Figure 1. DiffGroup-
Norm [74] and GraphSizeNorm [21] normalize features considering nodes across different graphs,
akin to BatchNorm. Similarly to InstanceNorm, PairNorm [72] and MeanSubtractionNorm [64] shift
the input by the mean computed per channel across all the nodes in the graph, with differences in the
scaling strategies. GraphNorm [11] extends InstanceNorm by incorporating a multiplicative factor to
the mean. NodeNorm [75] behaves similarly to LayerNorm-node but only scales the input, without
shifting it. We provide additional details in Appendices A and B, and include methods that normalize
the adjacency matrix before the GNN layers, which, however, fall outside the scope of this work.

3 Method

The following section describes the proposed GRANOLA framework. We start with identifying
adaptivity as a desired property in a graph normalization layer.

4
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Figure 3: Illustration of a GRANOLA layer. Given node features H(ℓ−1)
b and the adjacency matrix

Ab, we feed them to a GNN(ℓ−1)
LAYER to extract intermediate node features H̃

(ℓ)
b . Then, we predict

normalization parameters using GNN(ℓ)
NORM, which takes sampled RNF R

(ℓ)
b , H̃(ℓ)

b , Ab. Including
R

(ℓ)
b with Ab and H̃

(ℓ)
b enhances the expressiveness of GRANOLA ensuring full adaptivity.

Motivation. In the previous section, we observed that current normalization schemes used within
GNNs are mostly borrowed or adapted from other domains and that they possess two main limitations:
(i) Using BatchNorm and InstanceNorm (as well as many methods derived from them, including
graph-specific methods) can limit the expressive power of GNNs that use them, preventing them from
being able to represent even very simple functions such as computing node degrees; (ii) As shown in
previous works, as well as in our experiments in Section 5, these methods do not provide a consistent
benefit in downstream performance on different tasks and datasets.

One possible reason for these limitations is that the discussed methods use the same affine parameters
in the normalization process, irrespective of the input graph. Crucially, unlike other more structured
data types, such as images and time series, graphs do not differ merely in the values associated with
each element or time step. Instead, graphs fundamentally vary in the actual connectivity between the
nodes. Therefore, it might make sense to employ different (adaptive) normalization schemes based
on the features and the connectivity of the input graph. Next, we explore this concept and show that
carefully accounting for the graph structure in the normalization process may enhance the expressive
power of the GNN, overcoming the previously mentioned failure cases, and providing consistent
experimental behavior and overall improved performance.

3.1 Design considerations and overview

In an adaptive normalization, instead of using the same affine parameters γ(ℓ)c and β(ℓ)
c (Equation (3))

for all the nodes in all the graphs, the normalization method utilizes specific parameters conditioned on
the input graph. Importantly, in other domains, adaptivity in normalization techniques has proven to
be a valuable property [19, 33, 48, 76, 47, 49]. In GRANOLA, we achieve this property by generating
affine parameters using an additional normalization GNN that takes the graph as input, similarly to
Hypernetworks [29] that generate weights for another network. Importantly, for full graph adaptivity,
where the network can assign different normalization parameters for every pair of non-isomorphic
nodes, the normalization GNN should have maximal expressive power. Due to the limited expressive
power of MPNNs [41, 63], when designing GRANOLA, we advocate for using a normalization GNN
with high expressiveness. Notably, most expressive GNNs come at the expense of significantly
increased computational complexity [16, 71, 4, 69, 40, 43]. For this reason, we parameterize the
normalization GNN using an MPNN augmented with Random Node Features (RNF), which provide
strong function approximation guarantees [1, 51] while retaining the efficiency of standard MPNNs.

3.2 GRANOLA

We are now ready to describe our GRANOLA approach, which is based on the utilization of an
additional GNN to compute the affine parameters and the integration of RNF [56]. These affine
parameters are then used to normalize node representations obtained by the GNN layer preceding the
normalization. An overview of GRANOLA is visualized in Figure 3 and described in Algorithm 1.

GRANOLA layer. At any given layer ℓ ∈ [L], for each graph b ∈ [B], we sample RNF R
(ℓ)
b ∈

RN×K , K ∈ N, from some joint probability distribution, e.g., Normal, R(ℓ)
b ∼ D. Then, we

5
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Algorithm 1 GRANOLA Layer

Input: Node features H̃(ℓ)
b ∈ RN×C , obtained from GNN(ℓ−1)

LAYER.
Output: Normalized features per node n∈ [N ] and channel c∈ [C].

1: Sample random node features R(ℓ)
b ∈ RN×K .

2: Compute Z
(ℓ)
b = GNN(ℓ)

NORM(Ab, H̃
(ℓ)
b ⊕R

(ℓ)
b ).

3: Compute affine parameters:
γ
(ℓ)
b,n = f

(ℓ)
1 (z

(ℓ)
b,n), β

(ℓ)
b,n = f

(ℓ)
2 (z

(ℓ)
b,n).

4: Compute mean and standard-deviation µb,n,c and σb,n,c of H̃(ℓ)
b .

5: Return γ(ℓ)b,n,c

h̃
(ℓ)
b,n,c−µb,n,c

σb,n,c
+ β

(ℓ)
b,n,c.

concatenate R
(ℓ)
b with the intermediate node features H̃(ℓ)

b obtained from GNN(ℓ−1)
LAYER (Equation (1)),

and pass the resulting feature matrix through an additional GNN, i.e.,

Z
(ℓ)
b = GNN(ℓ)

NORM(Ab, H̃
(ℓ)
b ⊕R

(ℓ)
b ), (8)

where ⊕ denotes feature-wise concatenation, and GNN(ℓ)
NORM is a shallow GNN architecture, with

L
(ℓ)
NORM layers. The affine parameters are then computed from Z

(ℓ)
b ∈ RN×C , that is

γ
(ℓ)
b,n = f

(ℓ)
1 (z

(ℓ)
b,n), β

(ℓ)
b,n = f

(ℓ)
2 (z

(ℓ)
b,n). (9)

where f (ℓ)1 , f
(ℓ)
2 are learnable functions (e.g., MLPs), and γ(ℓ)b,n, β

(ℓ)
b,n ∈ RC . Then, a GRANOLA layer

is defined as

NORM(h̃
(ℓ)
b,n,c; H̃

(ℓ), ℓ) = γ
(ℓ)
b,n,c

h̃
(ℓ)
b,n,c − µb,n,c

σb,n,c
+ β

(ℓ)
b,n,c, (10)

where µb,n,c and σb,n,c are the mean and std of H̃(ℓ), computed per node across the feature dimension,
exactly as in LayerNorm-node (Equation (6)). We highlight here a noticeable difference compared
to standard normalization formulations, as presented in Equation (3): in GRANOLA, γ(ℓ)b,n,c, β

(ℓ)
b,n,c

not only depend on c, but they also have a dependency on b and n and indeed vary for different
graphs and nodes. Notably, this is possible because our normalization is adaptive to the input graph.
Methods that disregard this information are compelled to use the same learnable normalization values
for all graphs, as they operate without knowledge of the specific input graph being considered.

GRANOLA-NO-RNF. We consider a variant of GRANOLA that does not sample RNF and instead
uses only H̃

(ℓ)
b to obtain Z

(ℓ)
b in Equation (8), which therefore becomes

Z
(ℓ)
b = GNN(ℓ)

NORM(A, H̃
(ℓ)
b ). (11)

We refer to this variant as GRANOLA-NO-RNF, as it allows us to directly quantify the contribution of
the expressiveness offered by augmenting it with RNF as in Equation (8).

Complexity. We conclude by remarking that both GRANOLA and its variant, GRANOLA-NO-RNF,
do not impact the asymptotic time and space complexity of standard MPNNs, which remains linear
in the number of nodes and edges, as we show in Appendix G.

4 Theoretical Analysis

In this section, we explain the main design choices taken in the development of GRANOLA. Specifi-
cally, we elaborate on the advantages obtained by utilizing RNF as part of the normalization scheme
as opposed to relying solely on the node features. We assume all GNN layers, including those within
GRANOLA (Equation (8)) are message-passing layers, as the ones in Xu et al. [63], Morris et al. [41].

The advantages of using RNF-augmented MPNNs for normalization. We start by observing
that the integration of our GRANOLA in an MPNN allows to easily default to an MPNN augmented

6
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with RNF [56], as we formalize in Proposition E.2 in Appendix E. The idea of the proof lies in the
ability of the first normalization layer to default to outputting its input RNF, enabling the rest of the
architecture to function as an MPNN augmented with these RNF. The significance of this result lies
in the fact that MPNN + GRANOLA inherits the (ϵ, δ)-universal approximation properties previously
proved for MPNNs augmented with RNF [1, 51]. This naturally solves the limitations of existing
normalizations identified in Section 2.2, as an MPNN + GRANOLA can leverage universality to
approximate such functions. Importantly, the universality of MPNNs augmented with RNF further
implies that GRANOLA is fully adaptive, as it can approximate any equivariant function on the
input graph [1], and therefore can approximate functions returning different normalization values for
non-isomorphic nodes.

Why RNF are necessary? While GRANOLA employs RNF to compute the normalization affine
parameters γ(ℓ)b,n,c and β(ℓ)

b,n,c, the same procedure can be applied without the use of RNF, a variant we
denoted as GRANOLA-NO-RNF in Section 3 (Equation (11)). However, we theoretically demonstrate
next that an MPNN + GRANOLA-NO-RNF not only loses the universal approximation properties, but
is also not more expressive than standard MPNNs.

Proposition 4.1 (RNF are necessary in GRANOLA for increased expressive power). Assume our
input domain consists of graphs of a specific size. For every MPNN with GRANOLA-NO-RNF
(Equation (11)) there exists a standard MPNN with the same expressive power.

Proposition 4.1 is proven by showing that an MPNN with GRANOLA-NO-RNF can be implemented
by a standard MPNN, and, therefore, its expressive power is bounded by the expressive power of a
standard MPNN. The proof can be found in Appendix E. This limitation underscores the significance
of RNF within GRANOLA. Furthermore, our experiments in Section 5 show that omitting the
RNF within the normalization results in degraded performance, as GRANOLA always outperforms
GRANOLA-NO-RNF. Finally, we remark that this theoretical result emphasizes the necessity of RNF
for increased expressiveness and, consequently, for ensuring full adaptivity to the input graph. That
is, any normalization generated by GRANOLA-NO-RNF will be limited by the expressive power of
standard MPNNs while GRANOLA does not have this limitation.

Relation to expressive GNNs. The results in this section highlight the connection between GRANOLA
and expressive GNNs, as our method inherits enhanced expressiveness of MPNNs augmented with
RNF. Notably, while MPNNs with RNF have demonstrated theoretical improvements in expressive-
ness, their practical performance on real-world datasets has not consistently reflected these benefits
[22]. Our experimental results indicate that GRANOLA serves as a valuable bridge between theory
and practice. Specifically, our findings address the gap between the theoretical expressiveness of
MPNNs that use RNF, and their limited practical utility. This is achieved by effectively incorporating
RNF within the normalization process rather than simply treating it as an additional input to the
MPNN. Importantly, GRANOLA gives rise to a method that is efficient, provably expressive, and
performs well in practice, something that, to our knowledge, has never been accomplished by any
previous architecture. This provides an additional perspective to our contribution: beyond designing
an effective and efficient normalization layer, which is the main scope of our work, we offer a
practical approach to realizing the theoretical benefits of RNF. Finally, we conclude this section by
remarking that GNN(ℓ)

NORM in Equation (8) can be modified to be any other expressive architecture, and
our design choice was mainly guided by the computational practicality of RNF, that allows GRANOLA
to offer increased expressive power while retaining the linear complexity of MPNNs, as discussed in
Appendix G. We refer the reader to Morris et al. [43] for a survey on expressive methods.

5 Experimental Results

In this section, we evaluate the performance of GRANOLA. In particular, we seek to address the
following questions: (1) How does GRANOLA compare to other normalization methods? (2) Does
GRANOLA achieve better performance than its natural baselines that also leverage RNF, that is,
how important is the graph-adaptivity within GRANOLA? (3) How does GRANOLA compare to its
variant GRANOLA-NO-RNF, which does not leverage RNF within the normalization, that is, how
important are the RNF within GRANOLA? In what follows, we present our main results and refer
to Appendices F to H for details and additional experiments, including timings and ablation studies.
Our code is available at https://github.com/MosheEliasof/GRANOLA.
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Table 2: A comparison to natural baselines, standard and graph normalization layers, demonstrating
the practical advantages of GRANOLA. The top three methods are marked by First, Second, Third.

Method ↓ / Dataset → MOLESOL MOLTOX21 MOLBACE MOLHIV
RMSE ↓ ROC-AUC ↑ ROC-AUC ↑ ROC-AUC ↑

NATURAL BASELINES
GIN + BatchNorm + RNF-PE [56] 1.052±0.041 75.14±0.67 74.28±3.80 75.98±1.63
GIN + RNF-NORM 1.039±0.040 75.12±0.92 77.96±4.36 77.61±1.64

STANDARD NORMALIZATION LAYERS
GIN + BatchNorm [63] 1.173±0.057 74.91±0.51 72.97±4.00 75.58±1.40
GIN + InstanceNorm [58] 1.099±0.038 73.82±0.96 74.86±3.37 76.88±1.93
GIN + LayerNorm-node [3] 1.058±0.024 74.81±0.44 77.12±2.70 75.24±1.71
GIN + LayerNorm-graph [3] 1.061±0.043 75.03±1.24 76.49±4.07 76.13±1.84
GIN + Identity 1.164±0.059 73.34±1.08 72.55±2.98 71.89±1.32

GRAPH NORMALIZATION LAYERS
GIN + PairNorm [72] 1.084±0.031 73.27±1.05 75.11±4.24 76.18±1.47
GIN + MeanSubtractionNorm [64] 1.062±0.045 74.98±0.62 76.36±4.47 76.37±1.40
GIN + DiffGroupNorm [74] 1.087±0.063 74.48±0.76 75.96±3.79 74.37±1.68
GIN + NodeNorm [75] 1.068±0.029 73.27±0.83 75.67±4.03 75.50±1.32
GIN + GraphNorm [11] 1.044±0.027 73.54±0.80 73.23±3.88 78.08±1.16
GIN + GraphSizeNorm [21] 1.121±0.051 74.07±0.30 76.18±3.52 75.44±1.51
GIN + SuperNorm [12] 1.037±0.044 75.08±0.98 75.12±3.38 76.55±1.76

GIN + GRANOLA-NO-RNF 1.088±0.032 75.87±0.72 76.23±2.06 77.09±1.49
GIN + GRANOLA 0.960±0.020 77.19±0.85 79.92±2.56 78.98±1.17

Baselines. For each task, we consider the following baselines: (1) Standard normalization layers, (2)
Graph-designated normalization layers and (3) Our natural baselines, namely: (i) GRANOLA-NO-RNF,
which corresponds to the variant of GRANOLA that uses only the intermediate features, without
RNF, inside the normalization (Equation (11)) to assess the practical importance of RNF for full
graph-adaptivity; (ii) RNF as a positional encoding (RNF-PE), where we augment only the initial
input features with RNF, as in Sato et al. [56]; (iii) The normalization that uses only RNF, without any
message passing layer inside the normalization, to compute the normalization affine parameters γ(ℓ)b,n,c

and β(ℓ)
b,n,c. This is achieved by considering Z

(ℓ)
b = R

(ℓ)
b in Equation (8). We denote this baseline

by RNF-NORM and remark that it corresponds to a version of GRANOLA without graph-adaptivity.
For a fair comparison, in all the baselines, as well as in our method, we employ GIN [63] or
GINE [32] layers, which are maximally-expressive within the MPNN family. Furthermore, we
compare GRANOLA to GNNs in the same complexity class and refer the reader to Appendix H.8 for
additional comparisons.

Table 1: Comparison of GRANOLA with various
baselines on the ZINC-12K dataset. All methods
obey to the 500k parameter budget. The top three
methods are marked by First, Second, Third.

Method ZINC (MAE ↓)

NATURAL BASELINES
GIN + BatchNorm + RNF-PE [56] 0.1621±0.014
GIN + RNF-NORM 0.1562±0.013

STANDARD NORMALIZATION LAYERS
GIN + BatchNorm [63] 0.1630±0.004
GIN + InstanceNorm [58] 0.2984±0.017
GIN + LayerNorm-node [3] 0.1649±0.009
GIN + LayerNorm-graph [3] 0.1609±0.014
GIN + Identity 0.2209±0.018

GRAPH NORMALIZATION LAYERS
GIN + PairNorm [72] 0.3519±0.008
GIN + MeanSubtractionNorm [64] 0.1632±0.021
GIN + DiffGroupNorm [74] 0.2705±0.024
GIN + NodeNorm [75] 0.2119±0.017
GIN + GraphNorm [11] 0.3104±0.012
GIN + GraphSizeNorm [21] 0.1931±0.016
GIN + SuperNorm [12] 0.1574±0.018

GIN + GRANOLA-NO-RNF 0.1497±0.008
GIN + GRANOLA 0.1203±0.006

ZINC. We experiment with the ZINC-12K
molecular dataset [57, 28, 21], where the goal is
to regress the solubility of molecules. As can be
seen from Table 1, GRANOLA achieves signif-
icantly lower (better) mean-absolute-error com-
pared to existing standard and graph-designated
normalization layers, while outperforming all
its natural baselines. Moreover, GRANOLA
emerges as the best-performing model with the
same time complexity of a standard MPNN.

OGB. We test our GRANOLA on the OGB col-
lection [31], and report its performance in Ta-
ble 2. Notably, GRANOLA consistently im-
proves over existing standard normalization
methods while retaining similar asymptotic com-
plexity. For instance, on MOLBACE, we achieve
an accuracy of 79.92% compared to 72.97%
when using BatchNorm, an improvement of
6.95%. Compared with graph-designated nor-
malization methods, GRANOLA also offers a
consistent improvement. As an example, on
MOLESOL we obtain a RMSE of (lower is bet-
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Figure 4: Training convergence of GRANOLA compared with existing normalization techniques show
that GRANOLA achieves faster convergence and overall lower (better) MAE.

Table 3: Empirical results of GSN with GRANOLA show that GRANOLA can also improve the
performance of expressive methods.

Method ZINC MOLESOL MOLTOX21 MOLBACE MOLHIV
MAE ↓ RMSE ↓ ROC-AUC ↑ ROC-AUC ↑ ROC-AUC ↑

GSN [10] 0.1010±0.010 1.003±0.037 76.08±0.79 77.40±2.92 80.39±0.90
GSN + GRANOLA 0.0766±0.008 0.941±0.024 77.84±0.63 80.41±2.07 81.12±0.79

ter) 0.960, compared to the second best graph normalization layer, GraphNorm, that achieves 1.044.
It is also noteworthy to mention the performance gap between GRANOLA and its natural baselines,
such as RNF-PE, which emphasizes the practical benefit of graph-adaptivity within GRANOLA.

TUDatasets. We experimented with popular datasets from the TUD [42] repository. Our results
are reported in Table 14 in Appendix H.8, suggesting that GRANOLA consistently achieves higher
accuracy compared to its natural baselines, as well as standard and graph-designated normaliza-
tion techniques. For example, on the NCI109 dataset, GRANOLA achieves an accuracy of 83.7%,
compared to the second-best normalization technique, GraphNorm, with an accuracy 82.4%.

Training convergence of GRANOLA. In addition to improved downstream task performance
being one of the main benefits of a normalization layer, accelerated training convergence is also an
important desired property [34, 11]. Figure 4 shows that GRANOLA offers faster convergence and
lower MAE compared to other methods.

Combining GRANOLA with expressive methods. Since our goal is to understand the impact of
normalization layers, our experiments focus on studying the benefit of augmenting standard and
well-understood MPNNs with GRANOLA. However, it is also interesting to understand if expressive,
domain-expert approaches such as GSN [10] can also benefit from GRANOLA. To this end, we
augment GSN with GRANOLA, and report the results in Table 3. These results further underscore the
versatility of GRANOLA, which can be coupled with any GNN layer and improve its performance.

Discussion. Our experimental results cover standard normalization layers, as well as graph nor-
malization methods, evaluated on 11 datasets from diverse sources, and applied to various tasks.
Throughout all experiments, a common theme is the performance consistency of GRANOLA. Specif-
ically, GRANOLA always improves over its natural baselines and other normalization techniques
across all datasets. In contrast, other existing methods exhibit less clear trends in their performance.
While some methods achieve competitive results on certain datasets, they may struggle on others.
Notable examples are GraphNorm and PairNorm, which, despite offering improved performance
compared to BatchNorm on most of the OGB datasets, show worse results on ZINC-12K. Further-
more, standard normalization layers also lack consistency. As an example, consider InstanceNorm,
which is beneficial in some OGB datasets, yet, it does not offer favorable results on ZINC-12K.

6 Conclusions

In this paper, we discuss the existing landscape of feature normalization techniques in Graph Neural
Networks (GNNs). Despite recent advances in designing graph normalization techniques, the optimal
choice remains unclear, with methods not offering consistent performance improvements across tasks.
To address this challenge, we identify a desirable property of graph normalization layers, namely
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adaptivity to the input graph, and argue that it can be obtained only with expressive architectures. To
incorporate this property, we present GRANOLA, a normalization layer that adjusts node features
based on the specific input graph, leveraging Random Node Features (RNF). Our theoretical analyses
support the design choices of GRANOLA, demonstrating its increased expressiveness. Empirical
evaluations across diverse benchmarks consistently highlight the superior performance of GRANOLA
over existing normalization methods, as well as other baselines with the same time complexity.

Limitations and impact. Although GRANOLA exhibits promising results, there are areas for potential
improvement in future research. For instance, investigating alternative designs for GNN(ℓ)

NORM could
further enhance the performance, as, in certain datasets, there is still a gap between GRANOLA and
expressive GNNs. Additionally, exploring ways to reduce memory and time complexity (which are
still linear in the number of nodes) represents an important avenue for future research. Furthermore,
by improving the performance of GNN through GRANOLA we envision a positive impact in domains
such as drug discovery.
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A Additional Related Work

Standard normalization layers. BatchNorm [34] is arguably one of the most widely used normaliza-
tion schemes in deep learning. Despite its success, there is little consensus on the exact reason behind
the improvements it generally yields. While some studies argue that the effectiveness of BatchNorm
lies in its ability to control the problem of internal covariate shift [34, 2], other works [7, 55] attribute
the success to the promotion of faster convergence. Similarly to the other domains, also in graph-
learning, BatchNorm normalizes each channel (feature) independently by computing the mean and
standard deviation across all the elements in the batch, i.e., across all the nodes in all the graphs in
the batch. Another normalization approach that was adopted in graph-learning is InstanceNorm [58],
which was originally introduced in image style-transfer tasks to remove image-specific contrast
and style information. In the context of graphs, InstanceNorm normalizes each channel (feature)
independently by computing the mean and standard deviation across all nodes within each graph
separately. Additionally, LayerNorm [3] was originally proposed for recurrent models, and it is also
widely used in Transformers architectures [59]. In the context of graph learning, LayerNorm can take
two different versions: Layernorm-node and LayerNorm-graph [23]. The former normalizes each
node independently, by computing the mean and standard deviation across all channels within each
node separately, while the latter uses the mean and standard deviation across all the channels of all
nodes in the entire graph. We visualize these variants in Figure 1. The common theme of these three
discussed methods is that they were not originally designed with graph-learning in mind. Next, we
discuss graph-designated normalization techniques.

Graph-designated normalization layers. PairNorm [72] was introduced to mitigate the issue of
oversmoothing in GNNs, where repeated graph convolutions eventually make node representations
indistinguishable from one and the other. The key idea of PairNorm is to ensure that the total
pairwise feature distances remain constant across layers, preventing the features of distant nodes from
becoming overly similar or indistinguishable. Yang et al. [64] proposed a different understanding
of the oversmoothing issue in GNNs: the authors show that upon initialization GNNs suffer from
oversmoothing, but GNNs learn to anti-oversmooth during training. Based on this conclusion, the
authors design MeanSubtractionNorm, which removes the mean from the inputs, without rescaling
the features. When coupled with GCN [37], MeanSubtractionNorm leads to a revised Power Iteration
that converges to the Fiedler vector, resulting in a coarse graph partition and faster training. To
enhance the performance of GNNs on large graphs, Li et al. [39] propose MessageNorm, a method
that normalizes the aggregated message for each node before combining it with its node features,
demonstrating experimental benefits. DiffGroupNorm [74] was designed to alleviate oversmoothing
by softly clustering nodes and normalizing nodes within the same group to increase their smoothness
while also separating node distributions among different groups. Zhou et al. [75] explored the impact
of transformation operators, such as normalizations, that transform node features after the propagation
step in GNNs, and argue that they tend to amplify node-wise feature variance. This effect is shown
to lead to performance drop in deep GNNs. To mitigate this issue, they introduced NodeNorm,
which scales the feature vector of each node by a root of the standard deviation of its features. This
approach also shares similarities with LayerNorm-node. While the aforementioned normalization
techniques have made significant strides in mitigating the oversmoothing phenomenon in GNNs,
other normalization methods have been proposed to address problems beyond this specific concern.
Cai et al. [11] showed that InstanceNorm serves as a preconditioner for GNNs, thus accelerating
their training convergence. However, it also provably degrades the expressiveness of the GNNs for
regular graphs. To address this issue, they propose GraphNorm, which builds on top of InstanceNorm
by adding a learnable multiplicative factor to the mean for each channel. GraphSizeNorm [21]
was proposed based on promising empirical results, and aims at normalizing the node features by
dividing them by the graph size, before applying a standard BatchNorm layer. UnityNorm [13]
was introduced to learn graph normalization by optimizing a weighted combination of existing
techniques, including LayerNorm-node, InstanceNorm, and BatchNorm. Finally, SuperNorm [12]
first computes subgraph-specific factors, encompassing the number of nodes and the eigenvalues
of the neighborhood-induced subgraph for each node. These subgraph-specific factors are then
explicitly embedded at the beginning and end of a standard BatchNorm layer. This approach ensures
that any arbitrary GNN layer becomes at least as powerful as the 1-WL test, while simultaneously
mitigating the oversmoothing issue. We conclude this paragraph by acknowledging the existence
of normalization techniques that focus on normalizing the adjacency matrix before the GNN layers.
One common example is the symmetric normalization which is used in GCN [37] and subsequent
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works. Despite their wide use, especially on node-level tasks, these normalizations may fail to capture
structural information and lead to less expressive architectures. For instance, a common practice of
normalizing the adjacency matrix by dividing its rows by the sum of their entries is equivalent to
employing a mean aggregator over the neighbors, which has been shown to fail to distinguish certain
non-isomorphic nodes [63]. For this reason, in this work, we consider only normalization layers
applied to node features after every GNN layer.

AdaIN and StyleGANs. Adaptive instance normalization (AdaIN) [33, 19, 26] was originally
proposed for real-time arbitrary style transfer. Given a content input and a style input, AdaIN
adjusts the mean and variance of the content input to match those of the style input. This allows for
the transfer of stylistic features from the style input to the content input in a flexible and efficient
manner. Motivated by style-transfer literature, Karras et al. [36] introduced StyleGANs as a variant of
GANs [27] which differs in the generator architecture. More precisely, the generator in StyleGANs
starts from a learned constant input and adjusts the “style” of the image at each convolution layer
based on the latent code through the usage of AdaIN. Similarly to StyleGANs, we adjust node features
at every layer through the usage of noise, i.e., random node features, akin to the role played by the
latent code in StyleGANs.

Random Node Features (RNF) in GNNs. Random input features were used in the context of GNNs
to improve the expressive power of Message Passing Neural Networks (MPNNs) [44, 51, 1, 56, 17].
Importantly, MPNNs augmented with random node features have been shown to be universal (with
high probability) in Puny et al. [51], Abboud et al. [1], a result we naturally inherit when GRANOLA
defaults to simply utilizing random node features. Notably, despite the universality results, GNNs
augmented with RNF do not consistently improve performance on real-world datasets [22]. We show
instead that GRANOLA consistently leads to improved performances.

B Comparison of Different Normalizations

In this section we present the different normalization techniques that have been specifically proposed
for graph data and highlight their connection to standard normalization schemes (i.e., BatchNorm,
InstanceNorm, LayerNorm-node, LayerNorm-graph) whenever this is present.

PairNorm. PairNorm [72] first centers node features by subtracting the mean computed per channel
across all the nodes in the graph, similarly to InstanceNorm. Then, it scales the centered vector by
dividing it by the square root of the mean (computed across nodes) of the norm of each node feature
vector, where the norm is computed over the channel dimension. That is, the center operation has
equation:

h̃
(ℓ),center
b,n,c = h̃

(ℓ)
b,n,c − µb,n,c,

where µb,n,c is as in InstanceNorm (Equation (5)), while the scale operation can be written as

NORM(h̃
(ℓ)
b,n,c; H̃

(ℓ), ℓ) = s ·
h̃
(ℓ),center
b,n,c√

1
N

∑N
n=1∥h̃

(ℓ),center
b,n ∥22

, (12)

with s ∈ R a hyperparameter and the norm is

∥h̃(ℓ),center
b,n ∥22 =

C∑
c=1

|h̃(ℓ),center
b,n,c |2.

MeanSubtractionNorm. MeanSubtractionNorm [64] is similar to InstanceNorm, but it simply
shifts its input without dividing it by the standard deviation (and without affine parameters). That is

NORM(h̃
(ℓ)
b,n,c; H̃

(ℓ), ℓ) = h̃
(ℓ)
b,n,c − µb,n,c (13)

and µb,n,c as Equation (5).

MessageNorm. MessageNorm [39] couples normalization with the GNN layer. In particular, it
defines the update rule of H(ℓ) as follows,

h
(ℓ)
b,n = ϕ

(
MLP

(
h
(ℓ−1)
b,n + s∥h(ℓ−1)

b,n ∥2
∥m(ℓ−1)

b,n ∥2
∥m(ℓ−1)

b,n ∥2

))
(14)

16

90529https://doi.org/10.52202/079017-2873



where s ∈ R a hyperparameter and m(ℓ−1)
b,n is the message of node n ∈ [N ] in graph b ∈ [B], which

can be defined as

m
(ℓ)
b,v,u = ρ(ℓ)(h

(ℓ)
b,v, h

(ℓ)
b,u)

m
(ℓ)
b,u = ζ(ℓ)({m(ℓ)

b,u,v|u ∈ N b
v})

with ρ(ℓ), ζ(ℓ) learnable functions such as MLPs and N b
v neighbors of node v in graph b.

DiffGroupNorm. DiffGroupNorm [74] first softly clusters nodes and the normalizes nodes within
the same cluster by means of BatchNorm. That is, for each graph b ∈ [B] in the batch, it computes a
soft cluster assignment as

S
(ℓ)
b = softmax(H̃(ℓ)

b W(ℓ))

where W(ℓ) ∈ RC×D with D ∈ N the number of clusters, and therefore S
(ℓ)
b ∈ RN×D. Let us

denote by S(ℓ) ∈ RB×N×D the matrix containing the cluster assignments for all graphs in the batch,
where the b-th row of S(ℓ) is S(ℓ)

b . DiffGroupNorm computes a linear combination of the output of
BatchNorm applied to each cluster (where the feature is weighted by the assignment value), and adds
the result to the input embedding, that is

NORM(h̃
(ℓ)
b,n,c; H̃

(ℓ), ℓ) = h̃
(ℓ)
b,n,c + λ

D∑
i=1

BATCHNORM(s
(ℓ)
b,n,ih̃

(ℓ)
b,n,c; H̃

(ℓ), ℓ), (15)

where BATCHNORM leverages Equation (4), and λ ∈ R is a hyperparameter. Notably, the term
h̃
(ℓ)
b,n,c in Equation (15) is similar to a skip connection, with the difference lying in the fact that skip

connections usually add the output of the previous layer ℓ− 1 after the norm instead of the output of
the current layer before the norm.

NodeNorm. NodeNorm [75] is similar to LayerNorm-node, but it simply divides its input by a root
of its standard deviation, without shifting it and without affine parameters:

NORM(h̃
(ℓ)
b,n,c; H̃

(ℓ), ℓ) =
h̃
(ℓ)
b,n,c

σ
1
p

b,n,c

(16)

with σ as in Equation (6) and p ∈ N a hyperparameter.

GraphNorm. GraphNorm [11] builds upon InstanceNorm by adding an additional learnable
parameter α(ℓ) ∈ RC which is the same for all nodes and graphs. The equation can be written as

NORM(h̃
(ℓ)
b,n,c; H̃

(ℓ), ℓ) = γ(ℓ)c

h̃
(ℓ)
b,n,c − α

(ℓ)
c µb,n,c

σb,n,c
+ β(ℓ)

c , (17)

and µb,n,c, σb,n,c as Equation (5).

GraphSizeNorm. GraphSizeNorm [21] normalizes the node features by dividing them by the graph
size, before applying a standard BatchNorm:

NORM(h̃
(ℓ)
b,n,c; H̃

(ℓ), ℓ) =
h̃
(ℓ)
b,n,c√
N

. (18)

UnityNorm. UnityNorm [13] consists of a weighted combination of four normalization techniques,
where the weights λ1, λ2, λ3, λ4 ∈ R are learnable. That is

NORM(h̃
(ℓ)
b,n,c; H̃

(ℓ), ℓ) =λ1LAYERNORM-NODE(h̃
(ℓ)
b,n,c; H̃

(ℓ), ℓ)+

λ2ADJACENCYNORM(h̃
(ℓ)
b,n,c; H̃

(ℓ), ℓ)+

λ3INSTANCENORM(h̃
(ℓ)
b,n,c; H̃

(ℓ), ℓ)+

λ4BATCHNORM(h̃
(ℓ)
b,n,c; H̃

(ℓ), ℓ)

(19)
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where LAYERNORM-NODE, INSTANCENORM and BATCHNORM leverage respectively Equa-
tions (4) to (6). ADJACENCYNORM computes the statistics for each node across all features of
all its neighbors, that is

µb,n,c =
1

|N b
n|C

∑
u∈N b

n

C∑
c=1

h̃
(ℓ)
b,u,c, σ2

b,n,c =
1

|N b
n|C

∑
u∈N b

n

C∑
c=1

(h̃
(ℓ)
b,u,c − µb,n,c)

2.

SuperNorm. SuperNorm [12] embeds subgraph-specific factors into BatchNorm. First, for each
node n in graph b it extracts the subgraph induced by its neighbors, denoted as Sb,n. Then, it computes
the so called subgraph-specific factors for each subgraph, which are the output of an hash function
over the number of nodes in the subgraph and its eigenvalues. That is the subgraph-specific factor of
Sb,n is

ξ(Sb,n) = Hash(ϕ(|VSb,n
|), ψ(EigSb,n

))

where |VSb,n
| denotes the number of nodes in Sb,n and EigSb,n

its eigenvalues, with ϕ and ψ injective
functions.

Subgraph-specific factors for all subgraphs in a graph b are collected into a vector MG
b ∈ RN×1

MG
b = [ξ(Sb,1); ξ(Sb,2); . . . ; ξ(Sb,N )]

which is used to obtain two additional vectors MSN
b ,MRC

b ∈ RN×1 defined as

MSN
b =

[
ξ(Sb,1)∑N

n=1 ξ(Sb,n)
;

ξ(Sb,2)∑N
n=1 ξ(Sb,n)

; . . . ;
ξ(Sb,N )∑N
n=1 ξ(Sb,n)

]
MRC

b =MG
b ⊙MSN

b .

where ⊙ denotes the element-wise product. Then, the normalization computes the segment average
of H̃(ℓ)

b for each graph b, denoted as H̃(ℓ),segment
b ∈ RN×C , where a row n is defined as

h̃
(ℓ),segment
b,n =

N∑
n=1

h̃
(ℓ)
b,n.

Then, the input H̃(ℓ)
b is calibrated by injecting the subgraph-specific factors as well as the graph

statistics obtained via H̃
(ℓ),segment
b . That is,

H̃
(ℓ),calibration
b = H̃

(ℓ)
b +W(ℓ)H̃

(ℓ),segment
b ⊙ (MRC

b 1⊤
C)

where 1C ∈ {1}C×1 and W(ℓ) = 1Nw(ℓ)⊤ with 1N ∈ {1}N×1 and w(ℓ) ∈ RC×1 is a learnable
parameter. After injecting subgraph-specific factors, the normalization layer performs BatchNorm on
the calibration features, that is

h̃
(ℓ),CS
b,n,c = BATCHNORM(h̃

(ℓ),calibration
b,n,c ; H̃(ℓ),calibration)

Finally, subgraph-specific factors are embedded after BatchNorm, by computing

H
(ℓ)
b = ϕ

(
H̃

(ℓ),CS
b ⊙ (1Nγ

(ℓ)⊤ + P(ℓ)
b )/2 + 1Nβ

(ℓ)⊤
)

(20)

where γ(ℓ), β(ℓ) ∈ RC×1 are learnable affine parameters, and P(ℓ)
b ∈ RN×C is a matrix where each

entry is obtained as

P(ℓ)
b,n,c = (MRE

b,n,c)
w

(ℓ)
RE,c

where w
(ℓ)
RE ∈ RC is a learnable parameter and MRE

b ∈ RN×C is obtained as

MRE
b =

MRC
b∑N

n=1M
RC
b,n

1⊤
C .

Equation (20) represents the output of SuperNorm, followed by an activation function ϕ.
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C Additional Motivating Examples

In the following we elaborate on the failure cases of existing normalization layers. Throughout this
section, we will assume that all GNN layers are message-passing layers, and, in particular, we focus
on the maximally expressive MPNN layers presented in Morris et al. [41], which have been shown to
be as expressive as the 1-WL test. In particular Equation (1) can be rewritten as follows,

H̃
(ℓ)
b = H

(ℓ−1)
b W

(ℓ−1)
1 +AbH

(ℓ−1)
b W

(ℓ−1)
2 . (21)

Example C.1 (BatchNorm reduces GNN capabilities to compute node degrees (Figure 2)). Consider
the following task: Given a graph G, for each node predict its degree. Assume that our batch contains
B graphs, and, for simplicity, assume that they all have the same number of nodes N .5 Assuming
such graphs do not have initial node features, we follow standard practice [63] and initialize H(0)

b for
each graph b ∈ [B] as a vector of ones, i.e., H(0)

b = 1 ∈ RN×1. The output of the first GNN layer is
already the degree of each node, or a function thereof:

H
(1)
b = ϕ

(
NORM

(
H

(0)
b W

(0)
1 +AbH

(0)
b W

(0)
2 ; ℓ

))
, (22)

where W(0)
1 ∈ R1×C , W(0)

2 ∈ R1×C , are learnable weight matrices, and C ∈ N is the hidden feature
dimensionality. Note that since the input is one dimensional, all output channels behave identically.
We consider the case where C = 1. Importantly, in our example, we have that H(0)

b W
(0)
1 is the same

for all nodes in all graphs in the batch, because H(0)
b and W

(0)
1 are the same for all nodes and graphs.

Therefore, the term H
(0)
b W

(0)
1 acts as a bias term in Equation (22). Thus, for each node, the output

of the first GNN layer is simply a linear function of the node degree, which is computed by the term
AbH

(0)
b in Equation (22). Now, consider the normalization layer NORM applied to the output of this

function, and assume for now that there are no affine parameters. First, the BatchNorm normalization
layer subtracts the mean computed across all nodes in all graphs, as shown in Equation (4). For all
nodes having an output smaller than the mean, this subtraction returns a negative number, which is
zeroed out by the application of the ReLU which follows the normalization. Therefore, assuming
no further layers, for these nodes the prediction can only be 0 regardless of the actual degree, and
therefore is incorrect. In Figure 2, we provide a concrete example where this limitation occurs.
Remark C.2 (Deeper networks are also limited). It is important to note that even when the number
of layers is greater than one, and assuming C = 1 in all layers, the problem persists, because the
analysis can be applied to every subsequent layer’s output by simply noticing that subtracting the
mean will always zero out features less than the mean.
Remark C.3 (BN with Affine transformation is also limited). We highlight that the inclusion of
learnable affine parameters in BatchNorm, while potentially mitigating the problem during training
by means of a large affine parameter β(1)

c that shifts the negative outputs before the ReLU, does not
offer a definitive solution. Indeed, it is always possible to construct a test scenario where one graph
has nodes with degrees significantly smaller than those seen while training, for which the learned
shift β(1)

c is not sufficiently large to make the output of the normalization layer positive.

It is important to mention that the aforementioned example potentially serves as a failure case for other
methods that are based on removing the mean µb,n,c as calculated by BatchNorm in Equation (4). For
instance, GraphSizeNorm [21] also suffers from the same issue, as this normalization technique scales
the node features by the number of nodes before applying BatchNorm. Furthermore, Example C.1
can be adjusted to induce a failure case for the normalization operation (excluding the skip link) in
DiffGroupNorm [74], which is also based on BatchNorm. This can be achieved by ensuring that
a subset of nodes has a degree less than the average within all the clusters to which it is (softly)
assigned.

Example C.1 can be easily adapted to represent a failure case for InstanceNorm. The adaptation
involves treating the entire batch as a single graph, which can be further refined to avoid having
disconnected components by adding a small number of edges connecting them.

5This assumption is included only to simplify the notation, but can be removed without affecting the results.
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Example C.4 (InstanceNorm reduces GNN capabilities to compute node degree (Figure 2 considering
all graphs as disconnected components in a single graph)). Consider the following task: Given a
graph G, for each node predict its degree. Assuming the graph does not have initial node features, we
follow standard practice [63] and initialize H

(0)
b = 1 ∈ RN×1. The output of the first GNN layer

is already the degree of each node, or a function thereof. Now, consider the normalization layer
NORM applied to the output of this function. First, the InstanceNorm normalization layer subtracts
the mean computed across all nodes within each graph in the batch, as shown in Equation (5). For all
nodes having an output smaller than the mean within their graph, this subtraction returns a negative
number, which is zeroed out by the application of the ReLU activation function, applied following
the normalization. Therefore, assuming no further layers, for these nodes the prediction can only be 0
regardless of the actual degree, and therefore is incorrect. Similarly to BatchNorm, the inclusion of
learnable affine parameters as well as the stacking of additional single-channel layers is not sufficient
to solve the problem.

The aforementioned limitation extends directly to other graph-designed normaliza-
tions based on InstanceNorm, such as PairNorm and GraphNorm6 as they also shifts
the input in the same way, based on the mean µb,n,c as defined in Equation (5).
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(a) Node degrees, computed by one message-passing
layer.
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(b) After removing the mean computed on the feature
dimension, all nodes are mapped to the same value of 0,
despite having different degrees.

Figure 5: A graph, where subtracting the mean of
the node features computed on the feature dimen-
sion, as in LayerNorm-node and related methods,
results in the loss of capacity to compute node de-
grees.

Example C.5 (LayerNorm-node reduces GNN
capabilities to compute node degree (Figure 5)).
Consider the following task: Given a graph G,
for each node predict its degree. Consider a
graph G consisting of a path of 3 nodes. Assum-
ing the graph does not have initial node features,
we initialize H

(0)
b = 1 ∈ RN×1, with b = 0

as we only have one graph. We will assume
that W(0)

1 = 0 (Equation (21)). Therefore, the
output of the first GNN layer can be written as:

H
(1)
b = ϕ

(
NORM

(
AbH

(0)
b W

(0)
2 ; ℓ

))
, (23)

which, for each node, is a vector having at each
entry the degree of the node multiplied by a
learnable weight entry. Compare now one of
the node having degree d ∈ N, denoted as v
with the node having degree 2d, denoted as u.
Clearly, we have that the vector of node features
in u is equal to two times the vector of node
features in v. Therefore, by subtracting the mean
computed across the channel dimension, as per
Equation (6), we obtain

h
(1)
b,u,c = h

(1)
b,v,c

for all c ∈ [C]. This implies that it is not possi-
ble to then distinguish the degree of these two
nodes.
Remark C.6 (Deeper networks are also limited). It is important to note that even when the number of
layers is greater than one, assuming W

(ℓ−1)
1 = 0 in all GNN layers (Equation (21)), the problem

persists. Indeed, in the next layer, both nodes v and u will aggregate neighbors having identical
features. Therefore the vector of node features in u will still be equal to two times the vector of node
features in v, a difference that is removed by the subtraction of the mean computed per node.

D Variants of GRANOLA

In the main paper, we have additionally considered GRANOLA-NO-RNF, a variant of GRANOLA that
does not sample RNF and instead uses only H̃

(ℓ)
b (Equation (11)) . In the following, we present an

additional variant.
6Assuming the learned shift parameter in GraphNorm is not all zeros.

20

90533https://doi.org/10.52202/079017-2873



GRANOLA-MS. Equation (10) can be specialized to the case where the affine parameters correspond
to the mean and standard deviation computed per node across the feature dimension of Z(ℓ)

b . That is,

γ
(ℓ)
b,n,c =

1

C

C∑
c=1

z
(ℓ)
b,n,c, β

(ℓ)
b,n,c =

1

C

C∑
c=1

(z
(ℓ)
b,n,c − γ

(ℓ)
b,n,c)

2. (24)

We refer to this variant of Equation (10) which uses the pre-defined mean and standard deviation
functions in Equation (24) for f (ℓ)1 , f

(ℓ)
2 as GRANOLA-MS, where MS stands indeed for mean and

standard deviation. The idea behind GRANOLA-MS is to explicitly align the node-wise mean and
variance of H̃

(ℓ)
b to match those of Z

(ℓ)
b . Note that, while GRANOLA-MS follows a predefined

realization of f1 and f2 by using the mean and standard deviation, it is still a learnable normalization
technique, as Z(ℓ)

b is learned in Equation (8). In Appendix H.8, we provide empirical comparisons
with this specialized case.

E Proofs

Theorem E.1 (Existing normalization techniques limit MPNNs’ expressivity). Let f be a stacking
of GIN layers with non-linear activations followed by sum pooling. Let fnorm be the architecture
obtained by adding InstanceNorm or BatchNorm without affine parameters. Then fnorm is strictly
less expressive than f .

Proof. All non-isomorphic graphs that can be distinguished by fnorm can clearly be distinguished by
f as the normalization only shifts and scale its input. To show that fnorm is strictly less expressive
than f , consider two CSL graphs with different numbers of nodes. These are distinguishable by f .
However, applying InstanceNorm to the output of GIN results in a zero matrix, as shown in Cai et al.
[11, Proposition 4.1]. Similarly, if the batch consists of these two graphs, applying BatchNorm results
in a zero matrix. Since the output of the normalization is a zero matrix, they are indistinguishable by
fnorm, concluding our proof.

Proposition E.2 (MPNN with GRANOLA can implement MPNN with RNF). Let fnorm be a stacking
of MPNN layers interleaved with GRANOLA normalization layers (Equation (10)), followed by
activation functions. There exists a choice of hyperparameters and weights such that fnorm defaults
to MPNN + RNF [1].

Proof. We only need to show a choice of hyperparameters and weights that makes an MPNN +
GRANOLA default to an MPNN + RNF, which is the model obtained by performing message passing
on the input graph where the initial node features are concatenated to RNF.

Since RNF in an MPNN + GRANOLA are introduced in the GRANOLA layer, we choose the first
MPNN layer, which precedes any normalization (Equation (1)), to simply repeat its inputs using
additional channels. In the case of GraphConv layers, this is easily obtained by W

(0)
1 = ( I I )

and W
(0)
2 = 0, with I ∈ {0, 1}C×C . With these choices, H̃(1)

b in Equation (1) becomes H̃
(1)
b =

H
(0)
b ⊕H

(0)
b = Xb ⊕Xb. Notably, this concatenation is only introduced to make the dimension of

H̃
(1)
b match the dimension of the concatenation of the initial node features with RNF having the same

dimension.

Consider the first GRANOLA layer, ℓ = 1. It is sufficient to set the activation functions inside
GNN(1)

NORM to be the identity function and to properly set the weights of GNN(1)
NORM (Equation (8)) and

f
(1)
1 , f

(1)
2 (Equation (9)) such that the normalization layer returns H(0)

b ⊕R
(1)
b , with R

(1)
b ∈ RN×K

and K chosen such that K = C. For example, if GNN(1)
NORM is composed by a single GraphConv

layer [41] (with an identity activation function), we have

Z
(1)
b = (H̃

(1)
b ⊕R

(1)
b )W

NORM,(1)
1 +Ab(H̃

(1)
b ⊕R

(1)
b )W

NORM,(1)
2

= (H
(0)
b ⊕H

(0)
b ⊕R

(1)
b )W

NORM,(1)
1 +Ab(H

(0)
b ⊕H

(0)
b ⊕R

(1)
b )W

NORM,(1)
2 ,
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then for GNN(1)
NORM is sufficient to choose W

NORM,(1)
2 = 0, W

NORM,(1)
1 =

(
0 0
I 0
0 I

)
, where I ∈

{0, 1}C×C is the identity matrix. For f (1)1 , f
(1)
2 its is sufficient to set f (1)1 to always return a zero

vector, and f (1)2 to be the identity function. With these choices, Equation (2) becomes

H(1) = ϕ
(
H

(0)
b ⊕R

(1)
b

)
= ϕ

(
Xb ⊕R

(1)
b

)
,

which represents the input of the next GNN layer, and matches the input of an MPNN + RNF.
Therefore, we are only left to show that subsequent applications of GRANOLA layers behave as the
identity function, since the GNN layers will instead behave as those in the MPNN + RNF.

After the first GRANOLA layer, ℓ > 1, it is sufficient to set GNN(ℓ)
NORM (Equation (8)) and f (ℓ)1 , f

(ℓ)
2

(Equation (9)) to return its input H̃(ℓ) ∈ RN×C (while discarding R
(ℓ)
b ∈ RN×K ). Assuming a single

layer in it (with an identity activation function), this can be accomplished by setting W
NORM,(ℓ)
2 = 0

and W
NORM,(ℓ)
1 = ( I

0 ), f
(ℓ)
1 to always return a zero vector, and f (ℓ)2 to be the identity function. With

these choices, Equation (10) becomes

NORM(h̃
(ℓ)
b,n,c; H̃

(ℓ), ℓ) = h̃
(ℓ)
b,n,c.

Therefore, these two steps imply that an MPNN with GRANOLA implements an MPNN with RNF.

Corollary E.3 (MPNN + GRANOLA is universal with high probability). Let ΩN be a compact set of
graphs with N ∈ N nodes and g a continuous permutation-invariant graph function defined over
ΩN . Let fnorm be a stacking of MPNN layers interleaved with GRANOLA normalization layers
(Equation (10)) followed by activation functions. Then, if random node features inside GRANOLA are
sampled from a continuous bounded distribution with zero mean and finite variance, for all ϵ, δ > 0,
there exist a choice of hyperparameters and weights such that, ∀G = (A,X) ∈ Ω,

P (|g(A,X)− fnorm(A,X)| ≤ ϵ) ≥ 1− δ (25)

where fnorm(A,X) is the output for the considered choice of hyperparameters and weights.

Proof. The proof follows by showing the choice of hyperparameters and weights which makes an
MPNN augmented with GRANOLA satisfy the assumptions of Puny et al. [51, Proposition 1]. In all
our GRANOLA layers, R(ℓ)

b ∈ RN×K
b is drawn from a continuous and bounded distribution for any

graph b in a batch of B graphs. Therefore, we only need to show that the overall architecture can
default to an MPNN augmented with these RNF. This follows from Proposition E.2.

Proposition 4.1 (RNF are necessary in GRANOLA for increased expressive power). Assume our
input domain consists of graphs of a specific size. For every MPNN with GRANOLA-NO-RNF
(Equation (11)) there exists a standard MPNN with the same expressive power.

Proof. The proof follows by showing that an MPNN with GRANOLA-NO-RNF can be implemented
by a standard MPNN (without any normalization), which therefore represents an upper-bound of its
expressive power.

We assume that all the MPNN layers are maximally expressive MPNNs layers of the form of
GraphConv [41], and that all activation functions inside GRANOLA-NO-RNF are ReLU activation
functions. Since the convolution layers are the same in both f norm and f , we are only left to show
that an MPNN (without normalization, with ReLU activations) can implement a layer of GRANOLA-
NO-RNF. Recall that a single GRANOLA layer can be written as

NORM(h̃
(ℓ)
b,n,c; H̃

(ℓ), ℓ) = f
(ℓ)
1 (z

(ℓ)
b,n)c

h̃
(ℓ)
b,n,c − µb,n,c

σb,n,c
+ f

(ℓ)
2 (z

(ℓ)
b,n)c, (26)

and, since we are not considering RNF, Z(ℓ)
b is obtained with Equation (11), recalling that GNN(ℓ)

NORM

is also composed by MPNN layers interleaved by ReLU activation functions per our assumption. We
denote the number of layers of this GNN by L(ℓ)

NORM. We next show how to obtain Equation (26) using
multiple layers of an MPNN which takes as input H̃(ℓ). We will denote intermediate layers of this
MPNN as Ĥ(t), t ≥ 1.
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First Step, compute Z
(ℓ)
b . The first layers of this MPNN are used to obtain Z

(ℓ)
b given H̃

(ℓ)
b ,

effectively mimicking GNN(ℓ)
NORM. Since we will later need also H̃

(ℓ)
b , we will use the last feature

dimensions in every layer representation to simply copy it in every subsequent layer. Importantly,
however, simply copying H̃

(ℓ)
b in the last dimensions using an identity weight matrix may not be

sufficient, as the application of ReLU non-linearity would clip negative entries to 0. Therefore,
we copy both H̃

(ℓ)
b and −H̃

(ℓ)
b in the last dimensions, and at the end recover H̃

(ℓ)
b as H̃

(ℓ)
b =

ϕ(H̃
(ℓ)
b )− ϕ(−H̃

(ℓ)
b ), with ϕ the ReLU activation.

For t = 1, the MPNN layer is simply responsible of replicating its input H̃(ℓ)
b , so that we can later

use the first C channels to obtain Z
(ℓ)
b and the last to later recover H̃(ℓ)

b . Therefore,

Ĥ
(1)
b = ϕ(H̃

(ℓ)
b Ŵ

(1)
1 +AbH̃

(ℓ)
b Ŵ

(1)
2 )

with Ŵ
(1)
1 = ( I I −I ) and Ŵ

(1)
2 = 0, with I ∈ {0, 1}C×C the identity matrix, and ϕ is the identity

activation function. This means that Ĥ(1)
b = H̃

(ℓ)
b ⊕ H̃

(ℓ)
b ⊕−H̃

(ℓ)
b . For t > 1 and t ≤ L

(ℓ)
NORM + 1,

we need to mimic GNN(ℓ)
NORM from Equation (11) on the first C dimensions. This is achievable by

Ĥ
(t+1)
b = ϕ(Ĥ

(t)
b Ŵ

(t)
1 +AbĤ

(t)
b Ŵ

(t)
2 )

with Ŵ
(t)
1 =

(
W

NORM,(t)
1 0 0
0 I 0
0 0 I

)
and Ŵ

(t)
2 =

(
W

NORM,(t)
2 0 0
0 I 0
0 0 I

)
, where W

NORM,(t)
1 ,W

NORM,(t)
2 are

exactly the same as the corresponding weights of GNN(ℓ)
NORM, ϕ is the ReLU activation. Therefore,

after L(ℓ)
NORM + 1 layers, we have

Ĥ
(L

(ℓ)
NORM+1)

b = Z
(ℓ)
b ⊕ ϕ(H̃

(ℓ)
b )⊕ϕ(−H̃

(ℓ)
b )

We can then use an additional MPNN layer t to recover H̃(ℓ)
b by setting Ŵ

(t)
1 =

(
I 0
0 I
0 −I

)
, Ŵ(1)

2 = 0,
and obtain

Ĥ
(L

(ℓ)
NORM+2)

b = Z
(ℓ)
b ⊕ H̃

(ℓ)
b

Finally, we rely on the ability of MLPs to memorize a finite number of input-output pairs (see Yun
et al. [68] and Yehudai et al. [65, Lemma B.2]) to implement Equation (26) given its input. This is
achieved by making the three subsequent layers of the MPNN behave as a 3-layer MLP (with ReLU
activations) by simply zeroing out Ŵ(t)

2 . In this way, we have obtained Equation (26) through MPNN
layers only.

F Experimental Details

We implemented GRANOLA using Pytorch [50] (BSD-style license) and Pytorch-Geometric [24]
(MIT license). We ran our experiments on NVIDIA RTX3090 and RTX4090 GPUs, both having
24GB of memory. We performed hyperparameter tuning using the Weight and Biases framework [6].
To sample the random node features, we followed Abboud et al. [1] and used a standard Gaussian
with mean 0 and variance 1, sampling random node features for each forward pass. For each node,
we sample independently a number of random features equal to the channel dimension of h̃(ℓ)b,n, that is
K is equal to C in Equation (8). Recall that when augmenting a GNN architecture with GRANOLA,
we have two types of networks: (i) the main downstream network, and (ii) the normalization network
returning Z

(ℓ)
b (see Equation (8)). In both networks, and throughout all datasets that do not contain

edge features (e.g., in TUDatasets), we employ GIN layers [63] to perform message passing. In
case edge features are available, such as in ZINC, we use the GINE variant of GIN, as prescribed
in Dwivedi et al. [21]. For brevity, we refer to both as GIN throughout the paper. Our MLPs are
composed of two linear layers with ReLU non-linearities. Our normalization network is kept small
and comprises a number of layers tuned in {1, 2, 3} and an embedding dimension that is the same
as its input H̃(ℓ). Each experiment is repeated for 5 different seeds, and we report the average
and standard deviation result. Details of hyperparameter grid for each dataset can be found in the
following subsections.
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F.1 ZINC-12k

We consider the dataset splits proposed in Dwivedi et al. [21], and use the Mean Absolute Error
(MAE) both as loss and evaluation metric. For all models, we used a batch size tuned in {32, 64, 128}.
To optimize the model we use the Adam optimizer with initial learning rate of 0.001, which is
decayed by 0.5 every 300 epochs. The maximum number of epochs is set to 500. The test metric is
computed at the best validation epoch. The downstream network is composed of a number of layers
in {4, 6}, with an embedding dimension tuned in {32, 64}.

F.2 OGB datasets

We consider the scaffold splits proposed in Hu et al. [31], and for each dataset we used the loss and
evaluation metric prescribed therein. In all experiments, we used the Adam optimizer with initial
learning rate of 0.001. We tune the batch size in {64, 128. We employ a learning rate scheduler that
that follows the procedure prescribed in Bevilacqua et al. [4]. We also consider dropout in between
layers with probabilities in {0, 0.5}. The downstream network has the number of layers in {4, 6}
with embedding dimensions in {32, 64, 128}. The maximum number of epochs is set to 500 for all
models. The test metric is computed at the best validation epoch.

F.3 TUDatasets

For all the experiments with datasets from the TUDatasets repository, we followed the evaluation
procedure proposed in Xu et al. [63], consisting of 10-fold cross validation and metric at the best
averaged validation accuracy across the folds. The downstream network is composed of a number of
layers tuned in {4, 6} layers with embedding dimension in {32, 64}. We use the Adam optimizer
with learning rate tuned in {0.01, 0.001}. We consider batch size in {32, 64, 128}, and trained for
500 epochs.

G Complexity and Runtimes

Complexity. As described in Section 3, and specifically in Equation (10), our GRANOLA takes
random node feature and hidden learned node features, and propagates them using a GNN backbone
denoted by GNNNORM to compute intermediate (expressive) features, which are then used to calculate
the normalization statistics, as shown in Equation (9). The calculation can be implemented either
by considering their mean and standard deviation, as in GRANOLA-MS, or more generally by
employing an MLP in GRANOLA, as described in Equation (24) and Equation (9), respectively. In
our experiments, GNN(ℓ)

NORM in GRANOLA is also an MPNN, similar to the downstream backbone
model. Therefore, including our GRANOLA layers does not change the asymptotic computational
complexity of the architecture, which remains within the computational complexity of MPNNs
(e.g., Morris et al. [41], Xu et al. [63]). Specifically, each MPNN layer is linear in the number of
nodes |V | and edges |E|. Since a single GRANOLA layer is composed by L(ℓ)

NORM MPNN layers,
assuming it the same for all ℓ, it has a time complexity of O(LNORM · (|V |+ |E|)). Every downstream
MPNN layer in our framework uses a GRANOLA normalization layer, and therefore, assuming
L downstream MPNN layers, the overall complexity of an MPNN augmented with GRANOLA is
O ((L · LNORM) · (|V |+ |E|)), compared to the complexity of an MPNN without GRANOLA which
amounts to O (L · (|V |+ |E|)). In practice, LNORM is a hyperparameter between 1 to 3 and can
therefore be considered a constant.

Runtimes. While the asymptotic complexity remains linear with respect to the number of nodes and
edges in the graph, as in standard MPNNs, our GRANOLA requires some additional computations
due to the hidden layers in the normalization mechanism. To measure the impact of these additional
layers, we measure the required training and inference times of GRANOLA, whose results are reported
in Table 4. Specifically, we report the average time per batch measured on a Nvidia RTX-2080 GPU.
For a fair comparison, in all methods, we use the same number of layers, batch size and number of
channels. Our results indicate that while GRANOLA requires additional computational time, it is
still a fraction of the cost of more complex methods like Subgraph GNNs (5.2× faster than efficient
expressive models like Subgraph GNNs), while yielding favorable downstream performance. These
results indicate that GRANOLA offers a strong tradeoff between performance and cost.
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Table 4: Average batch runtimes on a Nvidia RTX-2080 GPU of GRANOLA and other methods, with
8 layers, batch size of 128, and 128 channels on the OGBG-MOLHIV DATASET. For reference, we
also include the measured metric, which is ROC-AUC.

Method MOLHIV
Training Time (ms) Inference Time (ms) ROC-AUC ↑

MPNN
GIN + BatchNorm [63] 4.12 3.23 75.58±1.40

Subgraph GNNs
DSS-GNN (EGO+) [4] 69.58 49.88 76.78±1.66

Natural Baselines
GIN + BatchNorm + RNF-PE [56] 5.16 4.54 75.98±1.63
GIN + RNF-NORM 7.34 5.59 77.61±1.64

GIN + GRANOLA-NO-RNF 10.82 9.21 77.09±1.49
GIN + GRANOLA-MS 11.15 9.37 78.84±1.22
GIN + GRANOLA 11.24 9.55 78.98±1.17

Table 5: GRANOLA coupled with additional backbones. Incorporating GRANOLA enhances perfor-
mance across all backbones.

Method ZINC MOLHIV
MAE ↓ ROC-AUC ↑

GCN 0.367±0.011 76.06±0.97
GCN + GRANOLA 0.233±0.005 77.54±1.10

GAT 0.384±0.007 76.0±0.80
GAT + GRANOLA 0.254±0.009 77.39±1.03

GPS 0.070±0.004 78.80±1.01
GPS + GRANOLA 0.062±0.006 79.21±1.26

H Additional Experimental Results

H.1 GRANOLA Coupled with Additional Backbones

In this subsection, we evaluate the performance of GRANOLA when coupled with additional back-
bones beyond GIN and GSN as presented in Section 5. Specifically, we evaluate its integration with
GCN [37], GAT [60], and GPS [53], using GRANOLA as the normalization layer. Table 5 shows
that adding GRANOLA results in improved performance regardless of the architecture. These results
underscore the versatility of GRANOLA, which can be coupled with any GNN layer and improve its
performance.

H.2 Using other Expressive Mechanisms in GRANOLA

As explained in Sections 3.1 and 4, in this paper, we chose to use RNF within GRANOLA. Incor-
porating RNF into our GRANOLA allows it to fully adapt to the input graph, providing different
affine parameters for non-isomorphic nodes. Full adaptivity is lost when removing RNF and using
a standard MPNN as GNNNORM, as in GRANOLA-NO-RNF. This is because GRANOLA-NO-RNF is
not more expressive than an MPNN (Proposition 4.1), and thus, there exist non-isomorphic nodes
that will get the same representation (and the same affine parameters). However, any other most
expressive architecture used as GNNNORM would achieve the same full adaptivity, and our choice of
MPNN + RNF was motivated by its linear complexity.

To make this point clearer, in this subsection, we analyze the performance of a variant of GRANOLA
that uses a Subgraph GNN, namely DS-GNN [4], as the GNNNORM, instead of an MPNN + RNF.
We denote this variant as GRANOLA-SubgraphGNN. Table 6 shows that GRANOLA-SubgraphGNN
behaves similarly to GRANOLA. However, employing a SubgraphGNN as the GNNNORM results in
additional complexity coming from the Subgraph GNN itself (which is quadratic rather than linear).
Thus, while enhanced expressivity in GNNNORM does not require employing RNF specifically, using
an MPNN + RNF provides the advantage of linear complexity.
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Table 6: Using RNF vs. Subgraph GNN for Expressiveness in GRANOLA. While alternative
expressive GNNs for GNNNORM result in comparable performance, the MPNN + RNF approach
offers the benefit of retaining linear complexity.

Method ZINC MOLHIV
MAE ↓ ROC-AUC ↑

GIN + GRANOLA-SubgraphGNN 0.1186±0.008 78.62±1.31

GIN + GRANOLA (Using RNF) 0.1203±0.006 78.98±1.17

Table 7: A comparison where we further modified BatchNorm to be graph adaptive using our
GRANOLA design. GRANOLA-BatchNorm surpasses BatchNorm, showcasing the importance of
graph adaptivity across different normalization blueprints.

Method ZINC-12K ↓ MOLHIV ↑
GIN + BatchNorm 0.1630 ± 0.004 75.58 ± 1.40
GIN + LayerNorm-node 0.1649 ± 0.009 75.24 ± 1.71

GIN + GRANOLA-BatchNorm 0.1397 ± 0.007 77.93 ± 1.22
GIN + GRANOLA (LayerNorm-node) 0.1203 ± 0.006 78.98 ± 1.17

H.3 GRANOLA building from BatchNorm

As discussed in Section 3, in Equation (10), µb,n,c and σb,n,c are the mean and std of H̃(ℓ) computed
per node across the feature dimension, exactly as in LayerNorm-node. This choice was dictated by
the fact that we found LayerNorm-node to offer consistent performance across different benchmarks.
However, it is also possible to compute µb,n,c and σb,n,c across different dimensions, resulting in a
variant of GRANOLA that builds on top of other normalization layers rather than LayerNorm-node.
In Table 7 we study the effectiveness of the variant of GRANOLA that builds on top of BatchNorm.
As can be seen from the table, GRANOLA-BatchNorm outperforms BatchNorm, further highlighting
the role of graph adaptivity in normalizations.

H.4 Shared weights vs. Per Layer GNN(ℓ)
NORM

In our experiments in Section 5, the additional normalization GNN layer, GNN(ℓ)
NORM, had unique

parameters per layer, as evidenced by the superscript ℓ. In Table 8, we show that by using the same
GNN(ℓ)

NORM for all ℓ, that is by sharing the weights across all layers, which overall requires less param-
eters, our GRANOLA continues to offer competitive results, further highlighting its competitiveness
also in cases where parameter budget is low.

H.5 The role of GRANOLA Normalization

To better understand the contribution of GRANOLA, we provide results where we set the normal-
ization term in GRANOLA to zero, leaving only the bias term to be learned. That is achieved by
setting γ(ℓ)b,n,c = 0 in Equation (10). By following this approach, we isolate the contribution of the
normalization itself from the bias in the normalization process. Our results, shown in Table 9, indicate
that the normalization term in GRANOLA is significant, and cannot be replaced by a simple bias.

H.6 RNF as PE Ablation Study

GRANOLA benefits from (i) enhanced expressiveness, and (ii) graph adaptivity. Property (i) is
obtained by augmenting our normalization scheme with RNF, as shown in Figure 3. Therefore, it is
important to ensure that the contribution GRANOLA does not stem solely from the use of RNF, but
rather the overall approach and design of our method.

To this end, in addition to the natural baseline of RNF-PE, which uses RNF as positional encoding
combined with GIN + BatchNorm (as in [56]), we now provide results of RNF-PE when combined
with GIN and different normalization layers. Specifically, we consider Identity (no normalization)
and LayerNorm (both graph and node variants). The results are provided in Table 10, together with
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Table 8: Comparison of GRANOLA with its variant GRANOLA-SHAREDGNNNORM obtained by
sharing GNN(ℓ)

NORM across layers (instead of having a different one for each layer), and BatchNorm
and LayerNorm-node for reference. While using a GNN(ℓ)

NORM per GNN layer leads to better results,
sharing it for all ℓ also offers significant improvements over baseline methods.

Method ZINC-12K ↓ MOLHIV ↑
GIN + BatchNorm 0.1630 ± 0.004 75.58 ± 1.40
GIN + LayerNorm-node 0.1649 ± 0.009 75.24 ± 1.71
GIN + GRANOLA-SHAREDGNNNORM 0.1293 ± 0.009 78.47 ± 1.20
GIN + GRANOLA 0.1203 ± 0.006 78.98 ± 1.17

Table 9: Comparison of GRANOLA with its variant where γ(ℓ)b,n,c = 0 in Equation (10) shows the
importance of the normalization in GRANOLA.

Method ZINC-12K ↓ MOLHIV ↑

GIN + GRANOLA-β(ℓ)
b,n,c-only 0.1928±0.018 74.11±1.39

GIN + GRANOLA 0.1203±0.006 78.98±1.17

the results of our GRANOLA, for reference and convenience of comparison. The results suggest
that while the different variants of RNF-PE do not show significant improvement over the baseline
of GIN + BatchNorm, our GRANOLA does. These results are further evidence that while RNF are
theoretically powerful, they may not be significant in practice, as shown in Eliasof et al. [22]. Instead,
it is important to incorporate them in a thoughtful manner, for example, to obtain graph adaptivity
within the normalization layer, as in our GRANOLA.

H.7 Normalization GNN depth ablation study

As discussed in Section 3, our GRANOLA utilizes a GNN to learn graph-adaptive normalization
shift and scaling parameters, and we denote this GNN by GNN(ℓ)

NORM. Combined with the RNF as
part of the input to GNN(ℓ)

NORM, we are able to obtain both enhanced expressiveness (from RNF) and
graph-adaptivity (by GNN(ℓ)

NORM). It is therefore interesting to study the effect of the number of layers
in GNN(ℓ)

NORM on the downstream performance. Specifically, in the case where GNN(ℓ)
NORM has 0 layers,

the experiment defaults to a model very similar the RNF-NORM baseline (with the difference that
in RNF-NORM we have Z

(ℓ)
b = R

(ℓ)
b , while in this case we have Z

(ℓ)
b = H̃

(ℓ)
b ⊕ R

(ℓ)
b ), thereby

losing graph adaptivity. In Table 11, we provide results on a varying number of layers, from 0 to 4.
Our results suggest that there is a significant importance in terms of performance to having graph
adaptivity in the normalization technique, as offered by our GRANOLA.

H.8 Comparison with additional baselines

In the main paper, in Section 5, we focused on providing a comprehensive comparison with directly
comparable methods, i.e., standard normalization methods, graph normalization methods, as well
as our own set of natural baselines. In this section, we provide additional comparisons with other
expressive approaches, such as positional encoding methods and Subgraph GNNs. Our additional
comparisons on ZINC-12K, OGB, and TUDatasets are provided in Table 12, Table 13, and Table 14,
respectively.

It is important to note, that while some of these methods achieve better performance than our
GRANOLA, they are not within the same complexity class as GRANOLA, and specifically, they are
not linear with respect to the number of nodes and edges in the graph, as discussed in Appendix G.
For example, RFP-QR-L̂, Â,Slearn-DSS [22], which also utilizes the expressive power of RNF,
achieves an MAE of 0.1106 on ZINC-12K, while our GRANOLA achieves 0.1203. However, the
former is of quadratic complexity with respect to the number of nodes, while GRANOLA is linear,
as standard MPNNs. On the other hand, the linear and thus directly comparable RFP - ℓ2 - L̂, Â
achieves a higher (worse) MAE of 0.1368. Similarly, while there are Subgraph GNNs that can
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Table 10: Ablation study of RNF-PE with GIN and various normalization methods.

Method ZINC MOLHIV
MAE ↓ ROC-AUC ↑

GIN + BatchNorm [63] 0.1630±0.04 75.58±1.40

GIN + BatchNorm + RNF-PE [56] 0.1621±0.014 75.98±1.63
GIN + LayerNorm-node + RNF-PE 0.1663±0.015 76.22±1.58
GIN + LayerNorm-graph + RNF-PE 0.1624±0.018 76.49±1.64
GIN + Identity + RNF-PE 0.2063±0.018 75.31±2.04

GRANOLA 0.1203±0.006 78.98±1.17

Table 11: Ablation study of the depth (number of layers) of GNN(ℓ)
NORM

Depth 0 1 2 3 4

ZINC (MAE ↓) 0.1562±0.013 0.1218±0.009 0.1203±0.006 0.1209±0.010 0.1224±0.008

MOLHIV (ROC-AUC ↑) 77.61±1.64 78.33±1.34 78.98±1.17 78.86±1.20 78.21±1.31

outperform GRANOLA, these are at least a quadratic in the number of nodes. Therefore, we find that
our GRANOLA offers a practical yet powerful approach for utilizing RNF.

Additionally, we observe that in some cases, GRANOLA achieves similar or better performance than
other expressive and asymptotically more complex methods. For example, our results on TUDatsets
in Table 14 show that GRANOLA offers better performance than DSS-GNN [4] on all considered
datasets, despite DSS being quadratic in the number of nodes.
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Table 12: Additional comparisons of GRANOLA with various baselines on the ZINC-12K graph
dataset. All methods obey to the 500k parameter budget.

Method ZINC (MAE ↓)

MPNNS
GCN [37] 0.321±0.009
PNA [15] 0.133±0.011

POSITIONAL ENCODING METHODS
GIN + Laplacian PE [22] 0.1557±0.012
RFP - ℓ2 - L̂, Â [22] 0.1368±0.010
RWPE [20] 0.1279±0.005
RFP-QR-L̂, Â,Slearn-DSS [22] 0.1106±0.012

DOMAIN-AWARE GNNS
GSN [10] 0.101±0.010
CIN [8] 0.079±0.006

HIGHER ORDER GNNS
PPGN [40] 0.079±0.005
PPGN++ (6) [52] 0.071±0.001

GRAPH TRANSFORMERS
GPS [53] 0.070±0.004
GRAPHORMER [66] 0.122±0.006
GRAPHORMER-GD [70] 0.081±0.009

SUBGRAPH GNNS
NGNN [71] 0.111±0.003
DS-GNN (EGO+) [4] 0.105±0.003
DSS-GNN (EGO+) [4] 0.097±0.006
GNN-AK [73] 0.105±0.010
GNN-AK+ [73] 0.091±0.011
SUN (EGO+) [25] 0.084±0.002
GNN-SSWL [69] 0.082±0.003
GNN-SSWL+ [69] 0.070±0.005
DS-GNN (NM) [5] 0.087±0.003

NATURAL BASELINES
GIN + BatchNorm + RNF-PE [56] 0.1621±0.014
GIN + RNF-NORM 0.1562±0.013

STANDARD NORMALIZATION LAYERS
GIN + BatchNorm [63] 0.1630±0.004
GIN + InstanceNorm [58] 0.2984±0.017
GIN + LayerNorm-node [3] 0.1649±0.009
GIN + LayerNorm-graph [3] 0.1609±0.014
GIN + Identity 0.2209±0.018

GRAPH NORMALIZATION LAYERS
GIN + PairNorm [72] 0.3519±0.008
GIN + MeanSubtractionNorm [64] 0.1632±0.021
GIN + DiffGroupNorm [74] 0.2705±0.024
GIN + NodeNorm [75] 0.2119±0.017
GIN + GraphNorm [11] 0.3104±0.012
GIN + GraphSizeNorm [21] 0.1931±0.016
GIN + SuperNorm [12] 0.1574±0.018

GIN + GRANOLA-NO-RNF 0.1497±0.008
GIN + GRANOLA-MS 0.1238±0.009
GIN + GRANOLA 0.1203±0.006
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Table 13: Additional comparisons of GRANOLA to natural baselines, standard and graph normaliza-
tion layers, and subgraph GNNs, demonstrating the practical advantages of our approach. – indicates
the result was not reported in the original paper.

Method ↓ / Dataset → MOLESOL MOLTOX21 MOLBACE MOLHIV
RMSE ↓ ROC-AUC ↑ ROC-AUC ↑ ROC-AUC ↑

MPNNS
GCN [37] 1.114±0.036 75.29±0.69 79.15±1.44 76.06±0.97
GIN [63] 1.173±0.057 74.91±0.51 72.97±4.00 75.58±1.40

POSITIONAL ENCODING METHODS
GIN + Laplacian PE [22] – – – 77.88±1.82
RFP - ℓ2 - L̂, Â [22] – – – 77.91±1.43
RWPE [20] – – – 78.62±1.13
RFP-QR-L̂, Â,Slearn-DSS [22] – – – 80.58±1.21

EXPRESSIVE GNNS
GSN [10] – – – 80.39±0.90
CIN [8] – – – 80.94±0.57

SUBGRAPH GNNS
RECONSTR. GNN [16] 1.026±0.033 75.15±1.40 – 76.32±1.40
NGNN [71] – – – 78.34±1.86
DS-GNN (EGO+) [4] – 76.39±1.18 – 77.40±2.19
DSS-GNN (EGO+) [4] – 77.95±0.40 – 76.78±1.66
GNN-AK+ [73] – – – 79.61±1.19
SUN (GIN) (EGO+) [25] – – – 80.03±0.55
GNN-SSWL+ [69] – – – 79.58±0.35
DS-GNN (NM) [5] 0.847±0.015 76.25±1.12 78.41±1.94 76.54±1.37

NATURAL BASELINES
GIN + BatchNorm + RNF-PE [56] 1.052±0.041 75.14±0.67 74.28±3.80 75.98±1.63
GIN + RNF-NORM 1.039±0.040 75.12±0.92 77.96±4.36 77.61±1.64

STANDARD NORMALIZATION LAYERS
GIN + BatchNorm [63] 1.173±0.057 74.91±0.51 72.97±4.00 75.58±1.40
GIN + InstanceNorm [58] 1.099±0.038 73.82±0.96 74.86±3.37 76.88±1.93
GIN + LayerNorm-node [3] 1.058±0.024 74.81±0.44 77.12±2.70 75.24±1.71
GIN + LayerNorm-graph [3] 1.061±0.043 75.03±1.24 76.49±4.07 76.13±1.84
GIN + Identity 1.164±0.059 73.34±1.08 72.55±2.98 71.89±1.32

GRAPH NORMALIZATION LAYERS
GIN + PairNorm [72] 1.084±0.031 73.27±1.05 75.11±4.24 76.18±1.47
GIN + MeanSubtractionNorm [64] 1.062±0.045 74.98±0.62 76.36±4.47 76.37±1.40
GIN + DiffGroupNorm [74] 1.087±0.063 74.48±0.76 75.96±3.79 74.37±1.68
GIN + NodeNorm [75] 1.068±0.029 73.27±0.83 75.67±4.03 75.50±1.32
GIN + GraphNorm [11] 1.044±0.027 73.54±0.80 73.23±3.88 78.08±1.16
GIN + GraphSizeNorm [21] 1.121±0.051 74.07±0.30 76.18±3.52 75.44±1.51
GIN + SuperNorm [12] 1.037±0.044 75.08±0.98 75.12±3.38 76.55±1.76

GIN + GRANOLA-NO-RNF 1.088±0.032 75.87±0.72 76.23±2.06 77.09±1.49
GIN + GRANOLA-MS 0.971±0.026 77.32±0.67 79.18±2.41 78.84±1.22
GIN + GRANOLA 0.960±0.020 77.19±0.85 79.92±2.56 78.98±1.17
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Table 14: Additional Graph classification accuracy (%) ↑ on TUDatasets. – indicates the result was
not reported in the original paper.

Method ↓ / Dataset → MUTAG PTC PROTEINS NCI1 NCI109

EXPRESSIVE GNNS
GSN [10] 92.2±7.5 68.2±7.2 76.6±5.0 83.5±2.0 –
SIN [9] – – 76.4±3.3 82.7±2.1 –
CIN [8] 92.7±6.1 68.2±5.6 77.0±4.3 83.6±1.4 84.0±1.6

SUBGRAPH GNNS
DROPEDGE [54] 91.0±5.7 64.5±2.6 73.5±4.5 82.0±2.6 82.2±1.4
GRAPHCONV + ID-GNN [67] 89.4±4.1 65.4±7.1 71.9±4.6 83.4±2.4 82.9±1.2
DS-GNN (GIN) (EGO+) [4] 91.0±4.8 68.7±7.0 76.7±4.4 82.0±1.4 80.3±0.9
DSS-GNN (GIN) (EGO+) [4] 91.1±7.0 69.2±6.5 75.9±4.3 83.7±1.8 82.8±1.2
GNN-AK+ [73] 91.3±7.0 67.8±8.8 77.1±5.7 85.0±2.0 –
SUN (GIN) (EGO+) [25] 92.1±5.8 67.6±5.5 76.1±5.1 84.2±1.5 83.1±1.0

NATURAL BASELINES
GIN + BatchNorm + RNF-PE [56] 90.8±4.8 64.4±6.7 74.1±2.6 82.1±1.5 81.3±1.1
GIN + RNF-NORM 88.9±5.1 67.1±4.3 76.4±4.8 81.8±2.2 81.9±2.5

STANDARD NORMALIZATION LAYERS
GIN + BatchNorm [63] 89.4±5.6 64.6±7.0 76.2±2.8 82.7±1.7 82.2±1.6
GIN + InstanceNorm [58] 90.5±7.8 64.7±5.9 76.5±3.9 81.2±1.8 81.8±1.6
GIN + LayerNorm-node [3] 90.1±5.9 65.3±4.7 76.2±3.0 81.9±1.5 82.0±2.1
GIN + Layernorm-graph [3] 90.4±6.1 66.4±6.5 76.1±4.9 82.0±1.6 81.5±1.3
GIN + Identity 87.9±7.8 63.1±7.2 75.8±6.3 81.3±2.1 80.6±1.7

GRAPH NORMALIZATION LAYERS
GIN + PairNorm [72] 87.8±7.1 67.1±6.3 76.7±4.8 75.8±2.1 75.3±1.4
GIN + MeanSubtractionNorm [64] 90.1±5.4 68.0±5.9 76.4±4.6 79.2±1.2 79.0±1.1
GIN + DiffGroupNorm [74] 87.8±7.6 67.4±6.8 76.9±4.3 77.2±2.6 77.1±1.9
GIN + NodeNorm [75] 88.3±7.0 65.1±8.3 74.5±4.6 81.2±1.4 79.4±1.0
GIN + GraphNorm [11] 91.6±6.5 64.9±7.5 77.4±4.9 81.4±2.4 82.4±1.7
GIN + GraphSizeNorm [21] 88.2±6.3 68.0±8.1 77.0±5.0 79.8±1.5 80.1±1.8
GIN + SuperNorm [12] 89.3±5.6 64.7±3.9 76.1±4.7 83.0±1.5 82.8±1.7

GIN + GRANOLA-NO-RNF 89.7±5.4 65.8±5.7 76.6±2.5 83.1±1.2 83.0±1.5
GIN + GRANOLA-MS 92.1±4.8 69.8±4.7 77.3±3.5 84.3±1.5 83.5±1.8
GIN + GRANOLA 92.2±4.6 69.9±4.5 77.5±3.7 84.0±1.7 83.7±1.6
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The contribution paragraph in the introduction (Section 1) explicitly describes
the main contributions of the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The conclusion section (Section 6) includes a separate paragraph discussing
the limitations.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: Section 4 presents our main theoretical results, and Appendix E contains the
full set of assumptions as well as the proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Section 3 fully describes our proposed method, and Appendix F contains all
experimental details to reproduce our results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We offer comprehensive details regarding the implementation and evaluation
of our method (Appendix F), our code is available.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Appendix F contains all the details, including the hyperparameters and other
experimental choices.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All results (Section 5 and Appendix H.8) are accompanied by the corresponding
standard deviation.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Appendix F describes the type of GPUs used in the experiments, Appendix G
provides a runtime comparison.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conforms with the code of ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss potential societal impacts in Section 6.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Not applicable.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We credited the owners of the assets and the licenses in Appendix F.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We do not introduce new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Not applicable.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Not applicable.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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