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Abstract

Network pruning is a commonly used measure to alleviate the storage and com-
putational burden of deep neural networks. However, the fundamental limit of
network pruning is still lacking. To close the gap, in this work we’ll take a
first-principles approach, i.e. we’ll directly impose the sparsity constraint on
the loss function and leverage the framework of statistical dimension in con-
vex geometry, thus enabling us to characterize the sharp phase transition point,
which can be regarded as the fundamental limit of the pruning ratio. Through
this limit, we’re able to identify two key factors that determine the pruning ra-
tio limit, namely, weight magnitude and network sharpness. Generally speaking,
the flatter the loss landscape or the smaller the weight magnitude, the smaller
pruning ratio. Moreover, we provide efficient countermeasures to address the
challenges in the computation of the pruning limit, which mainly involves the
accurate spectrum estimation of a large-scale and non-positive Hessian matrix.
Moreover, through the lens of the pruning ratio threshold, we can also provide
rigorous interpretations on several heuristics in existing pruning algorithms. Ex-
tensive experiments are performed which demonstrate that our theoretical pruning
ratio threshold coincides very well with the experiments. All codes are available at:
https://github.com/QiaozheZhang/Global-One-shot-Pruning

1 Introduction

Deep neural networks (DNNs) have achieved huge success in the past decade, which relies heavily
on the overparametrization, i.e. the number of parameters is normally several order of magnitudes
more than the number of data samples. Though being a key enabler for the striking performance of
DNN, overparametrization poses huge burden for computation and storage in practice. It is therefore
tempting to ask: 1) Can we prune the DNN by a large ratio without performance sacrifice? 2) What’s
the fundamental limit of network pruning?

For the first question, a key approach is to perform network pruning, which was first introduced
by [21]. Network pruning can substantially decrease the number of parameters, thus alleviating
the computational and storage burden. The basic idea of network pruning is simple, i.e., to devise
metrics to evaluate the significance of parameters and remove the insignificant ones. Various pruning
algorithms have been proposed so far: [21; 12; 13; 23; 42; 35; 36; 24; 22; 15] and [13].

In contrast, our understanding on the second question, i.e., the fundamental limit of network pruning,
is far less. Some relevant works are: [19] proposed to characterize the degrees of freedom of a
DNN by exploiting the framework of Gaussian width. [25] directly applied the above degrees of
freedom result to the pruning problem, in the main purpose of unveiling the mechanisms behind the
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Lottery Thicket Hypothesis (LTH) [6]. The lower bound of pruning ratio is briefly mentioned in [25],
unfortunately, their predicted lower bound does not match the actual value well, in some cases even
with big gap. And there is no discussion on the upper bound in that paper.

Despite the above progress, a systematic of the study on the fundamental limit of network pruning
is still lacking. To close this gap, we’ll take a first principles approach to address this problem and
exploit the powerful framework of the high-dimensional convex geometry. Essentially, we impose
the sparsity constraint directly on the loss function, thus we can reduce the pruning limit problem
to a set intersection problem, then we leverage the powerful approximate kinematics formula [1]
in convex geometry, which provides a very sharp phase transition point to easily address the set
intersection problem, thus enabling a very tight characterization of the limit of network pruning.
Intuitively speaking, the limit of pruning is determined by the dimension of the loss sublevel set
(whose definition is in Sec. 2) of the network, the higher the latter, the smaller the former.

The key contributions of this paper can be summarized as follows:

• We fully characterize the limit of network pruning, which coincides perfectly with the ex-
periments. Moreover, this limit conveys two valuable messages: 1) The smaller the network
sharpness (defined as the trace of the Hessian matrix), the more we can prune the network; 2)
The smaller the weight magnitude, the more we can prune the network.

• We provide an efficient spectrum estimation algorithm for large-scale Hessian matrices when
computing the Gaussian width of a high-dimensional non-convex set.

• We present intuitive explanations on many heuristics utilized in existing pruning algorithms
through the lens of our pruning ratio limit, which include: (a). Why gradually changing the
pruning ratio during iterative pruning is preferred. (b). Why employing l2 regularization
makes significant performance difference in Rare Gems algorithm [28]. (c).Why magnitude
pruning might be the optimal pruning strategy.

1.1 Related Work

Pruning Methods: Unstructured pruning involves removing unimportant weights without adhering
to some structural constraints. Typical methods in this class include: [13] presented the train-prune-
retrain method, which reduces the storage and computation of neural networks by learning only the
significant connections. [37; 38] employed the energy consumption of each layer as the metric to
determine the pruning order and developed latency tables to identify the layers that should be pruned.
[11] proposed dynamic network surgery, which reduced network complexity significantly by pruning
connections in real time. [6] proposed pruning by iteratively removing part of the small weights,
and based on Frankle’s iterative pruning[6], [28] introduced l2-norm to constrain the magnitude
of unimportant parameters during iterative training. To the best of our knowledge, there is still no
systematic study on the fundamental limit of pruning from the theoretical perspective.

Understanding Neural Networks through Convex Geometry: Convex Geometry is a powerful tool
for characterizing the performance limit of high-dimensional statistical inference [5] and learning
problems. For statistical inference, [5] pioneered to employ the convex geometry to study the recovery
threshold of the classical linear inverse problem. For statistical learning, [19] studied the training
dimension threshold of the network from a geometric point of view by utilizing the Gordon’s Escape
theorem[10], which shows that the network can be trained with less degrees of freedom (DoF) than
the network size in the affine subspace. The most relevant work to ours is [25], which studied the
Lottery Tickets Hypothesis (LTH)[6] by applying the above DoF results in [19] to demonstrate that
iteration is needed in LTH and that pruning is impacted by the eigenvalues of the loss landscape. The
main difference between [25] and ours are as follows: 1) The lower bound of the pruning ratio is only
briefly mentioned in [25], and their predicted lower bound does not match the actual value well, in
some cases even with quite big gap (the main reason lies in the spectrum estimation error in their
algorithm). 2) The core results in [25] are based on Gordon’s Escape theorem [10], which can only
provide the lower bound (necessary condition). 3) Rigorous analysis as well as the computational
issues regarding the pruning limit are lacking in [25]. In contrast, all the above issues are addressed
in this paper.
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2 Problem Setup & Key Notions

To explore the fundamental limit of network pruning, we’ll take the first principles approach. In
specific, we directly impose the sparsity constraint on the original loss function, thus the feasibility
of pruning can be reduced to determining whether two sets, i.e. the sublevel set (determined by
the Hessian matrix of the loss function) and the k-sparse set intersects. Through this framework,
we’re able to leverage tools in high-dimensional convex geometry, such as statistical dimension [1],
Gaussian width [34] and Approximate Kinematics Formula [1].

Model Setup. Let ŷ = f(w,x) be a deep neural network with weights w ∈ RD and inputs x ∈ RK .
For a given training data set {xn,yn}Nn=1 and a loss function ℓ, the empirical loss landscape is
defined as L(w) = 1

N

∑N
n=1 ℓ(f(w,xn),yn).

Pruning Objective. In essence, network pruning can be formulated as the following optimization
problem:

min ∥w∥0 s.t. L(w) ≤ L(w∗) + ϵ (1)

where w is the pruned weight and w∗ is the original one.

Sparse Network. Given a dense network with weights w∗, we denote its sparse counterpart as a
k-sparse network, whose weight is given by: wk = w∗ ⊙m, where ⊙ is element-wise multiplication
and ∥m∥0 = k.

Loss Sublevel Sets. A loss sublevel set of a network is the set of all weights w that achieve the loss
up to L(w∗) + ϵ:

S(ϵ) := {w ∈ RD : L(w) ≤ L(w∗) + ϵ}. (2)

Feasible k-Sparse Pruning. We define the pruning ratio as ρ = k/D and call a sparse weight wk

as a feasible k-sparse pruning if it satisfies:
S(ϵ) ∩ {wk} ≠ ∅, (3)

Below are some key notions and results from high dimensional convex geometry, which are of critical
importance to our work.

Definition 2.1 (Convex Cone & Conic Hull) A convex cone C ∈ RD is a convex set that satisfy:∑
i ηixi ∈ C for all ηi > 0 and xi ∈ C. The convex conic hull of a set S is defined as:

C(S) := {
∑

i
ηiwi ∈ RD : ηi > 0, wi ∈ S} (4)

Definition 2.2 (Gaussian Width [34]) The gaussian width of a subset S ∈ RD is given by:

w(S) =
1

2
E sup

x,y∈S
⟨g,x− y⟩ ,g ∼ N (0, ID×D). (5)

Gaussian width is useful to characterize the complexity of a convex body. On the other hand, statistical
dimension is an important metric to characterize the complexity of convex cones. Intuitively speaking,
the bigger the cone, the larger the statistical dimension, as illustrated in Fig. 1(b).

Definition 2.3 (Statistical Dimension [1]) The statistical dimension δ(C) of a convex cone C is:
δ(C) := E[∥ΠC(g)∥22] (6)

where ΠC is the Euclidean metric projector onto C and g ∼ N (0, ID×D) is a standard normal
vector.

To characterize the sufficient and necessary condition of the set intersection, we’ll resort to the
powerful Approximate Kinematics Formula [1], which basically says that for two convex cones (or
generally, sets), if the sum of their statistical dimension exceeds the ambient dimension, these two
cones would intersect with probability 1, otherwise they would intersect with probability 0.

Theorem 2.4 (Approximate Kinematics Formula, Theorem 7.1 of [1]) Let C be a convex conic
hull of a sublevel set S(ϵ) in RD, and draw a random orthogonal basis Q ∈ RD×D. For a
k-dimensional subspace Sk, it holds that:

δ(C) + k ≲ D ⇒ P{C ∩QSk = ∅} ≈ 1

δ(C) + k ≳ D ⇒ P{C ∩QSk = ∅} ≈ 0

3
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Figure 1: Panel (a, b): Illustration of a convex conic hull and the statistical dimension. Panel (c):
Effect of projection distance on projection size and intersection probability.

3 Bounds of Pruning Ratio

3.1 Lower Bound of Pruning Ratio

In this section, we aim to characterize the lower bound of pruning ratio, i.e. when the pruning ratio
falls below some threshold, it’s impossible to retain the generalization performance. To establish this
impossibility result, we’ll leverage the Approximate Kinematics Formula as detailed in Theorem 2.4.

3.1.1 Network Pruning As Set Intersection

To demonstrate that when k is smaller than a given threshold, it is impossible to find a performance-
preserving k-sparse network induced by the dense network, we need to prove that the loss sublevel
set has no intersection with any k-sparse set resulting from the dense weight, i.e. S(ϵ) ∩ {wk} = ∅.

To that end, it suffices to prove its translated version, namely Swk(ϵ) ∩ {0} = ∅, where Swk(ϵ) :=
{w − wk : w ∈ S(ϵ)}. To prove the latter, we’ll further prove its strengthened version, i.e. the
convex conic hull of Swk(ϵ) and a random orthogonal rotation of the subspace S(wk), which is
comprised of all vectors that share the same zero-pattern as wk (including the point 0), has no
intersection. Namely, we’ll prove that

C(Swk(ϵ)) ∩QS(wk) = ∅, (7)

where Q denotes the Haar-measured orthogonal rotation.

To prove Eq.7, we can easily invoke the necessary condition of the Approximate Kinematics Formula
(Theorem 2.4). In order to calculate the involved statistical dimension therein, we choose to calculate
the corresponding Gaussian width as the proxy by taking advantage of the following theorem.

Theorem 3.1 (Gaussian Width vs. Statistical Dimension, Proposition 10.2 of [1]) Given a unit
sphere SD−1 := {x ∈ RD : ∥x∥ = 1}, let C be a convex cone in RD, then:

w(C ∩ SD−1)2 ≤ δ(C) ≤ w(C ∩ SD−1)2 + 1 (8)

To calculate the Gaussian width of C(Swk(ϵ)), we need to project the sublevel set Swk(ϵ) onto the
surface of the unit sphere centered at origin. which is defined as

p(Swk(ϵ)) = {(x−wk)/∥x−wk∥2 : x ∈ Swk(ϵ)}, (9)

and illustrated in Fig. 1(c). It is easy to see that as the distance ∥x−wk∥2 increases, the projected
Gaussian width will decrease, as a result the statistical dimension of the set will also decrease, thus
increasing the difficulty of its intersecting with a given subspace.

Theorem 3.2 (Lower Bound of Pruning Ratio) Let C be a convex conic hull of a sublevel set
Swk(ϵ) in RD. wk doesn’t constitute a feasible k-sparse pruning with probability 1, if the fol-
lowing holds:

w(p(Swk(ϵ)))2 + k ≲ D (10)

This theorem tells us that when the dimension k of the sub-network is lower than kL = D −
w(p(Swk(ϵ)))2, the subspace will not intersect with Swk(ϵ), i.e., no feasible k-sparse pruning can be
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found. Therefore, the lower bound of the pruning ratio of the network can be expressed as:

ρL =
D − w(p(Swk(ϵ)))2

D
= 1− w(p(Swk(ϵ)))2

D
. (11)

It’s worth mentioning that this lower bound has been provided in [25] by utilizing the Gordon’s
Escape Theorem[10]. The main difference between our work and [10] lies in that Gordon’s Escape
Theorem is not strong enough to provide the upper bound (sufficient condition) of the pruning ratio,
while the Approximate Kinematic Formula we employ does.

Reformulation of the Sublevel Set. Consider a well-trained deep neural network model with weights
w∗ and a loss function L(w), where w lies in a small neighborhood of w∗. By performing a Taylor
expansion of L(w) at w∗, using the fact that the first derivative is equal to 0 and ignoring the higher
order terms, the loss sublevel set S(ϵ) can be reformulated as:

S(ϵ) = {ŵ ∈ RD :
1

2
ŵTHŵ ≤ ϵ} (12)

where ŵ = w −w∗ and H denote the Hessian matrix of L(w) w.r.t. w. Due to the positive-
definiteness of H, S(ϵ) corresponds to an ellipsoid. The related proofs can be found in Appendix
D.1.

3.1.2 Gaussain Width of the Ellipsoid

We leverage tools in high-dimensional probability, especially the concentration of measure, which
enables us to present a rather precise expression for the Gaussian width of a high-dimensional
ellipsoid.

Lemma 3.3 For an ellipsoid S(ϵ) defined by : S(ϵ) := {w ∈ RD : 1
2w

THw ≤ ϵ}, where
H ∈ RD×D is a positive definite matrix, its Gaussian width is given by:

w(S(ϵ)) ≈ (2ϵTr(H−1))1/2 = (
∑D

i=1
r2i )

1/2 (13)

where ri =
√

2ϵ/λi is the radius of ellipsoidal body and λi is the i-th eigenvalue of H.

The proof of Lemma 3.3 is in Appendix D.1. The Gaussian width of an ellipsoid has been provided

in [19] as in the interval [(
√

2
π (
∑D

i=1 r
2
i )

1/2, (
∑D

i=1 r
2
i )

1/2], in contrast we sharpen the estimation

of Gaussian width to a point (
∑D

i=1 r
2
i )

1/2. For the settings which involve projection, the squared

radius r2i should be modified to r2i
∥w∗−wk∥2

2+r2i
[19]. Therefore, the Gaussian width of projected S(ϵ)

defined in Eq.(12) equals:

w(p(Swk(ϵ))) ≈ (

D∑
i=1

r2i
∥w∗ −wk∥22 + r2i

)1/2 (14)

3.1.3 Computable Lower Bound of Pruning Ratio

Combining Eq.(11) and Eq.(14), we obtain the following computable lower bound of the pruning
ratio:

Corollary 3.4 Given a well-trained deep neural network with trained weight w∗ ∈ RD and a loss
function L(w), for a k-sparse pruned weight wk, the lower bound of pruning ratio of model is:

ρL = 1− 1

D

D∑
i=1

r2i
∥w∗ −wk∥22 + r2i

. (15)

where ri =
√
2ϵ/λi and λi is the eigenvalue of the Hessian matrix of L(w) w.r.t. w.
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3.1.4 Pruning Ratio vs Magnitude & Sharpness

It is evident from Eq.(15) that for a given trained network (whose spectrum of the Hessian matrix is
fixed), to minimize the lower bound of the pruning ratio, we just need to minimize ∥w∗ −wk∥2, i.e.
the sum of magnitudes of the pruned parameters. Therefore, the commonly-used magnitude-based
pruning algorithms get justified. Moreover, it also inspires us to employ the one-shot magnitude
pruning algorithm as detailed in Section 4, whose performance proves to be better than other existing
algorithms, to the best of our knowledge.

Besides the above-discussed magnitude of the pruned sub-vector, we also identify another important
factor that determines the pruning ratio, i.e. the network sharpness, which describes the sharpness of
the loss landscape around the minima, as defined by the trace of the Hessian matrix, namely Tr(H)
([26] and [9], network flatness is the opposite of network sharpness; as sharpness increases, flatness
decreases, and vice versa.).

Lemma 3.5 (Pruning Ratio vs. Sharpness) Given a well-trained neural network f(w), where w
is the parameters. The lower bound of the pruning ratio and the sharpness obeys:

ρL ≤ 1− 2ϵD

∥w∗ −wk∥22Tr(H) + 2ϵD
(16)

where H is the hessian matrix of the loss function w.r.t. w.

Lemma 3.5 is obtained by utilizing the Cauchy–Schwarz Inequality, whose proof can be found in
Appendix F. It can be seen from Lemma 3.5 that the lower bound of the network pruning ratio is
heavily dependent on the sharpness of the network, i.e. flatter networks imply more sparsity. This can
be a valuable guideline for both training and pruning the networks. Intuitively, a flatter loss landscape
is less sensitive to weight perturbations, indicating greater tolerance to weight removal.

3.2 Upper Bound of Pruning Ratio

In order to establish the upper bound of the pruning ratio, we need to prove that there exists an
k-sparse weight vector intersects with the loss sub-level set.

For a given trained weight w∗, we split it into two parts, i.e. the unpruned subvector, w1 =
[w∗

1,w
∗
2, . . . ,w

∗
k] and the pruned one w2 = [w∗

k+1,w
∗
k+2, . . . ,w

∗
D]. By fixing w1, the loss sublevel

set can be reformulated as:

S(w
′
, ϵ) = {w

′
∈ RD−k : L([w1,w

′
]) ≤ L(w∗) + ϵ} (17)

In order to prove the existence of a k-sparse weight vector wk, we just need to show that the all-zero
vector is in S(w

′
, ϵ). To that end, we’ll take advantage of the sufficient condition of the approximate

kinematics formula (Theorem 2.4) to show that it suffices to render the statistical dimension of the
projected cone of S(w

′
, ϵ) being full, i.e. D − k. Thus we can obtain the upper bound of the number

of unpruned parameters, i.e. k.

Specifically, by invoking the sufficient part of Theorem 2.4, the upper bound of the pruning ratio by a
given pruning strategy is as follows:

Theorem 3.6 (Upper Bound of Pruning Ratio) Given a sublevel set S(w
′
, ϵ) in RD−k. To ensure

that the all-zero vector 0 ∈ RD−k contained in S(w
′
, ϵ), it suffices that:

w(p(S(w
′
, ϵ)))2 ≳ D − k.

The Gaussian width of projected S(w
′
, ϵ) can be easily obtained by employing Lemma 3.3, i.e.

w(p(S(w
′
, ϵ)))2 =

∑D−k
i

r̃2i
∥w∗−wk∥2

2+r̃2i
, where r̃i =

√
2ϵ/λ̃i , λ̃i is the eigenvalue of the hessian

matrix of L([w1,w
′
]) w.r.t. to w

′
and the fact that ∥w∗ −wk∥2 = ∥w2∥2 is used. Correspondingly,

the upper bound of the pruning ratio can be expressed as

ρU ≈ 1− w(p(S(w
′
, ϵ)))2

D
= 1− 1

D

D−k∑
i=1

r̃2i
∥w∗ −wk∥22 + r̃2i

. (18)
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3.3 Fundamental Limit of Pruning Ratios

As demonstrated above, the pruning ratio can be bounded as follows:

1− 1

D

D∑
i=1

r2i
∥w∗ −wk∥22 + r2i

≤ ρ ≤ 1− 1

D

D−k∑
i

r̃2i
∥w∗ −wk∥22 + r̃2i

. (19)

It is easy to notice that the upper bound and lower bound are of nearly identical form. In fact, as we’ll
elaborate in the following, they are also of quite close value, which implies that we are able to obtain
a sharp characterization of the fundamental limit of pruning ratio. Meanwhile, it is worthwhile noting
that the pruning limit depends on the magnitude of the final weights, which might be significantly
impacted by the weight initialization. Therefore, we still need to explore whether the magnitude
of final weights is dependent on the initialization values. In the appendix, we’ll demonstrate that
once the data, network architecture and training method are fixed, the distribution of trained network
weights remains nearly insensitive to the initializations, thus yielding an affirmative answer about the
above question.

4 Achievable Scheme & Computational Issues

Thus far we have established the lower bound and upper bound of the pruning ratio by leveraging
the Approximate Kinematic Formula in convex geometry [1]. To proceed, we will demonstrate that
our obtained bounds are tight in the sense that we can devise an achievable pruning algorithm whose
corresponding upper bound is quite close to the lowest possible value of the lower bound. As argued
in Corollary 3.4, the magnitude pruning, which removes all the smallest D − k weights, will result in
the lowest pruning ratio lower bound. Inspired by this result, we’ll focus on the magnitude pruning
methods in order to approach the lower bound in the sequel.

For the lower bound part, we need to address several challenges regarding the computation of
the Gaussian width of a high-dimensional deformed ellipsoid, which involves tackling the non-
positiveness of the Hessian matrix as well as the spectrum estimation of a large-scale Hessian
matrix.

For the upper bound part, we’ll focus on a relaxed version of Eq. 1 by introducing the l1 regularization
term, for the sake of computational complexity. Then we’ll employ the one-shot magnitude pruning
to compress the network.

4.1 Computational Challenges & Countermeasures

To compute the lower bound of the pruning ratio, we need to address the following two challenges:

Gaussian Width of the Deformed Ellipsoid. In practice, it is usually hard for the network to
converge to the exact minima, thus leading to a non-positive definite Hessian matrix. In other words,
the ideal ellipsoid gets deformed due to the existence of negative eigenvalues. Determining the
Gaussian width of the deformed ellipsoid is a challenging task. To address this problem, we resort to
convexifying (i.e. taking the convex hull of) the deformed ellipsoid and then calculating the Gaussian
width of the latter instead, by proving that the convexifying procedure has no impact on the Gaussian
width. (The proof is presented in Appendix D.2).

Improved Spectrum Estimation. Neural networks often exhibit a quite significant number of
zero-valued or vanishingly small eigenvalues in their Hessian matrices. It’s hard for the spectrum
estimation algorithm SLQ (Stochastic Lanczos Quadrature) proposed by [39] to obtain accurate
estimation of these small eigenvalues. To address this issue, we propose to enhance the existing
large-scale spectrum estimation algorithms by a key modification, i,e, to estimate the number of
these exceptionally small eigenvalues by employing the Hessian matrix sampling. See Algorithm 1
for the details of the improved spectrum Estimation algorithm. A comprehensive description of the
algorithm and its experimental results are presented in Appendix C.

4.2 Achievable Scheme: l1 Regularization & One-shot Magnitude Pruning

Inspired by the lower bound as well as upper bound of the pruning ratio, in which the magnitude of
pruning parameters plays a key role, it’s sensible to focus on the magnitude-based pruning methods.

7
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Algorithm 1 Improved SLQ (Stochastic Lanczos Quadrature) Spectrum Estimation Algorithm
Input: Hermitian matrix A of size n × n, Lanczos iterations m, ESD computation iterations l,
gaussian kernel f and variance σ2, sampling nums and row l1 norm threshold ϵ.
Output: The spectral distribution of matrix A
for i = 2, ..., l do

1). Get the tridiagonal matrix T of size m×m through Lanczos algorithm[18];
2). Compute m eigenpairs (λ(i)

k , v(i)k ) from T;
3). ϕi

σ(t) =
∑m

k=1 τ
(i)
k f(λ

(i)
k ; t, σ), where τ

(i)
k = (v

(i)
k [1])2 is the first component of v(i)k ;

end for
4). Random sample s rows Ai of matrix A and calculate every l1 norm ∥Ai∥1 by take i ∈ [1, s].
5). Compute the number z of ∥Ai∥1 which satisfy ∥Ai∥1 ≤ ϵ.
6). Compute the integration of 1

l

∑l
i=1 ϕ

i
σ(t), termed as c, ϕ(t) = 1

l

∑l
i=1 ϕ

i
σ(t) +

cz
s−z δ(1

−30).
Return: ϕ(t)

On the other hand, to find exact solutions of our original problem for the best pruning in Eq. 1, it
is obviously very hard due to the existence of l0 norm. To make it feasible, it’s natural to perform
a convex relaxation of l0 norm, namely, by employing l1 regularization instead. Aside from the
computational advantage of this relaxation, it is worthy noting that l1 regularization provides two
extra benefits: 1) A large portion of eigenvalues of the trained Hessian matrix are zero-valued or of
quite small value, which renders the calculation of the pruning limit more accurately and fast. 2) A
large portion of trained weights are of quite small value, thus making the lower bound and upper
bound very close. Detailed statistics about the eigenvalues and magnitudes can be found in Figure 6.

Specifically, by utilizing the Lagrange formulation and convex relaxation of l0 norm, the pruning
objective in Eq.1 can be reformulated as:

min L(w) + λ∥w∥1 (20)

After training with this relaxed objective, the network weights will be pruned based on magnitudes
one time, rather than in an iterative way as in [13; 6; 28]. The performance of the above described
pruning scheme (termed as "l1 regularized one-shot magnitude pruning" and abbreviated as "LOMP")
can be found in Table 10 in Appendix. The above stated "zero-dominating" property due to l1
regularization gets supported in Figure 2(b), where it can be seen that the majority of weights are
indeed extremely small.

Unit sphere

(a) (b) (c)

Figure 2: Effect of extremely small projection distance on projection size and intersection probability
and statistics of ResNet50 on TinyImagenet. Statistics regarding all experiments can be found in
Appendix G.

The above "zero-domination" property turns out to be of critical value for our proposed pruning
scheme to nearly achieve the limit (lower bound) of the pruning ratio. Fig. 2(c) illustrates the curve
∥w2∥22, i.e. the l2 norm of the D−k smallest weights, w.r.t. k/D. The vertical line therein represents
ρL, the lower bound of the pruning ratio predicted in Section 3.1. When k = DρL, the curve and the
line will intersect as shown in Figure 2(c). Mathematically, the upper bound for the pruning ratio can
be approximated as follows:

ρU = 1− 1

D

D−k∑
i=1

r̃2i
∥w2∥22 + r̃2i

≈ 1− 1

D

D−k∑
i=1

r̃2i
r̃2i

=
k

D
= ρL (21)
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It can be seen from the above demonstration that the upper bound corresponding to our proposed
pruning scheme almost coincides with the minimal lower bound! In other words, we have established
the fundamental limit of the pruning ratio. To provide further validation of the above claim, we
performed the experiments five times across eight tasks and reported the differences between the
upper bound and lower bound, denoted as ∆, in Table 9.

Table 1: The Difference Between Lower Bound and Upper Bound of Pruning Ratio.

CIFAR10 FC5 FC12 Alexnet VGG16
∆(%) 0.17±0.05 0.05±0.03 0.02±0.01 0.01±0.00

ResNet 18 on CIFAR100 50 on CIFAR100 18 on TinyImagenet 50 on TinyImagenet
∆(%) 0.12±0.05 0.11±0.09 0.09±0.01 0.27±0.22

5 Experiments

In this section, we validate our pruning method as well as the theoretical limit of the pruning ratio by
experiments.

Tasks. We evaluate the pruning ratio threshold on: Full-Connect-5(FC5), Full-Connect-12(FC12),
AlexNet [17] and VGG16 [27] on CIFAR10 [16], ResNet18 and ResNet50 [14] on CIFAR100
and TinyImageNet [20]. We employ the l1 regularization during training, and execute a one-shot
magnitude-based pruning and assess its performance with various sparsity ratios, in terms of the
metrics of accuracy and loss. Detailed descriptions of datasets, networks, hyper-parameters, and
eigenspectrum adjustment can be found in Section B of the Appendix. Moreover, the performance
comparison between l1-regularization-based magnitude pruning and other pruning methods can be
found in Table 10 in Appendix.

5.1 Validation of Pruning Lower Bound

After training with the l1 regularization, we compute the eigenvalues and present the theoretical limit
of pruning ratio. By pruning the trained network to various sparsity levels, we depict in Figure 3 both
the line of theoretical lower bound and the sparsity-accuracy curve for the above-listed tasks. From
the figures we can see that our theoretical result matches the numerical pruning ratio quite well.
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Figure 3: The impact of sparsity on loss and test accuracy are obtained on the test dataset, and we
mark the theoretical pruning ratio limit with vertical lines. The loss values have been normalized and
translated.

5.2 Prediction Performance

We present a more detailed comparison between our theoretical limit of pruning ratio, and the
actual values by experiments in Table 2, which shows nearly perfect agreement between them. The
difference between the theoretical value and the actual value is donated as ∆.

6 Interpretation of Pruning Heuristics

Equipped with the fundamental limit of network pruning, we’re now able to provide rigorous
interpretations of several heuristics employed by existing pruning algorithms.
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Table 2: Comparison between Theoretical and Actual Values of Pruning Ratio
Dataset Model Theo. Value(%) Actual Value(%) ∆(%)

CIFAR10

FC5 2.1±0.25 1.7±0.12 -0.40±0.35
FC12 1.0±0.30 0.8±0.06 -0.24±0.33

AlexNet 0.9±0.00 0.8±0.08 -0.14±0.08
VGG16 0.8±0.06 0.8±0.08 0.04±0.08

CIFAR100 ResNet18 1.5±0.05 2.0±0.13 0.54±0.15
ResNet50 1.9±0.05 2.1±0.16 0.28±0.19

TinyImagenet ResNet18 3.9±0.82 4.3±0.38 0.46±0.71
ResNet50 2.6±0.24 2.9±0.33 0.36±0.10
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Figure 4: Top Row: From left to right, as the number of iterations increases, it leads to an increase in
the theoretical pruning ratio threshold. The horizontal line represents the last pruning ratio. Bottom
Row: The comparison of the pruning ratio threshold between using and not using l2-regularization.
Sparse networks are obtained by magnitude-based pruning with fixed pruning ratios. The two
plots on the left and the two plots on the right correspond to different fixed pruning ratios. Here,
R = ∥w∗ −wk∥2, which is the projection distance.

Pruning ratio adjustment is needed in IMP. For the IMP (Iterative Magnitude Pruning) algorithm
[7], we determine the pruning ratio thresholds for various stages through calculations, as depicted in
the top row of Figure 4. It is noteworthy that as the pruning depth gradually increases, the theoretical
pruning ratio threshold also increases. Therefore, it is appropriate to prune smaller proportions of
weights gradually during iterative pruning, Both [43] and [28] have employed pruning rate adjustment,
which gradually prunes smaller proportions of the weights with the iteration of the algorithm.

l2-regularization enhances the performance of Rare Gems. For the Rare Gems algorithm [28], it is
shown that l2 regularization makes a significant difference in terms of the final performance, as shown
in the bottom row of Figure 4. The main reason behind this phenomenon is: when l2-regularization
is applied, the pruning ratio tends to be larger than the theoretical limit, however, the absence of
l2-regularization would result in excessive pruning, which can be regarded as wrong pruning.

7 Conclusion

In this paper we explore the fundamental limit of pruning ratio of deep networks by taking the first
principles approach and leveraging the framework of convex geometry. Specifically, we reduce the
pruning limit problem to the sets intersection problem, and by taking advantage of the powerful
Approximate Kinematic Formula, we are able to sharply characterize the fundamental limit of the
network pruning ratio. This fundamental limit conveys a key message as follows: the network pruning
limit is mainly determined by the weight magnitude and the network sharpness. These two guidelines
can provide intuitive explanations of several heuristics in existing pruning algorithms. Moreover, to
address the challenges in computing the involved Gaussian width, we develop an improved spectrum
estimation for large-scale and non-positive Hessian matrices. Experiments demonstrate the almost
perfect agreement between our theoretical results and the experimental ones.

Limitations. In this paper, the (almost) coincidence of the upper bound and lower bound of the
pruning ratio depends on the condition that the removed weights are of quite small value, which is
enabled by the l1 regularization we employed. Therefore, it is important to demonstrate whether the
l1 regularized training is optimal or nearly optimal in the sense of obtaining the smallest sub-network
without performance degradation for the original learning problem.
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A Organization of Appendix

The appendix is organized as follows:

• Sec. A: an overview of the organization of the appendix.
• Sec. B: detail descriptions of the datasets, models, hyper-parameter choices used in our

experiments. Additionally, figures illustrating the theoretical pruning threshold are included.
• Sec. C: this section delves into the practical calculation of the Gaussian Width. It addresses

the challenges associated with the non-positiveness of the Hessian matrix and the spectrum
estimation of a large-scale Hessian matrix. Experimental results highlighting the "important
eigenvalues" are also showcased.

• Sec. D: a comprehensive proof of the Gaussian Width for both the ellipsoid and the deformed
ellipsoid is provided.

• Sec. E: this section presents the proof of the "sub-sublevel set" utilized in deriving the upper
bound of the pruning ratio. Furthermore, a straightforward explanation of the relationship
between the general lower bound and the upper bound is offered.

• Sec. F: omitted proof of the connection between the sharpness and the lower bound of the
pruning ratio is detailed in this section.

• Sec. G: performance comparison between the l1 regularized one-shot magnitude pruning,
termed as "LOMP", and several prominent pruning strategies. Results from a hypothetical
experiment verifying the importance of magnitude in pruning and comprehensive statistical
results from Sec. 4.2 are also included.

• Sec. H: limitations of our assumptions and theoretical results.
• Sec. I: broader impacts statement of this research.
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B Experimental Details

In this section, we describe the datasets, models, hyper-parameter choices and eigenspectrum ad-
justment used in our experiments. All of our experiments are run using PyTorch 1.12.1 on Nvidia
RTX3090s with ubuntu20.04-cuda11.3.1-cudnn8 docker.

B.1 Dataset

CIFAR-10. CIFAR-10 consists of 60,000 color images, with each image belonging to one of
ten different classes with size 32 × 32. The classes include common objects such as airplanes,
automobiles, birds, cats, deer, dogs, frogs, horses, ships, and trucks. The CIFAR-10 dataset is divided
into two subsets: a training set and a test set. The training set contains 50,000 images, while the
test set contains 10,000 images [16]. For data processing, we follow the standard augmentation:
normalize channel-wise, randomly horizontally flip, and random cropping.

CIFAR-100. The CIFAR-100 dataset consists of 60,000 color images, with each image belonging
to one of 100 different fine-grained classes [16]. These classes are organized into 20 superclasses,
each containing 5 fine-grained classes. Similar to CIFAR-10, the CIFAR-100 dataset is split into a
training set and a test set. The training set contains 50,000 images, and the test set contains 10,000
images. Each image is of size 32x32 pixels and is labeled with its corresponding fine-grained class.
Augmentation includes normalize channel-wise, randomly horizontally flip, and random cropping.

TinyImageNet. TinyImageNet comprises 100,000 images distributed across 200 classes, with each
class consisting of 500 images [20]. These images have been resized to 64 × 64 pixels and are in
full color. Each class encompasses 500 training images, 50 validation images, and 50 test images.
Data augmentation techniques encompass normalization, random rotation, and random flipping. The
dataset includes distinct train, validation, and test sets for experimentation.

B.2 Model

In all experiments, pruning skips bias and batchnorm, which have little effect on the sparsity of the
network. Non-affine batchnorm is applied in the network, and the initialization of the network is
kaiming normal initialization.

Full Connect Network(FC-5, FC-12). We train a five-layer fully connected network (FC-5) and a
twelve-layer fully connected network FC-12 on CIFAR-10, the network architecture details can be
found in Table 3.

Table 3: FC-5 and FC-12 architecture used in our experiments.

Model Layer Width
FC-5 1000, 600, 300, 100, 10

FC-12 1000, 900, 800, 750, 700, 650, 600, 500, 400, 200, 100, 10

AlexNet [17]. We use the standard AlexNet architecture. In order to use CIFAR-10 to train AlexNet,
we upsample each picture of CIFAR-10 to 3×224×224. The detailed network architecture parameters
are shown in Table 4.

VGG-16 [27]. In the original VGG-16 network, there are 13 convolution layers and 3 FC layers
(including the last linear classification layer). We follow the VGG-16 architectures used in [7; 8] to
remove the first two FC layers while keeping the last linear classification layer. This finally leads
to a 14-layer architecture, but we still call it VGG-16 as it is modified from the original VGG-16
architectural design. Detailed architecture is shown in Table 5. VGG-16 is trained on CIFAR-10.

ResNet-18 and ResNet-50 [14]. We use the standard ResNet architecture for TinyImageNet and
tune it for the CIFAR-100 dataset. The detailed network architecture parameters are shown in Table
6. ResNet-18 and ResNet-50 is trained on CIFAR-100 and TinyImageNet.
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Table 4: AlexNet architecture used in our experiments.

Layer Shape Stride Padding
conv1 3× 96× 11× 11 4 1

max pooling kernel size:3 2 N/A
conv2 96× 256× 5× 5 1 2

max pooling kernel size:3 2 N/A
conv3 256× 384× 3× 3 1 1
conv4 384× 384× 3× 3 1 1
conv4 384× 256× 3× 3 1 1

max pooling kernel size:3 2 N/A
linear1 6400× 4096 N/A N/A
linear1 4096× 4096 N/A N/A
linear1 4096× 10 N/A N/A

Table 5: VGG-16 architecture used in our experiments.

Layer Shape Stride Padding
conv1 3× 64× 3× 3 1 1
conv2 64× 64× 3× 3 1 1

max pooling kernel size:2 2 N/A
conv3 64× 128× 3× 3 1 1
conv4 128× 128× 3× 3 1 1

max pooling kernel size:2 2 N/A
conv5 128× 256× 3× 3 1 1
conv6 256× 256× 3× 3 1 1
conv7 256× 256× 3× 3 1 1

max pooling kernel size:2 2 N/A
conv8 256× 512× 3× 3 1 1
conv9 512× 512× 3× 3 1 1
conv10 512× 512× 3× 3 1 1

max pooling kernel size:2 2 N/A
conv11 512× 512× 3× 3 1 1
conv12 512× 512× 3× 3 1 1
conv13 512× 512× 3× 3 1 1

max pooling kernel size:2 2 N/A
avg pooling kernel size:1 1 N/A

linear1 512× 10 N/A N/A

Table 6: ResNet architecture used in our experiments.

Layer ResNet-18 ResNet-50
conv1 64, 3× 3; stride:1; padding:1 64, 3× 3; stride:1; padding:1

block1
(
64, 3× 3; stride:1; padding:1
64, 3× 3; stride:1; padding:1

)
× 2

(
64, 1× 1; stride:1; padding:0
64, 3× 3; stride:1; padding:1
256, 1× 1; stride:1; padding:0

)
× 3

block1
(
128, 3× 3; stride:2; padding:1
128, 3× 3; stride:1; padding:1

)
× 2

(
128, 1× 1; stride:1; padding:0
128, 3× 3; stride:2; padding:1
512, 3× 3; stride:1; padding:0

)
× 4

block1
(
128, 3× 3; stride:2; padding:1
256, 3× 3; stride:1; padding:1

)
× 2

(
256, 1× 1; stride:1; padding:0
256, 3× 3; stride:2; padding:1
1024, 1× 1; stride:1; padding:0

)
× 6

block1
(
512, 3× 3; stride:2; padding:1
512, 3× 3; stride:1; padding:0

)
× 2

(
512, 1× 1; stride:1; padding:1
512, 3× 3; stride:2; padding:1
2048, 1× 1; stride:1; padding:0

)
× 3

avg pooling kernel size:1; stride:1 kernel size:1; stride:1
linear1 512× ClassNum 2048× ClassNum
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B.3 Training Hyper-parameters Setup

In this section, we will describe in detail the training hyper-parameters of the Global One-shot Pruning
algorithm on multiple datasets and models. The various hyperparameters are detailed in Table 7.

Table 7: Hyper Parameters used for different Datasets and Models.

Model Dataset Batch Size Epochs Optimizer LR Momentum Warm Up Weight Decay CosineLR Lambda
FC5 CIFAR10 128 200 SGD 0.01 0.9 0 0 N/A 0.00005

FC12 CIFAR10 128 200 SGD 0.01 0.9 0 0 N/A 0.00005
VGG16 CIFAR10 128 200 SGD 0.01 0.9 5 0 True 0.00015
AlexNet CIFAR10 128 200 SGD 0.01 0.9 5 0 True 0.00003

ResNet18 CIFAR100 128 200 SGD 0.1 0.9 5 0 True 0.000055
ResNet50 CIFAR100 128 200 SGD 0.1 0.9 5 0 True 0.00002
ResNet18 TinyImageNet 128 200 SGD 0.01 0.9 5 0 True 0.00023
ResNet50 TinyImageNet 128 200 SGD 0.01 0.9 5 0 True 0.0001

B.4 Sublevel Set Parameters Setup.

Given a dense well-trained neural network with weighted donated as w∗, the loss sublevel set is
defined as {ŵ ∈ RD : 1

2ŵ
THŵ ≤ ϵ} where ŵ = w − w∗, under the assumption that the test

data is often unavailable and we also generally assume that the training and test data share the same
distribution, thus we use the training data to define the loss sublevel set. We compute the standard
deviation of the network’s loss across multiple batches on the training data set and denote it by ϵ.

Table 8: Hyper Parameters used in SLQ Algorithm.

Model Dataset Runs Iterations Bins Squared Sigma
FC5 CIFAR10 1 128 100000 1e-10

FC12 CIFAR10 1 128 100000 1e-10
VGG16 CIFAR10 1 128 100000 1e-07
AlexNet CIFAR10 1 96 100000 1e-07

ResNet18 CIFAR100 1 128 100000 1e-07
ResNet50 CIFAR100 1 128 100000 1e-07
ResNet18 TinyImageNet 1 128 100000 1e-07
ResNet50 TinyImageNet 1 88 100000 1e-07

B.5 Theoretical Pruning Ratio

Taking w∗ as the initial pruning point and calculating the corresponding value of R = ∥wk −w∗∥2
for different pruning ratios k/D. We then plot the corresponding curve of the theoretically predicted
pruning ratio and the calculated R in the same graph. The intersection point of these two curves is
taken as the lower bound of the theoretically predicted pruning ratio. All results are shown in Figure
5.
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Figure 5: The theoretically predicted pruning ratio in eight tasks. The first row, from left to right,
corresponds to FC5, FC12, AlexNet, and VGG16 on CIFAR10. The second row, from left to right,
corresponds to ResNet18 and ResNet50 on CIFAR100, as well as ResNet18 and ResNet50 on
TinyImagenet.
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C Practical Calculation of Gaussian Width

In practical experiments, determining the Gaussian width of the ellipsoid defined by the network
loss function is a challenging task. There are two primary challenges encountered in this section:
1.) the computation of eigenvalues for high-dimensional matrices poses significant difficulty; 2.)
the network fails to converge perfectly to the extremum, leading to a non-positive definite Hessian
matrix for the loss function. In this section, we tackle these challenges through the utilization of a
fast eigenspectrum estimation algorithm and an algorithm that approximates the Gaussian width of a
deformed ellipsoid body. These approaches effectively address the aforementioned problems.

C.1 Improved SLQ (Stochastic Lanczos Quadrature) Spectrum Estimation
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Figure 6: The statistical analysis of the L1 norm of the Hessian matrix in eight tasks. The first row,
from left to right, corresponds to FC5, FC12, AlexNet, and VGG16. The second row, from left to
right, corresponds to ResNet18 and ResNet50 on CIFAR100, as well as ResNet18 and ResNet50 on
TinyImagenet.

Calculating the eigenvalues of large matrices has long been a challenging problem in numerical
analysis. One widely used method for efficiently computing these eigenvalues is the Lanczos
algorithm[18], which is presented in Algorithm 2. However, due to the huge amount of parameters of
the deep neural network, it is still impractical to use this method to calculate the eigenspectrum of
the Hessian matrix of a deep neural network. To tackle this problem, [39] proposed SLQ (Stochastic
Lanczos Quadrature) Spectrum Estimation Algorithm, which estimates the overall eigenspectrum
distribution based on a small number of eigenvalues obtained by Lanczos algorithm. This method
enables the efficient computation of the full eigenvalues of large matrices. Algorithm 2 outlines the
step-by-step procedure for the classic Lanczos algorithm, providing a comprehensive guide for its
implementation. The algorithm requires the selection of the number of iterations, denoted as m,
which determines the size of the resulting triangular matrix T.

In general, the Lanczos algorithm is not capable of accurately computing zero eigenvalues, and this
limitation becomes more pronounced when the SLQ algorithm has a small number of iterations.
Similarly, vanishingly small eigenvalues are also ignored by Lanczos. However, in a well-trained
large-scale deep neural network, the experiment found that the network loss function hessian matrix
has a large number of zero eigenvalues and vanishingly small eigenvalues. In the Gaussian width of
the ellipsoid, the zero eigenvalues and vanishingly small eigenvalues have the same effect on the width
(insensitive to other parameters), and we collectively refer to these eigenvalues as the “important”
eigenvalues. We divide the weight into 100 parts from small to large, calculate the second-order
derivative (including partial derivative) of smallest weight in each part, and sum the absolute values of
all second-order derivatives of the weight, which corresponds to l1-norm of a row in hessian matrix,
and the row l1-norm is zero or a vanishingly small corresponds to an “important” eigenvalue, the
experimental results can be seen in the Figure 6, from which the number of missing eigenvalues of the
SLQ algorithm can be estimated, we then add the same number of 1e-30 as the missing eigenvalues in
the Hessian matrix eigenspectrum. All the SLQ algorithm parameters are discribed in Table 8 and the
statistical analysis of the l1 norm of Hessian matrix rows for all experiments is presented in Figure 6.
For details of the SLQ algorithm and the improved SLQ algorithm, see Algorithm 3 and Algorithm 1
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Algorithm 2 The Lanczos Algorithm
Input: a Hermitian matrix A of size n× n, a number of iterations m
Output: a tridiagonal real symmetric matrix T of size m×m
initialization:
1. Draw a random vector v1 of size n× 1 from N (0,1) and normalize it;
2. w

′

1 = Av1; α1 =< w
′

1,v1 >; w1 = w
′

1 − α1v1;
3.
for j = 2, ...,m do

1). βj = ∥wj−1∥;
2).
if βj = 0 then

stop
else
vj = wj−1/βj

end if
3). w

′

j = Avj;
4). αj = < w

′

j,vj >;
5). wj = w

′

j − αjvj − βjvj−1;
end for
4. T(i, i) = αi, i = 1, . . . ,m;
T(i, i+ 1) = T(i+ 1, i) = βi, i = 1, . . . ,m− 1.

Return: T

Algorithm 3 SLQ(Stochastic Lanczos Quadrature) Spectrum Estimation Algorithm
Input: A hermitian matrix A of size n× n, Lanczos iterations m, ESD computation iterations l,
gaussian kernel f and variance σ2.
Output: The spectral distribution of matrix A
for i = 2, ..., l do

1). Get the tridiagonal matrix T of size m×m through Lanczos algorithm;
2). Compute m eigenpairs (λ(i)

k , v(i)k ) from T;
3). ϕi

σ(t) =
∑m

k=1 τ
(i)
k f(λ

(i)
k ; t, σ), where τ

(i)
k = (v

(i)
k [1])2 is the first component of v(i)k .

end for
4). ϕ(t) = 1

l

∑l
i=1 ϕ

i
σ(t)

Return: ϕ(t)

C.2 Gaussian Width of the Deformed Ellipsoid

After effective training, it is generally assumed that a deep neural network will converge to the global
minimum of its loss function. However, in practice, even after meticulous tuning, the network tends
to oscillate around the minimum instead of converging to it. This leads to that the Hessian matrix of
the loss function would be non-positive definite, and the resulting geometric body defined by this
matrix would change from an expected ellipsoid to a hyperboloid, which is unfortunately nonconvex.
To quantify the Gaussian width of the ellipsoid corresponding to the perfect minima, we propose
to approximate it by convexifying the deformed ellipsoid through replacing the associated negative
eigenvalues with its absolute value. This processing turns out to be very effective, as demonstrated by
the experimental results.

Lemma C.1 Consider a well-trained neural network with weights w, whose loss function defined by
w has a Hessian matrix H. Due to the non-positive definiteness of H, there exist negative eigenvalues.
Let the eigenvalue decomposition of H be H = vTΣv, where Σ is a diagonal matrix of eigenvalues.
Let D = vT |Σ|v, where | · | means absolute operation. the geometric objects defined by H and D
are S(ϵ) := {w ∈ RD : 1

2w
THw ≤ ϵ} and Ŝ(ϵ) := {w ∈ RD : 1

2w
TDw ≤ ϵ}, then:

w(S(ϵ)) ≈ w(Ŝ(ϵ)) (22)
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The proof of Lemma C.1 is in Appendix D.2. Lemma C.1 indicates that if the deep neural network
converges to a vicinity of the global minimum of the loss function, the Gaussian width of the deformed
ellipsoid body can be approximated by taking the convex hull of S(ϵ).
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D Gaussian Width of the Sublevel Set

In this section, we provide detailed proofs regarding the Gaussian Width of the sublevel sets of
quadratic wells.

D.1 Gaussian Width of the Quadratic Well

Gaussian width is an extremely useful tool to measure the complexity of a convex body. In our proof,
we will use the following expression for its definition:

w(S) =
1

2
E sup

x,y∈S
⟨g,x− y⟩ ,g ∼ N (0, ID×D)

Concentration of measure is a universal phenomenon in high-dimensional probability. Basically, it
says that a random variable which depends in a smooth way on many independent random variables
(but not too much on any of them) is essentially constant.[30; 31; 32]

Theorem D.1 (Gaussian concentration) Consider a random vector x ∼ N (0, In×n) and an L-
Lipschitz function f : Rn → R (with respect to the Euclidean metric). Then for t ≥ 0

P(|f(x)− Ef(x)| ≥ t) ≤ ϵ, ϵ = e−
t2

2L2 .

Therefore, if ϵ is small, f(x) can be approximated as f(x) ≈ Ef(x) +
√
−2L2lnϵ.

Lemma D.2 Given a random vector x ∼ N (0, In×n) and the inverse of a positive definite Hessian
matrix Q = H−1, where H ∈ Rn×n, we have:

E
√
xTQx ≈

√
ExTQx

Proof.
1.) Concentration of xTQx

Define f(x) = xTQx, we have:

f(x) = xTQx

= xTUΣUTx Eigenvalue Decomposition of Q : Q = UΣUT.

=

n∑
i=1

λix
2
i w. p. almost 1. Invariance of Gaussian under rotation.

where λi is the eigenvalue of Q. The lipschitz constant Lf of function f(x) is :

Lf = max(|∂f
∂x

|) = max(|2λixi|)

Let g(xi) = 2λixi, whose lipschitz constant is Lg = |2λi|. Invoking Theorem D.1, we have:

g(xi) ≈ Eg(xi) +
√
−2(2λi)2lnϵ1

=
√

−8λ2
i lnϵ1.

Therefore, the lipschitz constant of f(x) can be approximated by:

Lf = max(
√

−8λ2
i lnϵ1) =

√
−8lnϵ1λmax

Invoking Theorem D.1 again, we establish the concentration of f(x) as follows:

f(x) ≈ Ef(x) +
√
−2(Lf )2lnϵ2 Theorem D.1.

= Ef(x) + 4
√
lnϵ1lnϵ2λmax
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2.) Jensen ratio of
√
xTQx:

E
√
f(x) ≈ E

√
Ef(x) + 4

√
lnϵ1lnϵ2λmax Concentration of f(x).

≈
√
Ef(x) +

2
√
lnϵ1lnϵ2λmax√

Ef(x)
Taylor Expansion.

Therefore, the Jensen ratio of
√
f(x) can be approximated by:

E
√

f(x)√
Ef(x)

≈ 1 + 2
√

lnϵ1lnϵ2
λmax∑n
i=1 λi

Hutchinson’s method [2; 3]

= 1 + δ

If Q is a Wishart matrix, i.e. Q = ATA, where A is a random matrix whose elements are
independently and identically distributed with unit variance, according to the Marchenko-Pastur law
[33], the maximum eigenvalue of Q is approximately 4n and the trace of Q is approximately n2.
Therefore, the above Jensen ratio approaches to 1 with decaying rate O( 1n ).

For the inverse of a positive definite Hessian matrix which is of our concern, we take ϵ1 = ϵ2 = 10−4,
numerical simulations show that when the dimension n = 105, the corresponding δ in the above
Jensen ratio is on the order of 10−3, which is in good agreement with the theoretical value and is
arguably negligible. Similar as the case of the above-discussed Wishart matrix, when the dimension
n increases, the value of δ will further decrease.

Consequently, we can conclude that E
√

f(x) ≈
√
Ef(x), i.e. E

√
xTQx ≈

√
ExTQx.

Definition D.3 (Definition of ball) A (closed) ball B(c, r) (in RD) centered at c ∈ RD with radius
r is the set

B(c, r) := {x ∈ RD : xTx ≤ r2}
The set B(0, 1) is called the unit ball. An ellipsoid is just an affine transformation of a ball.

Lemma D.4 (Definition of ellipsoid) . An ellipsoid S centered at the origin is the image
L(B(0, 1)) of the unit ball under an invertible linear transformation L : RD → RD. An el-
lipsoid centered at a general point c ∈ RD is just the translate c+ S of some ellipsoid S centered at
the origin.

Proof.
L(B(0, 1)) = {Lx : x ∈ B(0, 1)}

= {y : L−1y ∈ B(0, 1)}
= {y : (L−1y)TL−1y ≤ 1}
= {y : yT (LLT )−1y ≤ 1}
= {y : yTQ−1y ≤ 1}

where Q = LLT is positive definite.
The radius ri along principal axis ei obeys r2i = 1

λi
, where λi is the eigenvalue of Q−1 and ei is

eigen vector.

Lemma D.5 (Gaussian width of ellipsoid) . Let S be an ellipsoid in RD defined by the positive
definite matrix H ∈ RD×D:

S(ϵ) := {w ∈ RD :
1

2
wTHw ≤ ϵ}

Then w(S)2 or the squared Gaussian width of the ellipsoid satisfies:

w(S)2 ≈ 2ϵTr(H−1) =
∑
i

r2i

where ri =
√

2ϵ/λi with λi is i-th eigenvalue of H.
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Proof. Let g ∼ N (0, ID×D) and LLT = 2ϵH−1. Then:

w(L(Bn
2 )) =

1

2
E supx,y∈B(0,1) < g,Lx− Ly >

=
1

2
E supx,y∈B(0,1) < LTg,x− y >

= E∥LTg∥2 Definition of Ball.

= E
√
gTLLTg ∥g∥2 =

√
gTg, where g ∈ RD×1.

= E
√
2ϵgTH−1g

≈
√
2ϵE[gTH−1g] Lemma D.2.

=
√
2ϵTr(H−1) Invariance of Gaussian under rotation.

Thus, w(S)2 ≈ 2ϵTr(H−1) =
∑D

i r2i .

D.2 Gaussian Width of the Deformed Ellipsoid

Generally, it is assumed that the gradient descent algorithm will converge to a minimum point.
However, in practice, even with small learning rates, the network may oscillate near the minimum
point and not directly converge to it, but rather get very close to it. As a result, the actual Hessian
matrix is often not positive definite and its eigenvalues may have negative values.

Lemma D.6 Let the Hessian matrix at the minimum point be denoted by H with eigenvalue λi,
and the Hessian matrix at an oscillation point be denoted by Ĥ with eigenvalue λ̂i. The negative
eigenvalues of Ĥ have small magnitudes.

Proof. Let the weights at the minimum point be denoted by w0 and the Hessian matrix at an
oscillation point be denoted by ŵ0. Consider a loss function L and a loss landscape defined by L(w),
taking Taylor expansion of L(w) at w0:

L(w) = L(w0) +
1

2
(w −w0)

TH(w −w0) +R(w0)

Let ŵ0 = w0 + v with v is closed to 0:

L(ŵ0) = L(w0 + v)

= L(w0) +
1

2
vTHv +R(w0 + v)

Therefore, the second order derivative of L(ŵ0) is:

L
′′
(w) = L

′′
(w0 + v)

= H+R
′′
(w0 + v)

≈ H

where L′′
(w) = Ĥ, Let H = Ĥ+H0 with H0 is closed to 0, considering the Weyl inequality:

λi(H)− λ̂i(Ĥ) ≤ ∥H0∥2

where ∥H0∥2 is small enough. So if λ̂i(Ĥ) is less than 0, since λ̂i(Ĥ) ≥ λi(H) − ∥H0∥2, its
absolute value |λ̂i(Ĥ)| ≤ ∥H0∥2 − λi(H) ≤ ∥H0∥2, which means that the negative eigenvalues of
the Hessian matrix have small magnitudes.

Lemma D.7 For a sublevel set S(ϵ) := {w : wTHw ≤ ϵ} defined by a matrix H with small
magnitude negative eigenvalues. The Gaussian width of S(ϵ) can be estimated by obtaining the
absolute values of the eigenvalues of the matrix H.
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Proof. Assuming that the eigenvalue decomposition of H is H = vTΣv, where Σ is a diagonal
matrix consisting of the eigenvalues of H, let D = vT |Σ|v be a positive definite matrix and
M = H−D = vT (Σ− |Σ|)v be a negative definite matrix. Consider the definition of S(ϵ):

wTHw = wT (H−D+D)w

= wTMw +wTDw

≤ ϵ

Therefore, S(ϵ) can be expressed as wTDw ≤ ϵ−wTMw. Since the magnitudes of the negative
eigenvalues of H are very small, we can assume that wTMw is also small, and thus wTDw ≤
ϵ−wTMw can be approximately equal to wTDw ≤ ϵ. As a result, we can estimate the Gaussian
width of S(ϵ) by approximating it with the absolute values of the eigenvalues of H.

Corollary D.8 Consider a well-trained neural network with weights w, whose loss function defined
by w has a Hessian matrix H. Due to the non-positive definiteness of H, there exist negative
eigenvalues. Let the eigenvalue decomposition of H be H = vTΣv, where Σ is a diagonal matrix
of eigenvalues. Let D = vT |Σ|v, where | · | means absolute operation. the geometric objects defined
by H and D are S(ϵ) := {w ∈ RD : 1

2w
THw ≤ ϵ} and Ŝ(ϵ) := {w ∈ RD : 1

2w
TDw ≤ ϵ}, then

the gaussian width of the two set satisfy:

w(S(ϵ)) ≈ w(Ŝ(ϵ))
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E Comparison between the Upper and Lower Bound

This section provided the proofs used in the upper bound derivation and roughly analyzed how the
lower bound changes when the upper bound varies.

E.1 D − k Dimension Sublevel Set is Still an Ellipsoid

In the derivation of the upper bound for the pruning ratio threshold, we employed a D−k dimensional
loss sublevel set:

S(w
′
) = {w

′
∈ RD−k : L([w1,w

′
]) ≤ L(w∗) + ϵ} (23)

Perform Taylor expansion to L([w1,w
′
]) with respect to w

′
, the sublevel set is represented as:

S(w
′
) = {w

′
∈ RD−k :

1

2
(w

′
)TH

′
w

′
≤ ϵ} (24)

where H
′

is the Hessian matrix of L([w1,w
′
]) with respect to w

′
.

Given that the full sublevel set S(ϵ) = {w ∈ RD : 1
2w

THw ≤ ϵ} is an ellipsoid body, which
implies that H is a positive definite matrix, it is evident that H

′
is the principal submatrix of H.

Consequently, H
′

is also a positive definite matrix, which implies that the sublevel set S(w
′
) remains

an ellipsoid.

E.2 Relationship between the Upper and Lower Bound

Theorem E.1 (Eigenvalue Interlacing Theorem) Suppose A ∈ Rn×n is symmetric, Let B ∈
Rm×m with m < n be a principal submatrix(obtained by deleting both i-th row and i-th col-
umn for some values of i). Suppose A has eigenvalues λ1 ≤ · · · ≤ λn and B has eigenvalues
β1 ≤ · · · ≤ βm. Then

λk ≤ βk ≤ λk+n−m for k = 1, . . . ,m (25)
And if m = n− 1,

λ1 ≤ β1 ≤ λ2 ≤ β2 ≤ · · · ≤ βn−1 ≤ λn (26)

Next, we provide an elucidation on the relationship between the upper bound and lower bound
variations:

Lemma E.2 The direct and straightforward relationship between the upper bound and the lower
bound can be articulated as follows:

1. When the eigenvalues change, the upper and lower bounds will change in the same direction;

2. When the weight magnitude changes, the upper bound will change in the same direction as
the upper bound or do not change.

Proof. 1. When the eigenvalues change, the upper and lower bounds will change in the same
direction;

By leveraging the Eigenvalue Interlacing Theorem (Theorem E.1), the eigenvalues of the principal
submatrix in the upper bound is bounded by the eigenvalues in the lower bound. It’s obvious that if
the eigenvalues in the lower bound change, the eigenvalues in the upper bound will also change in the
same direction, leading to the upper and lower bounds will change in the same direction.

2. When the weight magnitude changes, the upper bound will change in the same direction as the
lower bound or do not change.

It’s noted that the number of weights in the lower bound is more than the one of weights in the upper
bound. These weights are used to calculate the projection distance. So it’s clear that when the weight
magnitude changes, the upper bound will change in the same direction as the lower bound or not
change.
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F Sharpness & Lower Bound

In this section, we will provide the relationship between the lower bound of the pruning ratio and
the sharpness of the loss landscape w.r.t the weights. We first introduce the definition of sharpness,
which is similar to the sharpness definition in [26] and [9]:

Definition F.1 Given a second-order derivable function f(w), where w is the parameters. Consid-
ering a hessian matrix H w.r.t. parameters w, the sharpness of f(w) w.r.t. parameters is defined as
the trace of H, i.e. Tr(H).

As defined in definition F.1, a smaller trace indicates a flatter function. Next, we will provide the
connection between the sharpness and the lower bound:

Lemma F.2 Given a well-trained neural network f(w,x), where w is the parameters and the x is
the input. The lower bound of pruning ratio ρl and the sharpness Tr(H) obeys:

ρl ≤ 1− 2ϵD

∥w∗ −wk∥22Tr(H) + 2ϵD
(27)

where H is the hessian matrix of f(w) w.r.t. w.

Proof.

ρl = 1− 1

D

D∑
i=1

r2i
∥w∗ −wk∥22 + r2i

= 1− 2ϵ

D

D∑
i=1

1

∥w∗ −wk∥22λi + 2ϵ

≤ 1− 2ϵ

D

D2∑D
i=1(∥w∗ −wk∥22λi + 2ϵ)

Cauchy–Schwarz Inquality.

= 1− 2ϵD

∥w∗ −wk∥22
∑D

i=1 λi + 2ϵD

= 1− 2ϵD

∥w∗ −wk∥22Tr(H) + 2ϵD

It’s obvious that if the trace of the hessian matrix becomes smaller, the lower bound will also decrease,
indicating a higher sparsity level. Utilizing sharpness as the optimization objective for network
pruning is both a rational and efficacious approach.

Corollary F.3 Given a well-trained neural network f(w,x), where w is the parameters and the x is
the input. The pruning ratio lower bound and the sharpness obeys:

ρl ≤ 1− 2ϵD

∥w∗ −wk∥22Tr(H) + 2ϵD
(28)

where H is the hessian matrix of f(w) w.r.t. w. An informal version of this corollary can be stated
as: sharpness controls the lower bound of the pruning ratio, specifically, a flatter neural network can
be pruned more sparsely.
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G Full Results

Here we present the full set of experiments performed for the results in the main text.

G.1 The Distance Between the Distribution of Weights

In this section, we provide the total variation(TV) distance between the distribution of trained weights
with independent initialization.

Table 9: The TV Distance Between the Distribution of Weights.

CIFAR10 FC5 FC12 Alexnet VGG16
TV 0.02±0.01 0.01±0.001 0.02±0.02 0.01±0.008

ResNet 18 on CIFAR100 50 on CIFAR100 18 on TinyImagenet 50 on TinyImagenet
TV 0.04±0.04 0.03±0.02 0.02±0.03 0.03±0.02

G.2 Comparison of Pruning Algorithms

As discussed in Section 4, we adopt l1 regularization during the training phase, and the hyper-
parameter for the l1 regularization is selected empirically. After thorough training, we applied
magnitude pruning to reduce the network to the lowest pruning ratio at which the network’s perfor-
mance is maintained, and we didn’t apply fine-tuning after pruning.

We validated l1 regularized one-shot magnitude pruning algorithm(LOMP) against four baselines:
dense weight training and three pruning algorithms: (i) Rare Gems(RG) proposed by [28], (ii)
Iterative Magnitude Pruning(IMP) donated by [7], (iii) Smart-Ratio (SR) which is the random pruning
method proposed by [29]. Table 10 shows the pruning performance of the above algorithms, our
pruning algorithm is better performing than other algorithms.

Table 10: Performance comparison of various pruning algorithms.

Dataset Model Dense Acc (%) Sparsity (%) Test Acc (%)@top-1
LOMP(ours) RG IMP SR

CIFAR10
FC5 55.3±0.62 1.7 59.96±0.45 58.76±0.15 58.83±0.24 -

FC12 55.5±0.26 1.0 60.84±0.21 54.96±0.28 59.37±0.21 -
VGG16 90.73±0.22 0.6 91.66±0.08 88.76±0.13 89.22±0.24 87.32±0.11

CIFAR100 ResNet18 72.19±0.23 1.9 71.82±0.09 69.33±0.22 68.55±0.21 65.74±0.27
ResNet50 74.07±0.43 2.0 75.22±0.11 72.21±0.25 69.02±0.23 68.58±0.33

TinyImageNet ResNet18 52.92±0.13 4.2 55.42±0.02 45.43±0.27 45.12±0.19 43.28±0.21
ResNet50 56.45±0.17 2.9 57.49±0.01 51.41±0.28 46.93±0.41 40.42±0.31

Remark. To demonstrate the effectiveness of l1 regularization, the dense performance is obtained
by training without any regularization. we obtained the dense performance by training without any
regularization. According to our theoretical findings, LOMP is the optimal pruning strategy in the
pruning-after-training regime, as the l1 is the closest convex relaxation to the l0 regularization, and
the magnitude pruning can achieve the lowset pruning ratio. Consequently, we compared LOMP with
several pruning algorithms that are not part of the pruning-after-training regime. Notably, LOMP
outperforms these other pruning algorithms.

Discussion. The l1 regularization metric is not new, and in practice, it becomes increasingly
challenging to empirically select the hyper-parameter for l1 regularization and train models with l1
regularization as the model size grows. Nevertheless, some reparametrization techniques to address
the l1 regularization issue, as discussed in [44], may facilitate the use of l1 regularization for pruning,
making l1 regularization one-shot pruning a very promising approach.

G.3 Comparison of Pruning as Optimization

In this section, we compared our l1 regularization-based one-shot magnitude pruning with those
works treating pruning as optimization [4; 40; 41]. Our results are obtained by searching the hyper-
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parameters of l1 regularization, all the data and model settings are followed from [4]. The comparison
results can be found in Table 11. As is shown in Table 11, in extremely high levels of pruning
schemes, our proposed method performs better than other methods.

Table 11: The pruning performance (model accuracy) of various methods on MLPNet, ResNet20,
and ResNet50. As to the performance of MP, WF, CBS, CHITA, and EWR, we adopt the results
reported in [4]. We take five runs for our approaches and report the mean and standard error (in the
brackets). The best accuracy values (significant) are highlighted in bold. Here sparsity denotes the
fraction of zero weights in convolutional and dense layers.

Network Sparsity MP WF CBS CHITA EWR LOMP(ours)

MLPNet on MNIST
(93.97%)

0.5 93.93 94.02 93.96 95.97 (±0.05) 95.24 (±0.03) 97.43(±0.23)
0.6 93.78 93.82 93.96 95.93 (±0.04) 95.13 (±0.01) 97.42(±0.22)
0.7 93.62 93.77 93.98 95.89 (±0.06) 95.05 (±0.04) 97.45(±0.24)
0.8 92.89 93.57 93.90 95.80 (±0.03) 94.84 (±0.03) 97.53(±0.21)
0.9 90.30 91.69 93.14 95.55 (±0.03 94.30 (±0.05) 97.61(±0.07)

0.95 83.64 85.54 88.92 94.70 (±0.06) 92.86 (±0.05) 96.85(±0.14)
0.98 32.25 38.26 55.45 90.73 (±0.11) 85.71 (±0.09) 92.90(±0.67)

ResNet20 on CIFAR10
(91.36%)

0.5 88.44 90.23 90.58 91.04 (±0.09 92.04 (±0.03) 91.05 (±0.07)
0.6 85.24 87.96 88.88 90.78 (±0.12) 91.98 (±0.09) 91.05 (±0.06)
0.7 78.79 81.05 81.84 90.38 (±0.10) 91.89 (±0.10) 90.82 (±0.09)
0.8 54.01 62.63 51.28 88.72 (±0.17) 90.15 (±0.09) 90.28 (±0.06)
0.9 11.79 11.49 13.68 79.32 (±1.19) 88.82 (±0.10) 89.26 (±0.28)

0.95 - - - - 81.33 (±0.15) 86.16 (±0.11)
0.98 - - - - 69.21 (±0.24) 79.15 (±0.26)

ResNet50 on CIFAR10
(92.78%)

0.95 - - - - 84.96 (±0.15) 93.62 (±0.16)
0.98 - - - - 82.85 (±0.20) 89.55 (±0.58)

G.4 Small Weights Benefits Pruning

We verify that small sharpness is not equal to high sparsity through hypothetical experiments.
Considering that the hessian matrix of network A and network B1, B2, B3, B4 share eigenvalues
{λ1, λ2, . . . , λn}, the weight magnitude of network B1, B2, B3, B4 is 2,3,4,5 times that of network
A, we take the eigenvalues and weights from a FC network trained without regularization. In this
way, the gap between the curves will be more obvious. For other networks, the trend of the curve gap
is consistent, the prediction of the network pruning ratio is shown in the Figure. 7. It is observed from
Figure. 7 that as the magnitude of network weights increases, the capacity of the network to tolerate
pruning decreases. The pruning ratio threshold is affected not only by loss sharpness but also the
magnitude of weights. This finding, on the other hand, provides further evidence of the effectiveness
of the l1-norm in pruning tasks.

G.5 Statistical Information of Weights in Various Experiments

The same plots as Fig. 2(b) and Fig. 2(c) are provided in Figure 8
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Figure 7: Pruning ratio prediction on different weight magnitude.
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Figure 8: The same plots as Fig. 2(b) and Fig. 2(c) on eight tasks.
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H Limitations

In this paper, we consider a well-trained neural network and argue that the weight magnitude and
network sharpness with respect to the weights constitute the fundamental limits of a one-shot network
pruning task. Although popular methods such as Iterative Magnitude Pruning [7] and the Lottery
Ticket Hypothesis [6] involve multiple rounds of one-shot pruning, the fundamental limits of such
multi-shot pruning remain unclear. Furthermore, we demonstrate that when the magnitude of the
removed weights is small, the upper bound of the pruning ratio nearly coincides with the lower bound.
However, not all training strategies result in small removed weights, and in such cases, the upper and
lower bounds do not coincide. Nevertheless, weight magnitude and network sharpness with respect
to the weights still represent the fundamental limits of a one-shot network pruning task.

I Broader Impacts

Our work aims to advance the theoretical understanding of network pruning, with the anticipation
that theoretical insights can guide future designs of network pruning methods. There are no ethically
related issues or negative societal consequences in our work.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: See corollary 3.4, Lemma 3.5, Theorem 3.6, Section 4.1 and Algorithm 1.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have discussed the limitations of our assumptions and our theoretical
results, a limitation section has been included in the appendix, see Section H.
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: In the main paper, we introduced all the assumptions and provided intuitive
explanations. Comprehensive proofs are included in the appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: See Section 4, 5 in the main paper and Section B in the Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We have provided open access to our code, the anonymized URL is included
in the abstract.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All the details and settings are included in the appendix. See Section B in the
Appendix.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We provided statistical results of our results under multiple independent runs.
See Table 9 and Table 2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

33

91369 https://doi.org/10.52202/079017-2898

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error
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• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
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• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
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Justification: We have provided information of the computer resources in Section B and our
code (see the URL in abstract).
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We confirm that our research adheres to the NeurIPS Code of Ethics in every
respect and preserves anonymity.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: There is no societal impact of the work performed and we have included an
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal
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to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
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being used as intended and functioning correctly, harms that could arise when the
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11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our research didn’t release any data or models.
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• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.
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• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
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12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
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• The answer NA means that the paper does not use existing assets.
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URL.
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• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
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provided alongside the assets?
Answer: [NA]
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• The answer NA means that the paper does not release new assets.
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