
Personalized Federated Learning with
Mixture of Models for Adaptive Prediction and

Model Fine-Tuning

Pouya M. Ghari
University of California Irvine

pmollaeb@uci.edu

Yanning Shen ∗

University of California Irvine
yannings@uci.edu

Abstract

Federated learning is renowned for its efficacy in distributed model training, ensur-
ing that users, called clients, retain data privacy by not disclosing their data to the
central server that orchestrates collaborations. Most previous work on federated
learning assumes that clients possess static batches of training data. However,
clients may also need to make real-time predictions on streaming data in non-
stationary environments. In such dynamic environments, employing pre-trained
models may be inefficient, as they struggle to adapt to the constantly evolving data
streams. To address this challenge, clients can fine-tune models online, leveraging
their observed data to enhance performance. Despite the potential benefits of client
participation in federated online model fine-tuning, existing analyses have not
conclusively demonstrated its superiority over local model fine-tuning. To bridge
this gap, the present paper develops a novel personalized federated learning algo-
rithm, wherein each client constructs a personalized model by combining a locally
fine-tuned model with multiple federated models learned by the server over time.
Theoretical analysis and experiments on real datasets corroborate the effectiveness
of this approach for real-time predictions and federated model fine-tuning.

1 Introduction

Federated learning enables a group of learners, known as clients, to collaborate and collectively train
a model under the coordination of a central server, without revealing their data. In this framework,
clients perform local model updates and share these updates with the server. By aggregating these
local updates, the server globally updates the model. Many prior works in the literature have assumed
that each client stores a batch of training data and updates models locally based on this stored data
(see e.g., [38, 29, 47, 5, 34, 53]). However, in some cases, clients may need to make real-time
predictions, and streams of data arrive sequentially, making it challenging to store and process data
in batch. Furthermore, if clients operate in a non-stationary and dynamic environment, employing
pre-trained models may fall short in prediction accuracy, requiring clients to fine-tune their models to
adapt to their data.

A federated learning framework, commonly referred to as online federated learning [37, 26, 19],
specifically addresses situations where clients engage in real-time predictions using a shared global
model. After making predictions, clients collaborate with the server to update the global model for
subsequent predictions in the future. Specifically, after making predictions, clients incur losses and
based on the incurred losses, clients update the model locally and send their local updates to the
server. The server updates the global model upon aggregating local updates and then distributes the
updated global model to clients for use in the ongoing online prediction task. In this context, the

∗Corresponding author

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

92155 https://doi.org/10.52202/079017-2926

performance of clients can be assessed using the notion of regret [4, 3]. The regret of a client at a
given time step is defined as the difference between its prediction loss and that of the best model in
hindsight. The best model in hindsight is determined as the model that achieves the minimum total
prediction loss over time across all clients’ data. The primary objective is to minimize the cumulative
regret of all clients over time.

In the literature, federated learning algorithms based on online gradient descent have been proposed
that achieve sub-linear regret upper bounds [37, 26, 19]. This suggests that over the long run,
these algorithms perform as well as the best model in hindsight. However, in Section 3, this paper
demonstrates that these federated learning algorithms do not obtain tighter regret bounds compared
to the scenario where each client learns its own model locally without participating in federated
learning. This indicates that participation in federated learning may not provide any benefit for
clients performing online prediction. Specifically, if data is distributed non-i.i.d. among clients and
data distributions are time-variant and not known a priori, it is likely that local model training by
clients will achieve better prediction accuracy than participation in federated learning. Although
the benefit of federated learning in online prediction is not evident in existing theoretical analyses,
models learned through federated learning enjoy higher generalizability as they are trained on all data
samples distributed among clients. This motivates the idea that combining the model learned through
federated learning with the locally learned one may prove effective in scenarios where clients need to
perform online prediction.

This paper proposes the Fed-POE (Federated Learning with Personalized Online Ensemble) algorithm,
through which each client constructs a personalized model for online prediction by adaptively
ensembling the locally learned model and the model learned through federated learning. With Fed-
POE, clients can adapt their local models to their data while benefiting from the higher generalizability
of the federated model. Theoretical analysis for convex cases demonstrates that Fed-POE achieves
sublinear regret bounds with respect to both the best federated and local models in hindsight. This
indicates that Fed-POE effectively leverages the advantages of both federated and local models.
Providing such theoretical guarantees may not be feasible for non-convex models such as neural
networks. These models may suffer from the forgetting process [51, 45], where fine-tuning on
streaming data ‘on the fly’ can lead to forgetting previously observed data samples. To overcome
this challenge, the present paper proposes a novel framework in which the server periodically stores
federated model parameters over time. Each client adaptively selects a personalized subset of stored
models on the server based on the performance of these models in the client’s online prediction task.
Clients then use the selected models, along with the federated and local models, to construct an
ensemble model for prediction. Clients select a subset of models to both control the memory and
computational complexity of prediction and to prune models with relatively lower accuracy, thereby
improving prediction performance. Theoretical analysis proves that Fed-POE achieves sublinear
regret with respect to the best model in hindsight among the local model, federated model, and all
models stored by the server. The contributions of the present paper are summarized as follows:

• Fed-POE enables clients to utilize the advantages of both local and federated models for
online prediction tasks.

• To address the issue of forgetting in online prediction, Fed-POE introduces a novel federated
framework for collaboration between clients and the server.

• Theoretical analyses for both convex and non-convex cases prove that Fed-POE achieves
sublinear regret with respect to the best model in hindsight.

• Extensive experiments on regression and image classification datasets show that Fed-POE
effectively leverages the benefits of local and federated models, achieving higher online
prediction accuracy compared to state-of-the-art federated learning algorithms.

2 Related Works

Personalized Federated Learning. Personalized federated learning involves developing individual-
ized models for each client, derived from a global model learned through federated learning. Several
personalized federated learning algorithms have been proposed in the literature [50, 6, 54, 56]. In
[24, 11, 30, 33], clients construct their personalized models by adding a regularization term to the
local objective and using the global federated model. Algorithms in [12, 1] allow clients to fine-tune
the global federated model using model-agnostic meta-learning [14] to learn their personalized

2

92156https://doi.org/10.52202/079017-2926

models. With Fed-Rep [8], each client generates a representation using the global model and learns
its own local head for prediction. Algorithms in [10, 32, 57] enable clients to achieve personalized
models by combining local and global models. However, none of these works have addressed the
problem of online prediction while clients collaborate on training their personalized models.

Federated Learning with Streaming Data. Several studies have explored the problem of federated
learning when clients receive a stream of data in real time. While [7, 36, 35] investigate federated
learning scenarios where clients receive new training data in each learning round, they do not address
the aspect of online prediction by clients. Consequently, these works cannot provide regret guarantees
for online prediction. Additionally, [9] studies the issue of staleness in online federated learning
to both train and make prediction with the model; however, it lacks rigorous theoretical analysis.
In [37], an online federated learning algorithm is introduced, utilizing online mirror descent, with
a proven sublinear regret bound. Similarly, [42, 16] propose online federated learning algorithms
with guaranteed sublinear regret. Furthermore, [43] analyzes the benefits of collaboration in online
federated learning, particularly in scenarios where only loss values at queried points are available
to clients, without access to loss gradients. Regarding online federated kernel learning, algorithms
are introduced in [17, 23], albeit without accompanying regret analysis, leading to an absence of
guaranteed regret bounds. In [26, 19], multiple kernel-based models and random feature-based online
federated kernel learning algorithms are proposed, with demonstrated sublinear regret.

3 Preliminaries

This section explains the problem of federated learning for real-time prediction and model training.
The present section studies the cases where clients either collaborate in federated learning or employ
online gradient descent methods to locally train the model in real-time. This study highlights the
motivation behind the proposed ensemble approach to federated learning.

3.1 Online Prediction and Federated Learning

Let there are N clients interact with a server to train a model f(·; ·). Also, let [N] := {1, . . . , N}.
At each time step t, client i, ∀i ∈ [N] receives a data sample xi,t ∈ Rd and makes the prediction
f(xi,t;θt) where θt denotes the parameter of the model at time step t. Note that generalization to
the scenario where at each time step, each client receives a dataset instead of a single data sample
is straightforward. After making prediction, client i, ∀i ∈ [N] observes label yi,t. Then client
i, ∀i ∈ [N] computes the loss of its prediction L(f(xi,t;θt), yi,t) where L(·, ·) denotes the loss
function. After computing the loss, clients send their updates to the server (e.g., by sending the
gradient loss ∇L(f(xi,t;θt), yi,t)) and the server aggregates information from clients to update θt
to θt+1 to be used by clients to make predictions at time step t + 1. For ease of presentation, it is
assumed that all clients can send their updates to the server every time step. Generalizing the results
for the cases where only a fraction of clients can send their updates is straightforward. Furthermore,
it is assumed that the label yi,t for any i and t is determined by the environment through a process
unknown to the clients. This implies that the data distribution observed by client i can be non-
stationary, and client i, ∀i ∈ [N] does not know the distribution. Additionally, the data distribution
can differ across clients. The goal is to enable clients to collaborate with the server to minimize the
cumulative regret of clients over time. The regret of client i at time step t is defined as the difference
between the prediction loss L(f(xi,t;θt), yi,t) and the loss L(f(xi,t;θ

∗), yi,t) corresponding to the
model with the optimal parameter θ∗. Therefore, the average cumulative regret of clients up to time
horizon T is defined as

RT =
1

N

T∑
t=1

N∑
i=1

L(f(xi,t;θt), yi,t)−
1

N

T∑
t=1

N∑
i=1

L(f(xi,t;θ
∗), yi,t) (1)

where θ∗ denotes the optimal model parameter in hindsight and can be expressed as

θ∗ = argmin
θ

T∑
t=1

N∑
i=1

L(f(xi,t;θ), yi,t). (2)

One common way to solve the problem is that clients employ online gradient descent to update
models locally and the server exploits federated averaging [31, 37] to update the global model.

3

92157 https://doi.org/10.52202/079017-2926

3.2 Federated Learning with Online Gradient Descent

At each time step t, client i obtains the locally updated model parameter ψi,t+1 as follows:

ψi,t+1 = θt − η∇L(f(xi,t;θt), yi,t) (3)

where η is the learning rate. Aggregating locally updated model parameters, the server obtains the
updated global model parameter for time step t+ 1 as

θt+1 =
1

N

N∑
i=1

ψi,t+1. (4)

This continues up until the time horizon T . This paper examines regret under some or all of the
following assumptions:
A1. The loss function L(f(x;θ), y) is convex with respect to θ.
A2. The gradient of the loss is bounded as ∥∇L(f(x;θ), y)∥ ≤ G.
A3. For any x, θ, the loss is bounded as 0 ≤ L(f(x;θ), y) ≤ 1.

The following theorem specifies the regret bound for federated learning employing online gradient
descent under A1 and A2.
Theorem 1. Employing online gradient descent, the following cumulative regret upper bound is
guaranteed for federated learning under assumptions A1 and A2:

1

N

T∑
t=1

N∑
i=1

L(f(xi,t;θt), yi,t)−
1

N

T∑
t=1

N∑
i=1

L(f(xi,t;θ
∗), yi,t) ≤

∥θ∗∥2

2η
+

η

2
G2T. (5)

Proof of Theorem 1 can be found in Appendix A. According to Theorem 1, choosing η = O(
√

1/T),
the cumulative regret in (5) is bounded from above as O(

√
T). If the time horizon T is unknown, the

doubling trick technique (see e.g., [2, 22]) can be effectively used to set the learning rate to maintain
theoretical guarantees. Consider the case where each client learns the model locally using online
gradient descent without collaborating with other clients and the server. Let ϕi,t denote the local
model parameter learned by client i at time step t, employing online gradient descent locally. The
regret of client i in this case is equivalent to federated learning regret where there is only one client.
Therefore, substituting N = 1 and θ0 = 0 in (27) of Appendix A, for the cumulative regret of client
i with respect to any θ, we get

T∑
t=1

L(f(xi,t;ϕi,t), yi,t)−
T∑

t=1

L(f(xi,t;θ), yi,t) ≤
∥θ∥2

2η
+

η

2
G2T. (6)

Averaging (6) over all clients and substituting θ with θ∗ in (6), we obtain

1

N

T∑
t=1

N∑
i=1

L(f(xi,t;ϕi,t), yi,t)−
1

N

T∑
t=1

N∑
i=1

L(f(xi,t;θ
∗), yi,t) ≤

∥θ∗∥2

2η
+

η

2
G2T. (7)

Comparing (5) with (7), it can be inferred that under assumptions A1 and A2, federated learning does
not achieve tighter regret bound than the case where each client independently learns its local model.
Hence, from a theoretical standpoint, it remains uncertain whether collaboration in federated learning
yields any improvement over local online model training. Intuitively, collaboration in federated
learning may prove advantageous when there exists similarity among data samples observed by
clients over time. However, in cases where data distribution is heterogeneous and such similarities
are lacking, employing online local training may yield superior results for a client. Given the lack of
prior information on data distribution in online scenarios, each client can independently assess over
time whether utilizing the model learned through federated learning for predictions is beneficial.

Furthermore, according to assumption A1, the theoretical guarantees obtained in (5) and (7) hold if
the loss is convex with respect to the model parameter. However, in the case of non-convex models,
such as neural networks, these theoretical guarantees are not applicable. Non-convex models, like
neural networks, may encounter the forgetting process [51, 45], where the model tends to overfit
to recently observed data samples. Consequently, it may not be feasible to derive a single model
parameter using online gradient descent that achieves sublinear regret with respect to the best model
in hindsight. The subsequent section introduces a novel algorithm aimed at assisting clients in
addressing such scenarios.

4

92158https://doi.org/10.52202/079017-2926

4 Personalized Federated Learning Methods

The current section introduces personalized federated learning algorithms where each client dynami-
cally learns the prediction performance of both the models trained through federated learning over
time and the locally learned model.

4.1 Ensemble Learning

At each time step, each client constructs an ensemble model comprising the federated model and its
locally learned model to make a prediction. Let ϕi,t be the model parameter locally learned by client
i such that at each time step t, client i updates ϕi,t via gradient descent as

ϕi,t+1 = ϕi,t − η∇L(f(xi,t;ϕi,t), yi,t). (8)

Furthermore, let clients and the server collaborate to update the federated model parameter θt as
outlined in (3) and (4). At time step t, client i makes the prediction for xi,t using its personalized
ensemble model fi,t(·) expressed as

fi,t(xi,t) =
αi,t

αi,t + βi,t
f(xi,t;θt) +

βi,t

αi,t + βi,t
f(xi,t;ϕi,t) (9)

where αi,t and βi,t represent the weights assigned by client i to the federated and local models,
respectively, indicating the credibility of predictions from each model. After making predictions and
observing the label yi,t, client i computes the loss of predictions from the federated and local models,
updating the weights αi,t and βi,t using the multiplicative update rule as follows:

αi,t+1 = αi,t exp (−ηcL(f(xi,t;θt), yi,t)) , (10a)
βi,t+1 = βi,t exp (−ηcL(f(xi,t;ϕi,t), yi,t)) (10b)

where ηc is a learning rate. Client i initializes αi,1 = 1 and βi,1 = 1. The proposed algorithm
is personalized since according to (9), each client constructs its own ensemble model to perform
prediction. The personalized regret of client i is defined as Ci,T =

∑T
t=1 L(fi,t(xi,t), yi,t) −∑T

t=1 L(f(xi,t;ϕ
∗
i), yi,t) where ϕ∗

i denotes the best hindsight model parameter for client i which
can be expressed as ϕ∗

i = argminϕ
∑T

t=1 L(f(xi,t;ϕi), yi,t). The following theorem establishes
the personalized regret upper bound for client i as well as global regret of all clients with respect to
the best model parameter in hindsight.
Theorem 2. Under assumptions A1–A3, employing the ensemble model in (9) for online prediction,
the global regret of all clients is bounded from above as

1

N

T∑
t=1

N∑
i=1

L(fi,t(xi,t), yi,t)−
1

N

T∑
t=1

N∑
i=1

L(f(xi,t;θ
∗), yi,t)≤

∥θ∗∥2

2η
+
ln(2)

ηc
+
η

2
G2T+

ηcT

2
(11)

while client i achieves the following personalized regret upper bound:

T∑
t=1

L(fi,t(xi,t), yi,t)−
T∑

t=1

L(f(xi,t;ϕ
∗
i), yi,t) ≤

∥ϕ∗
i ∥2

2η
+

ln(2)

ηc
+

η

2
G2T +

ηcT

2
. (12)

Proof of Theorem 2 is given in Appendix B. According to (11) and (12) in Theorem 2, setting
η = O(1/

√
T), ηc = O(1/

√
T) both the global regret for all clients and the personalized regret of

each client i achieve a regret bound of O(
√
T). This demonstrates that while the ensemble model in

(9) ensures personalized regret guarantees for each client with respect to its best model in hindsight,
it also enables clients to leverage federated learning, thus enjoying sublinear regret in comparison to
the best global model in hindsight.

Comparison with Federated and Local Models. The main advantage of using the ensemble model
instead of the federated model lies in Theorem 2, where it is shown that the ensemble model can
attain the global regret guarantee provided by the federated model while employing the federated
model, achieving the personalized regret guarantee in (12) is not feasible. However, according to (6)
and (7), using the online local training, each client achieves sublinear regret with respect to its best
model while all clients achieve sublinear regret with respect to the best global model in hindsight.

5

92159 https://doi.org/10.52202/079017-2926

Algorithm 1 Model selection by client i at time step t

1: Input: Dt, M , wights {wij,t}|Dt|
j=1 and Mi,t = ∅.

2: for m = 1, . . . ,M do
3: Sample model index k according to the PMF pij,t =

wij,t∑|Dt|
j=1 wij,t

, ∀j ∈ [|Dt|].

4: if k /∈ Mi,t then
5: Append model index k to Mi,t.
6: end if
7: end for
8: Output: Mi,t.

This efficacy of local training stems from clients adapting the model to their individual data. In
contrast, in federated learning, the model is trained on all data samples across clients, potentially
leading to higher generalizability compared to its local counterpart. If there are similarities in the
distribution of data samples among clients over time, the federated model is anticipated to achieve
greater accuracy in online prediction. However, due to the lack of available information regarding the
relationships between data samples observed by clients before online prediction, these advantages
may not be reflected in theoretical bounds. The proposed method constructs an ensemble to harness
the advantages of both federated and local models for online prediction, as evidenced by Theorem
2. Experimental results in Subsection in 5.1 confirm that the ensemble model achieves superior
performance compared to both local and federated models.

4.2 Model Selection

Regret guarantees for the ensemble method, as outlined in Theorem 2, are contingent upon the model’s
convexity. However, if the model is non-convex, achieving such guarantees may not be feasible.
Particularly, non-convex models such as neural networks are susceptible to the forgetting process
[51, 45], wherein applying online gradient descent may lead to overfitting to recently observed data
samples. This section introduces a novel algorithm that allows clients to make online predictions
using non-convex models while simultaneously collaborating to fine-tune the model. The scenario
assumes the existence of a pre-trained model, and the objective for clients is two-fold: to make
real-time predictions and to refine the model for alignment with their preferences. This situation may
arise, for instance, in fine-tuning large foundation models to tailor them to client preferences.

Let the server and clients collaborate to fine-tune the non-convex model f(·; ·). At each time step t,
client i updates the model on the batch of recently observed samples with size b as

ψi,t+1 = θt −
η

b

t∑
τ=t−b

∇L(f(xi,τ ;θt), yi,τ). (13)

Then the server aggregates locally updated parameters and updates the federated model parameter
as in (4). Furthermore, each clients learns its own local model by fine-tuning the pre-trained model
locally via online gradient descent as in (8) on the batch of b recently observed samples. While online
gradient descent methods are well-known for their efficiency in handling dynamic environments,
employing the update rule of (13) for non-convex models may lead to overfitting to recently observed
batches. To mitigate potential forgetting, the server saves the federated model parameters every n
time step, where n is an integer hyperparameter.

Let Dt represent the set of model parameters stored by the server at time step t. At time step
τ = (j − 1)n+ 1, the server adds θτ to Dτ meaning that Dτ+1 = Dτ ∪ {θτ}. Let ρj denotes the
j-th model parameter in Dt. It can be concluded that ρj = θ(j−1)n+1. The server continues saving
model parameters every n time steps until time step U ≤ T . Client i assigns a weight wij,t to the
j-th model in Dt, which assesses the credibility of the predictions given by the model parameter ρj .
Client i initializes wij,1 = 1. At each time step t, client i selects M models with replacement from
Dt to construct its model set Mi,t. Algorithm 1 illustrates the model selection process conducted by
client i at time step t. During each round of model selection, client i chooses a model according to a
probability mass function (PMF) proportional to weights {wij,t|1 ≤ j ≤ |Dt|} where | · | denotes
the cardinality of a set (see step 3 in Algorithm 1). Client i adds the chosen model to Mi,t if it is
not already present. Therefore, it can be concluded that |Mi,t| ≤ M , ∀i, t. Then at each time step t,

6

92160https://doi.org/10.52202/079017-2926

Algorithm 2 Fed-POE: Federated Learning with Personalized Online Ensemble
1: Input: Model f(·; ·), batch size b, n, U , Di,1 = ∅.
2: for t = 1, . . . , T do
3: The server transmits θt to all clients.
4: for all i ∈ [N], client i do
5: Performs model selection given Dt according to Algorithm 1 to obtain Mi,t.
6: Makes prediction f̄i,t(xi,t) as in (15) using chosen model set Mi,t.
7: Upon receiving yi,t, updates αi,t, βi,t, γi,t, δi,t and {wij,t}|Dt|

j=1 as in (10), (16) and (17).
8: Updates the local model as ϕi,t+1 = ϕi,t − η

b

∑t
τ=t−b ∇L(f(xi,t;ϕi,τ), yi,t).

9: Updates the federated model as ψi,t+1 = θt − η
b

∑t
τ=t−b ∇L(f(xi,τ ;θt), yi,τ).

10: Sends ψi,t+1 to the server.
11: end for
12: if t ≤ U and t mod n = 0 then
13: The server updates Dt as Dt+1 = Dt ∪ {θt}.
14: end if
15: The server updates θt as θt+1 = 1

N

∑N
i=1ψi,t+1.

16: end for

client i downloads all models in Mi,t from the server. Upon receiving the models, client i constructs
an ensemble model f̃i,t(·) as

f̃i,t(x) =
∑

j∈Mi,t

wij,t∑
m∈Mi,t

wim,t
f(x;ρj). (14)

Client i makes the prediction for xi,t as

f̄i,t(xi,t) =
γi,t

γi,t + δi,t
fi,t(xi,t) +

δi,t
γi,t + δi,t

f̃i,t(xi,t) (15)

where fi,t(xi,t) is the ensemble of local and federated models as defined in (9). Furthermore, γi,t
and δi,t are weights assigned by client i to ensemble models fi,t(·) and f̃i,t(·), respectively. Upon
observing the label yi,t after prediction, client i updates weights γi,t and δi,t as

γi,t+1 = γi,t exp (−ηcL(fi,t(xi,t), yi,t)) , (16a)

δi,t+1 = δi,t exp(−ηcL(f̃i,t(xi,t), yi,t)). (16b)

Furthermore, αi,t and βi,t which are used to construct fi,t(xi,t) in (9) are updated as in (10). The
weight wij,t is updated using the importance sampling loss as

wij,t+1 = wij,t exp

(
−ηc

L(f(xi,t;ρj), yi,t)

qij,t
1j∈Mi,t

)
(17)

where 1j∈Mi,t
denotes the indicator function and is 1 if j ∈ Mi,t. Moreover, qij,t is the probability

that client i selects the j-th model in Dt to be in Mi,t and can be expressed as qij,t = 1− (1−pij,t)
M

where pij,t is defined in step 3 of Algorithm 1. The proposed algorithm, named Federated Learning
with Personalized Online Ensemble (Fed-POE) is summarized in Algorithm 2. It is useful to note that
the proposed method in Subsection 4.1 is a special case of Fed-POE by setting M = 0 and b = 1.

Efficiency of Fed-POE. To perform model selection using Fed-POE, clients do not need to store all
model parameters in Dt for all t ∈ [T]. Instead, the server, which has higher storage capacity than the
clients, stores all model parameters, and clients download a subset of at most M model parameters.
The hyperparameter M can be chosen such that clients can handle the memory and computational
requirements of making predictions with the selected subset of models. Let CF denote the number of
computations required to fine-tune the model f , and let CI represent the number of computations
required to make an inference with model f . Assume that the complexity of model selection in
Algorithm 1 is negligible compared to fine-tuning and making inferences with model f . According
to Algorithm 2, each client performs 2CF + (M + 2)CI computations per time step. Therefore,
the computational complexity of Fed-POE for each client is O(CF + MCI). Beyond memory
and computational considerations, selecting a subset of models from Dt helps clients improve their

7

92161 https://doi.org/10.52202/079017-2926

prediction accuracy. Specifically, using the model weights {wij,t} at time step t, client i selects
models that perform better on its data while pruning those with lower performance.

Let hj(xi,t) = f(xi,t;ρj) denote the model associated with the j-th model parameter in Dt. Further-
more, hloc(xi,t) = f(xi,t;ϕi,t) and hfed(xi,t) = f(xi,t;θt) represent the local and federated models,
respectively, . Let the set of models H be defined as H := {hj | ∀j : 1 ≤ j ≤ |DT |} ∪ {hloc, hfed}.
This set H includes all models that can be employed by each client using Fed-POE. The best model
in hindsight h∗ and the best model in hindsight for client i, h∗

i are defined as

h∗ = min
h∈H

T∑
t=1

N∑
i=1

L(h(xi,t), yi,t), (18a)

h∗
i = min

h∈H

T∑
t=1

L(h(xi,t), yi,t). (18b)

The following theorem provides the regret upper bound of Fed-POE.

Theorem 3. Under assumption A3, employing Fed-POE in Algorithm 2, the expected global regret
of all clients is bounded from above as

1

N

T∑
t=1

N∑
i=1

Et[L(f̄i,t(xi,t), yi,t)]−
1

N

T∑
t=1

N∑
i=1

L(h∗(xi,t), yi,t)

≤ ln 2U − ln 2n

ηc
+

ηc
2
(
U

n
+ 1)T + (1− ηc

2n
U)U (19)

while client i achieves the following expected personalized regret upper bound:

T∑
t=1

Et[L(f̄i,t(xi,t), yi,t)]−
T∑

t=1

L(h∗
i (xi,t), yi,t)

≤ ln 2U − ln 2n

ηc
+

ηc
2
(
U

n
+ 1)T + (1− ηc

2n
U)U. (20)

The expectation is taken with respect to randomization in model selection.

The proof of Theorem 3 can be found in Appendix C. According to (19) and (20), setting ηc =
O(1/

√
T), n = O(

√
T) and U = O(

√
T), both the personalized and global regrets of clients

achieve sublinear regret of O(
√
T). Since clients construct their ensemble models using a time-

varying subset of models, employing existing model selection and ensemble learning approaches
[13, 15, 39, 46, 20, 41, 21] may not ensure the sublinear regrets stated in Theorem 3. However, by
using the proposed Algorithm 1, Fed-POE guarantees sublinear regret bounds while allowing clients
the flexibility to select time-varying and personalized subsets of models for their ensembles.

5 Experiments

The present section studies the performance of Fed-POE in Algorithm 2 compared to other baselines.
Experiments are conducted on both image classification and regression tasks. The performance
of federated learning is examined in both convex and non-convex cases. Codes are available at
https://github.com/pouyamghari/Fed-POE.

5.1 Regression

The performance of the proposed Fed-POE is evaluated on online regression tasks. For these
tasks, clients and the server collaborate to train a random feature kernel-based model, which is
known to be convex [25, 48, 18]. Details about the random feature kernel-based model used in
the experiments can be found in Appendix D. The performance of Fed-POE is compared with a
baseline called Local, where clients train their models locally without participating in federated
learning. Additionally, Fed-POE is compared to personalized federated learning baselines Ditto
[30] and Fed-Rep [8], the online federated learning baseline Fed-OMD [37], and online federated

8

92162https://doi.org/10.52202/079017-2926

https://github.com/pouyamghari/Fed-POE

kernel learning baselines eM-KOFL [26] and POF-MKL [19]. Mean square error (MSE) is used as
the metric to evaluate the performance of algorithms on regression task. MSE for client i can be
expressed as MSEi =

1
T

∑T
t=1 (ŷij,t − yi,t)

2 where ŷij,t denotes the prediction of client i at time
step t. The performance of algorithms are tested on two regression datasets Air [58] and WEC [40].
Air dataset is a time-series dataset that each data sample contains air quality features and the goal
is to predict the concentration of contamination in the air. Each sample in WEC dataset contains
features of different wave energy converters and the goal is to predict power output. Data samples are
distributed non-i.i.d among 400 clients. Time horizon T for both datasets is 250. More information
about datasets and distributed data among clients is presented in Appendix D.

Table 1: Average MSE (×10−3) and its standard
deviation (×10−3) across clients for online regres-
sion on Air and WEC datasets.

Methods Air WEC
Local 9.12± 3.59 17.64± 0.44
Ditto 10.65± 5.69 33.88± 16.08
Fed-Rep 10.48± 5.23 35.13± 10.38
Fed-OMD 11.48± 6.84 32.61± 27.38
eM-KOFL 11.51± 6.71 72.29± 62.48
POF-MKL 10.66± 6.07 16.94± 15.92
Fed-POE 9.06± 3.73 11.83± 4.60

Table 1 presents the MSE of algorithms and their
standard deviation across clients. For all algo-
rithms, the learning rates are set to η = ηc =
1/

√
T . Table 1 shows that when data is dis-

tributed non-i.i.d. among clients, local model
training can achieve higher accuracy compared
to federated learning. For the Air dataset, Local
achieves lower MSE than other federated learn-
ing baselines except for Fed-POE. For the WEC
dataset, only POF-MKL achieves lower MSE
than Local. This indicates that the performance
of federated learning approaches compared to
Local depends on the dataset. By utilizing both
federated and local models, Fed-POE achieves the lowest MSE. Table 1 shows that the performance
of Fed-POE relative to other baselines is more consistent across different datasets.

5.2 Image Classification

The performance of the proposed Fed-POE on an image classification task is compared with Local,
Ditto [30], Fed-Rep [8], Fed-OMD [37], Fed-ALA [57], and Fed-DS [35]. Fed-ALA [57] is a
personalized federated learning model suitable for deep neural networks, while Fed-DS [35] is a
federated learning algorithm designed to handle data streams. Experiments are conducted on CIFAR-
10 [28] and Fashion MNIST (FMNIST) [55] datasets. CIFAR-10 and FMNIST contain 60, 000 and
70, 000 images. For both CIFAR-10 and FMNIST, a CNN with a VGG architecture [49], consisting
of two blocks, is pre-trained on a subset of training samples from each dataset. The training datasets
are biased towards class 0. More details about training the CNNs can be found in Appendix D.
For both the CIFAR-10 and FMNIST datasets, 10, 000 test samples are sequentially received by
clients. There are 20 clients in total, and the data samples are distributed non-i.i.d. among them. For
CIFAR-10, each client is biased towards one specific class, with 55% of the samples belonging to
that class and 5% of the samples belonging to each of the other 9 classes. For FMNIST, each client is
biased towards two classes, and the distribution of samples is time-variant. More details about the
data distribution among clients and experimental setup can be found in Appendix D. At each time
step, all algorithms employ batch of size 10 for model update. The learning rates for all algorithms
are set to η = 0.01/

√
T and ηc = 1/

√
T . The server stores models every n = 20 time steps. The

metric to evaluate the performance of algorithms is the accuracy. The accuracy for client i is defined
as Accuracyi =

1
T

∑T
t=1 1ŷi,t=yi,t

where ŷi,t denotes the label predicted by client i at time step t.

Table 2: Average accuracy and its standard deviation
across clients for image classification.

Methods CIFAR-10 FMNIST
Local 50.35%± 10.11% 78.81%± 2.12%
Ditto 56.87%± 9.06% 78.73%± 1.89%
Fed-Rep 63.86%± 7.97% 79.04%± 1.77%
Fed-OMD 65.09%± 7.39% 74.60%± 6.52%
Fed-ALA 61.48%± 8.88% 75.13%± 6.39%
Fed-DS 64.26%± 7.03% 75.62%± 6.58%
Fed-POE 66.54%± 8.07% 79.23%± 1.88%

Average accuracy and its standard deviation
across clients for CIFAR-10 and FMNIST are
reported in Table 2. At each time step t, clients
can store 10 model parameters. Therefore, M
is set to M = 8 for Fed-POE. The results
indicate that the performance of Local relative
to federated learning baselines depends on the
dataset. While Local outperforms all federated
baselines except for Fed-Rep and Fed-POE
on FMNIST, it obtains the worst accuracy on
CIFAR-10. Conversely, Fed-POE achieves the
highest accuracy for both datasets, indicating

9

92163 https://doi.org/10.52202/079017-2926

Table 3: Average accuracy and standard deviation across clients employing Fed-POE for image
classification on CIFAR-10 with varying values of M and batch size b.

M = 0 M = 4 M = 8 M = 16
b = 1 53.80%± 6.71% 62.73%± 8.29% 62.73%± 8.29% 62.73%± 8.26%
b = 10 65.55%± 8.77% 66.50%± 8.00% 66.54%± 8.08% 66.46%± 7.98%
b = 20 65.72%± 8.62% 66.13%± 8.20% 66.64%± 7.94% 66.53%± 8.00%
b = 30 66.83%± 8.54% 66.32%± 7.92% 66.24%± 8.05% 66.39%± 8.02%

that Fed-POE efficiently leverages the advantages of both federated and local models. To analyze
the effect of the number of models M and batch size b on the Fed-POE performance, experiments
are conducted on the CIFAR-10 dataset, varying the batch size b and the number of models M
selected by each client to construct the ensemble model. As observed in Table 3, the batch size b = 1
results in the worst accuracy, mainly due to the forgetting process where models overfit to the most
recently observed data. However, increasing the batch size from b = 10 or b = 20 to b = 30 does not
significantly improve the accuracy. Larger batch sizes may lead the model to perform better on older
data, as the model is trained on older data over more iterations. Therefore, this study concludes that a
moderate batch size is optimal, considering that increasing the batch size also increases computational
complexity. Table 4 in Appendix D presents the accuracy of Fed-POE on both the CIFAR-10 and
FMNIST datasets with varying values of M . The table shows that employing the saved models by
the server in Dt improves performance, as setting M = 0 results in the worst accuracy. Moreover, it
can be observed that increasing M does not necessarily lead to further accuracy improvement. This
aligns with the intuition behind selecting a subset of models rather than using all models.

6 Conclusions

This paper proposed Fed-POE, a personalized federated learning algorithm designed for online
prediction and model fine-tuning. Fed-POE constructs an ensemble using local models and federated
models stored by the server periodically over time. Theoretical analysis demonstrated that Fed-POE
achieves sublinear regret. Experimental results revealed that the relative performance of local models
compared to federated models depends on the dataset, making the decision between local model
training and federated learning challenging. However, experimental results also show that Fed-POE
consistently outperforms both local and federated models across all datasets. This indicates that
Fed-POE effectively leverages the advantages of both local and federated models.

Acknowledgement

Work in this paper is supported by NSF ECCS 2207457 and NSF ECCS 2412484.

References
[1] Durmus Alp Emre Acar, Yue Zhao, Ruizhao Zhu, Ramon Matas, Matthew Mattina, Paul

Whatmough, and Venkatesh Saligrama. Debiasing model updates for improving personalized
federated training. In Proceedings of International Conference on Machine Learning, volume
139, pages 21–31, Jul 2021.

[2] Noga Alon, Nicolò Cesa-Bianchi, Claudio Gentile, Shie Mannor, Yishay Mansour, and Ohad
Shamir. Nonstochastic multi-armed bandits with graph-structured feedback. SIAM Journal on
Computing, 46(6):1785–1826, 2017.

[3] Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, and Robert E. Schapire. The nonstochastic
multiarmed bandit problem. SIAM Journal on Computing, 32(1):48–77, Jan 2003.

[4] Nicolo Cesa-Bianchi and Gabor Lugosi. Prediction, Learning, and Games. Cambridge
University Press, USA, 2006.

10

92164https://doi.org/10.52202/079017-2926

[5] Zachary Charles, Zachary Garrett, Zhouyuan Huo, Sergei Shmulyian, and Virginia Smith. On
large-cohort training for federated learning. In Advances in Neural Information Processing
Systems, 2021.

[6] Huili Chen, Jie Ding, Eric W Tramel, Shuang Wu, Anit Kumar Sahu, Salman Avestimehr,
and Tao Zhang. Self-aware personalized federated learning. Advances in Neural Information
Processing Systems, 35:20675–20688, 2022.

[7] Yujing Chen, Yue Ning, Martin Slawski, and Huzefa Rangwala. Asynchronous online federated
learning for edge devices with non-iid data. In IEEE International Conference on Big Data (Big
Data), pages 15–24, Dec 2020.

[8] Liam Collins, Hamed Hassani, Aryan Mokhtari, and Sanjay Shakkottai. Exploiting shared rep-
resentations for personalized federated learning. In Proceedings of the International Conference
on Machine Learning, volume 139, pages 2089–2099, Jul 2021.

[9] Georgios Damaskinos, Rachid Guerraoui, Anne-Marie Kermarrec, Vlad Nitu, Rhicheek Patra,
and Francois Taiani. Fleet: Online federated learning via staleness awareness and performance
prediction. ACM Transactions on Intelligent Systems and Technology, 13(5), Sep 2022.

[10] Yuyang Deng, Mohammad Mahdi Kamani, and Mehrdad Mahdavi. Adaptive personalized
federated learning. arXiv preprint arXiv:2003.13461, 2020.

[11] Canh T. Dinh, Nguyen H. Tran, and Tuan Dung Nguyen. Personalized federated learning
with moreau envelopes. In Proceedings of International Conference on Neural Information
Processing Systems, page 21394–21405, Dec 2020.

[12] Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. Personalized federated learning with
theoretical guarantees: A model-agnostic meta-learning approach. In Advances in Neural
Information Processing Systems, volume 33, pages 3557–3568, Dec 2020.

[13] Alan Fern and Robert Givan. Online ensemble learning: An empirical study. Machine Learning,
53:71–109, 2003.

[14] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adap-
tation of deep networks. In Proceedings of International Conference on Machine Learning,
volume 70, pages 1126–1135, Aug 2017.

[15] Dylan Foster, Satyen Kale, Mehryar Mohri, and Karthik Sridharan. Parameter-free online
learning via model selection. In Proceedings of International Conference on Neural Information
Processing Systems, 2017.

[16] Bhargav Ganguly and Vaneet Aggarwal. Online federated learning via non-stationary detection
and adaptation amidst concept drift. arXiv preprint arXiv:2211.12578, 2022.

[17] Francois Gauthier, Vinay Chakravarthi Gogineni, Stefan Werner, Yih-Fang Huang, and Anthony
Kuh. Resource-aware asynchronous online federated learning for nonlinear regression. In IEEE
International Conference on Communications, pages 2828–2833, 2022.

[18] Pouya M Ghari and Yanning Shen. Online multi-kernel learning with graph-structured feedback.
In Proceedings of the International Conference on Machine Learning, volume 119, pages
3474–3483, Jul 2020.

[19] Pouya M. Ghari and Yanning Shen. Personalized online federated learning with multiple kernels.
In Advances in Neural Information Processing Systems, 2022.

[20] Pouya M. Ghari and Yanning Shen. Graph-assisted communication-efficient ensemble federated
learning. In European Signal Processing Conference (EUSIPCO), pages 737–741, 2022.

[21] Pouya M. Ghari and Yanning Shen. Budgeted online model selection and fine-tuning via
federated learning. Transactions on Machine Learning Research, 2024.

[22] Pouya M. Ghari and Yanning Shen. Online learning with uncertain feedback graphs. IEEE
Transactions on Neural Networks and Learning Systems, 35(7):9636–9650, 2024.

11

92165 https://doi.org/10.52202/079017-2926

[23] Vinay Chakravarthi Gogineni, Stefan Werner, Yih-Fang Huang, and Anthony Kuh.
Communication-efficient online federated learning strategies for kernel regression. IEEE
Internet of Things Journal, 10(5):4531–4544, 2023.

[24] Filip Hanzely, Slavomír Hanzely, Samuel Horváth, and Peter Richtárik. Lower bounds and opti-
mal algorithms for personalized federated learning. In Proceedings of International Conference
on Neural Information Processing Systems, page 2304–2315, Dec 2020.

[25] Steven C. H. Hoi, Rong Jin, Peilin Zhao, and Tianbao Yang. Online multiple kernel classification.
Machine Learning, 90:289–316, Feb 2013.

[26] Songnam Hong and Jeongmin Chae. Communication-efficient randomized algorithm for
multi-kernel online federated learning. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 44(12):9872–9886, 2022.

[27] Markelle Kelly, Rachel Longjohn, and Kolby Nottingham. UCI machine learning repository,
2023.

[28] Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, 2009.

[29] Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated learning: Chal-
lenges, methods, and future directions. IEEE Signal Processing Magazine, 37(3):50–60, 2020.

[30] Tian Li, Shengyuan Hu, Ahmad Beirami, and Virginia Smith. Ditto: Fair and robust federated
learning through personalization. In Proceedings of the International Conference on Machine
Learning, volume 139, pages 6357–6368, Jul 2021.

[31] Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. On the convergence
of fedavg on non-iid data. In International Conference on Learning Representations, 2020.

[32] Xin-Chun Li, De-Chuan Zhan, Yunfeng Shao, Bingshuai Li, and Shaoming Song. Fedphp:
Federated personalization with inherited private models. In Joint European Conference on
Machine Learning and Knowledge Discovery in Databases, pages 587–602, 2021.

[33] Ken Liu, Shengyuan Hu, Steven Wu, and Virginia Smith. On privacy and personalization in
cross-silo federated learning. In Advances in Neural Information Processing Systems, 2022.

[34] Othmane Marfoq, Giovanni Neglia, Aurélien Bellet, Laetitia Kameni, and Richard Vidal.
Federated multi-task learning under a mixture of distributions. In Proceedings of International
Conference on Neural Information Processing Systems, volume 34, pages 15434–15447, Dec
2021.

[35] Othmane Marfoq, Giovanni Neglia, Laetitia Kameni, and Richard Vidal. Federated learning
for data streams. In Proceedings of The International Conference on Artificial Intelligence and
Statistics, volume 206, pages 8889–8924, Apr 2023.

[36] Cobbinah B. Mawuli, Jay Kumar, Ebenezer Nanor, Shangxuan Fu, Liangxu Pan, Qinli Yang,
Wei Zhang, and Junming Shao. Semi-supervised federated learning on evolving data streams.
Information Sciences, 643:119235, 2023.

[37] Aritra Mitra, Hamed Hassani, and George J. Pappas. Online federated learning. In IEEE
Conference on Decision and Control (CDC), pages 4083–4090, Dec 2021.

[38] Mehryar Mohri, Gary Sivek, and Ananda Theertha Suresh. Agnostic federated learning. In
Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the International
Conference on Machine Learning, volume 97, pages 4615–4625, Jun 2019.

[39] Vidya Muthukumar, Mitas Ray, Anant Sahai, and Peter Bartlett. Best of many worlds: Robust
model selection for online supervised learning. In Proceedings of the International Conference
on Artificial Intelligence and Statistics, volume 89, pages 3177–3186, Apr 2019.

[40] Mehdi Neshat, Bradley Alexander, Markus Wagner, and Yuanzhong Xia. A detailed comparison
of meta-heuristic methods for optimising wave energy converter placements. In Proceedings of
the Genetic and Evolutionary Computation Conference, page 1318–1325, Jul 2018.

12

92166https://doi.org/10.52202/079017-2926

[41] Aldo Pacchiano, Christoph Dann, and Claudio Gentile. Best of both worlds model selection.
In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho, editors, Advances in
Neural Information Processing Systems, 2022.

[42] Jonghwan Park, Dohyeok Kwon, and Songnam Hong. Ofedqit: Communication-efficient
online federated learning via quantization and intermittent transmission. arXiv preprint
arXiv:2205.06491, 2022.

[43] Kumar Kshitij Patel, Lingxiao Wang, Aadirupa Saha, and Nathan Srebro. Federated online
and bandit convex optimization. In Proceedings of the International Conference on Machine
Learning, volume 202, pages 27439–27460, Jul 2023.

[44] Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In Proceed-
ings of International Conference on Neural Information Processing Systems, pages 1177–1184,
Dec 2007.

[45] Vinay Venkatesh Ramasesh, Aitor Lewkowycz, and Ethan Dyer. Effect of scale on catastrophic
forgetting in neural networks. In International Conference on Learning Representations, 2022.

[46] Mohammad Reza Karimi, Nezihe Merve Gürel, Bojan Karlaš, Johannes Rausch, Ce Zhang,
and Andreas Krause. Online active model selection for pre-trained classifiers. In Proceedings
of The International Conference on Artificial Intelligence and Statistics, volume 130, pages
307–315, Apr 2021.

[47] Daniel Rothchild, Ashwinee Panda, Enayat Ullah, Nikita Ivkin, Ion Stoica, Vladimir Braverman,
Joseph Gonzalez, and Raman Arora. FetchSGD: Communication-efficient federated learning
with sketching. In Proceedings of the International Conference on Machine Learning, volume
119, pages 8253–8265, Jul 2020.

[48] Doyen Sahoo, Steven C.H. Hoi, and Bin Li. Online multiple kernel regression. In Proceedings
of ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, page
293–302, 2014.

[49] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. In International Conference on Learning Representations, May 2015. URL
http://arxiv.org/abs/1409.1556.

[50] Yue Tan, Guodong Long, Jie Ma, Lu Liu, Tianyi Zhou, and Jing Jiang. Federated learning
from pre-trained models: A contrastive learning approach. Advances in neural information
processing systems, 35:19332–19344, 2022.

[51] Mariya Toneva, Alessandro Sordoni, Remi Tachet des Combes, Adam Trischler, Yoshua Bengio,
and Geoffrey J Gordon. An empirical study of example forgetting during deep neural network
learning. In International Conference on Learning Representations, 2019.

[52] Grace Wahba. Spline Models for Observational Data. Society for Industrial and Applied
Mathematics, 1990.

[53] Yujia Wang, Lu Lin, and Jinghui Chen. Communication-efficient adaptive federated learning.
In Proceedings of the International Conference on Machine Learning, volume 162, pages
22802–22838, Jul 2022.

[54] Yue Wu, Shuaicheng Zhang, Wenchao Yu, Yanchi Liu, Quanquan Gu, Dawei Zhou, Haifeng
Chen, and Wei Cheng. Personalized federated learning under mixture of distributions. In
International Conference on Machine Learning, pages 37860–37879, 2023.

[55] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

[56] Rui Ye, Zhenyang Ni, Fangzhao Wu, Siheng Chen, and Yanfeng Wang. Personalized federated
learning with inferred collaboration graphs. In International Conference on Machine Learning,
pages 39801–39817, 2023.

13

92167 https://doi.org/10.52202/079017-2926

http://arxiv.org/abs/1409.1556

[57] Jianqing Zhang, Yang Hua, Hao Wang, Tao Song, Zhengui Xue, Ruhui Ma, and Haibing Guan.
Fedala: Adaptive local aggregation for personalized federated learning. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 37, pages 11237–11244, 2023.

[58] Shuyi Zhang, Bin Guo, Anlan Dong, Jing He, Ziping Xu, and Song Xi Chen. Cautionary
tales on air-quality improvement in beijing. Proceedings of the Royal Society A: Mathematical,
Physical and Engineering Sciences, 473(2205):20170457, 2017.

14

92168https://doi.org/10.52202/079017-2926

A Proof of Theorem 1

This section provides the proof of Theorem 1. The proof follows similar steps to those in [37], and it
is included here for the sake of completeness and to make the paper self-contained.

According to (3) and (4), for any θ it can be written that

∥θt+1 − θ∥2 =

∥∥∥∥∥ 1

N

N∑
i=1

ϕi,t+1 − θ

∥∥∥∥∥
2

=

∥∥∥∥∥θt − η

N

N∑
i=1

∇L(f(xi,t;θt), yi,t)− θ

∥∥∥∥∥
2

=∥θt − θ∥2 +

∥∥∥∥∥ η

N

N∑
i=1

∇L(f(xi,t;θt), yi,t)

∥∥∥∥∥
2

− 2η

N

N∑
i=1

(θt − θ)⊤∇L(f(xi,t;θt), yi,t). (21)

Due to convexity of L(·, ·) it can be concluded that

2η

N

N∑
i=1

L(f(xi,t;θt), yi,t)− L(f(xi,t;θ), yi,t) ≤
2η

N

N∑
i=1

(θt − θ)⊤∇L(f(xi,t;θt), yi,t). (22)

Combining (21) with (22), we get

2η

N

N∑
i=1

L(f(xi,t;θt), yi,t)−
2η

N

N∑
i=1

L(f(xi,t;θ), yi,t)

≤∥θt − θ∥2 − ∥θt+1 − θ∥2 +

∥∥∥∥∥ η

N

N∑
i=1

∇L(f(xi,t;θt), yi,t)

∥∥∥∥∥
2

. (23)

Using assumption A2 and Arithmetic Mean Geometric Mean (AM-GM) inequality it can be written
that ∥∥∥∥∥

N∑
i=1

∇L(f(xi,t;θt), yi,t)

∥∥∥∥∥
2

≤ N

N∑
i=1

∥∇L(f(xi,t;θt), yi,t)∥2 ≤ N2G2. (24)

Combining (23) with (24), we arrive at

2η

N

N∑
i=1

L(f(xi,t;θt), yi,t)−
2η

N

N∑
i=1

L(f(xi,t;θ), yi,t) ≤ ∥θt − θ∥2 − ∥θt+1 − θ∥2 + η2G2.

(25)

Dividing both sides by 2η
N yields

N∑
i=1

L(f(xi,t;θt), yi,t)−
N∑
i=1

L(f(xi,t;θ), yi,t) ≤
N(∥θt − θ∥2 − ∥θt+1 − θ∥2)

2η
+

ηN

2
G2.

(26)

Summing (26) over time, we obtain
T∑

t=1

N∑
i=1

L(f(xi,t;θt), yi,t)−
T∑

t=1

N∑
i=1

L(f(xi,t;θ), yi,t)

≤N(∥θ0 − θ∥2 − ∥θT+1 − θ∥2)
2η

+
ηN

2
G2T. (27)

Plugging in θ = θ∗ and θ0 = 0 into (27) and considering the fact that ∥θT+1 − θ∥2 ≥ 0, we find
T∑

t=1

N∑
i=1

L(f(xi,t;θt), yi,t)−
T∑

t=1

N∑
i=1

L(f(xi,t;θ
∗), yi,t) ≤

N∥θ∗∥2

2η
+

ηN

2
G2T (28)

which proves the Theorem.

15

92169 https://doi.org/10.52202/079017-2926

B Proof of Theorem 2

According to (10), we can write

αi,t+1 + βi,t+1

αi,t + βi,t
=

αi,t

αi,t + βi,t
exp (−ηcL(f(xi,t;θt), yi,t))

+
βi,t

αi,t + βi,t
exp (−ηcL(f(xi,t;ϕi,t), yi,t)) . (29)

Using the inequality e−x ≤ 1− x+ 1
2x

2,∀x ≥ 0, from (29) we arrive at

αi,t+1 + βi,t+1

αi,t + βi,t
≤ αi,t

αi,t + βi,t

(
1− ηcL(f(xi,t;θt), yi,t) +

η2c
2
L2(f(xi,t;θt), yi,t)

)
+

βi,t

αi,t + βi,t

(
1− ηcL(f(xi,t;ϕi,t), yi,t) +

η2c
2
L2(f(xi,t;ϕi,t), yi,t)

)
. (30)

Taking the logarithm from both sides of (30) and using the inequality 1 + x ≤ ex, we get

ln(
αi,t+1 + βi,t+1

αi,t + βi,t
) ≤ αi,t

αi,t + βi,t

(
−ηcL(f(xi,t;θt), yi,t) +

η2c
2
L2(f(xi,t;θt), yi,t)

)
+

βi,t

αi,t+βi,t

(
−ηcL(f(xi,t;ϕi,t), yi,t) +

η2c
2
L2(f(xi,t;ϕi,t), yi,t)

)
. (31)

Considering the assumption that 0 ≤ L(f(x;θ), y) ≤ 1, ∀x,θ, (31) can be relaxed to

ln(
αi,t+1 + βi,t+1

αi,t + βi,t
) ≤ αi,t

αi,t + βi,t
(−ηcL(f(xi,t;θt), yi,t))

+
βi,t

αi,t + βi,t
(−ηcL(f(xi,t;ϕi,t), yi,t)) +

η2c
2
. (32)

Summing (32) over time, we obtain

ln(
αi,T+1 + βi,T+1

αi,1 + βi,1
) ≤ αi,t

αi,t + βi,t

(
−ηc

T∑
t=1

L(f(xi,t;θt), yi,t)

)

+
βi,t

αi,t + βi,t

(
−ηc

T∑
t=1

L(f(xi,t;ϕi,t), yi,t)

)
+

η2cT

2
. (33)

According to Hölder’s inequality, for any positive real numbers p and q satisfying 1
p + 1

q = 1, the
following inequality holds:

αi,T+1

p
+

βi,T+1

q
≥ α

1
p

i,T+1β
1
q

i,T+1. (34)

To meet the condition 1
p + 1

q = 1, it is necessary that p ≥ 1 and q ≥ 1. Consequently, (34) can be
modified to:

αi,T+1 + βi,T+1 ≥ α
1
p

i,T+1β
1
q

i,T+1. (35)

Considering the fact that αi,1 = βi,1 = 1, based on (35) we can write

ln(
αi,T+1 + βi,T+1

αi,1 + βi,1
) ≥ 1

p
ln(αi,T+1) +

1

q
ln(βi,T+1)− ln(2). (36)

According to the update rule in (29), (36) is equivalent to

ln(
αi,T+1 + βi,T+1

αi,1 + βi,1
) ≥ −ηc

p

T∑
t=1

L(f(xi,t;θt), yi,t)−
ηc
q

T∑
t=1

L(f(xi,t;ϕi,t), yi,t)− ln(2). (37)

16

92170https://doi.org/10.52202/079017-2926

Combining (33) with (37) we arrive at

αi,t

αi,t + βi,t

T∑
t=1

L(f(xi,t;θt), yi,t) +
βi,t

αi,t + βi,t

T∑
t=1

L(f(xi,t;ϕi,t), yi,t)

− 1

p

T∑
t=1

L(f(xi,t;θt), yi,t)−
1

q

T∑
t=1

L(f(xi,t;ϕi,t), yi,t) ≤
ln(2)

ηc
+

ηcT

2
. (38)

Due to the convexity of L(·, ·), we can write

L(fi,t(xi,t), yi,t) = L
(

αi,t

αi,t + βi,t
f(xi,t;θt) +

βi,t

αi,t + βi,t
f(xi,t;ϕi,t), yi,t

)
≤ αi,t

αi,t + βi,t

T∑
t=1

L(f(xi,t;θt), yi,t) +
βi,t

αi,t + βi,t

T∑
t=1

L(f(xi,t;ϕi,t), yi,t).

(39)

Combining (38) with (39) we get
T∑

t=1

L(fi,t(xi,t), yi,t)−
1

p

T∑
t=1

L(f(xi,t;θt), yi,t)−
1

q

T∑
t=1

L(f(xi,t;ϕi,t), yi,t)

≤ ln(2)

ηc
+

ηcT

2
(40)

Substituting p = ∞ and q = 1 in (40), we obtain
T∑

t=1

L(fi,t(xi,t), yi,t)−
T∑

t=1

L(f(xi,t;ϕi,t), yi,t) ≤
ln(2)

ηc
+

ηcT

2
. (41)

Since Fed-POE updates ϕi,t locally using online gradient descent as outlined in (8), according to (6),
for any ϕ we can write

T∑
t=1

L(f(xi,t;ϕi,t), yi,t)−
T∑

t=1

L(f(xi,t;ϕ), yi,t) ≤
∥ϕ∥2

2η
+

η

2
G2T. (42)

Substituting ϕ∗
i in (42) along with combining (41) with (42), we can conclude that

T∑
t=1

L(fi,t(xi,t), yi,t)−
T∑

t=1

L(f(xi,t;ϕ
∗
i), yi,t) ≤

∥ϕ∗
i ∥2

2η
+

ln(2)

ηc
+

η

2
G2T +

ηcT

2
(43)

which proves the personalized regret upper bound of Fed-POE in (12). Furthermore, plunging in
p = 1 and q = ∞ into (40), we get

T∑
t=1

L(fi,t(xi,t), yi,t)−
T∑

t=1

L(f(xi,t;θt), yi,t) ≤
ln(2)

ηc
+

ηcT

2
. (44)

Summing (44) over all clients, we obtain
T∑

t=1

N∑
i=1

L(fi,t(xi,t), yi,t)−
T∑

t=1

N∑
i=1

L(f(xi,t;θt), yi,t) ≤
N ln(2)

ηc
+

ηcNT

2
. (45)

Combining (45) with (28), we arrive at
T∑

t=1

N∑
i=1

L(fi,t(xi,t), yi,t)−
T∑

t=1

N∑
i=1

L(f(xi,t;θ
∗), yi,t)

≤N∥θ∗∥2

2η
+

N ln(2)

ηc
+

ηN

2
G2T +

ηcNT

2
(46)

which proves the Theorem.

17

92171 https://doi.org/10.52202/079017-2926

C Proof of Theorem 3

According to assumption A3 that 0 ≤ L(f(x;θ), y) ≤ 1, it can be written that

1

N

U∑
t=1

N∑
i=1

L(fi,t(xi,t), yi,t)−
1

N

U∑
t=1

N∑
i=1

L(h∗(xi,t), yi,t) ≤ U. (47)

Let ℓij,t denote the importance sampling loss estimate, which is expressed as

ℓij,t =
L(f(xi,t;ρj), yi,t)

qij,t
1j∈Mi,t

. (48)

Let the total number of model parameters stored by the server after time step U is D and Wi,t =∑D
j=1 wij,t. For any t > U , considering (17), we can write

Wi,t+1

Wi,t
=

D∑
j=1

wij,t

Wi,t
exp(−ηcℓij,t) =

D∑
j=1

pij,t exp(−ηcℓij,t). (49)

Employing the inequality e−x ≤ 1− x+ 1
2x

2,∀x ≥ 0, from (49) we obtain

Wi,t+1

Wi,t
≤

D∑
j=1

pij,t(1− ηcℓij,t +
η2c
2
ℓ2ij,t). (50)

Taking the logarithm from both sides of (50) and using the inequality 1 + x ≤ ex, we arrive at

ln
Wi,t+1

Wi,t
≤

D∑
j=1

pij,t(−ηcℓij,t +
η2c
2
ℓ2ij,t). (51)

Summing (51) over time, we get

ln
Wi,T+1

Wi,U
≤

T∑
t=U

D∑
j=1

pij,t(−ηcℓij,t +
η2c
2
ℓ2ij,t). (52)

Considering the fact that the weights {wij,t}Dj=1 are initialized as wij,1 = 1, ∀j ∈ [D], it can
concluded that Wi,U ≤ D. Theefore, for any j ∈ [D], the left hand side of (52) is bounded from
below as

ln
Wi,T+1

Wi,U
≥ ln

wij,T+1

Wi,U
≥ ln

wij,T+1

D
= −

T∑
t=U

ηcℓij,t − lnD. (53)

Combining (53) with (52) yields

T∑
t=U

D∑
j=1

pij,tℓij,t −
T∑

t=U

ℓij,t ≤
lnD

ηc
+

ηc
2

T∑
t=U

D∑
j=1

pij,tℓ
2
ij,t. (54)

The expected values of ℓij,t and ℓ2ij,t given observed losses up until time step t can be obtained as

Et[ℓij,t] =
L(f(xi,t;ρj), yi,t)

qij,t
Et[1j∈Mi,t] = L(f(xi,t;ρj), yi,t) (55a)

Et[ℓ
2
ij,t] =

L(f(xi,t;ρj), yi,t)
2

q2ij,t
Et[1j∈Mi,t

] =
L(f(xi,t;ρj), yi,t)

2

qij,t
≤ 1

qij,t
. (55b)

Taking the expectation from (54), we arrive at

T∑
t=U

D∑
j=1

pij,tL(f(xi,t;ρj), yi,t)−
T∑

t=U

L(f(xi,t;ρj), yi,t) ≤
lnD

ηc
+

ηc
2

T∑
t=U

D∑
j=1

pij,t
qij,t

. (56)

18

92172https://doi.org/10.52202/079017-2926

Since qij,t = 1− (1− pij,t)
M = pij,t(1 + (1− pij,t) + (1− pij,t)

2 + . . .+ (1− pij,t)
M−1), it can

be concluded that qij,t ≥ pij,t. Therefore, (56) can be relaxed to
T∑

t=U

D∑
j=1

pij,tL(f(xi,t;ρj), yi,t)−
T∑

t=U

L(f(xi,t;ρj), yi,t) ≤
lnD

ηc
+

ηc
2
D(T − U). (57)

According to model selection procedure adopted by Fed-POE presented in Algorithm 1, client i
chooses a subset of models by sampling them in M rounds with replacement. Let aij,t ≥ 0 denote
the number of times that the model j in Dt is chosen by client i at time step t. The number of different
situations for selected subset of models Mi,t is equal to the number of solutions for the linear equation

ai1,t + . . .+ aiD,t = M,aij,t ≥ 0,∀j ∈ [D]. (58)

Let A denote the set of all possible solutions for (58) such that if a ∈ A where a = [a1, . . . , aD],
a1, . . . , aD satisfies (58). Therefore, for the expected loss of the ensemble f̃i,t(xi,t) in (14), we can
write

Et[L(f̃i,t(xi,t), yi,t)] =

|A|∑
k=1

D∏
j=1

p
aj,k

ij,t L(f̃
(k)
i,t (xi,t), yi,t) (59)

where f̃
(k)
i,t (xi,t) denote the k-th possible ensemble model generated by client i using Fed-POE.

Using the Jensen inequality and convexity of the loss function, we can relax (59) to

Et[L(f̃i,t(xi,t), yi,t)] =

|A|∑
k=1

 D∏
j=1

p
aj,k

ij,t

L(f̃ (k)
i,t (xi,t), yi,t)

≤
|A|∑
k=1

 D∏
j=1

p
aj,k

ij,t

 ∑
m∈M(k)

i,t

wim,t

W
(k)
i,t

L(f(xi,t;ρj), yi,t) (60)

where M(k)
i,t and W

(k)
i,t are the k-th possible model subset and weight summations, respectively.

Rearranging the right hand side of (60), we can write

Et[L(f̃i,t(xi,t), yi,t)] ≤
D∑

j=1

pij,t

|Bj |∑
k=1

(
D∏

m=1

p
bm,k

im,t

)
wij,t

W
(k)
i,t

L(f(xi,t;ρj), yi,t) (61)

where Bj is the set of all possible solutions for the linear equation in (58) condition on aij,t ≥ 1.
Since for any k, we have wij,t ≤ W

(k)
i,t , (61) can be relaxed to

Et[L(f̃i,t(xi,t), yi,t)] ≤
D∑

j=1

pij,t

|Bj |∑
k=1

(
D∏

m=1

p
bm,k

im,t

)
L(f(xi,t;ρj), yi,t). (62)

Since
∑|Bj |

k=1

(∏D
m=1 p

bm,k

im,t

)
includes all possibilities in Bj , we can conclude that∑|Bj |

k=1

(∏D
m=1 p

bm,k

im,t

)
= 1. Combining this with (62), we obtain

Et[L(f̃i,t(xi,t), yi,t)] ≤
D∑

j=1

pij,tL(f(xi,t;ρj), yi,t). (63)

Combining (63) with (57), we arrive at
T∑

t=U

Et[L(f̃i,t(xi,t), yi,t)]−
T∑

t=U

L(f(xi,t;ρj), yi,t) ≤
lnD

ηc
+

ηc
2
D(T − U). (64)

Since 0 ≤ L(f(x;θ), y) ≤ 1, it can be written that
U∑
t=1

Et[L(f̃i,t(xi,t), yi,t)]−
U∑
t=1

L(f(xi,t;ρj), yi,t) ≤ U. (65)

19

92173 https://doi.org/10.52202/079017-2926

Combining (65) with (64), we get

T∑
t=1

Et[L(f̃i,t(xi,t), yi,t)]−
T∑

t=1

L(f(xi,t;ρj), yi,t) ≤
lnD

ηc
+

ηc
2
D(T − U) + U. (66)

Since f̄i,t(·) similar to fi,t(·) is the ensemble of two models, following the same derivation steps
from (29) to (41) by substituting f̄i,t(xi,t), fi,t(xi,t) and f̃i,t(xi,t) with fi,t(xi,t), f(xi,t;θt) and
f(xi,t;ϕi,t), respectively, we can conclude that

T∑
t=1

L(f̄i,t(xi,t), yi,t)−
T∑

t=1

L(fi,t(xi,t), yi,t) ≤
ln(2)

ηc
+

ηcT

2
, (67a)

T∑
t=1

L(f̄i,t(xi,t), yi,t)−
T∑

t=1

L(f̃i,t(xi,t), yi,t) ≤
ln(2)

ηc
+

ηcT

2
. (67b)

Taking the expectation from both sides of (67b) with respect to randomization in model selection
along with combining (67b) with (66) yields

T∑
t=1

Et[L(f̄i,t(xi,t), yi,t)]−
T∑

t=1

L(f(xi,t;ρj), yi,t)

≤ ln 2D

ηc
+

ηc
2
(D + 1)T + (1− ηc

2
D)U. (68)

Furthermore, combining (67a) with (41) and (44) and taking the expectation with respect to model
selection randomization, we obtain

T∑
t=1

Et[L(f̄i,t(xi,t), yi,t)]−
T∑

t=1

L(f(xi,t;ϕi,t), yi,t) ≤
ln(4)

ηc
+ ηcT, (69a)

T∑
t=1

Et[L(f̄i,t(xi,t), yi,t)]−
T∑

t=1

L(f(xi,t;θt), yi,t) ≤
ln(4)

ηc
+ ηcT. (69b)

Recall that hj(·) associated with the j-th model parameter in Dt be defined as hj(xi,t) = f(xi,t;ρj)
while hloc(·) and hfed(·) correspond to the local and federated models, respectively, defined as
hloc(xi,t) = f(xi,t;ϕi,t) and hfed(xi,t) = f(xi,t;θt). Also recall that H := {hj | ∀j : 1 ≤
j ≤ |DT |} ∪ {hloc, hfed}. Comparing the right hand sides of (69a) and (69b) with that of (68) and
considering the fact that D ≥ 2, for any h ∈ H we can write

T∑
t=1

Et[L(f̄i,t(xi,t), yi,t)]−
T∑

t=1

L(h(xi,t), yi,t) ≤
ln 2D

ηc
+

ηc
2
(D + 1)T + (1− ηc

2
D)U. (70)

By substituting h(·) with h∗
i (·) as defined in (18b) and considering the fact that D ≤ U/n, we obtain

the personalized regret upper bound for client i as shown in (20). Moreover, taking the average of
(70) across clients and substituting h(·) with h∗(·), we arrive at

1

N

T∑
t=1

N∑
i=1

Et[L(f̄i,t(xi,t), yi,t)]−
1

N

T∑
t=1

N∑
i=1

L(h∗(xi,t), yi,t)

≤ ln 2D

ηc
+

ηc
2
(D + 1)T + (1− ηc

2
D)U (71)

which proves the theorem.

D Supplementary Experimental Details

This section presents supplementary experimental results and details about experimental setup. All
experiments were carried out using Intel(R) Core(TM) i7-10510U CPU @ 1.80 GHz 2.30 GHz
processor with a 64-bit Windows operating system.

20

92174https://doi.org/10.52202/079017-2926

D.1 Regression Data Distribution

As it is pointed out in section 5, the present paper tests the performance of algorithms for online
regression task on Air and WEC datasets. These datasets are downloaded from UCI Machine
Learning Repository [27]. Each data sample in Air dataset includes air quality information such as
concentration of some chemicals in the air. Data samples in Air dataset collected from four different
geographical locations. Moreover, data samples in WEC, collected from wave energy converters in
four different geographical locations. In order to distribute data, clients are partitioned into 4 groups.
For each group, 70% of data samples observed by each client in the group belongs to a specific
geographical location while 10% of observed data samples belong to each of the rest 3 locations.

D.2 Random Feature Kernel-based Models

As it is pointed in section 5, the proposed Fed-POE and all baselines utilize a random feature kernel-
based model to perform online regression task. In what follows we explain random feature-based
kernel models. Let κ(·, ·) be a positive-definite function called kernel such that κ(x,x′) measures
the similarity between x and x′. In online kernel learning context, at time step t+ 1, the following
prediction is made for x (see e.g. [52, 25, 48]):

fκ(x;αt) =
t∑

τ=1

N∑
i=1

αi,τκ(x,xi,τ) (72)

where αt = [α1,1, . . . , αN,1, . . . , α1,t, . . . , αN,t] denotes the learnable parameters. Therefore, the
number of parameters that should be learned grows with time. In order to alleviate the computational
complexity of online kernel learning, random feature approximation [44] can be employed. In
fact, using random feature approximation, the number of parameters that needs be learned is time-
invariant and is selected by the algorithm. Assume that κ(·) is a shift-invariant kernel function
such that κ(x,x′) = κ(x − x′). Also, suppose that κ(·) is scaled such that κ(0) = 1. Let
ξ(·) denotes the Fourier transform of κ(·). According to definition of inverse Fourier transform
κ(0) =

∫∞
−∞ ξ(ω)dω = 1. Therefore, it can be concluded that ξ(·) is a probability density function

(PDF). Let ω1, . . . ,ωD be drawn randomly from ξ(·) and called random features. Using the random
features ω1, . . . ,ωD, the representation z(x) is defined as

z(x) =
1√
D
[sin(ω⊤

1 x), . . . , sin(ω
⊤
Dx), cos(ω

⊤
1 x), . . . , cos(ω

⊤
Dx)]. (73)

Given random features ω1, . . . ,ωD and using the proposed Fed-POE, at time step t, client i makes
prediction f(xi,t;θt) = θ

⊤
t z(xi,t). Clients and the server employ the proposed Fed-POE to learn the

parameter θt. As it can be inferred since the model f(·; ·) is linear with respect to model parameter
θt, using convex loss functions, the loss L(f(xi,t;θt), yi,t) is convex as well.

Furthermore, in section 5, the proposed Fed-POE utilizes three Gaussian kernels for online regression
on Air and WEC datasets. In order to implement multi-kernel learning for Fed-POE, the prediction
of kernels are linearly combined and the weights for linear combination is learned locally by each
client. Let f0.1(xi,t), f1(xi,t) and f10(xi,t) represent predictions of Gaussian kernels with variances
of 0.1, 1 and 10, respectively. Then at time step t, client i makes prediction w0.1,itf0.1(xi,t) +
w1,itf1(xi,t) +w10,itf10(xi,t). In order to update weights w0.1,it, w1,it and w10,it, client i employs
multiplicative update rule. As an example after observing the loss L(f1(xi,t), yi,t), client i updates
w1,it as w1,i(t+1) = w1,it exp(−γiL(f1(xi,t), yi,t)) where γi is a learning rate specified by client i.

D.3 Image Classification Experimental Setup

The pre-trained CNN used by Fed-POE and other baselines is biased toward class label 0. For
CIFAR-10, the pre-trained CNN is trained on a subset of the CIFAR-10 training data, consisting of
5, 000 samples with label 0 and 500 samples from each of the other 9 class labels. For FMNIST, the
model is trained on a subset of the FMNIST training data, consisting of 6, 000 samples with label 0
and 500 samples from each of the other 9 class labels. The CNN models are trained using Tensorflow
2.16.1. We used the SGD optimizer with a learning rate of 10−3 and momentum of 0.9. The models
for CIFAR-10 and FMNIST were trained for 100 epochs and 10 epochs, respectively.

Clients receive test data samples sequentially and make prediction for the newly received sample.
To distribute test data samples of CIFAR-10 among clients, we split clients into 10 groups. For

21

92175 https://doi.org/10.52202/079017-2926

Table 4: Average accuracy and standard deviation across clients employing Fed-POE for image
classification with varying values of M

Datasets M = 0 M = 4 M = 8 M = 16
CIFAR-10 65.55%± 8.77% 66.50%± 8.00% 66.54%± 8.08% 66.46%± 7.98%
FMNIST 79.03%± 1.76% 79.12%± 1.87% 79.23%± 1.88% 79.18%± 1.85%

(a) CIFAR-10 (b) WEC

Figure 1: Cumulative regret over time on CIFAR-10 and WEC datasets.

CIFAR-10, 55% of samples observed by a client belongs to a specific class label while only 5%
of received samples belong to each of other 9 class labels. For FMNIST, client data distribution
is time-variant. Since the number of test samples is 10, 000 and the number of clients is 20, it can
be concluded that time horizon T is 500. In the first half of time steps (i.e. t ≤ 250), each client
observes 200 samples from the first 5 class labels and 50 samples from other 5 class labels. In the
second half, this is reversed: clients observe 200 samples from the last 5 class labels and 50 samples
from the other class labels. In each half, each client is biased toward one of the five majority classes.
For example, if a client is biased toward class 0 in the first half, it observes 100 samples from class
label 0, 25 samples from each of class labels 1 to 4, and 10 samples from each of class labels 5 to 9.
Therefore, in each half, each client observes 100 samples from one class, 25 samples from each of
four other classes, and 10 samples from each of the remaining five classes.

To implement Fed-OMD for both regression and image classification, we used the ℓ2-norm as a
regularizer function for mirror descent. For implementing Ditto for both regression and image
classification, we set the regularization factor λ to 1. In the case of image classification using
Fed-Rep, clients locally fine-tune the last two layers of the CNN model, while the rest of the network
is used as the global backbone to generate representations. Furthermore, Fed-POE is compatible with
any federated learning method and can utilize any federated algorithm. For CIFAR-10, Fed-POE uses
Fed-OMD, while for FMNIST, Fed-POE uses Fed-Rep. To fine-tune the CNN model, Fed-POE and
all baselines use the SGD optimizer and the cross-entropy loss function.

D.4 Supplementary Results

Table 4 presents the accuracy of clients for image classification using Fed-POE with varying values
of M . As can be seen for both CIFAR-10 and FMNIST, when M > 0, the accuracy is higher than in
the case where M = 0. The case where M = 0 corresponds to clients not using models stored by the
server in their ensemble. Therefore, these results show that constructing the ensemble using previous
federated model parameters stored by the server improves the accuracy of Fed-POE. This indicates the
effectiveness of the model selection procedure of Fed-POE presented in Algorithm 1. Additionally,
these results show that increasing M does not necessarily lead to further accuracy improvement.
This implies the effectiveness of Fed-POE’s model selection in pruning model parameters from the
ensemble that have relatively lower accuracy. Figure 1 illustrates the average cumulative global regret
of clients over time using Fed-POE and all other baselines. As depicted, Fed-POE achieves sublinear
regret for both CIFAR-10 and WEC datasets. This corroborates the theoretical results in Theorems 2
and 3.

22

92176https://doi.org/10.52202/079017-2926

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction reflect that the contribution of this paper is the
proposal of a novel personalized federated learning algorithm for online prediction and
model fine-tuning.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In Section 4, the paper makes it clear that Fed-POE utilizes multiple models
instead of a single model for prediction. This requires more computations than the case
where clients use only one model. Computational efficiency of Fed-POE is discussed in
Section 4.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

23

92177 https://doi.org/10.52202/079017-2926

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: The paper provides the full set of assumptions in Section 3 and the complete
proofs of all theorems can be found in Appendices A, B and C.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: In Section 5 and Appendix D, we provide detailed information needed to
reproduce the results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

24

92178https://doi.org/10.52202/079017-2926

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide open access to the data and code.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: In Section 5 and Appendix D, we provide all the training and test details
necessary to understand the results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: In Tables 1, 2 and 4, We reported the standard deviation of the results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

25

92179 https://doi.org/10.52202/079017-2926

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: In Appendix D, we clarify that all experiments were carried out using Intel(R)
Core(TM) i7-10510U CPU @ 1.80 GHz 2.30 GHz processor with a 64-bit Windows
operating system.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We believe the research conducted in the paper conform, in every respect, with
the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This paper studies the problem of personalized federated learning. While
personalized federated learning, in general, has societal impact, we do not foresee any
specific societal impact resulting from our work.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.

26

92180https://doi.org/10.52202/079017-2926

https://neurips.cc/public/EthicsGuidelines

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We believe that the paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: In Section 5 and Appendix D, we properly cited the original owners of assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

27

92181 https://doi.org/10.52202/079017-2926

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

28

92182https://doi.org/10.52202/079017-2926

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

29

92183 https://doi.org/10.52202/079017-2926

