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Abstract

Benchmark datasets in computer vision often contain off-topic images, near dupli-
cates, and label errors, leading to inaccurate estimates of model performance. In
this paper, we revisit the task of data cleaning and formalize it as either a ranking
problem, which significantly reduces human inspection effort, or a scoring problem,
which allows for automated decisions based on score distributions. We find that
a specific combination of context-aware self-supervised representation learning
and distance-based indicators is effective in finding issues without annotation bi-
ases. This methodology, which we call SELFCLEAN, surpasses state-of-the-art
performance in detecting off-topic images, near duplicates, and label errors within
widely-used image datasets, such as ImageNet-1k, Food-101N, and STL-10, both
for synthetic issues and real contamination. We apply the detailed method to multi-
ple image benchmarks, identify up to 16% of issues, and confirm an improvement
in evaluation reliability upon cleaning. The official implementation can be found
at: https://github.com/Digital-Dermatology/SelfClean.

1 Introduction

In traditional machine learning (ML), data cleaning is essential since minor contamination in the
dataset can significantly impact model performance and robustness [1]. However, with the rise of
deep learning (DL) and large-scale datasets, data cleaning has become less crucial as large models
have shown to work relatively well even when training data has low quality [2]. Validating and
cleaning large datasets is challenging, especially for high-dimensional data, because thorough manual
verification is often not feasible. Thus, a lot of research has been focusing on learning from noisy
data [3] rather than fixing quality issues, as the overwhelming benefits of large-scale datasets are
believed to exceed the drawback of diminished control. On the other hand, for many domains, the size
of available datasets is still one of the main limiting factors for the progress of artificial intelligence
(AI). In these low-data regimes, the importance of clean data is more pronounced since even fractional
amounts of poor-quality samples can substantially hamper performance and possibly lead to wrong
conclusions [4]. This is especially relevant in high-stakes settings such as the medical domain, where
high-quality data is needed to train robust models and validate their performance. However, also in
these domains, many practitioners rather focus on data quantity as a key performance driver and
implicitly assume a high-quality collection process [5]. Thus, even medical datasets are known to
contain varying noise levels, which can substantially undermine the progress of ML [6].

The necessity to report comparable results has led DL practitioners to heavily rely on benchmark
datasets despite them being known for containing data quality issues. For example, an evaluation of
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Figure 1: SELFCLEAN first trains a self-supervised encoder on noisy data to obtain latent represen-
tations for dataset samples. It then detects off-topic samples with agglomerative clustering, near
duplicates based on pairwise distances, and label errors using the intra-/extra- class distance ratio.

ten of the most used benchmark datasets found them to have an average label error rate of 3.4% in
the evaluation set [7]. Such issues in benchmark sets, especially when used for evaluation, undermine
the framework by which scientific progress is measured. Specifically, contamination in evaluation
sets corrupts scores, making it unclear which methods successfully handle edge cases and obscuring
their proximity to optimal performance. This is particularly relevant since many popular benchmarks
are saturating, i.e., only saw minor relative changes in performance over the last few years [8]. Data
quality issues in training sets, instead, may hinder optimization and produce suboptimal models.
Importantly, despite the need for correct evaluation data, cleaning evaluation sets can be problematic,
as it may optimistically bias performance estimates. Ignoring known data quality issues during
evaluation is, however, also incorrect, so an appropriate compromise is necessary.

In this paper, we address three types of data quality issues that illustrate these mechanisms well.
Off-topic samples, i.e., inputs included in a dataset by mistake, add noise to evaluation metrics
while slowing down and confusing training. Near duplicates, i.e., different views of the same
object, produce arbitrary re-weighting in the evaluation set, reduce variability in the training set,
and most importantly, often introduce leaks between training and evaluation sets that can lead to
over-optimistic results. Label errors, i.e., wrongly annotated samples, result in incorrect evaluation
and poison the training process. We focus on these three data quality issues because we empirically
found them to be frequent in existing image benchmark datasets and challenging to detect. There
are of course other types of data quality issues, including many that can be detected using ad-hoc
rules, such as odd brightness, aspect ratio, resolution, sharpness, and entropy in the case of images.

In this paper, we formulate dataset cleaning as a set of ranking problems, which greatly reduce the
effort for manual inspection, or alternatively as a set of scoring problems, which can be used for fully
automatic decisions based on score distributions. We then find that a combination of self-supervised,
dataset-specific representation learning and distance-based indicators can effectively identify multiple
issues in image collections. We apply this approach to well-known benchmark datasets in computer
vision and medical imaging, and discuss implications for reliability of results across these domains.
The outlined method enables practitioners to audit data collections, increase evaluation reliability, and
amend the training set to improve results. This work contributes to data-centric ML [9] and aims to
bolster confidence in both existing and newly collected datasets. In summary, the main contributions
are: 1) A novel data cleaning procedure called SELFCLEAN, which can be used to find off-topic sam-
ples, near duplicates, and label errors, and relies exclusively on the dataset itself, illustrated in figure 1.
2) A detailed comparison between this cleaning method and competing approaches on synthetic and
natural contamination, including validation against human experts. 3) The application of SELFCLEAN
to well-known benchmarks in computer vision and medical imaging and the identification of their
issues. 4) A practical recommendation to clean training and evaluation splits of benchmark datasets
as a reasonable trade-off between correctness and bias for more accurate performance estimates.
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2 Related work

Data cleaning is a core component of data analytics and a topic of interest in the data management
community [10]. Recently, the data-centric AI initiative [9] brought it back to the attention of ML
researchers, resulting in the development of data cleaning tools. For instance, Vailoppilly et al. [11]
proposed an all-in-one “data cleansing” tool based on dimensionality reduction, a DL noise classifier,
and a denoising model. Tools for data cleaning also started to appear, including CleanLab [12]
and CleanVision [13], Lightly [14], and FastDup [15]. Most data cleaning approaches require
dimensionality reduction to work with high-dimensional data such as images. This includes traditional
approaches such as PCA [16] or t-SNE [17], and feature extraction with deep encoders, which are
usually trained on natural image databases such as ImageNet [18]. In the last few years, self-supervised
learning (SSL) [19] was shown to learn more representative latent spaces compared to supervised
training [20–22]. Furthermore, Cao and Wu [23] demonstrated that SSL can learn meaningful latent
spaces even with small datasets, low resolution, and small architectures. Inspired by these results
and unlike previous works, we rely on SSL as a basis to detect three important types of data quality
issues encountered in practice: off-topic samples, near duplicates, and label errors [10]. Since these
sub-problems are typically addressed separately in the literature, we briefly review them in turn.

The problem of identifying off-topic samples is closely related to generalized out-of-distribution
detection [24] and is akin to outlier detection, which involves both normal and anomalous samples [25].
Outlier detection can be addressed with supervised, unsupervised, and semi-supervised learning
and was initially developed to fit data more smoothly [26]. In the realm of data cleaning, where
the nature of off-topic samples is generally unknown, it is most similar to the unsupervised setting.
Outliers in low-density regions can be found using reconstruction errors [27, 28], classification [29],
or probabilistic approaches [30]. For a detailed review of these methods, see [25].

Near-duplicate detection is traditionally based on representation matching [31, 32]. Most DL ap-
proaches follow a similar strategy, where feature vectors are extracted by a deep network and used
for content-based matching [33]. Another option is to learn a similarity metric between samples with
Siamese neural networks [34]. A recent approach for copy detection (i.e., near-duplicate detection)
uses a contrastive self-supervised objective with entropy regularization to ensure consistent separation
of image descriptions [35]. However, it requires a manually adapted threshold for each dataset [36].

The identification of label errors is generally focused on prediction-label agreement via confusion
matrices and proceeds by removing samples with low recognition rate [37] or parts of the minority
classes [38]. There are exceptions, such as recent approaches based on supervised contrastive learning
for label error correction [39, 40]. Another prominent method is confident learning, which identifies
label errors based on noisy data pruning, using probabilistic thresholds to estimate noise and ranking
examples to train with confidence [41].

3 Methodology

Let X = {(xi, li) | i ∈ I} be an image classification dataset to be cleaned, where I = {1, . . . , N}
is the index set, xi is the i-th sample, and li ∈ {1, . . . , L} is the i-th label. For each issue type,
we construct a scoring function s that assigns values in [0, 1] to samples or pairs thereof, such that
elements with a lower score are more likely to be problematic. Sorting samples by the value obtained
from the scoring function s induces a ranking R where more likely issues appear earlier.

3.1 Representation learning

As a first step, we train a deep feature extractor f with parameters θ on the dataset X us-
ing self-supervised learning (SSL), which learns representations by solving auxiliary tasks. Let
ei = f(xi; θ) ∈ RD be the representation of sample xi obtained with f , where D denotes the latent
dimension. Note that SSL is performed on the entire dataset including data quality issues. Any SSL
method can be used, as investigated in appendix F.5. Here, we consider SimCLR [42] and DINO [43],
which were shown to produce meaningful latent spaces [20, 21]. SimCLR is a contrastive approach
that compares different views of the same image against other randomly sampled ones. DINO is a
self-distillation method which trains a student network to match a teacher network on different views
of the same image. For both strategies, we rely on vision transformer (ViT) encoders, as detailed in
appendix C and ablated in F.6.
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As feature normalization is often built into the SSL training objective, it is natural to compare points
in its latent space using cosine similarity, sim(ei, ej) = e⊤i ej/(||ei||2||ej ||2), and the associated
distance scaled to [0, 1], dist(ei, ej) = (1− sim(ei, ej))/2. We explicitly include L2-normalization
during training and inference for strategies without normalization (e.g., DINO), such that their latent
space is a unit hypersphere of dimension D − 1. In appendix F.1, we present an ablation study of this
normalization and investigate the influence of different distance functions.

3.2 Distance-based indicators

Dataset-specific representations based on inductive bias can be coupled with separate distance-based
indicators to identify candidate issues. Below we introduce each issue type and the corresponding
indicator function used to detect them.

Off-topic samples. We define samples as off-topic when they are included in the dataset by mistake.
Images from extraneous modalities, affected by device malfunctions, or without any object of interest
are some examples. Atypical samples, due e.g. to the phenomenon of hidden stratification [44], that
are included intentionally, are not off-topic, and although they may be revealed in the same search,
they require different treatment. We achieve off-topic sample ranking by agglomerative clustering
with single linkage [45] in representation space. The idea is that the later a cluster is merged with
a larger one, the more it can be considered an outlier [46]. The ranking is obtained by sorting the
clustering dendrogram such that, at each merge, the elements of the cluster with fewer leaves appear
first. We also associate each sample with a numerical score, which takes small values for abnormal
instances and is compatible with the described ranking. In appendix J, we construct such a score
sOT(ei) starting from the idea that merges, which happen at very different distances or between
clusters of very different sizes, should produce large numerical variations.

Near duplicates. We define near duplicates as pairs of images that contain different views of the
same object. In this sense, exact duplicates are a special case of near duplicates. We rank potential
near duplicates by sorting each pair of distinct samples (i, j), i < j in ascending order according to
the distance between their representations in the latent space, sND(ei, ej) = dist(ei, ej).

Label errors. We define label errors as samples annotated with a wrong class label. We rank potential
label errors by sorting samples in ascending order according to their intra-/extra- class distance
ratio [47]. For an anchor point ei, this ratio compares the distances to the nearest representation of a
different label m ̸=(ei) and the distance to the nearest representation of the same label m=(ei):

m=(ei) = minj∈I, lj=li

[
dist(ei, ej)

]
,

m ̸=(ei) = minj∈I, lj ̸=li

[
dist(ei, ej)

]
,

sLE(ei) =
m2

̸=(ei)

m2
=(ei) +m2

̸=(ei)
. (1)

In all three cases, SELFCLEAN leverages the local structure of the embedding space: Cluster distances
are computed only using the closest samples during agglomeration for off-topic samples, near
duplicates are identified among sample pairs with the smallest distances, and label errors are found
using only the nearest examples of the same and a different class.

3.3 Operation modes

The criteria above rank and score candidate issues, but do not specify which ones are inferred to be
actual issues. This can be achieved with two operating modes: Human-in-the-loop or fully automatic.

Human-in-the-loop. This mode leverages candidate issue rankings to facilitate human confirmation
which is often infeasible exhaustively, especially when considering pairwise relationships such as
near duplicates. A human curator inspects a data sequence where issues tend to appear earlier, either
confirming and correcting problems or looking for a specific rank threshold that gives the desired bal-
ance between precision and recall. In appendix H, we estimate that for a typical dataset SELFCLEAN
reduces this inspection effort by a factor between 5 and 50 depending on issue type and baseline.

Fully-automatic. To perform automatic cleaning, specifying a fraction of data quality issues a priori
is suboptimal, as contamination is not easy to estimate. The scores of section 3.2 empirically produce
a smooth distribution for clean samples and relegate contaminated ones to significantly lower values.
Depending on the contaminated data distribution, it may then be possible to isolate problematic sam-
ples with statistical arguments based on two robust hyperparameters, the contamination rate guess α

4
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Figure 2: Illustration of synthetic data quality issues of all three types in STL-10, VinDR, and DDI.

and the significance level q, as detailed in appendix K. In short, we first use a logit transformation to
induce a gap between scores of normal and problematic samples. We then set an upper bound for the
left tail of the score distribution using a logistic functional form, and estimate its parameters using
quantiles. Afterward, we identify issues based on their violation of the upper probability bound.

4 Experimental setup

Datasets. We experiment on a total of twelve datasets described in appendix D. These are four
large-scale vision benchmarks: ImageNet [18], STL-10 [48], CelebA [49], and Food-101N [50],
three general medical datasets of X-rays and histopathological images: CheXpert [51], VinDr-
BodyPartXR [52], and PatchCamelyon [53], and five dermatology datasets: HAM10000 [54], ISIC-
2019 [54], Fitzpatrick17k [55], DDI [56], and PAD-UFES-20 [57].

Evaluation metrics. The evaluation in this work relies on ranking metrics, as ranking consti-
tutes the core of SELFCLEAN independently of the operation mode. All approaches are therefore
evaluated in terms of the area under the receiver operating characteristic curve (AUROC) and
average precision (AP) following standard practice [58]. AUROC measures the likelihood that a
random relevant sample is ranked higher than a random irrelevant sample. AP measures precision
across all values of recall, and is therefore sensitive to the proportion of positive and negative samples.

Synthetic experiment setup. To compare SELFCLEAN against other methods, we create synthetic
datasets by altering benchmarks of different modalities (i.e., STL-10, VinDr-BodyPartXR, and DDI),
as illustrated in figure 2. These synthetic contaminations are inspired by typical issues present in
the respective dataset domains. We consider 5% and 10% contamination to mimic real-world noise
prevalence estimates [59]. For each issue type, we compare against other unsupervised methods that
have performed well on the given task. A detailed description of these competing approaches can be
found in appendix E. Since SELFCLEAN learns representations on the contaminated dataset, we train
a separate encoder for every issue type, contamination level, and synthetic contamination strategy.

The first synthetic contamination strategy for off-topic samples, XR, adds images from the “other”
category of VinDr-BodyPartXR [52], which shows scans of lower limbs and device malfunctions.
The second strategy for off-topic samples, BLUR, corrupts images with strong Gaussian blurring to
simulate badly out-of-focus pictures. The first contamination strategy for near duplicates, AUG, adds
samples from the original dataset after augmenting them with rotation, flipping, resizing, padding, and
blurring. The second approach for near duplicates, ARTE, adds samples from the original dataset after
including artifacts such as watermarks, color bars, and rulers, followed by scaling and composition
with other images to create a collage. For label errors, the first contamination strategy, LBL, randomly
changes a fraction of the labels choosing uniformly from incorrect ones. The second strategy to
evaluate label errors, LBLC, randomly changes a fraction of the labels choosing incorrect ones
proportionally to class prevalence in the original dataset. Depending on which dataset these strategies
are applied to, they produce either easy or difficult problematic samples.

Different contamination strategies can be applied sequentially to create a dataset with a more realistic
constellation of artificial data quality issues, resulting in a mixed-contamination strategy. In order to
consider all interactions, we start by adding off-topic samples, proceed by creating near duplicates,
and finally introduce label errors. To preserve the overall contamination rate C, each contamination
in the sequence is added with prevalence CS such that (1 +CS)

S = (1 +C), where S is the number
of contamination steps.
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Table 1: Performance in detecting synthetic data quality issues. Evaluation is performed for each of the
three considered issue types across three benchmark datasets, augmented with two strategies for 5%
synthetic contamination each, as illustrated in figure 2. Consult section 4 for more details on the con-
tamination, and appendix E for details on competing approaches. Results are given in percentages (%).
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STL + XR STL + BLUR VDR + BLUR VDR + XR DDI + XR DDI + BLUR

Method Rep. AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP

HBOS [60] INet 66.9 6.6 1.9 2.6 95.7 36.6 82.3 24.4 93.0 68.0 19.0 3.0
ECOD [61] INet 68.4 7.0 2.2 2.6 95.0 34.1 81.4 25.7 92.8 68.0 23.6 3.1
SELFCLEAN INet 11.4 2.7 67.7 7.3 99.9 91.2 77.1 32.8 98.9 84.2 86.5 18.2
SELFCLEAN SimCLR 40.6 3.9 77.4 19.0 100.0 98.7 86.0 35.5 99.0 68.9 70.0 21.9
SELFCLEAN DINO 98.4 55.1 100.0 97.9 100.0 100.0 95.6 53.3 100.0 100.0 86.8 32.6

N
ea

rD
up

lic
at

es

STL + AUG STL + ARTE VDR + AUG VDR + ARTE DDI + AUG DDI + ARTE

AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP

pHashing [62] 57.8 < 0.1 73.1 20.1 47.5 < 0.1 57.5 18.2 59.4 0.1 66.2 15.1
SSIM [63]. 62.5 0.2 83.6 19.9 46.3 < 0.1 48.4 22.5 57.6 0.2 83.0 19.4
SELFCLEAN INet 96.6 7.6 96.5 15.2 79.7 < 0.1 53.7 11.1 97.6 4.1 81.1 34.4
SELFCLEAN SimCLR 86.1 0.1 93.8 13.9 76.1 < 0.1 78.9 12.6 89.8 1.6 87.2 0.7
SELFCLEAN DINO 100.0 43.7 99.9 48.0 98.5 0.4 91.6 16.8 99.7 50.8 98.2 48.2

L
ab

el
E

rr
or

s

STL + LBL STL + LBLC VDR + LBL VDR + LBLC DDI + LBL DDI + LBLC

AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP

CLearning [41] INet 86.2 41.6 83.2 36.8 96.7 79.0 96.8 74.9 67.9 11.0 75.0 12.9
FastDup [15] INet 87.5 20.5 87.0 19.8 95.0 38.9 94.1 37.8 69.0 8.6 69.9 11.6
SELFCLEAN INet 97.7 77.6 97.9 76.4 98.5 84.6 98.5 84.8 67.8 11.6 79.8 18.3
SELFCLEAN SimCLR 79.1 27.4 77.4 26.5 95.0 62.2 95.4 64.4 64.8 8.3 69.0 11.1
SELFCLEAN DINO 90.7 54.2 91.1 48.3 99.2 88.1 99.0 85.6 71.4 13.5 71.7 21.4

Natural experiment setup. We also evaluate cleaning on data quality issues naturally found in
benchmark datasets. To this end, we devise two different experiments. In the first experiment, we
measure how well the ranking matches available metadata, e.g., if two images show the same person
or if the label was already identified as incorrect by prior work. In a second experiment, we use
SELFCLEAN to propose a ranking for some datasets and evaluate it against human confirmation of
issues with the statistical procedure outlined in appendix I.

5 Results

5.1 Synthetic contamination

Comparison on data quality issues. Table 1 displays the results of SELFCLEAN using either su-
pervised ImageNet (INet), SimCLR, or DINO pre-training, and the two best competing methods per
issue type. Performance is reported for 18 synthetic datasets based on general vision (STL), radiology
(VDR), and dermatology (DDI) benchmarks described in section 4 with a contamination rate of 5%.
Table 10 in appendix G.1 includes results for all competing approaches for both 5% and 10% contami-
nation. SELFCLEAN with DINO pre-training outperforms all competing methods for off-topic-sample,
near-duplicate, and label-error detection. Notably, some competing approaches for off-topic-sample
detection show varying performance depending on the considered outlier type. In contrast, SELF-
CLEAN does not show the same behavior, mainly because the dataset-specific pre-training captures the
context of the task itself. SimCLR and supervised ImageNet features achieve mixed performance de-
pending on the specific dataset and issue type. Lower performance of SimCLR is presumably caused
by the small dataset size, as the batch size cannot be large enough, which is crucial for the contrastive
approaches. AP for VDR with AUG is very low, likely because these synthetic issues are difficult
in highly standardized settings and the dataset is not particularly clean, as further investigated in G.5.

Influence of contamination. Figure 3 illustrates the influence of the contamination on SELFCLEAN
and the best two competing models. For approaches operating on features, we compare performance
using both supervised INet and self-supervised, dataset-specific DINO training. Central value and
error bars are obtained from three random initializations resulting in different synthetic datasets. This
experiment is run on mixed-contamination datasets. SELFCLEAN outperforms competing approaches
across contamination rates. The exception is off-topic detection for VDR with high contamination,
where other indicator functions on dataset-specific SSL features perform marginally better. In general,
dataset-specific image representations tend to outperform general-purpose ones across tasks. For
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Figure 3: Performance of the best two approaches for each issue type to SELFCLEAN across different
representations for a mixed-contamination strategy at varying contamination rates. Gray regions
indicate random performance with an AP equal to the respective contamination CS .

label error detection on STL, SELFCLEAN performs significantly better with INet features than with
DINO features, presumably because INet features are trained with supervision on data and labels
similar to STL.

5.2 Natural contamination

Comparison with metadata. We validate the label error ranking in a more realistic setting using
annotations from the literature, such as 5,440 verified samples of ImageNet’s validation set [7] and
57,608 of Food-101N [64]. SELFCLEAN achieves almost double the performance in AP for both
datasets compared to other approaches, with 8.4% vs. 4.3% AP for ImageNet and 47.8% vs. 30.7%
for Food-101N. We evaluate near-duplicate detection against CelebA labels that indicate images
of the same celebrity. SELFCLEAN achieves 30.9% AP, demonstrating it effectively learned facial
recognition without supervision. For medical datasets, we first check how well SELFCLEAN can find
pairs of images showing the same skin lesion. We obtain good correspondence for HAM10000 and
ISIC-2019, with an AP of 28.4% and 26.6%, respectively. On the other hand, for PAD-UFES-20 AP is
only 10.0%, which we further investigate in appendix G.2 and is likely caused by inaccurate metadata.
We also attempt to identify X-rays from the same patient within CheXpert and find only minor
agreement with 7.5% AP, suggesting again that a case-by-case investigation should be performed.
Overall, this shows that the rankings produced by SELFCLEAN align with existing metadata and
considerably outperform competitors. A table with detailed results can be found in appendix G.2.

Comparison with human annotators. We evaluate SELFCLEAN rankings against human verification
across two common vision and two medical benchmarks as described in appendix I. Human experts
confirmed significantly more data quality issues in the top 50 images ranked by SELFCLEAN
compared to 50 randomly sampled images, with 95% significance in nine out of twelve tasks
(table 15). We repeat the comparison for images ranked 1-25 against images ranked 26-50 and
observe significance for six out of ten evaluations. Two cases in the second comparison are excluded
as only containing positive samples (i.e., data quality issues) results in undefined metrics. These results
indicate that SELFCLEAN rankings align well with human assessment for these three issue types.
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5.3 Influence of representation learning

Table 2: Ablation of pre-training choices in SELF-
CLEAN. The upper part investigates SSL objective
and dataset, and the lower the influence of SSL aug-
mentations. For the different variants (lower part),
we highlight the differences from the default set-
ting. We use a 10% mixed-contamination dataset
starting from STL and creating off-topic samples
(OT) using XR, near duplicates (ND) using AUG,
and label errors (LE) using LBLC. Performance is
reported in average precision (AP).

Pre-training strategy OT (%) ND (%) LE (%)

SELFCLEAN (Sup. INet) 1.6 24.6 63.0
SELFCLEAN (DINO INet) 13.7 6.1 69.5
SELFCLEAN (DINO STL) 27.4 47.1 24.8

Color+Size Multi-Crop OT (%) ND (%) LE (%)

SELFCLEAN (DINO)
✓ ✓ 27.4 47.1 24.8
✓ ✗ 2.8 17.5 39.6
✗ ✓ 4.2 67.2 12.6

SELFCLEAN (SimCLR)
✓ ✓ 39.1 12.8 18.1
✓ ✗ 26.1 12.1 15.8
✗ ✓ 3.9 21.9 11.7

Table 2 examines the influence of SSL objec-
tive, dataset, and augmentation on SELFCLEAN
by measuring performance on STL. In the up-
per panel, we observe that dataset-specific rep-
resentations (DINO STL) yield the best results
for both off-topic and near duplicate detection,
showcasing the strength of learning the dataset
context. This is remarkable considering that STL
has only 5,000 samples compared to the 1 mil-
lion available for ImageNet. Label error detec-
tion seems instead to benefit from the larger data
volume of ImageNet. However, this amount of
data is not always available with so little do-
main shift, and dataset-specific representations
strike a good trade-off. The lower panel investi-
gates the influence of augmentation during pre-
training. For DINO, removing color and size or
multi-crop augmentations, the model loses its
ability to reliably detect some issue types, in par-
ticular off-topic samples. For SimCLR, adding
multi-crop substantially improves data clean-
ing performance. Interestingly, adding color and
size augmentations alongside multi-crop seems
to have a negative influence on near-duplicate
detection, while isolating off-topic samples and
label errors well.

In appendix F, we further demonstrate that it is important to pre-train for sufficient epochs and to
either normalize embeddings or use the cosine distance. We also find that DINO works best among
four SSL objectives and investigate the effectiveness of different backbones. Finally, we show that
label-error detection deteriorates with label granularity, but SELFCLEAN stays on par with other
methods.

6 Discussion

Application to benchmark datasets. We apply the fully automatic mode of SELFCLEAN to well-
known image benchmark datasets and estimate the prevalence of data quality issues. For the estimation,
we used conservative guesses of a contamination rate of α = 0.10 and a significance level of q = 0.05.
Detailed results can be found in appendix L.1. For highly curated datasets with extensive manual
verification, such as DDI, PAD-UFES-20, HAM10000, CheXpert, and ImageNet-1k, we find noise
levels below 1%. However, for ISIC-2019 and PatchCamelyon, we estimate 5.4% and 3.9% of
near duplicates that are not accounted for in the metadata. When considering datasets with less
manual curation, such as Fitzpatrick17k, CelebA, and Food-101N, we find less than 1% of off-topic
samples and label errors, and approximately 14.8%, 0.4%, and 1.4% near duplicates, respectively.
The abundance of near duplicates in these benchmarks can often be traced back to crawling data of
different pages using the same illustration or thumbnail images. When data splits with near-duplicate
data leaks are used, performance estimates on these datasets are optimistically biased.

Influence of dataset cleaning. In table 3 we examine the impact of cleaning data quality issues to
better understand their relevance. We train linear and kNN classifiers based on dataset-specific SSL
representations for multiple classification benchmarks and measure the performance difference in F1
score when removing the problematic samples found above, first from the evaluation set and then also
from the training set. For most benchmark datasets, cleaning the evaluation set significantly alters
scores. Variations are either positive or negative depending on whether wrong samples were misclas-
sified, and larger for datasets with significant data leaks. Cleaning the training set has a significant
positive impact for many benchmarks, indicating that issues in the training set hindered optimization.
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Table 3: Influence of removing samples detected in the automatic cleaning mode with α = 0.10 and
q = 0.05 on downstream tasks. We report macro-averaged F1 scores for linear and kNN classifiers on
DINO features over 100 random training/evaluation splits with 80% and 20% fractions, respectively.
We compute paired performance differences before and after cleaning the evaluation set, and before
and after cleaning also the training set. We report the median and the intervals to the 5% (subscript)
and 95% (superscript) percentiles. Additionally, we indicate significance of a paired permutation test
on the difference sign with ∗p < 0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001.

∆ kNN Classifier (%pt.) ∆ Linear Classifier (%pt.)

Dataset Clean Eval Clean Train Clean Eval Clean Train

DDI +1.2+1.9
−1.2

∗∗∗ +0.0+1.7
−1.4

∗∗∗ +1.0+11.1
−11.2 −0.7+7.7

−10.8

HAM10000 +0.2+0.5
−0.4

∗∗∗ +0.2+1.3
−0.8

∗∗ +0.1+3.2
−3.5 −0.1+3.9

−3.6

Fitzpatrick17k −4.1+1.2
−1.3

∗∗∗ +0.1+2.0
−1.7 −0.6+2.9

−3.6
∗∗ +0.2+3.3

−3.9
∗

ImageNet-1k −0.4+0.1
−0.2

∗∗∗ +0.4+0.3
−0.4

∗∗∗ −0.4+0.6
−0.6

∗∗∗ −0.0+0.9
−0.5

Food-101N +0.1+0.1
−0.1

∗∗∗ +0.1+0.2
−0.2

∗∗∗ +0.2+0.6
−0.5

∗∗∗ +0.1+0.6
−0.5

∗∗

The importance of each individual data quality issue type depends on the dataset and task, and
identifying trends by domain and modality requires further investigation. For the limited number of
cases in Table 3, and taking into account Table 16, data leaks caused by near duplicates across splits
seem to have the highest impact, followed by label errors. However, we argue that information on
off-topic samples and near duplicates within the same data split is always valuable, even if it only
serves the purpose of restoring trust.

Recommended use. SELFCLEAN determines context based on the dataset rather than a specific
task, so the candidates it provides for correction may represent desired features (e.g., rare diseases
or longitudinal data). The identification of a data quality issue should not be automatically considered
a suggestion to remove it. Instead, discovering relationships among samples is always an advantage,
as it can inform proper action. While undesirable behavior may occur with the automatic mode, this
is similar to other cleaning methods applied without checks, and such biases can be mitigated with
the human-in-the-loop approach.

The tension between correcting data quality issues and the veto against the examination of evaluation
data, mentioned in the introduction, has no easy resolution. We suggest the following compromise as
an improvement to the current practice. A benchmark dataset should be refined using an SSL model
developed on the training set. SELFCLEAN can be used to clean both training and evaluation sets, but
for the latter the human-in-the-loop mode is required, and labels should not be altered. The number
of problems found for each set separately and across them for near duplicates should be reported.
Even with human confirmation and refraining from correcting label errors, the cleaning procedure
introduces some degree of bias due to the sampling of the candidate issues to be confirmed. We
believe that in many practical cases, the benefit of data cleaning outweighs this bias.

7 Conclusion and outlook

We found a data-cleaning strategy called SELFCLEAN, based on dataset-specific self-supervised
learning and local, distance-based indicator functions, to be effective for detecting off-topic samples,
near duplicates, and label errors. We demonstrated this by comparing to state-of-the-art methods
across multiple general vision and medical image benchmarks both with synthetic issues and with
natural contamination. SELFCLEAN outperformed competing approaches for synthetic data quality
issues, and demonstrated superior correspondence to metadata and expert verification in natural
settings. Notably, the detailed methodology surpassed the state-of-the-art in label-error detection,
achieving a twofold increase in AP over existing approaches on known ImageNet-1k and Food-101N
issues. Moreover, applying the cleaning strategy to highly curated medical datasets and general
vision benchmarks revealed multiple data quality issues with significant impact on model scores. By
correcting these data collections, confidence can be regained in reported benchmark performances. In
the future, we plan to incorporate SELFCLEAN during annotation to collect higher quality datasets
and during inference to enhance model robustness.
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A Broader impact

SELFCLEAN is a new data-cleaning procedure that can be applied to any visual data collection. The procedure
relies on SSL and, therefore, does not inherit annotation bias. Practitioners can choose if they want the cleaning
process to happen fully automatically or with human intervention. Gaining insights into data collections of
unknown quality can lead to the curation of more reliable benchmarks, which in turn result in performance
measurements that are more accurate generalization estimates. Moreover, reported benchmark results can be ques-
tioned if they contain substantial contamination. SELFCLEAN thus significantly contributes to clarifying which
methods are the most valuable and to steering future research directions both in academia and applied innovation.

The near-duplicate detection component of SELFCLEAN could be used for person re-identification and data
de-anonymization, even if it was not designed for this purpose. Although new in peer-reviewed publications for
data cleaning to the best of our knowledge, this method can already be found in at least one publicly available
tool [14]. We believe that the benefits of increased awareness outweigh the increased chances of malignant use.

B Limitations

SELFCLEAN hinges on the considered dataset and inherits biases from its intrinsic composition. For example,
given an image collection with a minority group that can be easily distinguished from the rest, the minority
samples may be suggested to be off-topic. This risk is studied in section G.3, where we find no evidence for this
behavior for multiple datasets such as DDI, Fitzpatrick17k, and CheXpert.

From a computational perspective, the current formulation of near-duplicate detection does not scale well with
dataset size. This could be improved with approximation methods or by relying on an iterative analysis of
nearest-neighbor distances. Also, the detailed methodology requires SSL pre-training on the dataset in order to
clean it, which requires sufficient computational power and might be a limiting factor to some. However, training
on the considered dataset is required by other methods such as confident learning [41], although this training is
supervised and requires labeled data. In contrast, SELFCLEAN does not require any annotations during training.

Currently, there is no standard protocol for evaluating data cleaning frameworks. To address this, we designed
synthetic experiments that simulate data quality issues. The datasets used for evaluation are, however, already
contaminated (see section L), which means that performance measures are capped. However, since all approaches
are subject to the same conditions, we expect only minor interference in their comparison.

While several mechanisms that produce data quality issues were considered (such as longitudinal studies, water-
marks, blurring, and different resolutions for near duplicates), exhaustively exploring all possibilities is unfeasible.
It is likely that in some scenarios SELFCLEAN can fail. A hint of this behavior can be seen in section G.5.

Finally, we acknowledge that certain data quality issue types such as ambiguous labels were not investigated in
this work. Likewise, limited investigation was carried out on how to remedy identified issues, as this is expected
to strongly depend on dataset and task.

C Training details

We use a randomly initialized ViT-tiny [65] with a patch size of 16×16 as encoder unless otherwise specified.
The latent representation is given by the class token output from the encoder’s last layer, which has dimension
192 for a ViT-tiny.

Table 4 lists the hyperparameters used for pre-training with DINO [43] and SimCLR [42]. Parameter values
are similar to the introductory papers of these approaches [42, 43] with the exception that for DINO the global
crop scale is larger and we sample more local crops, which we have found to be beneficial for smaller datasets
(<20,000) while we observed no benefit or harm for larger datasets. All SSL models were pre-trained for 500
epochs with only minor manual hyperparameter tuning to ensure proper convergence. We resize images to
224×224 pixels and normalize them using the mean and standard deviation of ImageNet [18].

For the synthetic experiment setup, table 5 lists the hyperparameters for producing near-duplicate images. The
configuration was chosen to mimic the natural contamination of near duplicates in benchmark datasets.
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Table 4: Hyperparameters used for pre-training using SimCLR and DINO on the dataset to clean.
Here “-” indicates that the respective parameter is not used for the corresponding pre-training strategy.
Parameters not given in this list follow the introductory paper. More detailed information about the
hyperparameters can be found in the open-sourced codebase.

Hyperparameter SimCLR [42] DINO [43]

Batch size 90 64
Epochs 500 500
Optimizer Adam AdamW
Learning rate 0.001 0.0005
Min. learning rate 1e-6 1e-6
Weight decay 0.04 0.04
Weight decay end 0.4 0.4
Warmup epochs 10 10
Momentum teacher - 0.996
Clip grad. 3.0 3.0
Base model ViT-tiny ViT-tiny
Model embedding dim. 192 192
Model output dim. 128 4096
Model patch size 16 16
Model drop path rate 0.1 0.1
Norm last layer - True
Global crops scale - (0.7, 1.)
Local crops scale - (0.05, 0.4)
Global crops number - 2
Local crops number - 12
Warmup teacher temp. - 0.04
Teacher temp. - 0.04
Warmup teacher temp. epochs - 30
Contrastive temp. 0.5 -

Table 5: Configuration of the synthetic near duplicate strategies AUG (5a) and ARTE (5b).

(a) AUG

Hyperparameter AUG

Rotation probability 0.5
Padding probability 0.5
Blur probability 0.5
Rotation degree range (0, 180)
Scale range (0.5, 0.9)
Padding 3
Gaussian kernel size 5

(b) ARTE

Hyperparameter ARTE

Watermark probability 0.5
Colorbar probability 0.5
Collage probability 0.5
Watermark max. scale 0.5
Collage max. scale 0.5
Reference size 512

The implementation of SELFCLEAN and the code used for evaluation are based on PyTorch 1.9 [66] and can be
found at

https://github.com/Digital-Dermatology/SelfClean, and
https://github.com/Digital-Dermatology/SelfClean-Evaluation.

Experiments were performed on an Nvidia DGX station, which features eight V100 GPUs, each with 32 GB
of memory, 512 GB of system memory, and 40 CPU cores, for a total of 10,800 GPU hours which roughly
correspond to 1,200 kg CO2.

D Datasets

In this study, we selected twelve well-known, open-source image datasets comprising four general-purpose vision
benchmarks and eight medical datasets. These datasets contain different modalities, such as smartphone, X-ray,
histopathology, dermatoscopy, and clinical images. The diversity of the datasets and domains should illustrate
SELFCLEAN’s versatility. Furthermore, some datasets were chosen because of their high-quality standards, as
their curation involved extensive manual correction, including validation by multiple domain experts.
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D.1 Datasets from the general image domain

ImageNet-1k (INet) is a well-known image benchmark with 1,000 classes [18]. Images were scraped by
querying words from WordNet’s “synonym sets” (synsets) on several image search engines. The images were
labeled by Amazon Mechanical Turk workers, who were asked whether each image contained objects of a
given synset. License: Custom (research, non-commercial).

STL-10 (STL) is a benchmark consisting of 10 classes, each with 500 training images, 800 test images, and
an additional 100,000 unlabeled images for unsupervised learning [48]. It focuses on higher resolution images
(96x96 pixels) compared to other similar collections like CIFAR-10. The images in STL-10 are sourced from
labeled examples in ImageNet and are chosen to represent a broad range of object categories and real-world
scenarios. License: Custom (attribution + ImageNet license).

Food-101N is an image dataset that contains 310,009 images of food divided into 101 classes [64]. Both Food-
101N and the Food-101 [50] dataset share the same 101 classes. However, Food-101N has a significantly larger
number of images and contains more noise. The pictures were scraped from Google, Bing, Yelp, and TripAdvisor.
60,000 of them were manually verified and used for evaluation. The evaluation set includes information for each
sample on whether or not it features a label problem. License: CC BY 4.0.

CelebFaces Attributes Dataset (CelebA) is a large-scale dataset with 202,599 celebrity face images, each with
40 attribute annotations [49]. The images in this dataset cover 10,177 identities, large pose variations and mixed
backgrounds. The CelebA dataset contains images of public figures, and while it is widely used in research, it
is important to consider privacy, consent, and potential biases [67]. We have ensured that our usage complies
with the dataset’s terms and conditions, and we advise caution to avoid perpetuating any biases inherent in the
dataset. Our work does not involve any manipulation or generation of images that could misrepresent individuals.
License: Custom (research, non-commercial).

D.2 Datasets from the medical domain

CheXpert is a large public dataset for chest radiograph interpretation, consisting of 224,316 X-ray scans from
65,240 patients [51]. The authors retrospectively collected chest radiographic examinations from Stanford
Hospital, performed between October 2002 and July 2017 in both inpatient and outpatient centers, along with
their associated radiology reports. Labels were extracted from the free-text radiology reports with an automated
rule-based system. The dataset further contains radiologist-labeled reference evaluation sets. License: Stanford
University School of Medicine’s Research Use Agreement.

VinDr-BodyPartXR (VDR) consists of 16,093 X-ray images that were manually annotated for body part
classification [52]. The authors differentiate between five groups, including abdominal, adult chest, pediatric
chest, spine, and other X-rays. The “other” category contains X-rays of any other body part, device malfunctions,
and scans of clinical tools. License: CC BY-NC 4.0.

PatchCamelyon consists of 327,680 color image patches extracted from histopathologic scans of lymph node
sections [68] from the Camelyon16 dataset [53]. Each patch is annotated with a binary label indicating the
presence of metastatic tissue. Camelyon16 contains 399 whole-slide images and corresponding glass slides of
sentinel axillary lymph nodes, which were retrospectively sampled from 399 patients who underwent breast
cancer surgery at two hospitals in the Netherlands. All metastases in the slides were annotated under the
supervision of multiple expert pathologists. License: CC0.

Diverse Dermatology Images (DDI) is a public, deeply-curated, and pathologically-confirmed image dataset
with diverse skin tones [56]. It contains 656 clinical images of 570 unique patients with 78 common and
uncommon diseases originating from pathology reports of the Stanford Clinics. License: Stanford University
School of Medicine’s Research Use Agreement.

PAD-UFES-20 is a public benchmark dataset composed of clinical images collected from smartphone devices
including patient clinical data [57]. The dataset comprises 1,373 patients, 1,641 skin lesions, and 2,298 images
for six different diagnoses: three skin diseases and three skin cancers. License: CC BY 4.0.

HAM10000 is a public benchmark dataset consisting of 10,015 dermatoscopic images collected from different
populations and institutions [54]. The collected cases include a representative sample of seven categories of
pigmented lesions. License: CC BY-NC.

Fitzpatrick17k (FST) is a public benchmark dataset containing 16,577 clinical images with skin condition
annotations and skin type labels based on the Fitzpatrick scoring system [55]. The images originate from two
online dermatology atlases and thus are known to contain issues [6]. In this study, we used the middle granularity
level, which partitions the labels into nine disease categories. License: CC BY-NC-SA 3.0.

High-Quality Fitzpatrick17k (HQ-FST) is a subset of the Fitzpatrick17k dataset used in the paper [55] as
a data quality check. It was obtained by randomly selecting 3% of the images (504 samples) and gathering
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annotations by two board-certified dermatologists to evaluate diagnostic accuracy. This subset is assumed to be
of much higher quality than its original, larger counterpart. License: CC BY-NC-SA 3.0.

ISIC-2019 is a public benchmark dataset of 25,331 dermoscopic images with metadata split into eight diagnostic
categories. Additionally, the test set contains an additional outlier class not represented in the training data. The
images originate from the HAM10000 [54] and the BCN_20000 [69] datasets. License: CC BY-NC-SA 3.0.

E Competing approaches

We selected different competing approaches to detect each of the three data quality issue categories, i.e., off-topic
samples, near duplicates, and label errors. Some of these methods require to encode images in a low-dimensional
latent space. For this projection, we used a ViT-tiny, the same architecture used for SELFCLEAN, pre-trained
with supervision on ImageNet or with DINO self-supervision on each dataset. We refer to these encoders
with “(INet)” and “(DINO)” respectively, after the name of each detection approach. In this section, we briefly
summarize each competing approach used in this work.

E.1 Approaches for off-topic samples

Isolation Forest (IForest) isolates observations by randomly selecting a feature and splitting the value between
the minimum and maximum of the selected feature. The number of splits required to isolate a sample corresponds
to the path length from the root node to the leaf node in a tree [70]. This path length averaged over a forest of
random trees is a measure of normality, where noticeably shorter paths are produced for anomalies.

Histogram-based outlier detection (HBOS) is an efficient unsupervised method that creates a histogram of
the feature vector for each dimension and then calculates a score based on how likely a particular data point is
to fall within the histogram bins for each dimension [60]. The higher the score, the more likely the data point
is an outlier, i.e., a feature vector coming from an anomaly will occupy unlikely bins in one or several of its
dimensions and thus produce a higher anomaly score.

Empirical Cumulative Distribution Functions (ECOD) is a parameter-free, highly-interpretable unsupervised
outlier detection algorithm [61]. It estimates an empirical cumulative distribution function (ECDF) for each
variable in the data separately. To generate an outlier score for an observation, it computes the tail probability for
each variable using the univariate ECDFs and multiplies them together. This calculation is done in log space,
accounting for each dimension’s left and right tails.

E.2 Approaches for near duplicates

Perceptual Hash (pHashing) is a type of locality-sensitive hash, which is similar if features of the sample are
similar [62]. It relies on the discrete cosine transform (DCT) for dimensionality reduction and produces hash bits
depending on whether each DCT value is above or below the average value. In this paper, we use pHash with a
hash size of 8.

Structural Similarity Index Measure (SSIM) is a type of similarity measure to compare two images with each
other based on three features, namely luminance, contrast, and structure [63]. Instead of applying SSIM globally,
i.e., all over the image at once, one usually applies the metrics regionally, i.e., in small sections of the image, and
takes the mean overall. This variant of SSIM is often called “Mean Structural Similarity Index”. In this paper,
we apply SSIM locally to 8x8 windows but still refer to the method as SSIM for simplicity.

E.3 Approaches for label errors

Confident Learning (CLearning) is a data-centric approach that focuses on label quality by characterizing and
identifying label errors in datasets based on the principles of pruning noisy data, counting with probabilistic
thresholds to estimate noise, and ranking examples to train with confidence [41]. It builds upon the assumption of
a class-conditional noise process to directly estimate the joint distribution between noisy (given) and uncorrupted
(unknown) labels, resulting in a generalized learning process that is provably consistent and experimentally
performant. In this study, we use AdaBoost [71] as a classifier on top of pre-trained representations to estimate
probabilities. We did not observe any significant performance difference when using different classifiers similarly
to Northcutt et al. [41].

NoiseRank (Noise) is a method for unsupervised label noise detection using Markov Random Fields [72]. It
constructs a dependence model to estimate the posterior probability of an instance being incorrectly labeled,
given the dataset, and then ranks instances based on this probability.
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E.4 Approaches for multiple issue types

FastDup is an open-source, non-peer-reviewed tool designed to rapidly extract valuable insights from image
and video datasets, aiming to increase the dataset quality and reduce data operations costs at an unparalleled
scale [15]. It detects outliers, duplicate, and near-duplicate images and videos, and wrongly labeled samples.

F Further ablation studies

This section presents additional ablation studies that investigate different components of SELFCLEAN. Note that
we cannot consistently use the same dataset for these ablation studies, as each ablation is most meaningful for a
dataset with a specific domain and degree of cleanliness, also in relationship with the considered issue type and
amount of required compute.

F.1 Influence of L2-normalization and distance functions
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Figure 4: Performance of SELFCLEAN when changing the distance function and removing the
L2-normalization. The performance is measured in terms of average precision (AP) for a mixed-
contamination strategy when varying the contamination rate. The artificial dataset is created from
DDI by adding off-topic samples (BLUR), then injecting augmented duplicates (ARTE), and finally
changing labels at random (LBL). Shaded regions indicate random performance.

For SSL strategies without explicit normalization, we included L2-normalization in the latent space during both
training and inference (e.g., DINO). A similar explicit L2-normalization for representation layers is also used in
theoretical works on SSL [73], where it was inherited from the neural collapse literature [74]. We investigate
the influence of this L2-normalization on the detection performance for the different dataset quality issues.
Figure 4 shows the performance of SELFCLEAN with and without normalization. The experiment is run on a 10%
mixed-contamination dataset, starting from DDI and creating off-topic samples using BLUR, near duplicates
using ARTE, and label errors using LBL. The results show that L2-normalization has a mild, slightly positive
effect on the performance. One possible explanation for the improved performance is that limiting the latent
space to the unit hypersphere enforces a more direct relation between the training objective and the relative
distances of encoded samples.

Additionally, we examined the influence of the choice of the distance function between cosine and Euclidean
distance. Since the Euclidean and cosine distance on a L2-normalized space always produce the same ranking,
we only show the results of different distance functions for the non-normalized latent space. Figure 4 shows that
performance is strongly influenced by the choice of distance function. Specifically, using Euclidean distance
leads to significantly lower performance.

F.2 Influence of the number of pre-training epochs

We evaluate the learned representations after a different number of pre-training epochs to investigate the influence
of the pre-training length. The experiment is run on a 10% mixed-contamination dataset, starting from DDI
and creating off-topic samples using BLUR, near duplicates using ARTE, and label errors using LBL. The
performance of the representations is evaluated every 50 epochs for both representations with and without
L2-normalization.

Figure 5 shows that performance for off-topic sample and near duplicate detection increases with longer pre-
training with L2-normalization. Without normalization, the performance for off-topic detection has no clear
trend. For label error detection, both methods first degrade slightly and later stabilize. Overall, at least with
L2-normalization, longer pre-training leads to stronger performance.
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Figure 5: Performance of SELFCLEAN during pre-training. The performance is measured in terms of
average precision (AP) for a 10% mixed-contamination strategy. The artificial dataset is created from
DDI by adding off-topic samples (BLUR), then injecting augmented duplicates (ARTE), and finally
changing labels at random (LBL). Shaded regions indicate random performance.

F.3 Influence of label granularity

We investigate the performance of label error detection on different label granularities using the high-quality
Fitzpatrick17k dataset. This dataset features three hierarchy levels with 3, 9, and 104 classes respectively, and
it has only around 500 samples, which makes the task difficult. In table 6 we report results for synthetic label
issues (i.e., LBL and LBLC) for 10% contamination. Overall, it is harder to detect label errors as granularity
increases, in agreement with intuition. We observe that SELFCLEAN excels at coarse granularity, and performs
similarly to other approaches for fine-grained classification.

Table 6: Performance of models on the detection of label errors. Evaluation is performed for each of
the two synthetic label error strategies across HQ-FST with three different label partitions. All scores
are reported in percentages (%).

Method Rep. 3-Partition 9-Partition 104-Partition

L
ab

el
E

rr
or

s

LBL LBLC LBL LBLC LBL LBLC

AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP

CLearning [41] INet 79.7 30.7 80.2 27.5 84.6 40.4 69.0 26.2 46.2 11.5 51.7 23.2
NoiseRank [72] INet 50.8 10.4 57.0 12.1 53.4 17.7 60.4 23.8 65.1 34.9 58.6 35.6
FastDup [15] INet 64.8 14.6 74.1 21.4 70.2 18.6 68.3 21.1 52.6 12.4 55.8 20.2
SELFCLEAN INet 76.8 28.7 79.2 29.9 81.2 30.3 78.3 31.9 67.1 20.8 73.4 44.3
SELFCLEAN DINO 80.9 35.4 85.3 40.0 80.3 28.3 78.7 32.8 68.8 19.2 70.5 39.5

F.4 Influence of the type of features

We investigate the influence of different types of features, i.e., general, domain-specific, and dataset-specific
features. The experiment is run on a 10% mixed-contamination dataset, starting from VDR and DDI. Table 7
shows that for VDR, domain-specific features have the strongest overall performance followed by dataset-
specific features. General supervised and self-supervised features both fail at near duplicates even if they show
strong performance on label errors. For DDI, dataset-specific features yield the best performance, followed
by domain-specific, self-supervised general, and supervised general. For both datasets, these results show the
importance of learning representations that successfully capture the task’s context in order to achieve good
detection performance.

F.5 Influence of the self-supervised learning objective

We investigate further SSL objectives for detecting data quality issues. In addition to SimCLR and DINO,
which are used throughout the paper, we include BYOL [75] and MAE [76]. The experiment is run on a 10%
mixed-contamination dataset, starting from STL and creating off-topic samples using XR, near duplicates using
AUG, and label errors using LBLC. Table 8 shows that DINO has the strongest overall performance. Some SSL
objectives only obtain strong results for specific issue types. This is the case for BYOL, which separates off-topic
samples well but fails on near duplicates and label errors. Other methods, such as MAE and SimCLR, achieve
similar performance across issue types, although significantly lower than DINO.

F.6 Influence of the encoder architecture

We investigate further encoder architectures in table 9. In addition to the ViT-tiny with a patch size of 16×16
used throughout the paper, we include larger and different types of architectures, i.e., ViTs [65] and ResNets [77].
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Table 7: Ablation of the feature types, i.e., general, domain-specific, and dataset-specific features.
We use a different 10% mixed contaminated dataset starting from VDR and DDI. Scores are average
precision (AP) percentages, and aggregated across the three tasks using the harmonic mean.

Dataset Pre-training OT (%) ND (%) LE (%) H. Mean

VDR (XR+AUG+LBLC)
INet Supervised 28.5 < 0.1 95.8 < 0.1
INet DINO 28.7 < 0.1 95.5 < 0.1
CheXpert DINO 31.3 0.3 94.8 0.9
VDR DINO 23.3 0.1 95.0 0.3

DDI (BLUR+ARTE+LBL)
INet Supervised 2.6 37.8 22.4 6.6
INet DINO 18.6 28.8 36.7 25.9
HAM10000 DINO 29.1 27.1 31.2 29.0
DDI DINO 33.2 47.4 34.8 37.5

Table 8: Ablation of the pre-training strategy. We use a 10% mixed contaminated dataset starting
from STL and creating off-topic samples (OT) using XR, near duplicates (ND) using AUG, and label
errors (LE) using LBLC. Scores are average precision (AP) percentages, and aggregated across the
three tasks using the harmonic mean.

Pre-training Dataset OT (%) ND (%) LE (%) H. Mean

SimCLR [42] STL 26.1 12.1 15.8 16.3
BYOL [75] STL 29.7 < 0.1 3.5 < 0.1
MAE [76] STL 8.3 18.1 17.7 12.9
DINO [43] STL 27.4 47.1 24.8 30.6

The experiment is run on a 10% mixed-contamination dataset, starting from STL and creating off-topic samples
using XR, near duplicates using AUG, and label errors using LBLC. Results indicate that the smaller models (i.e.,
ViT-tiny and ResNet-18) produce stable results with DINO pre-training, although ViTs show overall superior
performance, similar as found in [43]. Label error detection works best with supervised training as already
observed in section 5.3, presumably because ImageNet and STL have very similar contexts. Furthermore, for
label errors, performance with supervised pre-training increases with model size. Larger models (i.e., ViT-small
and ResNet-50) show mixed results, likely because of the small pre-training dataset of 5,000 samples.

Table 9: Ablation of the encoder architecture, i.e., ViT [65] and ResNet [77]. We use a 10% mixed
contaminated dataset starting from STL and creating off-topic samples (OT) using XR, near duplicates
(ND) using AUG, and label errors (LE) using LBLC. Scores are average precision (AP) percentages,
and aggregated across the three tasks using the harmonic mean.

Encoder N.o. Parameters Pre-training Dataset OT (%) ND (%) LE (%) H. Mean

ViT-tiny 16×16 5.5 Mio. Supervised INet 1.6 24.6 63.0 4.4
DINO STL 27.4 47.1 24.8 30.6

ResNet-18 11.7 Mio. Supervised INet 4.6 4.4 94.8 6.6
DINO STL 14.8 22.9 30.1 20.8

ViT-small 16×16 21.7 Mio. Supervised INet 2.4 20.9 94.5 6.3
DINO STL 1.8 20.7 44.0 4.8

ResNet-50 25.6 Mio. Supervised INet 10.1 1.7 96.5 4.3
DINO STL 4.1 25.1 69.1 10.1

22

92294https://doi.org/10.52202/079017-2930



G Detailed dataset cleaning results

This section provides extended tables with performance results related to dataset cleaning. More precisely,
section G.1 investigates synthetic contamination detection with different methods, metrics, and contamination
levels, expanding on section 5.1. Section G.2 presents in tabular form the comparison of SELFCLEAN with
available metadata as discussed in section 5.2. Section G.4 extends table 3 in section 6 by including information
on the performances used to compute paired differences.

G.1 Detailed comparison on synthetic data quality issues

Table 10 details results of the comparison of synthetic data quality issues. Conclusions are drawn in section 5.1.

Table 10: Performance of various models on the detection of synthetic data quality issues. Evaluation
is performed for each of the three considered issue types across three benchmark datasets, STL, VDR,
and DDI, augmented with different strategies for synthetic contamination (XR, BLUR, AUG, ARTE,
LBL, and LBLC). All scores are reported in percentages (%).

Method Rep. Contamination 5%

O
ff

-t
op

ic
Sa

m
pl

es

STL + XR STL + BLUR VDR + BLUR VDR + XR DDI + XR DDI + BLUR

AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP

IForest [70] INet 68.2 7.0 1.6 2.6 94.0 31.1 81.2 22.6 93.3 59.5 21.5 3.1
HBOS [60] INet 66.9 6.6 1.9 2.6 95.7 36.6 82.3 24.4 93.0 68.0 19.0 3.0
ECOD [61] INet 68.4 7.0 2.2 2.6 95.0 34.1 81.4 25.7 92.8 68.0 23.6 3.1
FastDup [15] INet 4.1 2.5 8.3 2.6 25.1 7.7 69.6 20.0 53.5 29.5 19.7 3.1
SELFCLEAN INet 11.4 2.7 67.7 7.3 99.9 91.2 77.1 32.8 98.9 84.2 86.5 18.2
SELFCLEAN SimCLR 40.6 3.9 77.4 19.0 100.0 98.7 86.0 35.5 99.0 68.9 70.0 21.9
SELFCLEAN DINO 98.4 55.1 100.0 97.9 100.0 100.0 95.6 53.3 100.0 100.0 86.8 32.6

N
ea

rD
up

lic
at

es

STL + AUG STL + ARTE VDR + AUG VDR + ARTE DDI + AUG DDI + ARTE

AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP

pHashing [62] 57.8 < 0.1 73.1 20.1 47.5 < 0.1 57.5 18.2 59.4 0.1 66.2 15.1
SSIM [63]. 62.5 0.2 83.6 19.9 46.3 < 0.1 48.4 22.5 57.6 0.2 83.0 19.4
FastDup [15] INet 50.2 2.2 49.2 3.3 37.6 < 0.1 40.1 2.9 56.2 4.8 44.6 7.1
SELFCLEAN INet 96.6 7.6 96.5 15.2 79.7 < 0.1 53.7 11.1 97.6 4.1 81.1 34.4
SELFCLEAN SimCLR 86.1 0.1 93.8 13.9 76.1 < 0.1 78.9 12.6 89.8 1.6 87.2 0.7
SELFCLEAN DINO 100.0 43.7 99.9 48.0 98.5 0.4 91.6 16.8 99.7 50.8 98.2 48.2

L
ab

el
E

rr
or

s

STL + LBL STL + LBLC VDR + LBL VDR + LBLC DDI + LBL DDI + LBLC

AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP

CLearning [41] INet 86.2 41.6 83.2 36.8 96.7 79.0 96.8 74.9 67.9 11.0 75.0 12.9
NoiseRank [72] INet 49.5 5.0 51.4 5.4 48.9 5.3 51.8 5.3 51.4 5.8 52.0 6.1
FastDup [15] INet 87.5 20.5 87.0 19.8 95.0 38.9 94.1 37.8 69.0 8.6 69.9 11.6
SELFCLEAN INet 97.7 77.6 97.9 76.4 98.5 84.6 98.5 84.8 67.8 11.6 79.8 18.3
SELFCLEAN SimCLR 79.1 27.4 77.4 26.5 95.0 62.2 95.4 64.4 64.8 8.3 69.0 11.1
SELFCLEAN DINO 90.7 54.2 91.1 48.3 99.2 88.1 99.0 85.6 71.4 13.5 71.7 21.4

Contamination 10%

O
ff

-t
op

ic
Sa

m
pl

es

STL + XR STL + BLUR VDR + BLUR VDR + XR DDI + XR DDI + BLUR

AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP

IForest [70] INet 45.5 7.6 1.6 5.2 81.4 21.9 75.3 30.6 91.6 61.5 12.3 5.6
HBOS [60] INet 48.7 7.9 1.2 5.2 87.6 28.8 81.0 35.4 95.8 78.0 13.5 5.7
ECOD [61] INet 52.6 8.6 1.6 5.2 89.1 32.5 79.4 33.6 95.1 76.7 19.3 5.9
FastDup [15] INet 2.9 4.7 7.9 5.4 22.1 7.7 64.8 24.2 31.7 22.5 14.5 5.9
SELFCLEAN INet 0.7 4.7 47.3 9.1 99.8 93.3 74.0 38.8 94.6 72.8 82.3 22.4
SELFCLEAN SimCLR 36.0 7.1 75.4 46.3 99.8 96.4 86.5 43.5 96.4 58.6 80.4 32.2
SELFCLEAN DINO 97.6 60.8 100.0 97.8 100.0 100.0 96.9 62.1 100.0 100.0 88.4 55.4

N
ea

rD
up

lic
at

es

STL + AUG STL + ARTE VDR + AUG VDR + ARTE DDI + AUG DDI + ARTE

AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP

pHashing [62] 53.9 0.1 73.2 22.5 46.2 < 0.1 56.9 19.3 56.5 0.5 72.6 25.5
SSIM [63]. 62.8 0.2 83.8 22.5 49.4 0.1 50.2 22.3 57.3 0.9 80.6 26.3
FastDup [15] INet 54.5 3.3 54.9 5.5 37.1 < 0.1 44.5 3.9 58.8 3.3 54.7 4.9
SELFCLEAN INet 96.2 17.9 96.8 17.9 80.9 < 0.1 54.9 13.4 98.2 12.5 82.0 25.9
SELFCLEAN SimCLR 81.7 0.1 93.5 10.3 70.4 < 0.1 77.5 12.9 89.0 0.3 61.1 < 0.1
SELFCLEAN DINO 100.0 51.0 99.9 46.4 98.7 0.3 88.5 14.3 99.3 49.0 97.4 49.8

L
ab

el
E

rr
or

s

STL + LBL STL + LBLC VDR + LBL VDR + LBLC DDI + LBL DDI + LBLC

AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP

CLearning [41] INet 83.5 47.9 85.0 46.4 97.4 85.1 97.4 84.5 73.7 25.6 72.5 24.9
NoiseRank [72] INet 49.4 10.0 50.0 10.3 51.5 10.5 51.5 10.8 51.7 11.1 50.3 10.4
FastDup [15] INet 2.9 4.7 0.3 5.2 3.3 6.0 64.8 24.2 31.7 22.5 9.3 5.5
SELFCLEAN INet 97.1 80.0 96.8 80.0 96.2 81.6 97.1 83.0 70.6 24.5 77.3 28.3
SELFCLEAN SimCLR 73.3 27.6 74.7 31.6 91.8 61.6 92.3 65.2 68.3 24.1 68.5 22.1
SELFCLEAN DINO 89.5 57.6 89.0 56.5 97.5 84.1 97.8 86.3 75.9 27.6 78.3 29.1
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G.2 Detailed comparison with metadata

Table 11 details the comparison of the SELFCLEAN ranking with metadata from multiple benchmark datasets, as
discussed in section 5.2.

For PAD-UFES-20, we investigated SELFCLEAN’s relatively low performance, as discussed in “Comparision
with metadata” of section 5.2. We provided the first 200 near-duplicate candidates of PAD-UFES-20 to three
practicing dermatologists and asked them to verify whether the given samples were near duplicates. The experts
reached a good inter-annotator agreement with Krippendorff’s alpha > 0.6. Of the samples they unanimously
agreed to be near duplicates (56 samples), 32% had faulty metadata where the lesion ID was not correctly
maintained. Thus, we find evidence that the poor alignment of SELFCLEAN and the metadata of PAD-UFES-20
is likely caused by imperfect metadata.

Table 11: Comparison of SELFCLEAN and competitor rankings with metadata from multiple bench-
mark datasets. We include the proportion of positive samples, which corresponds to the baseline AP.
Consult section 5.2 for interpretation.

Dataset Metadata Positive Samples (%) Method Rep. AUROC (%) AP (%)

PAD-UFES-20 Same Lesion 0.06
pHashing [62] 56.6 0.2
SSIM [63] 63.7 0.3
SELFCLEAN DINO 71.0 10.0

HAM10000 Same Lesion 0.01
pHashing [62] n.a.4 n.a.4

SSIM [63] n.a.4 n.a.4
SELFCLEAN DINO 98.7 28.4

ISIC-2019 Same Lesion 0.01
pHashing [62] n.a.4 n.a.4

SSIM [63] n.a.4 n.a.4
SELFCLEAN DINO 98.2 26.6

CheXpert Same Patient 0.01
pHashing [62] n.a.4 n.a.4

SSIM [63] n.a.4 n.a.4
SELFCLEAN DINO 70.5 7.5

CelebA Same Person 0.02
pHashing [62] n.a.4 n.a.4

SSIM [63] n.a.4 n.a.4
SELFCLEAN DINO 78.8 30.9

ImageNet-1k Verified
Label Errors2 4.38

CLearning [41] INet 46.6 4.3
FastDup [15] INet 42.6 3.6
SELFCLEAN DINO 67.7 8.7

Food-101N Verified
Label Errors3 18.51

CLearning [41] INet 61.0 25.2
FastDup [15] INet 72.1 30.7
SELFCLEAN DINO 79.8 47.8

Subsampled results4

HAM10000 Same Lesion 0.01
pHashing [62] 71.3 [69.9, 74.2] 2.7 [2.6, 7.6]
SSIM [63] 67.3 [66.3, 72.4] 7.7 [4.4, 7.8]
SELFCLEAN DINO 98.7 [97.9, 99.0] 30.0 [23.9, 34.3]

ISIC-2019 Same Lesion 0.01
pHashing [62] 62.3 [58.5, 63.4] 0.1 [< 0.1, 2.1]
SSIM [63] 69.1 [66.3, 70.0] 1.3 [0.3, 1.6]
SELFCLEAN DINO 98.9 [97.4, 98.9] 28.6 [26.6, 29.2]

CheXpert Same Patient 0.01
pHashing [62] 54.7 [53.8, 57.0] 0.2 [0.1, 0.4]
SSIM [63] 65.7 [64.7, 66.1] 0.2 [0.2, 0.3]
SELFCLEAN DINO 86.5 [85.5, 88.1] 1.9 [0.3, 2.3]

CelebA Same Person 0.02
pHashing [62] 53.3 [52.8, 54.7] < 0.1 [< 0.1, < 0.1]
SSIM [63] 56.3 [55.3, 58.3] < 0.1 [< 0.1, < 0.1]
SELFCLEAN DINO 81.0 [80.6, 81.2] 0.6 [0.6, 0.6]

2Refers to the subset of ImageNet-1k validation set which was verified by Northcutt et al. [7].
3Refers to the subset of Food-101N set which was verified by Lee et al. [64].
4As the number of near duplicates for comparison exceeds memory limitations for the baseline methods (as

indicated by “n.a.” in the upper panel), they were subsampled three times with the same percentage of positive
samples to 2,000 samples (i.e., 1,999,000 comparisons). We report the median and the min-max variation in
brackets.
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G.3 Potential bias of off-topic ranking

There is a chance that off-topic sample detection may exacerbate data distribution biases because underrepre-
sented samples are more likely to be proposed as candidate issues. Therefore, we investigate if some specific
dataset attributes correlate with the off-topic sample ranking, assessing, for example, if pigment-rich skin is
more often suggested to be off-topic. For this experiment, we focus on the demographics of CheXpert and skin
types in DDI and Fitzpatrick17k. We compare the ranking of the feature attribute using AP and AUROC, similar
to the comparison with metadata in appendix G.2. The results show no evidence of an increased likelihood of
underrepresented groups appearing earlier in the ranking, as AUROC stays around 50% and AP is similar to the
non-informed baseline, i.e., the percentage of samples belonging to the group.

Table 12: Comparison of the SELFCLEAN ranking with various demographic attributes. For reference,
we include the prevalence of each group, also corresponding to the not-informed baseline performing
best in terms of AP.

Dataset Attribute Value Prevalence (%) AUROC (%) AP (%)

DDI Skin Tone
Fitzpatrick Type 3&4 36.7 46.8 35.4
Fitzpatrick Type 1&2 31.7 52.5 31.2
Fitzpatrick Type 5&6 31.6 50.9 35.9

Fitzpatrick17k Skin Tone

Fitzpatrick Type 2 29.0 53.2 31.1
Fitzpatrick Type 3 20.0 47.5 19.1
Fitzpatrick Type 1 17.8 52.8 18.9
Fitzpatrick Type 4 16.8 45.4 15.2
Fitzpatrick Type 5 9.2 46.3 8.5
Fitzpatrick Type 6 3.8 50.8 3.8
Fitzpatrick Type Unknown 3.4 57.5 4.3

CheXpert Ethnicity

Non-Hispanic/Non-Latino 72.9 50.0 72.8
Unknown 14.2 53.3 15.4
Hispanic/Latino 12.1 46.5 11.1
Patient Refused 0.3 43.5 0.2
Not Hispanic < 0.1 35.1 < 0.1
Hispanic < 0.1 9.1 < 0.1

CheXpert Gender
Male 55.2 43.5 51.4
Female 44.3 56.4 48.5
Unknown < 0.1 17.7 < 0.1

CheXpert Primary Race

White 45.5 47.7 44.0
Other 12.9 46.4 11.9
White, non-Hispanic 10.0 55.7 11.5
Asian 9.5 51.7 9.7
Unknown 6.6 52.5 7.1
Black or African American 4.0 47.4 3.8
Race and Ethnicity Unknown 3.9 53.8 4.3
Other, Hispanic 1.7 49.6 1.6
Asian, non-Hispanic 1.2 56.0 1.4
Native Hawaiian or Other Pacific Islander 1.2 44.1 1.0
Black, non-Hispanic 0.8 55.5 1.0
White, Hispanic 0.5 53.7 0.6
Other, non-Hispanic 0.3 56.4 0.4
Patient Refused 0.2 44.4 0.2
American Indian or Alaska Native 0.2 46.5 0.2
Pacific Islander, non-Hispanic 0.1 51.4 0.2
Native American, non-Hispanic < 0.1 60.7 < 0.1
Black, Hispanic < 0.1 60.7 < 0.1
Native American, Hispanic < 0.1 60.2 < 0.1
Asian, Hispanic < 0.1 63.4 < 0.1
White or Caucasian < 0.1 18.9 < 0.1
Pacific Islander, Hispanic < 0.1 65.1 0.2
Asian - Historical Conv < 0.1 58.7 < 0.1
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G.4 Detailed influence of dataset cleaning

Table 13 complements table 3 with score ranges before differences. Conclusions are drawn in section 6.

Table 13: Influence of removing samples detected in the automatic cleaning mode with α = 0.10 and
q = 0.05 on downstream tasks. We report macro-averaged F1 scores for linear and kNN classifiers on
DINO features over 100 random training/evaluation splits with 80% and 20% fractions respectively.
We compute paired performance differences before and after cleaning the evaluation set, and before
and after cleaning also the training set. We report the median and the intervals to the 5% (subscript)
and 95% (superscript) percentiles. Additionally, we indicate significance of a paired permutation test
on the difference sign with ∗p < 0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001.

kNN Classifier

Scores (%) Differences (%pt.)

Cont + Cont Cont + Clean Clean + Clean Clean Eval Clean Train

DDI 58.2+7.7
−8.3 59.2+7.5

−8.3 59.7+7.3
−8.8 +1.2+1.9

−1.2
∗∗∗ +0.0+1.7

−1.4
∗∗∗

HAM10000 58.3+3.4
−4.9 58.3+3.7

−4.7 58.7+3.1
−4.6 +0.2+0.5

−0.4
∗∗∗ +0.2+1.3

−0.8
∗∗

Fitzpatrick17k 60.2+1.8
−1.9 56.1+1.9

−2.2 56.1+2.0
−2.3 −4.1+1.2

−1.3
∗∗∗ +0.1+2.0

−1.7

Food-101N 40.3+0.8
−0.9 40.4+0.7

−1.1 40.5+0.7
−1.1 +0.1+0.1

−0.1
∗∗∗ +0.1+0.2

−0.2
∗∗∗

ImageNet-1k 31.2+0.8
−0.9 30.8+0.9

−0.9 31.1+0.8
−0.9 −0.4+0.1

−0.2
∗∗∗ +0.4+0.3

−0.4
∗∗∗

Linear Classifier

Dataset Cont + Cont Cont + Clean Clean + Clean Clean Eval Clean Train

DDI 59.2+9.6
−10.2 59.6+12.0

−11.2 58.9+9.0
−9.7 +1.0+11.1

−11.2 −0.7+7.7
−10.8

HAM10000 62.6+4.2
−4.2 63.0+3.3

−4.0 62.8+3.2
−3.8 +0.1+3.2

−3.5 −0.1+3.9
−3.6

Fitzpatrick17k 52.8+2.6
−3.1 52.5+2.5

−4.1 52.6+2.9
−2.8 −0.6+2.9

−3.6
∗∗ +0.2+3.3

−3.9
∗

Food-101N 50.0+0.9
−1.2 50.1+1.1

−1.0 50.4+0.8
−1.2 +0.2+0.6

−0.5
∗∗∗ +0.1+0.6

−0.5
∗∗

ImageNet-1k 42.4+0.7
−0.9 42.0+0.9

−0.9 42.2+0.6
−1.0 −0.4+0.6

−0.6
∗∗∗ −0.0+0.9

−0.5

G.5 Investigation of VinDr-BodyPartXR near duplicates

In the synthetic experiments (see 5.1) we observe particularly low AP for synthetic near duplicates with AUG for
VinDr-BodyPartXR (VDR). Here this discrepancy is further investigated. Figure 6a illustrates the top-10 near
duplicate candidates for VDR without synthetic contamination. At least some of them are natural contamination
that is not accounted for in the dataset’s metadata, and others have highly standardized poses which may match
more easily than synthetic contamination. Figure 6b shows the score distribution of the injected duplicates in
comparison to the overall distribution and illustrates that they lie in the earlier parts of the ranking.

Ranking: 1
0.0000

Ranking: 2
0.0000

Ranking: 3
0.0000

Ranking: 4
0.0016

Ranking: 5
0.0037

Ranking: 6
0.0038

Ranking: 7
0.0038

Ranking: 8
0.0039

Ranking: 9
0.0040

Ranking: 10
0.0041

(a) Ranking produced by SELFCLEAN for
near duplicates in the VinDr-BodyPartXR, of
which the top-10 are shown along with the
respective rank and score.
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(b) Histogram of the scores for VinDr-
BodyPartXR with injected near duplicates
using AUG. The green distribution shows
synthetic issues, and blue is the overall score
distribution.

Figure 6: Investigation of VinDr-BodyPartXR near duplicates.
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H Inspection effort saved

When potential data quality issues are verified by a human, it is valuable to quantify the reduction in inspection
effort achieved through the ranking. This reduction should be viewed as a function of the residual contamination
that can be tolerated in the dataset, i.e., of the recall for data quality issues. We quantify effort using the number of
inspections required rather than the actual time spent, as this is a good proxy more directly related to the ranking.
Specifically, we calculate the fraction of effort (FE) needed to achieve a given recall by dividing the number of
inspections required using the ranking by the number of inspections needed when candidate issues are sorted
randomly. The comparison baseline is random sorting, which always requires confirming a number of examples
equal to the target recall times the number of potential issues, due to the uniform density of actual issues in the
sequence. The fraction of effort equals 1 when confirmation using the ranking is just as cumbersome as the base-
line. It is <1 when the ranking is beneficial for cleaning, and >1 when it is detrimental. The best and worst cases
possible are obtained by a ranking algorithm that sorts all positive samples first or last respectively. They obtain
FEs equal to α+ and [1−(1−R)α+]/R, where R is the recall and α+ is the contamination in the dataset, i.e., the
number of actual data quality issues divided by the number of possible data quality issues. Note that the fraction
of effort saved by a method compared to another can easily be obtained by dividing the two corresponding FEs.

To summarize the inspection effort savings in a single number, we compute the average fraction of effort (AFE)
over all possible recalls, i.e., the area under the FE–R curve. To this end, we proceed as in the computation of
average precision, and define

AFE =
∑
i

(Ri+1 − Ri)FEi. (2)

In table 14 we compare the best two competing approaches with SELFCLEAN on a 10% mixed-contamination
dataset starting from STL in terms of AFE. In figure 7 we further plot the FE–R curves for all approaches. For
competing methods which operate on extracted features, we compare performance using both supervised INet and
self-supervised dataset-specific DINO features. For both off-topic samples and near duplicate detection, the AFE
is significantly lower for SELFCLEAN than for its competitors, indicating a large amount of time and effort saved
in using it. For label errors, SELFCLEAN with self-supervised dataset-specific representation leads to a similar
AFE as competitors, which however may be aided by the similarity of ImageNet and STL in this specific case.

Table 14: Average fraction of effort (AFE) for the detection of synthetic data quality issues. Evaluation
is performed on a 10% mixed-contamination dataset starting from STL and creating off-topic samples
(OT) using XR, near duplicates (ND) using AUG, and label errors (LE) using LBLC.

O
T

Method Rep. ↑ AUROC (%) ↑ AP (%) ↓ AFE (%)

HBOS [60] INet 0.6 1.6 508.4
ECOD [61] INet 0.7 1.6 518.4
SELFCLEAN INet 0.7 1.6 472.8
SELFCLEAN DINO 86.9 24.4 20.2

N
D

Method Rep. ↑ AUROC (%) ↑ AP (%) ↓ AFE (%)

pHashing [62] 72.1 6.1 37.0
SSIM [63] 74.7 2.0 32.8
SELFCLEAN INet 97.3 26.1 2.9
SELFCLEAN DINO 98.2 46.2 1.8

L
E

Method Rep. ↑ AUROC (%) ↑ AP (%) ↓ AFE (%)

CLearning [41] INet 76.6 6.9 33.2
FastDup [15] INet 88.1 0.4 24.3
SELFCLEAN INet 98.3 63.4 5.2
SELFCLEAN DINO 85.3 32.6 21.5
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Figure 7: FE–R curves for a mixed-contamination strategy at 10% level. The artificial dataset is created
from STL by adding X-ray images (XR), injecting augmented duplicates (AUG), and changing labels
at random (LBLC). The closer the curves are to zero, the less effort is needed to find data quality issues.
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I Validating algorithmic rankings with humans

In this section, we describe the procedure used to confirm that, also according to human criteria, SELFCLEAN
assigns low ranks to problematic samples and high ranks to normal data, as discussed in the second part of
section 5.2. To this end, for each data quality issue type, we collect human verification for the first 50 images in
the ranking and for 50 images randomly sampled from the dataset. Crowd workers use the respective platform’s
tool5 for annotation, and medical expert annotators use a custom tool, which is shown in figure 8. The verification
process starts with the selection of a dataset and data quality issue (e.g., the Fitzpatrick17k dataset and off-topic
samples) and then proceeds with binary questions about single images or pairs thereof depending on the task.
Section I.1 shows the task descriptions for each quality issue. Note that the samples’ ranks are not displayed to
avoid potential bias. Annotations were aggregated using majority voting for both crowd workers and medical
experts. Medical experts agreed with an average Krippendorff’s alpha of 0.52, 0.97, and 0.55 for off-topic
samples, near duplicates, and label errors, respectively.

We paid crowd workers 0.03 US dollars per annotation for images from ImageNet and Food-101N, which
roughly corresponds to 9 US dollars per hour. Medical experts were not compensated financially but were instead
acknowledged with co-authorship in a labeling consortium.

During annotation, we solely collected answers as binary labels along with anonymized annotator identification.
Thus, these annotations contain no personally identifiable information or offensive content. In discussion with
experts from the institutions of the co-authors, it was concluded that this verification process does not require
IRB approval because the conducted study examines publicly available datasets and does not involve human
subjects beyond binary annotations.

Figure 8: Screenshot of the verification tool used by medical experts to annotate data quality issues.

I.1 Task descriptions

This section reports all task descriptions shown to the annotators:

• Off-topic samples: “Your task is to judge if the image shown is irrelevant. Select yes when the image
is not a valid input for the task at hand.”

• Near duplicates: “Your task is to judge whether the two images shown together are pictures of the
same object. Note that pictures of the same object can be identical or different shots with the same
object of interest.”

• Label errors: “Your task is to judge whether the image’s label is correct. Please select that the label is
an error only if you think it is wrong and not when there is low uncertainty or ambiguity.”

I.2 Detailed results

In order to verify that problematic samples tend to appear first in the ranking provided by SELFCLEAN, for
each issue type, we first consider the first 50 images in the ranking against the 50 random ones, and then the first

5https://www.clickworker.com/, accessed on the 28th of October.
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group of 25 in the ranking against the second group of 25. We conduct one-sided Mann-Whitney U statistical
tests to verify that humans are more likely to identify data quality issues in samples that appear first in the
SELFCLEAN ranking. In order to gain a more intuitive understanding, we also report the fraction of samples
that were found to be problematic within the first 50 and the 50 random samples, and within samples ranked
1 through 25 and 26 through 50. Finally, we visualize the distribution of human-confirmed problems through
the ranking by plotting the fraction of confirmed problems in a rolling window of ten ranks in figure 9.

We observe significant alignment for near-duplicate detection throughout the considered datasets. Label-error
identification is significant in all cases but for DDI. The different concentration of problems is mostly observed
between images with low ranking and random samples, while the difference between samples 1-25 and 26-50 is
less pronounced. We observe that identifying label errors in a highly-curated dataset such as DDI is a nontrivial
task which might exceed the design of the conducted experiment. Finally, the detection of off-topic samples is
the task where SELFCLEAN achieves the lowest overall agreement with human annotators. Nevertheless, these
results suggest a significant separation of off-topic samples within the ranking in at least half of the cases.

Table 15: Comparison of the percentage of issues found by humans in the 50 lowest-ranked samples
with 50 random samples, and in samples 1 to 25 with samples 26 through 50. We report the percentage
of issues in each sample and the corresponding p-value of a Mann–Whitney U test, which represents
the probability for the ranking to be unrelated to the position of problematic samples.

Percentage of Human-Confirmed Problems
Dataset Data Quality Issue Lowest 1-50 (%) Random Sample (%) p-value Lowest 1-25 (%) Lowest 26-50 (%) p-value

DDI Off-topic Samples 12 8 0.25 20 4 0.04
DDI Near Duplicates 12 0 0.006 24 0 0.005
DDI Label Errors 22 32 0.86 20 24 0.63

Fitzpatrick17k Off-topic Samples 14 4 0.04 12 16 0.65
Fitzpatrick17k Near Duplicates 100 0 1.3×10−23 100 100 undef
Fitzpatrick17k Label Errors 54 12 4.4×10−6 52 56 0.61

ImageNet Off-topic Samples 62 48 0.08 56 68 0.80
ImageNet Near Duplicates 92 0 2.1×10−20 100 84 0.02
ImageNet Label Errors 36 0 1.6×10−6 48 24 0.04

Food-101N Off-topic Samples 24 4 0.002 36 12 0.02
Food-101N Near Duplicates 100 0 1.3×10−23 100 100 undef
Food-101N Label Errors 72 34 7.6×10−5 80 64 0.61
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Figure 9: Visualization of the percentage of quality issues found across the first 50 samples in the
SELFCLEAN ranking and in 50 random samples, using a rolling window of size 10. Results are
reported across four datasets and for each issue type.
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J Scoring for off-topic samples

This section describes how to construct a score based on hierarchical clustering, such that samples with a
high probability of being off-topic have significantly lower values compared to the bulk of the data. Note that,
although in practice we use single-linkage agglomerative clustering, this heuristic construction can be applied to
any distance-based hierarchical clustering and is formulated accordingly.

Notation. Hierarchical clustering over a set of data points numbered {1, . . . , N} can be represented with a
hierarchy of sets Hn which specify clusters at each level n. Let n correspond to the number of clusters at
a specific step Hn = {C1n, . . . , Cnn}, where Cin represents the i-th cluster at level n in the hierarchy. For
instance, in agglomerative clustering, n runs from N to 1 as the algorithm proceeds and more data points are
merged. Without loss of generality, it is possible to reindex clusters such that indices of merged sets are always
consecutive, and the other sets in Hn do not change their relative order

Cin =


Ci(n+1) if i < in,

Ci(n+1) ∪ C(i+1)(n+1) if i = in,

C(i+1)(n+1) if i > in,

for i = 1, . . . , n and n = 1, . . . , N, (3)

where from step n+1 to step n clusters in and in+1 are merged into cluster in. The hierarchy of sets Hn induces
a dendrogram, i.e., a tree graph where each cluster is a node connected to its direct parent and children. Each
element n of the hierarchy (except for HN , where every point is in a separate cluster) can also be associated with
a distance dn which is the one at which the last two clusters were merged, dn = dist(Cin(n+1), C(in+1)(n+1)).
To define a ranking, we sort the dendrogram such that at every step |Cin(n+1)| ≤ |C(in+1)(n+1)|, i.e., the cluster
which contains the fewest leaves comes first, based on the idea that outliers are associated with merges containing
fewer leaves [46]. In case of ties, the cluster created at the largest distance precedes the other.

Scoring. To produce a score for each node in the dendrogram, natural building blocks are the merge distance,
the sizes of the merged clusters, and their interactions [78]. Accordingly, we define scores by drawing the
dendrogram in a [0, 1]× [0, 1] square where the horizontal axis is one minus the (merge) distance d and the
vertical axis is the weight win of cluster Cin which is defined recursively below. Note that the possible values
for the distance range from 0 to 1, which can generally be achieved with a transformation. This guarantees that
1− d spans the same range. This graphical construction is illustrated in the right panel of figure 10. The score
of each leaf is determined at each merge distance d by the weight wjn of the cluster Cjn it belongs to between
merge distance dn and dn−1. Formally, the off-topic sample score sOT(ei) is then given by the area under the
curve fi(d) where

fi(d) = wjn if dn ≤ d < dn−1 and i ∈ Cjn, n = 1, . . . , N, (4)

with dN = 0 and d0 = 1. For convenience, we define pin = |Cin|/N to be the probability of cluster Cin and set
w0n = 0 and w11 = 1. To define the weights, we propose a rule which we call leaves and distances (LAD) and
reads

wi(n+1) =


win if i < in,

w(in−1)n + (winn − w(in−1)n)pi(n+1)/pinn if in ≤ i ≤ in + 1,

w(i−1)n if i > in + 1.

(5)

Essentially, at each split, children cluster Ci(n+1) receives a weight wi(n+1) which is proportional to its relative
size pi(n+1)/pinn with respect to the parent cluster, while bound between the previous cluster weight w(in−1)n

and the parent cluster weight winn.
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Figure 10: The left plot shows an example of a dendrogram for hierarchical clustering, and the right
plot an illustration of the leaves and distances (LAD) scoring. In the left plot, the x-axis shows the
ranking of the different points in brackets and the corresponding identification number. In the right
plot, the right side of the y-axis shows the weights win corresponding to equation 5.

K Automatic cleaning

In section 3.2, we defined scores that take extreme values for candidate issues. Isolating data issues using such a
score is essentially a one-dimensional outlier detection problem. Here, we construct a procedure to detect outlier
scores, which works well with SELFCLEAN. We then demonstrate that detected outliers are robust to the values
of the two hyperparameters introduced by such procedure.

K.1 Automatic cleaning procedure

We start with the intuition that detecting problematic samples is straightforward if the scores are smoothly
distributed for normal data, but are far from the bulk for data with quality issues. However, all scores in this work
range from 0 to 1, and increasingly extreme issues approach zero score without leaving large gaps on the score
scale. For this reason, we expand the neighborhoods of 0 and 1 using a logit transformation, s̃ = log[s/(1− s)].
The transformed scores s̃ then range over the whole real axis enabling a better separation between normal and
problematic samples.

Since the logit transformation has Jacobian | ds̃ / ds | = e−s̃/(1 + e−s̃)2, under broad assumptions we expect
the dominant behavior of the transformed score distribution to drop at least as quickly as a logistic probability
density function for s̃ → ±∞. Note that this is the case even if the original score distribution is not just constant
but presents an integrable power-law singularity for s → 0, 1.

To identify outlier samples, we first attempt to isolate a region on the left tail of the distribution that is free
of issues. To this end, we introduce a hyperparameter α, the “contamination rate guess”, which represents a
generous estimate of the fraction of issues in the dataset. For data quality issues where a score is associated to
each sample, we simply drop the lowest ⌊α1N⌋ scores with α1 = α, while when a score is associated to a pair of
samples, we discard the lowest ⌊α1N(N − 1)/2⌋ scores with α1 = α2. Indeed, when there are no interactions
(e.g., only pairs of near-duplicates) we expect αN abnormally low near-duplicate scores, but in the worst-case
interaction scenario (e.g., all views of the same sample) we await αN(αN − 1)/2 low out-of-distribution scores,
which is equivalent to the above expression for α1 when αN ≫ 1. Besides dropping the potentially problematic
samples, we also select an upper score bound for the range of interest, since we aim at reproducing only the
smooth left tail of the distribution. Reasonable choices are values between the lower score cutoff determined by
α1 and the median, paying attention that enough data is included for sufficient robustness to noise. For this reason,
we choose the upper score cutoff to be the quantile corresponding to a fraction of data α2 which is the geometric
mean between α1 and 1/2, i.e., α2

2 = α1/2. We observe that the range produces robust statistical information
if the number of samples is sufficiently large and α ≪ 1/2, where in practice α ≲ 1/4 is already stable.
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Following the outlined heuristic argument, we approximate the smooth component of the left tail of the
distribution using a logistic distribution with suitably chosen scale and location parameters, which has probability
density function

pdf(s̃;µ, σ) =
1

σ
pdf

( s̃− µ

σ

)
, pdf(ŝ) =

e−ŝ

(1 + e−ŝ)2
. (6)

Given the score cutoffs s̄1 and s̄2 corresponding to the quantiles α1 and α2 of the empirically observed
distribution, the scale σ and location µ can be estimated as

σ =
s̄2 − s̄1

s̄(α2)− s̄(α1)
, µ =

s̄1s̄(α2)− s̄2s̄(α1)

s̄(α2)− s̄(α1)
, s̄(αm) = log

αm

1− αm
for m = 1, 2. (7)

Here s̄(αm) indicates the percentage point function of the logistic distribution, i.e., the inverse of its cumulative
distribution function. Note that the whole estimation procedure for the left tail of the distribution relies exclusively
on quantiles and is, therefore, naturally robust to outliers.

With an estimate of the smooth score distribution for normal data, we can identify abnormal samples by
requesting that they be unlikely generated by the same random process. This is achieved by demanding that
the probability of obtaining a score below an outlier cutoff scut be less than a significance level q times the
expected fraction of outliers, which is 2α/(N − 1) in the case of pairs of samples and α otherwise. We set the
hyperparameter q to 0.05 corresponding to a 95% one-sided confidence level and study the influence of this
choice in section K.4. All samples with scores lower than the outlier cutoff will be then classified as problematic.

The strength of the aforementioned procedure lies in its ability to consistently detect outliers despite requiring
multiple steps and introducing two additional hyperparameters. The number of outliers identified remains largely
unaffected by reasonable choices for α and q. The remaining parts of appendix K are dedicated to showing that
the procedure is intuitive and assumptions are empirically acceptable (K.2), and to demonstrating that detected
outliers exhibit low sensitivity to the contamination rate guess α (K.3) and to the significance level q (K.4).

K.2 Automatic cleaning examples

In figure 11, we illustrate the fit to the left tails of distributions for representative datasets, together with the
relevant range used to estimate scale and location and the position of the outlier cutoff to classify data quality
issues. We observe that the probability density function is a qualitatively good estimate of the density-normalized
histograms in the expected range, i.e., for the smooth component of the histogram’s left tail, within sampling
uncertainties. The fit quality is somewhat lower for off-topic samples, probably due to the score range which is
all above s̃ = 0. We also carried out experiments with a Gaussian functional form for score distribution tails and
observed only minor changes, which resulted in a slightly reduced number of detected problems.

K.3 Influence of the contamination rate guess α

In figure 12, we analyze the sensitivity of the number of detected data quality problems with respect to the
contamination rate guess α for all issue types and representative datasets analyzed in this paper. In these plots,
the significance level q is fixed to its default value of 0.05. We observe that the fraction of found problems does
not depend much on α over several orders of magnitude, suggesting a sensitivity to this hyperparameter that
is approximately vanishing or at most logarithmic. It is by virtue of this reduced dependence that we can fix
α = 0.10 throughout the paper and that fully automatic cleaning is able to produce stable results with limited
prior knowledge of dataset quality.

K.4 Influence of the significance level q

In figure 13 we report the fraction of detected problematic samples as a function of the significance level q, for
all considered issue types and representative datasets. We can see that this hyperparameter essentially determines
the number of outliers found, which is monotonically increasing with q. Moreover, the number of identified
issues has, in most cases, a dependence on q which is less than linear. In some cases, especially when the number
of detected outliers is below percent level or q approaches 1, we see more severe sensitivity to the specific value.
This may be because the empirical score distribution changes more abruptly than estimated by the logistic fit, as
happens for off-topic samples, or because the region immediately below the lower score cutoff s̄(α1) (which
corresponds to q = 1) is densely populated almost by construction. It is however clear that q regulates how
extreme scores need to be for a sample to be considered problematic. A value of q = 10−3 will only select very
apparent data quality issues, q = 1/4 will almost certainly also include a significant fraction of valid samples,
and the choice of q = 0.05 strikes a compromise between precision and recall.
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Figure 11: Score histogram (blue) and associated left-tail distribution fit (solid orange) with outlier
cutoff (dashed orange) for all considered issue types and representative datasets. The green shaded
area represents the range [s̄1, s̄2] which is used to determine location and scale of the associated
logistic distribution. The values α = 0.10 and q = 0.05 are used throughout.
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Figure 12: Dependence of the fraction of detected data quality issues on the contamination rate
guess α for all considered issue types and representative datasets, at a fixed significance level
q = 0.05. The observed behavior is reported in blue. It is outside of the lower margin of the plots
when no problems are found. The green solid line represents a fraction of detected issues which is
equal to the contamination rate guess for reference. The vertical dotted red line indicates the default
value α = 0.10 used in the rest of the paper.
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Figure 13: Impact of the choice of the significance level q on the fraction of detected data quality
issues, across issue types and for representative datasets, for a fixed contamination rate guess α = 0.10.
The observed dependency on q is reported in blue, and it is below the lower margin of the plots when
no problematic samples are found. The diagonal green solid line is just a reference to guide reading,
and the dotted red line indicates the default choice q = 0.05.

35

92307 https://doi.org/10.52202/079017-2930



L Inspection of benchmark datasets

This section reports the results of auditing multiple vision benchmarks using SELFCLEAN. In section L.1, we
estimate the number of issues in fully automatic mode. Sections thereafter illustrate the rankings by visualizing
the top 15 samples of each issue type, namely off-topic samples, near duplicates, and label errors. General
conclusions are drawn in section 6, while here we report more specific observations.

Applying SELFCLEAN to multiple benchmark datasets across different domains has led to different insights on
why some of these data quality issues may occur. Off-topic samples in the medical domain are often caused by
device malfunctions, wrong configurations, tests, or other scanning errors (figure 18 Rank 2-8 and figure 21 Rank
1, 5, and 9). Near duplicates can often be traced to data acquisition problems, such as crawling both an image and
its thumbnail (figure 23) or the metadata failing to correctly flag that two images have a common origin (figure 14
and 20). The most apparent label errors are often near-duplicate samples with different labels (figure 25 Rank
1&2, 4&6, 9&10, and 8&13), which indicate (understandable) difficulties in the annotation process, or off-topic
samples with a label (figure 19 Rank 2-4), which easily arise in (semi-)automated annotation procedures.

L.1 Estimation of issues in benchmark datasets

Table 16: Estimated percentage of data quality issues in vision benchmarks obtained using SELF-
CLEAN’s automatic mode with α = 0.10 and q = 0.05. Images marked as originating from the same
person, patient or lesion were excluded from the near-duplicate count whenever available.

Estimated Issues

Dataset Size Off-topic Samples Near Duplicates Label Errors Total

Medical Images
DDI 656 1 (0.2%) 4 (0.6%) 5 (0.8%) 10 (1.5%)
PAD-UFES-20 2,298 0 (0.0%) 0 (0.0%) 5 (0.4%) 5 (0.4%)
HAM10000 11,526 0 (0.0%) 1 (<0.1%) 17 (0.2%) 18 (0.2%)
VinDr-BodyPartXR 16,086 263 (1.6%) 20 (0.1%) 74 (0.5%) 357 (2.2%)
Fitzpatrick17k 16,574 18 (0.1%) 2,446 (14.8%) 103 (0.6%) 2,567 (15.5%)
ISIC-2019 33,569 0 (0.0%) 1,200 (3.6%) 97 (0.3%) 1,297 (3.9%)

CheXpert6 223,414 6 (<0.1%) 0 (0.0%) 303 (0.1%) 309 (0.1%)
PatchCamelyon 327,680 98 (<0.1%) 12,845 (3.9%) 589 (0.2%) 13,532 (4.1%)

General Images
STL-10 5,000 0 (0.0%) 7 (0.1%) 21 (0.4%) 28 (0.5%)
ImageNet-1k Validation 50,000 0 (0.0%) 36 (0.1%) 262 (0.5%) 298 (0.6%)
CelebA 202,599 2 (<0.1%) 810 (0.4%) 1,033 (0.5%) 1,845 (0.9%)
Food-101N 310,009 310 (0.1%) 4,433 (1.4%) 2,728 (0.9%) 7,471 (2.4%)

6Label errors refer to atelectasis detection only since the classification task admits multiple labels, and expert
agreement is the highest for this condition.
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L.2 ImageNet-1k

Ranking: 1, Idx: 36382 Ranking: 2, Idx: 33340 Ranking: 3, Idx: 6682 Ranking: 4, Idx: 28489 Ranking: 5, Idx: 15994

Idx: 39847 Idx: 39833 Idx: 35255 Idx: 30231 Idx: 36130

Ranking: 6, Idx: 6666 Ranking: 7, Idx: 27820 Ranking: 8, Idx: 22282 Ranking: 9, Idx: 11745 Ranking: 10, Idx: 11550

Idx: 22238 Idx: 28101 Idx: 23427 Idx: 13865 Idx: 27726

Ranking: 11, Idx: 2610 Ranking: 12, Idx: 18750 Ranking: 13, Idx: 14802 Ranking: 14, Idx: 18 Ranking: 15, Idx: 11062

Idx: 10222 Idx: 28189 Idx: 22152 Idx: 26603 Idx: 42502

Figure 14: Ranking produced by SELFCLEAN for near duplicates in the ImageNet-1k validation set,
of which the top 15 are shown along with the respective rank and index.

37

92309 https://doi.org/10.52202/079017-2930



Ranking: 1, Idx: 15010 Ranking: 2, Idx: 5417 Ranking: 3, Idx: 29886 Ranking: 4, Idx: 12426 Ranking: 5, Idx: 28953

Ranking: 6, Idx: 38093 Ranking: 7, Idx: 14249 Ranking: 8, Idx: 35096 Ranking: 9, Idx: 22777 Ranking: 10, Idx: 41469

Ranking: 11, Idx: 10491 Ranking: 12, Idx: 13984 Ranking: 13, Idx: 19961 Ranking: 14, Idx: 32456 Ranking: 15, Idx: 19175

Figure 15: Ranking produced by SELFCLEAN for off-topic samples in the ImageNet-1k validation
set, of which the top 15 are shown along with the respective rank and index.

Ranking: 1, Idx: 6666
horned viper

Ranking: 2, Idx: 22238
sidewinder

Ranking: 3, Idx: 28489
vine snake

Ranking: 4, Idx: 30231
green snake

Ranking: 5, Idx: 18750
Shih-Tzu

Ranking: 6, Idx: 28189
Japanese spaniel

Ranking: 7, Idx: 4266
laptop

Ranking: 8, Idx: 18146
notebook

Ranking: 9, Idx: 41790
studio couch

Ranking: 10, Idx: 11963
quilt

Ranking: 11, Idx: 41770
sliding door

Ranking: 12, Idx: 24283
terrapin

Ranking: 13, Idx: 33171
box turtle

Ranking: 14, Idx: 17843
iPod

Ranking: 15, Idx: 5522
apron

Figure 16: Ranking produced by SELFCLEAN for label errors in the ImageNet-1k validation set, of
which the top 15 are shown along with the respective rank, index, and original label.
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L.3 CheXpert

Ranking: 1, Idx: 38406 Ranking: 2, Idx: 26799 Ranking: 3, Idx: 10150 Ranking: 4, Idx: 31513 Ranking: 5, Idx: 48465

Ranking: 6, Idx: 4474 Ranking: 7, Idx: 36709 Ranking: 8, Idx: 8947 Ranking: 9, Idx: 3928 Ranking: 10, Idx: 12863

Ranking: 11, Idx: 34063 Ranking: 12, Idx: 16795 Ranking: 13, Idx: 40819 Ranking: 14, Idx: 10421 Ranking: 15, Idx: 47238

Figure 17: Ranking produced by SELFCLEAN for near duplicates in CheXpert, of which the top 15
are shown along with the respective rank and index.
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Ranking: 1, Idx: 13452 Ranking: 2, Idx: 17788 Ranking: 3, Idx: 11851 Ranking: 4, Idx: 50317 Ranking: 5, Idx: 14200

Ranking: 6, Idx: 23742 Ranking: 7, Idx: 33253 Ranking: 8, Idx: 13197 Ranking: 9, Idx: 13022 Ranking: 10, Idx: 62903

Ranking: 11, Idx: 17971 Ranking: 12, Idx: 8307 Ranking: 13, Idx: 62993 Ranking: 14, Idx: 28487 Ranking: 15, Idx: 42162

Figure 18: Ranking produced by SELFCLEAN for off-topic samples in CheXpert, of which the top 15
are shown along with the respective rank and index.

Ranking: 1, Idx: 19492
Atelectasis: positive

Ranking: 2, Idx: 14200
Atelectasis: positive

Ranking: 3, Idx: 11851
Atelectasis: positive

Ranking: 4, Idx: 23742
Atelectasis: negative

Ranking: 5, Idx: 48397
Atelectasis: not given

Ranking: 6, Idx: 5413
Atelectasis: uncertain

Ranking: 7, Idx: 47256
Atelectasis: uncertain

Ranking: 8, Idx: 37959
Atelectasis: uncertain

Ranking: 9, Idx: 10095
Atelectasis: negative

Ranking: 10, Idx: 3133
Atelectasis: uncertain

Ranking: 11, Idx: 19971
Atelectasis: uncertain

Ranking: 12, Idx: 34821
Atelectasis: positive

Ranking: 13, Idx: 51138
Atelectasis: negative

Ranking: 14, Idx: 10712
Atelectasis: negative

Ranking: 15, Idx: 14021
Atelectasis: uncertain

Figure 19: Ranking produced by SELFCLEAN for atelectasis label errors in CheXpert, of which the
top 15 are shown along with the respective rank, index, and original label.
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L.4 PatchCamelyon

Ranking: 1, Idx: 379 Ranking: 2, Idx: 28645 Ranking: 3, Idx: 17878 Ranking: 4, Idx: 12021 Ranking: 5, Idx: 18030

Ranking: 6, Idx: 12597 Ranking: 7, Idx: 33417 Ranking: 8, Idx: 20026 Ranking: 9, Idx: 35861 Ranking: 10, Idx: 33415

Ranking: 11, Idx: 11128 Ranking: 12, Idx: 27507 Ranking: 13, Idx: 33577 Ranking: 14, Idx: 16944 Ranking: 15, Idx: 26402

Figure 20: Ranking produced by SELFCLEAN for near duplicates in PatchCamelyon, of which the
top 15 are shown along with the respective rank and index.
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Ranking: 1, Idx: 21985 Ranking: 2, Idx: 37452 Ranking: 3, Idx: 46293 Ranking: 4, Idx: 16016 Ranking: 5, Idx: 4909

Ranking: 6, Idx: 16748 Ranking: 7, Idx: 47952 Ranking: 8, Idx: 1181 Ranking: 9, Idx: 24095 Ranking: 10, Idx: 30029

Ranking: 11, Idx: 44873 Ranking: 12, Idx: 48536 Ranking: 13, Idx: 30950 Ranking: 14, Idx: 11296 Ranking: 15, Idx: 49801

Figure 21: Ranking produced by SELFCLEAN for off-topic samples in PatchCamelyon, of which the
top 15 are shown along with the respective rank and index.

Ranking: 1, Idx: 47169
Tumerous: True

Ranking: 2, Idx: 15128
Tumerous: True

Ranking: 3, Idx: 48675
Tumerous: True

Ranking: 4, Idx: 49132
Tumerous: True

Ranking: 5, Idx: 44917
Tumerous: True

Ranking: 6, Idx: 17293
Tumerous: True

Ranking: 7, Idx: 29859
Tumerous: False

Ranking: 8, Idx: 2227
Tumerous: True

Ranking: 9, Idx: 17226
Tumerous: False

Ranking: 10, Idx: 47374
Tumerous: True

Ranking: 11, Idx: 28356
Tumerous: True

Ranking: 12, Idx: 38150
Tumerous: True

Ranking: 13, Idx: 34633
Tumerous: True

Ranking: 14, Idx: 39421
Tumerous: False

Ranking: 15, Idx: 14471
Tumerous: True

Figure 22: Ranking produced by SELFCLEAN for label errors in PatchCamelyon, of which the top 15
are shown along with the respective rank, index, and original label, i.e., if the patch is tumerous.
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L.5 Fitzpatrick17k

Ranking: 1, Idx: 3074 Ranking: 2, Idx: 14120 Ranking: 3, Idx: 14616 Ranking: 4, Idx: 10322 Ranking: 5, Idx: 1114

Ranking: 6, Idx: 4006 Ranking: 7, Idx: 5507 Ranking: 8, Idx: 1428 Ranking: 9, Idx: 1110 Ranking: 10, Idx: 7860

Ranking: 11, Idx: 11101 Ranking: 12, Idx: 731 Ranking: 13, Idx: 6618 Ranking: 14, Idx: 9321 Ranking: 15, Idx: 7508

Figure 23: Ranking produced by SELFCLEAN for near duplicates in the Fitzpatrick17k, of which the
top 15 are shown along with the respective rank and index.
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Ranking: 1, Idx: 9093 Ranking: 2, Idx: 3474 Ranking: 3, Idx: 15202 Ranking: 4, Idx: 6657 Ranking: 5, Idx: 11908

Ranking: 6, Idx: 6952 Ranking: 7, Idx: 2318 Ranking: 8, Idx: 3825 Ranking: 9, Idx: 3764 Ranking: 10, Idx: 7905

Ranking: 11, Idx: 2226 Ranking: 12, Idx: 10573 Ranking: 13, Idx: 6737 Ranking: 14, Idx: 4458 Ranking: 15, Idx: 6134

Figure 24: Ranking produced by SELFCLEAN for off-topic samples in the Fitzpatrick17k, of which
the top 15 are shown along with the respective rank and index.

Ranking: 1, Idx: 7573
benign epidermal

Ranking: 2, Idx: 6149
inflammatory

Ranking: 3, Idx: 3733
malignant melanoma

Ranking: 4, Idx: 3014
benign epidermal

Ranking: 5, Idx: 1383
benign dermal

Ranking: 6, Idx: 15896
malignant epidermal

Ranking: 7, Idx: 7769
benign melanocyte

Ranking: 8, Idx: 12499
benign dermal

Ranking: 9, Idx: 4675
inflammatory

Ranking: 10, Idx: 6813
malignant melanoma

Ranking: 11, Idx: 14487
malignant epidermal

Ranking: 12, Idx: 981
benign epidermal

Ranking: 13, Idx: 12170
inflammatory

Ranking: 14, Idx: 13380
malignant epidermal

Ranking: 15, Idx: 10048
benign melanocyte

Figure 25: Ranking produced by SELFCLEAN for label errors in the Fitzpatrick17k, of which the top
15 are shown along with the respective rank, index, and original label.
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