
DeTrack: In-model Latent Denoising Learning for
Visual Object Tracking

Xinyu Zhou1 Jinglun Li2 Lingyi Hong1 Kaixun Jiang2 Pinxue Guo2

Weifeng Ge1∗ Wenqiang Zhang1,2∗

1Shanghai Key Lab of Intelligent Information Processing,
School of Computer Science, Fudan University, Shanghai, China

2Shanghai Engineering Research Center of AI & Robotics,
Academy for Engineering and Technology, Fudan University, Shanghai, China

zhouxinyu20@fudan.edu.cn, jingli960423@gmail.com, lyhong22@m.fudan.edu.cn,
kxjiang22@m.fudan.edu.cn, pxguo21@m.fudan.edu.cn,

weifeng.ge.ic@gmail.com,wqzhang@fudan.edu.cn

Abstract

Previous visual object tracking methods employ image-feature regression models
or coordinate autoregression models for bounding box prediction. Image-feature
regression methods heavily depend on matching results and do not utilize positional
prior, while the autoregressive approach can only be trained using bounding boxes
available in the training set, potentially resulting in suboptimal performance during
testing with unseen data. Inspired by the diffusion model, denoising learning
enhances the model’s robustness to unseen data. Therefore, We introduce noise
to bounding boxes, generating noisy boxes for training, thus enhancing model
robustness on testing data. We propose a new paradigm to formulate the visual
object tracking problem as a denoising learning process. However, tracking algo-
rithms are usually asked to run in real-time, directly applying the diffusion model
to object tracking would severely impair tracking speed. Therefore, we decom-
pose the denoising learning process into every denoising block within a model,
not by running the model multiple times, and thus we summarize the proposed
paradigm as an in-model latent denoising learning process. Specifically, we propose
a denoising Vision Transformer (ViT), which is composed of multiple denoising
blocks. In the denoising block, template and search embeddings are projected
into every denoising block as conditions. A denoising block is responsible for
removing the noise in a predicted bounding box, and multiple stacked denoising
blocks cooperate to accomplish the whole denoising process. Subsequently, we
utilize image features and trajectory information to refine the denoised bounding
box. Besides, we also utilize trajectory memory and visual memory to improve
tracking stability. Experimental results validate the effectiveness of our approach,
achieving competitive performance on several challenging datasets. The proposed
in-model latent denoising tracker achieve real-time speed, rendering denoising
learning applicable in the visual object tracking community.

∗corresponding author.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

90579 https://doi.org/10.52202/079017-2875

×
𝒏

𝑥𝐼
∗, 𝑦𝐼

∗, 𝑤𝐼
∗, ℎ𝐼

∗

Templates

𝑥𝐼
1∗, 𝑦𝐼

1∗, 𝑥𝐼
2∗, 𝑦𝐼

2∗

Search Region

Denoising

ViT

Mapping

Encoder

Decoder

Repeat × 𝟏

Noisy ImageI Input Image

(a) Denoising Learning in Image Generation (b) Denoising Learning in Object Detection (c) The Proposed Denoising Learning Tracking Paradigm

In-model Latent

Denoising

Repeat

× 𝑵

Repeat

× 𝑵

U-Net

Feature

Extraction

Noisy ImageI-1 Noisy boxI-1 Box0

Noisy boxI

Noisy boxI

Figure 1: Difference of denoising learning paradigm. (a) Diffusion model in image generation task.
(b) Diffusion model in object detection task. (c) The proposed In-model latent denoising learning
paradigm. The pink box indicates the denoising module. ×N indicates denoising for N times.

1 Introduction

Visual object tracking is a fundamental task in computer vision, which involves localizing and
tracking a specific object in a video given its initial position. It finds broad applications in video
understanding, surveillance, and robot navigation [45]. State-of-the-art approaches can be broadly
categorized into two classes. The first class [17, 51, 41, 8, 19, 55, 29, 56] directly predicts the
bounding box of the tracked target based on image features. The second class [6, 43], employs the
coordinate autoregression framework.

While the mainstream methods have achieved prominent success, there are still certain issues to be
addressed. Methods based on the image-feature regression framework rely heavily on the matching
results between the template and the search region, which cannot utilize positional prior. Meanwhile,
based on the autoregressive approach, it is necessary to utilize the bounding box from the previous
frame to train the model, which can only utilize the existing bounding boxes in the training set.
Therefore, during the testing phase, it may exhibit suboptimal performance for some unseen data.

The Diffusion model has achieved significant success in image generation task, allowing the genera-
tion of many images not seen in the training set[38]. Inspired by the Diffusion model[26], we add
noise to bounding boxes during training stage. The noisy box can have arbitrary size and position,
thereby enhancing the robustness of the model to unseen data during testing stage. As illustrated in
Fig.1 (a) and (b), the diffusion model in image generation task requires multiple iterations of U-Net,
while in object detection task, denoising is accomplished through multiple iterations of the decoder.
However, tracking algorithms are usually asked to run in real-time, directly applying the diffusion
model to object tracking would severely impair tracking speed.

Therefore, motivated by DAE[40], we propose a novel denoising learning paradigm (DeTrack) for
visual object tracking that decomposes the denoising learning process in every denoising block with
a tracking model. We use templates, search region, and noisy boxes as inputs. During the denoising
process, we inject the template and search region as conditions to predict the noises in previous
predictions. We repeatedly conduct the conditional denoising process and finally achieve accurate
object location prediction. Specifically, as shown in Fig.1 (c), we propose a novel denoising ViT.
We decompose a complete denoising process into several denoising blocks within ViT model and
implement every denoising operation with a denoising block. Then the denosing learning process can
be implemented in a single forward pass of the tracking model, which can reduce the computational
cost drastically. To benefit from the in-context information[21, 16, 9, 28, 20, 22], we also put the
previously predicted bounding boxes into a trajectory memory, and put the templates from previous
frame into a visual memory. We use them as additional conditions to help locate objects more
accurately.

Our contributions can be summarized as follows:

2

90580https://doi.org/10.52202/079017-2875

• We propose a novel in-model latent denoising learning paradigm for visual object tracking,
which provides a new perspective for the research community. It decomposes the classical
explicit denosing process into several denoising blocks and solves the problem with a
tracking network in a single forward pass, which is valuable for real applications.

• We present a tracking model including a denoising ViT, comprised of multiple denoising
blocks. The denoising process can be completed by progressively denoising through the
denoising blocks within ViT. Furthermore, we construct a compound memory in the model
that improve the tracking results using visual features and trajectory.

• Experimental results on several popular experiments, including AVisT, GOT-10k, LaSOT,
and LaSOText, demonstrate that the proposed method achieve competitive results.

.

2 Related Work

Visual Object Tracking. The existing visual object tracking methods can be broadly categorized into
two main classes. The first class[1, 11, 48, 46, 8, 19, 41, 32, 31, 51, 10, 35, 44, 54] involves directly
regressing the bounding box from image features, the second class [43, 6] treats the bounding box as
four distinct tokens, employing an autoregressive model to sequentially predict these four tokens.

In the first class, deep neural networks are initially used to extract visual features, followed by the
design of various prediction heads for regressing the bounding box. Since 2016, some prevalent
methods have adopted a two-stream framework, employing siamese networks to separately extract
visual features from the template and the search region. One type of prediction head [46, 32, 31,
53] uses a branch to predict the possible location of the target and other branches to predict the
corresponding bounding box for that location. Another type of prediction head [10, 48, 17] consists
of two branches that predict the coordinates of the top-left and bottom-right corners. Subsequently,
OSTrack [51] introduces a one-stream tracking paradigm that combines feature extraction and feature
fusion into a single step, achieving a new state-of-the-art performance. For the second class, SeqTrack
[6] proposes transforming the bounding box into four tokens, predicting them sequentially in the
order of x, y, w, and h. When predicting the bounding box, each box requires four passes through
the decoder. Another autoregressive method, ARTrack [43], is similar to SeqTrack but differs in that
it incorporates trajectory information in the input to enhance the model’s awareness of trajectories.

Denoising Learning. DDPM [26] introduces denoising diffusion learning, which enhances the
quality and diversity of generated images by adding noise to and denoising images. Subsequently,
denoising learning has experienced explosive growth, being applied in various domains and achieving
significant success. In the Super-Resolution field, SR3 [37] leverages DDPM for conditional image
generation, employing a stochastic denoising process for super-resolution. Meanwhile, CDM [27]
comprises a sequence of multiple diffusion models, each responsible for generating images with
progressively higher resolutions. In video generation, the Flexible Diffusion Model (FDM) [23]
utilizes a generative model designed for sampling arbitrary subsets of video frames, facilitated by a
specialized architecture tailored for this purpose. The Residual Video Diffusion (RVD) model [50]
employs an autoregressive, end-to-end optimized video diffusion model. In addition to generative
tasks, denoising learning has also found extensive applications in discriminative task. DiffusionDet
[4] applies the diffusion model to object detection, utilizing DDIM [38] for denoising. However, this
approach still requires multiple passes through the decoder for denoising, impacting inference speed.

3 Method
In this section, we start by formulating the proposed tracking paradigm learned through denoising
learning (Section 3.1). Next, we present our overall model architecture (Section 3.2), which includes
a proposed denoising ViT, a box refining and mapping module, and a compound memory.

3.1 How to Formulate the Denoising Learning Tracking Paradigm?

Image and Box Inputs. We utilize both visual memory and the search region as conditional inputs c,
while introducing noisy boxes xI to predict the true position of the target, where I represents the
I-th state in the denoising process. The visual memory stores templates, which are cropped based on

3

90581 https://doi.org/10.52202/079017-2875

previous frames. The search region is cropped based on the current frame and encompasses the area
where the target may be present. In training stage, inspired by DDPM[26], we obtain noisy boxes xI

by adding Gaussian noise ϵ to the ground truth box x0:

xI =
√
ᾱx0 + ϵ

√
1− ᾱ, ϵ ∈ N (0, I), (1)

where ᾱ =
∏T

j=0 αj and αj = 1− βj . βj ∈ (0, 1) is the variance schedule, T is the time step.

Optimization for Denoising Learning. We take the visual memory and search region as conditional
inputs c, and predict the true target position x0 from the noisy box xI , pθ(x0|xI), where θ represents
the neural network parameters. We aim to maximize the probability pθ that the neural network
predicts x0, enabling the model to predict the true target position:

maximize(pθ(x0|xI , c)). (2)

To maximize pθ, we need to make the predicted x
′

0 by the network fθ close to the ground truth x0:

x
′

0 = fθ(c,xI),

minmize|x
′

0 − x0|.
(3)

Decomposes the Denoising Process into Multiple Denoising Block within a Model. According to
the principle of Markov, we can expand Equation 2 into a Markov chain:

pθ(x0|xI , c) = p(xI)

I∏
i=1

pθ(xi−1|xi, c) = p(xI)

I∏
i= I

l

pθ(xi− I
l
|xi, c). (4)

In the traditional Diffusion model[26], each step pθ(xi−1|xi, c) is iteratively predicted using a neural
network model fθ. However, our denoising paradigm decomposes the iterations of neural network
into the iterations of denosing blocks within a neural network, fθ = {d1, d2, · · · , dl}, where each
denoising block dl is responsible for predicting a state pθ(xi− I

l
|xi, c), where l denotes the number of

blocks. This allows our model to complete denoising with only a single forward pass of the tracking
model.

Discussion on the Differences from the Diffusion Model. The proposed denoising learning
tracking paradigm is not a diffusion model. (1) In the reverse denoising process of diffusion model,
sampling a noise from a standard Gaussian distribution introduces randomness, making it more
suitable for generating diverse images in image generation tasks. However, bounding boxes for visual
object tracking are deterministic. Therefore, our proposed DeTrack does not involve a sampling
process in reverse denoising process, making it more suitable for visual object tracking. (2) Each step
of diffusion model is predicted recursively using a neural network. The proposed DeTrack predicts
states using denosing blocks within a network (3) The diffusion model requires iterative prediction of
neural network, whereas our method only requires a single forward pass through the network. Please
refer to the Appendix A.1 for detailed analysis.

3.2 Model Architecture

Inputs representation. As show in Fig. 2, we use noisy bounding boxes as input and take visual
memory and a search region as conditional inputs. Visual memory stores multiple templates. Specif-
ically, gaussian noise is added to the ground truth bounding box to obtain a noisy bounding box
{x1∗

I , y1∗I , x2∗
I , y2∗I } ∈ R4×1, where * denotes noise addition, while 1 and 2 respectively denote the

upper left corner and lower right corner. Subsequently, the noisy box is mapped to a high-dimensional
space by word embedding, resulting in noisy box embedding xI ∈ R4×C . Additionally, we map tem-
plates and the search region to templates embedding z ∈ RNz×C and search embedding s ∈ RNs×C

by a image embedding, where Nz = n × Hz

16 × Wz

16 , Ns = Hs

16 × Ws

16 , n denotes the number of
templates, H and W represent the height and width of the image, respectively. For details, please refer
to Model implement details in Section 4.1.

Denoising ViT (In-model Latent Denoising).

ViT Transformer Block. The specific transformer block structure is the same as the ViT transformer
block[13]. Therefore, we only introduce integrating the features of templates and search region within
the ViT block. Specifically, we perform attention on image embedding. We first obtain qs (search

4

90582https://doi.org/10.52202/079017-2875

在此处键入公式。

V
iT

T
ra

n
sf

o
rm

er

B
lo

ck

V
iT

T
ra

n
sf

o
rm

er

B
lo

ck

V
iT

T
ra

n
sf

o
rm

er

B
lo

ck

W
o

rd

E
m

b
ed

d
in

g

Im
ag

e

E
m

b
ed

d
in

g

Search Region

Visual Memory

x𝐼

, , ,

x𝑖 x0

Denoising ViT (In-model Latent Denoising)

x𝑖−1

D
en

o
is

in
g

B
lo

ck

B
o

x

R
ef

in
in

g

M
ap

p
in

g

𝑥𝐼
1∗, 𝑦𝐼

1∗, 𝑥𝐼
2∗, 𝑦𝐼

2∗ 𝑥𝑖
1, 𝑦𝑖

1, 𝑥𝑖
2, 𝑦𝑖

2 𝑥𝑖−1
1 , 𝑦𝑖−1

1 , 𝑥𝑖−1
2 , 𝑦𝑖−1

2 𝑥0
1, 𝑦0

1, 𝑥0
2, 𝑦0

2

… …

Box Refining and Mapping

X𝐼 = 𝛼X0 + 𝜀 1 − 𝛼

𝜀~𝑁(0, 1)

Noisy Box Generation Visualization

Denoised Box
Denoised

Box embedding

Trajectory Memory

Inputs Representation

Noisy box

Sample from
Gaussian distribution

Template
Embedding

Search Region
Embedding

Box
Embedding

Box Refining
and Mapping

Linear

Denoising

Attention

𝑘𝑠𝑞𝑏

FFN

Predicted

Noise

Denoised Box
Embedding

𝑣𝑠

NoisePred

Subtract

Denoising Block

Search Region
Embedding

Noisy Box
Embedding

D
en

o
is

in
g

B
lo

ck

D
en

o
is

in
g

B
lo

ck

− −

Caption

Templates

… …

… …

… …

(a) (b)

Figure 2: The overview of model architecture. (a) The model architecture comprises the input
representation, the proposed Denoising ViT, and Box Refining and Mapping. It also includes Visual
Memory and Trajectory Memory. (b) The proposed Denoising Block within Denoising ViT.

query), qz(templates query), ks(search key), kz(templates key), vs(search value) and vz(templates
value) through linear layer. The image attention is employed to interact and fuse image embedding:

AttentionImage(z, s) = Softmax(
[qs, qz][ks, kz]√

d
[vs, vz]), (5)

where [·] denotes concatenation. d is the dimensionality of the key.
Denoising Block. As shown in Fig. 2, the input to the denoising block comprises the noisy box
embedding and the search region embedding. These are passed through linear layers to obtain the
qxi (box query), ks(search key), and vs(search value). Subsequently, a denoising attention mechanism
is employed for the first time of denoising:

AttentionDenoising(s,xi) = Softmax(
qxiks√

d
vs). (6)

Then, we incorporate a Feedforward Neural Network (FFN) layer to enhance x
′

i:

x
′

i = AttentionDenoising(s,xi) + xi. (7)

x
′′

i = x
′

i + FFN(x
′

i), (8)

Finally, we use two linear layers to predict noise for the second time of denoising. Subtracting the
noise from the box embedding yields the result after denoising through a NoisePred module:

ϵ = NoisePred(x
′′

i) = Linear(ReLu(Linear(x
′′

i))),

xi− I
l
= x

′′

i − ϵ.
(9)

Denoising is performed through l Denoising blocks. Ultimately, denoising is accomplished with a
single forward pass of the denosing ViT, resulting in denoised box embedding x0:

x0 = xI −
l∑

j=1

ϵj . (10)

Box Refining and Mapping. As shown in Fig.3(a), we start by applying self-attention to the
trajectory and denoised box embedding. We maintain that the current box embedding can only attend
to its preceding box embedding by an attention mask in the self-attention, introducing temporal
information. Subsequently, the output of self-attention is used as a query for cross-attention with the

5

90583 https://doi.org/10.52202/079017-2875

(𝒙𝒕−𝟖
𝟏 , 𝒚𝒕−𝟖

𝟏 , 𝒙𝒕−𝟖
𝟐 , 𝒚𝒕−𝟖

𝟐)

Word

Embedding

Self-attention Cross-attentionAttention Mask

Trajectory Memory

Denoised Box Embedding Image Embedding

…

Box Refining × 6

Similarity

map

𝒙𝒕
𝟏, 𝒚𝒕

𝟏, 𝒙𝒕
𝟐, 𝒚𝒕

𝟐

Softmax

Mapping

(𝒙𝒕−𝟕
𝟏 , 𝒚𝒕−𝟕

𝟏 , 𝒙𝒕−𝟕
𝟐 , 𝒚𝒕−𝟕

𝟐) (𝒙𝒕−𝟏
𝟏 , 𝒚𝒕−𝟏

𝟏 , 𝒙𝒕−𝟏
𝟐 , 𝒚𝒕−𝟏

𝟐)

Refined box Embedding

…

Fixed Template New Template

(b) Visual memory

Replace?

Dynamic Templates

IouNet Box Refining

Search Embedding Box Embedding

𝒊𝒇 𝑠1 > 𝜎1 & 𝑠2 > 𝜎2:
Replace
𝒆𝒍𝒔𝒆: pass

𝑠1 𝑠2

(a) Box refining and Mapping

Figure 3: Box refining and mapping and the updating of visual memory. (a) Box refining and
mapping introduces the trajectory memory to improve tracking performance. (b) Visual memory
updating based on collaboratively decision including s1 (IoU score) and s2 (Softmax score).

image features. After undergoing six times of box refining, we compute the similarity between the
refined box and word embedding, apply Softmax to obtain probabilities for different positions in the
word embedding, and use the position with the highest probability as the bounding box, which is
similar to ARTrack[43].

Compound Memory. We design a compound memory that includes both a visual memory and
a trajectory memory. The visual memory enhances the model’s ability to adapt to changes in the
appearance of the target and the environment in the video. Besides, the trajectory memory enables
the model to continue tracking the target even in the presence of occlusions or disappearances.

Visual Memory. As shown in Fig.3(b), our visual memory consists of dynamic templates and a fixed
template. The first template of dynamic templates is discarded, and a new template is added. Directly
updating the template can lead to cumulative errors. Therefore, we propose a collaborative updating
mechanism. This involves inputting the search embedding extracted after Denoising ViT into IoUNet
to obtain the corresponding IoU score s1. Additionally, the Softmax score from Box Refining serves
as a confidence value s2. A collaborative decision on the quality of the new template frame is made
based on two threshold values σ1 and σ2, determining whether updating.

Trajectory Memory. The proposed trajectory memory stores the boxes of the previous 7 frames, using
a first-in-first-out (FIFO) approach when a new box needs to be stored. This results in a continuously
updated trajectory box used for refining the denoised box. The trajectory memory can provide the
model with prior positional information and target size, allowing accurate prediction of the bounding
box even in cases of visual occlusion.

4 Experiments
4.1 Implementation Details

Model implement details. We design two variants of DeTrack with different resolutions as shown in
Tab.1.

Table 1: The Floating-Point Operations per Second(FLOPs), and speed of the model variants.

Model Template
Size

Search Region
Size Flops Speed Device

DeTrack256 128× 128 256× 256 53.0G 42FPS RTX3090
DeTrack384 192× 192 384× 384 117.1G 30FPS RTX3090

Our denoising ViT adopts ViT-B [13] and utilizes MAE[25] for weight initialization, with a total
of l = 12 denoising blocks. The box refining includes 6 transformer layers for self-attention and
cross-attention. Additionally, we trained two models, namely DeTrack256 and DeTrack384. The
template is cropped based on twice the size of the bounding box, while the search region is cropped
based on four times (DeTrack256) and five times (DeTrack384) the size of the bounding box. To map

6

90584https://doi.org/10.52202/079017-2875

Table 2: State-of-the-art comparison on AVisT [36], GOT-10k [30], LaSOT [14] and LaSOText [15].
Where * denotes our model only trained on GOT-10k. The best results are highlighted in bold.

Method AVisT GOT-10k* LaSOT LaSOText

AUC OP50 OP75 AO SR0.5 SR0.75 AUC PNorm P AUC PNorm P

SiamPRN++255 [31] 39.0 43.5 21.2 51.7 61.6 32.5 49.6 56.9 49.1 34.0 41.6 39.6
DiMP288 [2] - - - 61.1 71.7 49.2 56.9 65.0 56.7 39.2 47.6 45.1
ATOM288 [11] 38.6 41.5 22.2 - - - 51.5 57.6 50.5 37.6 45.9 43.0
PrDiMP288 [12] 43.3 48.0 28.7 63.4 73.8 54.3 59.8 68.8 60.8 - - -
Ocean255 [53] 38.9 43.6 20.5 61.1 72.1 47.3 56.0 65.1 56.6 - - -
Alpha-Refine288 [48] 49.6 55.7 38.2 - - - 65.3 73.2 68.0 - - -
TransT256 [7] 49.0 56.4 37.2 67.1 76.8 60.9 64.9 73.8 69.0 - - -
ToMP288 [34] 51.9 59.5 38.9 - - - 67.6 78.0 72.2 45.9 - -
DATT256 [52] - - - 72.8 83.1 68.4 65.2 69.3 73.6 - - -
TATrack256 [24] - - - 73.0 83.3 68.5 68.1 77.2 72.2 - - -
CTTrack256 [39] 56.3 66.1 44.8 71.3 80.7 70.3 67.8 77.8 74.0 - - -
TMT352 [42] 48.1 55.3 33.8 67.1 77.7 58.3 63.9 - 61.4 - - -
KeepTrack352 [35] 49.4 56.3 37.8 - - - 67.1 77.2 70.2 48.2 - -
STARK320 [47] 51.1 59.2 39.1 68.8 78.1 64.1 67.1 77.0 - - - -
AiATrack320 [17] - - - 67.9 79.0 69.6 80.0 63.2 47.7 55.6 55.4
Mixformer320 [10] 56.5 66.3 45.1 70.7 80.0 67.8 69.2 78.7 74.7 - - -
OSTrack256 [51] 54.2 63.2 42.2 71.0 80.4 68.2 69.1 78.7 75.2 47.4 57.3 53.3
OSTrack384 [51] 57.7 67.3 48.3 73.7 83.2 70.8 71.1 81.1 77.6 50.5 61.3 57.6
SwinTrack224 [33] - - - 71.3 81.9 64.5 67.2 70.8 - 47.6 53.9 -
SwinTrack384 [33] - - - 72.4 80.5 67.8 71.3 76.5 - 49.1 55.6 -
ROMTrack256 [3] 57.8 67.6 48.6 72.9 82.9 70.2 69.3 78.8 75.6 - - -
ROMTrack384 [3] 59.1 68.7 50.5 74.2 84.3 72.4 71.4 81.4 78.2 - - -
F-BDMTrack256 [49] - - - 72.7 82.0 69.9 69.9 79.4 75.8 47.9 57.9 54.0
F-BDMTrack384 [49] - - - 75.4 84.3 72.9 72.0 81.5 77.7 50.8 61.3 57.8
GRM256 [18] 54.5 63.1 45.2 73.4 82.9 70.4 69.9 79.3 75.8 - - -
GRM320 [18] 55.2 64.2 46.8 73.4 82.9 70.5 69.9 79.3 75.8 - - -
SeqTrack256 [6] 56.8 66.8 45.6 74.7 84.7 71.8 69.9 79.7 76.3 49.5 60.8 56.3
SeqTrack384 [6] 57.8 67.4 48.0 74.8 81.9 72.2 71.5 81.8 77.8 50.5 61.6 57.5
ARTrack256 [43] - - - 73.5 82.2 70.9 70.4 79.5 76.6 46.4 56.5 52.3
ARTrack384 [43] - - - 75.5 84.3 74.3 72.6 81.7 79.1 51.9 62.0 58.5

DeTrack256 (ours) 60.1 69.7 50.6 77.1 86.1 73.5 71.3 80.1 76.8 47.9 56.6 52.1
DeTrack384 (ours) 60.2 69.1 50.2 77.9 86.5 74.9 72.9 81.7 79.1 53.6 64.4 60.4

boxes into a high-dimensional space, we utilize word embedding, similar to Pix2Seq [5], with the
number of bins being 800 and 1200 for DeTrack256 and DeTrack384 respectively.

Training. Our experiments are conducted on Intel(R) Xeon(R) Gold 6326 CPU @ 2.90GHz with
252GB RAM and 8 NVIDIA GeForce RTX 3090 GPUs with 24GB memory. In the first stage, there
is only visual memory, which randomly samples two frames from the video. The model is trained on
full dataests (COCO, GOT-10k, TrackingNet, and LaSOT). A total of 240 epochs are trained, with
the learning rate set to 8e-5 for the denoising ViT and 8e-6 for the box refining. The learning rate
decreases by a factor of 10 at the 192-th epoch. In the second stage, trajectory memory is introduced
to refine the box, and sequential training is adopted. Consecutive frames are sampled from the video,
with each frame’s prediction result stored in the trajectory memory and updated in a first-in-first-out
manner. The training is conducted on three datasets excluding COCO. A total of 60 epochs are
trained, with the learning rates decreasing to 4e-6 and 4e-7 for the denoising ViT and box refining,
respectively. In the third stage, only IoUNet is trained while other parts are frozen. The learning rate
is set to 1e-4, and a total of 40 epochs are trained, with a 10× learning rate decay at the 30-th epoch.
For GOT-10k, the learning rate remains consistent with training on the full dataests. In the first stage,
we train for 120 epochs, with a 10× decrease in learning rate at the 96-th epoch, followed by training
for 25 epochs in the second stage. During the training on GOT-10k, IoUNet is not used. The loss
functions is cross-entropy and SIoU, which is the same as ARTrack[43].

Inference. During the testing phase, we use the search region and template as image inputs and
initialize the box with the previous box (predicted bounding box of t-1 frame). Additionally, the
update interval of the visual memory is set to 5 for t <= 100, doubled every 100 frames until t =
500, and then remains 160. While testing on the GOT-10k dataset, the visual memory is updated
directly. For other datasets, the IoU score and confidence score is applied to filter templates. The
trajectory memory stores seven bounding boxes, updating with a frequency of every frame. Inference
is conducted on an NVIDIA GeForce RTX 3090.

7

90585 https://doi.org/10.52202/079017-2875

4.2 State-of-the-Art Comparisons

AVisT. The AVisT dataset, as described in [36], covers a broad spectrum of diverse and demanding
situations, encompassing harsh weather conditions like thick fog, intense rainfall, and sandstorms.
Our tracker demonstrates outstanding performance on AVisT [36], a dataset with extreme weather
conditions and harsh environments. It outperforms SeqTrack384 by 2.4% in AUC, substantiating our
tracker’s excellence in extreme environmental conditions.

GOT-10k. GOT-10k comprises a training dataset consisting of 10,000 videos and a testing dataset
with 180 videos. There is no overlap between the training and test sets, necessitating trackers to
demonstrate robust generalization capabilities towards unseen data. As shown in Tab. 2, our method
demonstrates superior performance on the GOT-10k [30]. Our DeTrack256 achieves a significant
improvement in AUC compared to SeqTrack256 [6], with increases of 3.0% and 2.4%, respectively.
Our DeTrack384 outperforms the state-of-the-art method ARTrack384 by 2.4%. This is attributed to
the non-overlapping nature of the training and testing sets in the GOT-10k dataset, indicating our
method’s strong performance on unseen data. The denoising learning paradigm has learned powerful
denoising capabilities while facing with arbitrary positions and sizes of boxes.

LaSOT. LaSOT is benchmark designed for long-term tracking, featuring a test collection consisting
of 280 videos. Our DeTrack256 achieves an AUC of 71.3%, exhibiting performance improvement
compared to other methods based on 256 resolution. Additionally, our DeTrack384 also demonstrates
state-of-the-art performance, validating the strong competitiveness of our approach in long-term
dataset. This is attributed to our compound memory design, which leverages historical trajectory and
appearance information to enhance the model’s generalization ability on long-term dataset.

LaSOText. LaSOText [15]is an extension of the LaSOT dataset, also categorized as a long-term
tracking dataset. It comprises 150 video sequences and encompasses 15 object classes. Our De-
Track384 shows significant improvements compared to other methods, with a 1.7% increase in AUC
over SeqTrack384 and a 2.4% improvement in Pnorm. This demonstrates the strong generalization
capability of our approach even with extended data, particularly manifesting notable advantages in
the accuracy of bounding box center point.

4.3 Ablation study on Denoising Learning

Table 3: Ablation study of denoising steps on GOT-10k. The best results are highlighted in bold.

step1 step2 step3 step4 step5 step6 step7 step8 step9 step10 step11 step12

AO 1.1 1.6 4.8 7.5 12.5 21.4 33.1 52.3 65.7 70.2 74.8 77.1
SR0.5 0.1 0.2 1.2 2.8 8.0 17.9 34.1 57.6 74.7 78.7 83.7 86.1
SR0.75 0.0 0.0 0.2 0.8 2.9 8.0 17.8 39.1 56.9 64.6 70.5 73.5

Influence of denoising steps. We investigate the impact of the number of denoising iterations on the
performance of the tracker. Our proposed In-model latent denoising consists of a total of 12 steps
based on denosing blocks, requiring only a forward pass to complete denosing. As shown in Tab.3,
the model’s performance is nearly zero at the first and second denoising steps because the bounding
boxes are still filled with noise. However, there is a significant qualitative improvement in model
performance at the eighth denoising step, reaching its peak at the twelfth step. As shown in Fig.4, the
results improve progressively step by step, consistent with Tab. 3.

Analysis of denoising paradigm. Although our method completes denoising with only a single
forward pass through the tracking model, it can also be adapted to perform multiple forward passes,
similar to traditional Diffusion model[26]. Therefore, we further analyze and compare the multiple

Table 4: Ablation study of denoising paradigm on GOT-10k. The best results are highlighted in bold.

Denoising paradigm Steps AO SR0.5 SR0.75 FLOPS Speed

Multiple forward passes 96 75.7 84.8 72.9 424.0G 8FPS
Multiple forward passes 48 75.7 84.6 72.5 212.0G 12FPS
Multiple forward passes 24 75.9 84.9 72.4 106.0G 29FPS

Single forward pass 12 77.1 86.1 73.5 53.0G 42FPS

8

90586https://doi.org/10.52202/079017-2875

Table 5: Ablation study of denoising block on GOT-10k. The best results are highlighted in bold.

Denosing block Denoising attention NoisePred AO SR0.5 SR0.75 FLOPS

74.0 84.7 72.5 51.2G
✓ ✓ 75.1 84.1 72.0 52.7G
✓ ✓ ✓ 77.1 86.1 73.5 53.0G

Step1 Step2 Step3 Step4 Step5 Step6 Step7 Step8 Step9 Step10 Step11 Step12

Figure 4: Visualization of the denoising step GOT-10k. The first row is the video GOT-10k-
Test-000040, the second row is the video GOT-10k-Test-000003, and the third row is the video
GOT-10k-Test-000051.

forward passes and single forward pass paradigms, as shown in Tab. 4. In DeTrack, the performance
of multiple forward passes is not superior to that of single forward pass. Additionally, if denoising is
performed similarly to traditional Diffusion models, the computational cost increases significantly.
Single forward pass only requires 53.0G FLOPS and achieves a speed of 42 FPS, while multiple
forward passes incurs exponentially higher computational costs with a linear decrease in speed.

Analysis of the denoising block. As shown in Tab.5, if there is no NoisePred module, AO will
decrease by 2.0%, and SR0.5 will decrease by 2.0%. This demonstrates that noise prediction and
gradually subtracting noise are crucial for the model. Furthermore, removing denoising attention
leads to further performance degradation, demonstrating that utilizing image features as conditional
inputs can also assist in denoising. Moreover, the computational overhead of the denoising block
increased by only 1.80G, owing to the fact that the box comprises merely 4 tokens. Thus, even with
the addition of denoising attention and NoisePred, this remains a negligible computational burden.

4.4 Ablation study on Compound Memory

Because the memory mechanism is designed to address the challenge of dynamic changes in video,
and considering the greater variety of environmental and appearance changes in long video datasets,
we chose the LaSOT (long-term tracking dataset, averaging 2448 frames per video) to validate the
effectiveness of our memory mechanism.

(a) Visual Memory Length (b) Trajectory Memory Length (c) IoU Threshold (d) Softmax Threshold (e) Compound memory

Figure 5: Ablation study of memory on LaSOT. (a) Different visual memory lengths; (b) Different
trajectory memory lengths; (c) Different IoU thresholds are applied for template updates; (d) The
influence of Softmax thresholds. (e) With or without compound memory.
Exploration on the length of the visual memory and the trajectory memory. We firstly explore
the impact of different visual memory lengths. As shown in Fig.5 (a), when the length is only 1, the
model’s AUC is only 70.2. However, with an increase in memory length, performance gradually
improves, reaching its peak at the 3-rd frame. Subsequently, performance declines. This is because
when the memory is too short, the model cannot adapt to changes in the target and the environment.

9

90587 https://doi.org/10.52202/079017-2875

Conversely, when the memory is too long, it stores incorrect information. Unlike visual memory, as
shown in Fig. 5 (b), trajectory memory does not exhibit a trend of initially rising and then falling
with an increase in stored boxes. The performance consistently improves as the number of boxes
ranges from 1 to 7. As shown in Fig.5 (e), we also achieved a performance of 70.2 by removing all
memories, which further confirms the effectiveness of our memory.

Effects of IoU score and Softmax scorefor visual memory updating. For the update of visual
memory, we strive to avoid updating poor templates into our visual memory. This would lead to
tracking drift. Therefore, as shown in Fig. 5(d) keeping IoU score fixed, we conduct an ablation study
on different Softmax score values. The study found that an accuracy update can be achieved when the
Softmax score is set to 0.9, obtaining 71.3% on AUC. As shown in Fig. 5(c) keeping Softmax score
fixed, the best IoU score is 0.75. When the IoU score threshold is set to 0.85, it leads to a decrease in
AUC. It is because the overly strict condition reduces the frequency of visual memory updates.

5 Limitation
Despite achieving real-time speed and competitive performance, our DeTrack still has certain limita-
tions. Existing tracking methods struggle to recover the target when facing challenges such as object
occlusion and out-of-view situations. Although our proposed trajectory memory can assist in target
reacquisition after target loss in some cases, further improvements are needed to address challenges
like object occlusion and out-of-view scenarios. We will investigate the challenges in these scenarios.

6 Conclusion
Traditional visual object tracking methods using image-feature regression or coordinate autoregression
models faced limitations in handling positional priors and unseen data. Inspired by the diffusion
model, we introduced denoising learning to enhance model robustness. Our approach, employing
noisy bounding boxes for training, introduces a novel paradigm of denoising learning in object
tracking. By decomposing the process into individual denoising blocks within our proposed denoising
Vision Transformer (ViT), we achieved real-time performance while maintaining effectiveness.
Experimental results demonstrate the efficacy of our method, showcasing competitive performance
and rendering denoising learning applicable in the visual object tracking community.

Acknowledgement This work was supported by National Natural Science Foundation of China
(No.62072112), National Natural Science Foundation of China under Grant Nos. 62106051 and the
National Key R&D Program of China 2022YFC3601405.

References
[1] Luca Bertinetto, Jack Valmadre, Joao F Henriques, Andrea Vedaldi, and Philip HS Torr. Fully-convolutional

siamese networks for object tracking. In European conference on computer vision, pages 850–865. Springer,
2016.

[2] Goutam Bhat, Martin Danelljan, Luc Van Gool, and Radu Timofte. Learning discriminative model
prediction for tracking. In Proceedings of the IEEE/CVF international conference on computer vision,
pages 6182–6191, 2019.

[3] Yidong Cai, Jie Liu, Jie Tang, and Gangshan Wu. Robust object modeling for visual tracking. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 9589–9600, 2023.

[4] Shoufa Chen, Peize Sun, Yibing Song, and Ping Luo. Diffusiondet: Diffusion model for object detection.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 19830–19843, 2023.

[5] Ting Chen, Saurabh Saxena, Lala Li, David J Fleet, and Geoffrey Hinton. Pix2seq: A language modeling
framework for object detection. arXiv preprint arXiv:2109.10852, 2021.

[6] Xin Chen, Houwen Peng, Dong Wang, Huchuan Lu, and Han Hu. Seqtrack: Sequence to sequence learning
for visual object tracking. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 14572–14581, 2023.

[7] Xin Chen, Bin Yan, Jiawen Zhu, Dong Wang, Xiaoyun Yang, and Huchuan Lu. Transformer tracking. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 8126–8135,
2021.

[8] Zedu Chen, Bineng Zhong, Guorong Li, Shengping Zhang, and Rongrong Ji. Siamese box adaptive
network for visual tracking. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 6668–6677, 2020.

10

90588https://doi.org/10.52202/079017-2875

[9] Ho Kei Cheng, Yu-Wing Tai, and Chi-Keung Tang. Rethinking space-time networks with improved
memory coverage for efficient video object segmentation. Advances in Neural Information Processing
Systems, 34:11781–11794, 2021.

[10] Yutao Cui, Cheng Jiang, Limin Wang, and Gangshan Wu. Mixformer: End-to-end tracking with iterative
mixed attention. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 13608–13618, 2022.

[11] Martin Danelljan, Goutam Bhat, Fahad Shahbaz Khan, and Michael Felsberg. Atom: Accurate tracking
by overlap maximization. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 4660–4669, 2019.

[12] Martin Danelljan, Luc Van Gool, and Radu Timofte. Probabilistic regression for visual tracking. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 7183–7192,
2020.

[13] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth
16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

[14] Heng Fan, Hexin Bai, Liting Lin, Fan Yang, Peng Chu, Ge Deng, Sijia Yu, Mingzhen Huang, Juehuan Liu,
Yong Xu, et al. Lasot: A high-quality large-scale single object tracking benchmark. International Journal
of Computer Vision, 129(2):439–461, 2021.

[15] Heng Fan, Hexin Bai, Liting Lin, Fan Yang, Peng Chu, Ge Deng, Sijia Yu, Mingzhen Huang, Juehuan Liu,
Yong Xu, et al. Lasot: A high-quality large-scale single object tracking benchmark. International Journal
of Computer Vision, 129:439–461, 2021.

[16] Zhihong Fu, Qingjie Liu, Zehua Fu, and Yunhong Wang. Stmtrack: Template-free visual tracking with
space-time memory networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 13774–13783, 2021.

[17] Shenyuan Gao, Chunluan Zhou, Chao Ma, Xinggang Wang, and Junsong Yuan. Aiatrack: Attention in
attention for transformer visual tracking. In Computer Vision–ECCV 2022: 17th European Conference, Tel
Aviv, Israel, October 23–27, 2022, Proceedings, Part XXII, pages 146–164. Springer, 2022.

[18] Shenyuan Gao, Chunluan Zhou, and Jun Zhang. Generalized relation modeling for transformer tracking.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 18686–
18695, 2023.

[19] Dongyan Guo, Jun Wang, Ying Cui, Zhenhua Wang, and Shengyong Chen. Siamcar: Siamese fully
convolutional classification and regression for visual tracking. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 6269–6277, 2020.

[20] Pinxue Guo, Lingyi Hong, Xinyu Zhou, Shuyong Gao, Wanyun Li, Jinglun Li, Zhaoyu Chen, Xiaoqiang
Li, Wei Zhang, and Wenqiang Zhang. Clickvos: Click video object segmentation. arXiv preprint
arXiv:2403.06130, 2024.

[21] Pinxue Guo, Wanyun Li, Hao Huang, Lingyi Hong, Xinyu Zhou, Zhaoyu Chen, Jinglun Li, Kaixun Jiang,
Wei Zhang, and Wenqiang Zhang. X-prompt: Multi-modal visual prompt for video object segmentation.
In Proceedings of the 32nd ACM International Conference on Multimedia, pages 5151–5160, 2024.

[22] Pinxue Guo, Wei Zhang, Xiaoqiang Li, and Wenqiang Zhang. Adaptive online mutual learning bi-decoders
for video object segmentation. IEEE Transactions on Image Processing, 31:7063–7077, 2022.

[23] William Harvey, Saeid Naderiparizi, Vaden Masrani, Christian Weilbach, and Frank Wood. Flexible
diffusion modeling of long videos. Advances in Neural Information Processing Systems, 35:27953–27965,
2022.

[24] Kaijie He, Canlong Zhang, Sheng Xie, Zhixin Li, and Zhiwen Wang. Target-aware tracking with long-term
context attention. arXiv preprint arXiv:2302.13840, 2023.

[25] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked autoencoders
are scalable vision learners. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 16000–16009, 2022.

[26] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in neural
information processing systems, 33:6840–6851, 2020.

11

90589 https://doi.org/10.52202/079017-2875

[27] Jonathan Ho, Chitwan Saharia, William Chan, David J Fleet, Mohammad Norouzi, and Tim Salimans.
Cascaded diffusion models for high fidelity image generation. The Journal of Machine Learning Research,
23(1):2249–2281, 2022.

[28] Lingyi Hong, Zhongying Liu, Wenchao Chen, Chenzhi Tan, Yuang Feng, Xinyu Zhou, Pinxue Guo,
Jinglun Li, Zhaoyu Chen, Shuyong Gao, et al. Lvos: A benchmark for large-scale long-term video object
segmentation. arXiv preprint arXiv:2404.19326, 2024.

[29] Lingyi Hong, Shilin Yan, Renrui Zhang, Wanyun Li, Xinyu Zhou, Pinxue Guo, Kaixun Jiang, Yiting Chen,
Jinglun Li, Zhaoyu Chen, et al. Onetracker: Unifying visual object tracking with foundation models and
efficient tuning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 19079–19091, 2024.

[30] Lianghua Huang, Xin Zhao, and Kaiqi Huang. Got-10k: A large high-diversity benchmark for generic
object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(5):1562–
1577, 2019.

[31] Bo Li, Wei Wu, Qiang Wang, Fangyi Zhang, Junliang Xing, and Junjie Yan. Siamrpn++: Evolution
of siamese visual tracking with very deep networks. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 4282–4291, 2019.

[32] Bo Li, Junjie Yan, Wei Wu, Zheng Zhu, and Xiaolin Hu. High performance visual tracking with siamese re-
gion proposal network. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 8971–8980, 2018.

[33] Liting Lin, Heng Fan, Zhipeng Zhang, Yong Xu, and Haibin Ling. Swintrack: A simple and strong baseline
for transformer tracking. Advances in Neural Information Processing Systems, 35:16743–16754, 2022.

[34] Christoph Mayer, Martin Danelljan, Goutam Bhat, Matthieu Paul, Danda Pani Paudel, Fisher Yu, and Luc
Van Gool. Transforming model prediction for tracking. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 8731–8740, 2022.

[35] Christoph Mayer, Martin Danelljan, Danda Pani Paudel, and Luc Van Gool. Learning target candidate
association to keep track of what not to track. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 13444–13454, 2021.

[36] Mubashir Noman, Wafa Al Ghallabi, Daniya Najiha, Christoph Mayer, Akshay Dudhane, Martin Danelljan,
Hisham Cholakkal, Salman Khan, Luc Van Gool, and Fahad Shahbaz Khan. Avist: A benchmark for visual
object tracking in adverse visibility. arXiv preprint arXiv:2208.06888, 2022.

[37] Chitwan Saharia, Jonathan Ho, William Chan, Tim Salimans, David J Fleet, and Mohammad Norouzi.
Image super-resolution via iterative refinement. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 45(4):4713–4726, 2022.

[38] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv preprint
arXiv:2010.02502, 2020.

[39] Zikai Song, Run Luo, Junqing Yu, Yi-Ping Phoebe Chen, and Wei Yang. Compact transformer tracker
with correlative masked modeling. arXiv preprint arXiv:2301.10938, 2023.

[40] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Extracting and composing
robust features with denoising autoencoders. In Proceedings of the 25th international conference on
Machine learning, pages 1096–1103, 2008.

[41] Paul Voigtlaender, Jonathon Luiten, Philip HS Torr, and Bastian Leibe. Siam r-cnn: Visual tracking by
re-detection. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pages 6578–6588, 2020.

[42] Ning Wang, Wengang Zhou, Jie Wang, and Houqiang Li. Transformer meets tracker: Exploiting temporal
context for robust visual tracking. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 1571–1580, 2021.

[43] Xing Wei, Yifan Bai, Yongchao Zheng, Dahu Shi, and Yihong Gong. Autoregressive visual tracking. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 9697–9706,
2023.

[44] Qiangqiang Wu, Tianyu Yang, Ziquan Liu, Baoyuan Wu, Ying Shan, and Antoni B Chan. Dropmae:
Masked autoencoders with spatial-attention dropout for tracking tasks. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 14561–14571, 2023.

12

90590https://doi.org/10.52202/079017-2875

[45] Junliang Xing, Haizhou Ai, and Shihong Lao. Multiple human tracking based on multi-view upper-body
detection and discriminative learning. In 2010 20th International Conference on Pattern Recognition,
pages 1698–1701. IEEE, 2010.

[46] Yinda Xu, Zeyu Wang, Zuoxin Li, Ye Yuan, and Gang Yu. Siamfc++: Towards robust and accurate visual
tracking with target estimation guidelines. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 34, pages 12549–12556, 2020.

[47] Bin Yan, Houwen Peng, Jianlong Fu, Dong Wang, and Huchuan Lu. Learning spatio-temporal transformer
for visual tracking. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
10448–10457, 2021.

[48] Bin Yan, Xinyu Zhang, Dong Wang, Huchuan Lu, and Xiaoyun Yang. Alpha-refine: Boosting tracking
performance by precise bounding box estimation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 5289–5298, 2021.

[49] Dawei Yang, Jianfeng He, Yinchao Ma, Qianjin Yu, and Tianzhu Zhang. Foreground-background distri-
bution modeling transformer for visual object tracking. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 10117–10127, 2023.

[50] Ruihan Yang, Prakhar Srivastava, and Stephan Mandt. Diffusion probabilistic modeling for video genera-
tion. Entropy, 25(10):1469, 2023.

[51] Botao Ye, Hong Chang, Bingpeng Ma, Shiguang Shan, and Xilin Chen. Joint feature learning and relation
modeling for tracking: A one-stream framework. In Computer Vision–ECCV 2022: 17th European
Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXII, pages 341–357. Springer, 2022.

[52] Qianqian Yu, Keqi Fan, and Yuhui Zheng. Domain adaptive transformer tracking under occlusions. IEEE
Transactions on Multimedia, 2023.

[53] Zhipeng Zhang, Houwen Peng, Jianlong Fu, Bing Li, and Weiming Hu. Ocean: Object-aware anchor-free
tracking. In European Conference on Computer Vision, pages 771–787. Springer, 2020.

[54] Haojie Zhao, Dong Wang, and Huchuan Lu. Representation learning for visual object tracking by masked
appearance transfer. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 18696–18705, 2023.

[55] Xinyu Zhou, Pinxue Guo, Lingyi Hong, Jinglun Li, Wei Zhang, Weifeng Ge, and Wenqiang Zhang.
Reading relevant feature from global representation memory for visual object tracking. In Thirty-seventh
Conference on Neural Information Processing Systems, 2023.

[56] Xinyu Zhou, Pinxue Guo, Lingyi Hong, Jinglun Li, Wei Zhang, Weifeng Ge, and Wenqiang Zhang.
Reading relevant feature from global representation memory for visual object tracking. Advances in Neural
Information Processing Systems, 36, 2024.

A Appendix

Table 6: The differences between DDPM[26], DAE[40], and DeTrack[40].

DDPM DAE DeTrack

Noise Type Gaussian noise Gaussian noise Gaussian noise
Input Noisy image(x∗) Noisy image(x∗) Noisy box(b∗)

Encoding z = fθ(x
∗) z = fθ(x

∗) z12, z11 · · · , z1 = fθ(b
∗)

Decoding Noise ϵθ = gθ(z) image xθ = gθ(z) box bθ = gθ(z12)
Optimization objective ϵ− ϵθ x− xθ b− bθ

Inference xt−1 = 1√
αt

(xt − β√
1−ᾱt

ϵθ) + σtϵ xθ = gθ(z) bθ = gθ(z12)

A.1 The differences between DDPM, DAE, and DeTrack

. According to Tab.6, we compares and analyzes the differences between DDPM, DAE, and DeTrack
in denoising learning, highlighting the advantages of the DeTrack model in visual object tracking.
All three use Gaussian noise to simulate the noise characteristics of the input; however, they differ in
input data, encoding methods, decoding methods, optimization objectives, and inference approaches.
DDPM and DAE take noisy images as input (x∗), aiming to restore or generate high-quality images,

13

90591 https://doi.org/10.52202/079017-2875

while DeTrack innovatively uses noisy bounding boxes (b∗) as input, making it more suitable for
visual tracking tasks in complex backgrounds and scenarios with fast-moving objects.

In terms of encoding, DDPM and DAE use single-layer feature encoding to obtain z = fθ(x
); in

contrast, DeTrack employs multi-layer feature encoding with layer-by-layer denoising within the
model, resulting in multiple hidden states zi (z12, z11, . . . , z1 = fθ(b

)). This layer-wise denoising
approach retains and optimizes target feature information, enhancing robustness to bounding box
noise. For decoding, DDPM’s decoding target is to restore the noise ϵθ = gθ(z), while DAE directly
decodes the image xθ = gθ(z). DeTrack, on the other hand, decodes to a denoised bounding box
bθ = gθ(z12), ensuring high-precision localization of the target bounding box.

Regarding the optimization objective, DDPM minimizes the error between generated noise and target
noise (ϵ− ϵθ), DAE minimizes the error between the denoised image and the original image (x− xθ),
and DeTrack optimizes the error between the denoised bounding box and the original bounding box
(b− bθ), making it more suitable for accurate visual target localization. For inference, DDPM uses a
reverse diffusion process to progressively denoise and generate an image, while DAE and DeTrack
directly generate denoised results in inference: DAE outputs the image xθ = gθ(z), and DeTrack
outputs the bounding box bθ = gθ(z12).

Overall, DeTrack’s multi-layer feature encoding with internal model denoising, specific decoding
approach, and optimization objective enable it to exhibit higher robustness in noisy and complex
backgrounds, making it well-suited for target tracking tasks in dynamic and complex scenarios.

Table 7: Comparison of noise prediction pattern on GOT-10k. The best results are highlighted in
bold.

AO SR0.5 SR0.75

Predicting the total noise 75.2 84.1 71.4
Predicting noise layer by layer 77.1 86.1 73.5

A.2 Comparison of noise prediction pattern

. According to 7, Predicting the total noise resulted in a decrease of 1.9 in AO, 2 in SR0.5, and 2.1 in
SR0.75,compared to multiple noise predictions. We analyze that this is because predicting the total
noise directly is more challenging than predicting it layer by layer. Layer-by-layer denoising allows
the model to learn to filter out some noise at intermediate layers before arriving at the final result,
rather than achieving it in one step.

A.3 Analysis of Denoising Paradigm with ViT-Small

.Table 8 presents an ablation study on different denoising paradigms and step settings evaluated on
the GOT-10k dataset with a Vit-Small backbone. We compare performance metrics such as Average
Overlap (AO) and Success Rates at two different overlap thresholds (SR0.5 and SR0.75).

The results indicate that multiple forward passes generally yield better performance compared to a
single forward pass. Specifically, a step count of 48 achieves the best AO, SR0.5, and SR0.75 values,
with scores of 69.4, 78.5, and 63.4, respectively, highlighted in bold in Table 8. This suggests that
while increasing the number of steps from 12 (single forward pass) to 48 improves performance,
further increasing to 96 steps does not result in additional gains, possibly due to diminishing returns
in iterative refinement or over-smoothing of features.

Table 8: Ablation study of denoising paradigm on GOT-10k (Vit-Small). The best results are
highlighted in bold.

Denoising paradigm Steps AO SR0.5 SR0.75

Multiple forward passes 96 68.9 78.2 63.2
Multiple forward passes 48 69.4 78.5 63.4
Multiple forward passes 24 69.4 78.0 63.0

Single forward pass 12 69.1 78.3 62.9

14

90592https://doi.org/10.52202/079017-2875

Notably, the AO metric remains at 69.4 for both 48 and 24 steps, although the success rates (SR0.5 and
SR0.75) are slightly lower at 24 steps. This finding implies that 48 steps might strike a balance between
computational efficiency and denoising effectiveness, providing optimal tracking performance without
the need for excessive forward passes.

In summary, the experiments demonstrate that while iterative denoising is beneficial, there exists an
optimal step count (48 in this case) that maximizes tracking accuracy. This demonstrates that our
proposed DeTrack, when using ViT-Small as the backbone, can enhance tracking accuracy through
a recursive denoising approach, similar to DDPM. However, this recursive denoising introduces a
significant increase in computational complexity.

A.4 Applying DiffusionDet to Tracking

Table 9: Comparison of Configurations between DiffusionTrack and DeTrack.

Denoising paradigm Encoder Decoder

DiffusionTrack DeTrack Encoder DiffusionDet Decoder
DeTrack DeTrack Encoder DeTrack Decoder

DiffusionDet cannot be directly applied to object tracking, as it requires interaction between the
template and search region in tracking. Therefore, as shown in Tab. 10, we use the Encoder from
DeTrack, which enables this interaction, as the encoder for DiffusionDet. The decoder is taken from
DiffusionDet. We call this model DiffusionTracking, and it uses a resolution of 384x384. For fairness,
the learning rate, number of epochs, weight decay, and other training parameters are kept consistent.

Table 10: Performance Comparison on GOT-10k between DiffusionTrack and DeTrack. The best
results are highlighted in bold.

Denoising paradigm Step AO SR0.5 SR0.75 FLOPS

DiffusionTrack 1 71.8 81.0 69.6 120.0G
DiffusionTrack 2 72.1 81.1 70.0 123.4G
DiffusionTrack 4 71.9 81.1 69.3 133.5G
DiffusionTrack 8 73.5 82.9 71.2 147.2G
DiffusionTrack 12 72.5 81.9 70.2 162.7G

DeTrack 12 77.9 86.5 74.9 119.0G

A.5 Comparison on GOT-10k between DiffusionTrack and DeTrack

The performance comparison on GOT-10k dataset between DiffusionTrack and DeTrack demonstrates
notable differences in tracking accuracy and computational efficiency across various denoising steps.
For DiffusionTrack, the tracking performance generally improves as the step count increases, reaching
its peak with 8 steps, where the Average Overlap (AO) is 73.5%, SR0.5 is 82.9%, and SR0.75 is
71.2%. However, this improvement comes at the cost of increased computational requirements, with
the FLOPS reaching 147.2G at 8 steps and 162.7G at 12 steps.

In contrast, DeTrack, tested with 12 steps, achieves the highest performance overall, with an AO of
77.9%, SR0.5 of 86.5%, and SR0.75 of 74.9%, surpassing all DiffusionTrack configurations. DeTrack
also maintains lower computational complexity with 119.0G FLOPS, suggesting a more optimal
balance of tracking accuracy and efficiency. This analysis indicates that while DiffusionTrack benefits
from increased steps in tracking performance, DeTrack achieves superior results both in accuracy and
computational efficiency.

15

90593 https://doi.org/10.52202/079017-2875

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We accurately describe our main contributions and the covered domains in the
abstract1 and introduction1
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In the Limitation5 of the main text, we describe the limitations of our method.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

16

90594https://doi.org/10.52202/079017-2875

Justification: we have provide the full set of assumptions and a complete (and correct) proof
in section3.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide detailed descriptions of our tracking paradigm and methods in
sections3, and elaborate on the model’s details as well as training and inference procedures
in section4.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

17

90595 https://doi.org/10.52202/079017-2875

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: We will provide the code and model after the paper be accepted
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide the training and test details in section4.1 and provide the update
threshold in ablation study4.4
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: We followed previous visual object tracking methods[6, 43, 51, 7]and did not
conduct Experiment Statistical Significance.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

18

90596https://doi.org/10.52202/079017-2875

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide sufficient information on the computer resources in section4.1 and
report the speed in Tab.4. and Tab.1
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The paper conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: Our method is visual object tracking, not image generation, and does not pose
issues such as generating false information.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

19

90597 https://doi.org/10.52202/079017-2875

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our paper has no relevant risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite all the assets utilized in our paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

20

90598https://doi.org/10.52202/079017-2875

paperswithcode.com/datasets

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

21

90599 https://doi.org/10.52202/079017-2875

