ConStat: Performance-Based Contamination
Detection in Large Language Models

Jasper Dekoninck', Mark Niklas Miiller':?, Martin Vechev'
Department of Computer Science!

ETH Zurich, Switzerland
{jasper.dekoninck,martin.vechev}@inf.ethz.ch mark@logicstar.ai

LogicStar.ai?

Abstract

Public benchmarks play an essential role in the evaluation of large language models.
However, data contamination can lead to inflated performance, rendering them
unreliable for model comparison. It is therefore crucial to detect contamination and
estimate its impact on measured performance. Unfortunately, existing detection
methods can be easily evaded and fail to quantify contamination. To overcome
these limitations, we propose a novel definition of contamination as artificially
inflated and non-generalizing benchmark performance instead of the inclusion
of benchmark samples in the training data. This perspective enables us to detect
any model with inflated performance, i.e., performance that does not generalize
to rephrased samples, synthetic samples from the same distribution, or different
benchmarks for the same task. Based on this insight, we develop CONSTAT, a
statistical method that reliably detects and quantifies contamination by compar-
ing performance between a primary and reference benchmark relative to a set of
reference models. We demonstrate the effectiveness of CONSTAT in an extensive
evaluation of diverse model architectures, benchmarks, and contamination scenar-
ios and find high levels of contamination in multiple popular models including
MISTRAL, LLAMA, YT, and the top-3 Open LLM Leaderboard modelsP_-]

1 Introduction

As large language models (LLMs) become increasingly effective at a wide range of tasks, many
companies and research institutions compete to develop better models [2, 5, 28} 136]. To facilitate
this development, a variety of benchmarks have been proposed that allow a standardized in-depth
comparison of model performance across diverse tasks [[15} [16} 26, 33].

Data Contamination Modern LLMs are trained on vast amounts of internet-sourced data, raising
the risk of unintentionally including benchmark samples in the training set. Such data contamination
can lead to artificially inflated benchmark performance that does not accurately reflect a model’s
true ability to generalize to unseen tasks. However, model providers argue that the impact of this
contamination on model performance is negligible [2} |14} 36] and the enormous size of current
training sets almost guarantees contamination to some extent. This casts doubt on the relevance of
this traditional definition of contamination in the context of LLMs.

This Work: A New Perspective on Data Contamination We propose a new perspective on
contamination, defining it based on its effect on model performance rather than its cause. Specifically,
we define contamination as artificially inflated, non-generalizing performance, i.e., we say a model
is contaminated if and only if its performance relative to other models is significantly higher on the
original benchmark than on a similar reference benchmark. This definition captures the essence of the
contamination problem, i.e., performance measurements becoming unreliable for model comparisons.

LCode available at https://github.com/eth-sri/ConStatl

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

92420 https://doi.org/10.52202/079017-2935

https://github.com/eth-sri/ConStat

1. Define Problem 2. Select References 3. Compute Test 4. Extract Results
80%-

Reference Models

— +
L My My 5 =351+3.1
Z 65%
z
* Reference Benchmark | = A
Benchmark D Rept d D D z 501
enchmark : A <
el 41251
£ g5y T =
721% 72.1% Synthetic D ~ 1 [INERSS 9=l
‘Which model _— o | a
is contaminated? Similar Dret 7 D 0%

2% 40% 5% T0% 85%
Reference Performance
Figure 1: Overview of our method. We first select models to check for contamination, then select ref-

erence models and benchmarks, and finally compute CONSTAT to detect and quantify contamination.

Furthermore, it enables principled detection methods that are robust against evasion attacks by
malicious providers as this would require generalizing performance improvements.

Traditional Contamination Detection Existing contamination detection methods [18],
[34] 41l 49]] aim to detect the inclusion of benchmark samples in the training data as
a measure of contamination. However, these approaches show limited success, cannot quantify
the contamination’s effect on model performance, and have to make strict assumptions about the
contamination process, making them easy to evade [17]].

This Work: A Statistical Test for Contamination In contrast, we leverage our novel performance-
based definition of data contamination to propose a statistical contamination test called CONSTAT,
illustrated in Fig. m Given a target model (M or M>) to check for contamination (first step in Fig. |I|),
we select a set of reference models for performance comparison and a reference benchmark D, that
is similar to the original benchmark D (second step). This reference benchmark can be a rephrased
version of the original benchmark, a synthetic benchmark generated from the same distribution, or a
different benchmark measuring performance on the same task. We then evaluate the reference models
on both benchmarks D and D, and fit the difficulty correction function H p_, describing the relation
between performance on the reference and original benchmarks (blue curve). By evaluating Hp,, at
the target model’s performance on the reference benchmark, we predict its expected performance
on the original benchmark (third step). Finally, we compute the difference § between this expected
performance and the model’s actual performance on the original benchmark. Using bootstrapping, we
obtain an estimate of the contamination magnitude ¢ and a p-value that quantifies the likelihood of the
observed performance difference under the null hypothesis that the target model is not contaminated
(fourth step). In the illustrated case, model M, achieves 60% on the reference benchmark, which
translates to an expected performance of 37% on the original benchmark. However, the measured
performance of 72% indicates a large contamination effect §; = 35% and thus strong contamination
with a p-value of 0.01%. In contrast, model M shows no signs of contamination.

Evaluation We evaluate CONSTAT on a wide range of contamination scenarios and model architec-
tures, demonstrating that it is significantly more effective at detecting contamination than any prior
method. We then use CONSTAT to study a range of popular open and proprietary models and find high
levels of contamination in MISTRAL-7b-v0.1 [28], LLAMA-3-70b [2]], LLAMA-2-INSTRUCT-70b
[43]], Y1-34b [53]], and a range of top Open LLM Leaderboard [7] models.

Key Contributions Our key contributions are:
* We propose a new performance-based definition of benchmark contamination (§2).

* We introduce CONSTAT, a statistical test that detects and quantifies contamination in
language models (§3).

* We empirically demonstrate CONSTAT’s effectiveness in an extensive evaluation across
various contamination scenarios (§4.2)).

* We leverage CONSTAT to study a range of popular models and find contamination for
MISTRAL, LLAMA, Y1, and the top-3 Open LLM Leaderboard models (§4.3} §4.3).

https://doi.org/10.52202/079017-2935 92421

2 Defining Contamination

Before formalizing our novel definition, we first informally contrast the traditional, information-flow-
based perspective on contamination with our novel performance-based one.

Information-Flow Perspective In traditional machine learning, contamination typically refers to
any information flow between the benchmark used for performance measurement and model training.
In the context of LLMs, this is usually restricted to the direct inclusion of test set samples (or their
semantic equivalents) in the training dataset [37, 139,51} 56].

However, this perspective suffers from several drawbacks. First, it does not fully capture the core
issue of contamination, which is whether it renders test set performance an unreliable predictor of
real-world performance. Second, in the era of zero-shot learning, we aim to measure performance on
"unseen" tasks, yet we train on internet-scale data that likely contains samples of almost any task. This
makes the threshold for contamination blurry. Third, limiting the definition to test sample inclusion
neglects the possibility of model and hyperparameter selection based on benchmark performance as a
source of contamination. Finally, even with this narrow definition, detecting contamination without
access to the training data is challenging, which makes it easy to circumvent [[17].

Performance Perspective To overcome these limitations, we propose to define contamination
based on its outcome, rather than its cause. Informally, we define contamination as artificially inflated
performance on a benchmark that does not generalize to real-world performance on the corresponding
task, regardless of how it was achieved. This definition aligns better with the practical implications of
contamination and enables a more principled detection method that makes evasion difficult.

To detect contamination, we compare the performance of a model M on a benchmark D to its
performance on a reference benchmark D, the choice of which we will discuss later. It is crucial
to account for differences in difficulty between D and D,.;. Otherwise, a slightly harder reference
benchmark D,.s would falsely indicate inflated performance on D. Thus, direct performance compar-
ison is only valid if the distribution over sample difficulties is the same for both benchmarks, which
is a very strong assumption that is rarely true. To address this, we compare performances relative to
a set of reference models, allowing us to determine if a model’s performance on D is significantly
higher than expected, given its difficulty. In the next section, we make this definition more formal.

2.1 Formal Definition of Performance-Based Contamination

Reference Models To accurately compare performance between benchmarks, we use reference
models to correct for benchmark difficulty differences. For this purpose, we consider the set of all
reliable LLMs M,s from reputable sources to estimate the performance distribution of uncontam-
inated models. Although we cannot guarantee these models are uncontaminated, we can perform
leave-one-out contamination detection to remove suspicious models from the reference set. Further-
more, including contaminated models in M. will only make our test more conservative, making it
less likely for uncontaminated models to be detected as contaminated.

Contamination Detection For each benchmark D, we define a scoring function Sp: M — R
that assigns a score (e.g., accuracy) to every model from the space of all possible language models
M. Applied to the reference models M, it induces a cumulative distribution function Fp over the
uncontaminated performance on this benchmark.

We now use the cumulative distributions F'p and F'p, to predict the performance of a model M on
D given its performance on D,s. Specifically, we first map the performance on the reference data
Sp, (M) to a percentile ¢ = Fp,_,(Sp,,(M)) and then map this percentile to the corresponding per-
formance on the original benchmark F', ! (¢) using the percentile function F; ' To simplify notation,
we define the hardness correction function Hp_.: R — Ras Hp_ = F, Lo Fp,,. This allows us to
estimate the effect of contamination on the model’s performance as Sp (M) — Hp,,(Sp,,(M)) and
gives our formal definition of contamination:

Definition 1 (5-Contamination). A model M € M is d-contaminated on a benchmark D with respect
to a reference benchmark D, if Sp(M) — Hp,,(Sp,,(M)) > 0.

92422 https://doi.org/10.52202/079017-2935

2.2 Types of Contamination

Depending on the choice of reference benchmark D¢, we can measure different types of contamina-
tion, depending on how poorly the inflated performance generalizes.

Syntax-Specific Contamination occurs when the model fails to generalize to semantically equivalent
samples. That is, the model has memorized the exact samples in the benchmark, and its performance
drops as soon as the wording changes. We therefore consider it to be the worst kind of contamination.
To measure syntax-specific contamination we create our reference benchmark D, by rephrasing the
samples in the original benchmark D to obtain a semantically equivalent benchmark.

Sample-Specific Contamination occurs when the model fails to generalize to new samples from
the benchmark distribution. That is, while the model generalizes to samples that are semantically
equivalent to those in the original benchmark, it does not generalize to new samples from the same
distribution. To accurately measure sample-specific contamination, we would preferably generate
samples for D, following the same steps used to produce D. As this is often infeasible in practice,
we instead generate synthetic samples for D¢ by querying a strong LLM using few-shot prompting
and varying the provided few-shot examples to increase diversity.

Benchmark-Specific Contamination occurs when the model fails to generalize to different benchmarks
that aim to measure performance on the same task. That is, the model generalizes to new samples
from the original benchmark distribution but does not generalize to closely related benchmarks. To
measure benchmark-specific contamination we create (or select) a different benchmark D, (e.g.,
MathQA) that aims to measure performance on the same task as D (e.g., GSM8k). We note that
benchmark-specific contamination is by far the least severe type of contamination. Further, while
strong sensitivity to the exact benchmark is undesirable, it is important to recognize that even small
differences between benchmarks can impact model performance. Therefore, benchmark-specific
contamination requires a more nuanced interpretation that takes into account these differences.

3 CONSTAT: A Statistical Test for Detecting Contamination

We now present CONSTAT, a novel method for detecting contamination as defined in §2]by computing
confidence bounds on the estimated contamination effect using a statistical test.

Reference Models To approximate the underlying distribution of reference models M ¢, we select

a diverse sample of m models Myt = {Miet,1, s Mret,m} C Mier. We additionally include an
inherently uncontaminated random-guessing model to extend the coverage of our reference set.

Null Hypothesis To rigorously test for contamination, we derive a null hypothesis based on
our definition of contamination. The null hypothesis is the assumption that the model M is not
contaminated, meaning its actual score on the original data is at most & worse than the predicted one:
Sp(M) — Hp,,(Sp.(M)) < ¢ where § € R>(can be chosen freely.

Estimating the Hardness Correction Function To compute the hardness correction function
Hp,,, we first estimate the CDFs F'p and Fp,, as the empirical CDFs Fp and F'p,,, respectively. To
this end, let i1, ..., %, be an index such that Sp(My,i,) < Sp(Mret,iy,,,). We obtain the CDF Fp as

) 0 if 2<Sp(M;,)
1 if SD(Min) <z

Similarly, F'p,, can be obtained from an index ji, ..., j, such that Sp (M j,) < Sp(Mret 1)-
Using Eq. (1)), we find that Hp,,(Sp,,(M;,)) = Sp(M;,). Applying the empirical CDFs directly to
other points = € [0, 1] would result in a step function estimate of Hp,_,, leading to an overly rough
approximation of the hardness correction function. Thus, we compute the approximate hardness
function Hp,_, by fitting the points (Sp,,(Mj,), Sp(M;,)) using a smoothing spline, minimizing the
following loss function:

https://doi.org/10.52202/079017-2935 92423

n

1
(Sp(Mi) ~ Fp (S0, 00)" + A [, () do @)
k=1 0

where)\ is a smoothing parameter that is chosen using generalized cross-validation [46].

Significance Estimation We determine the statistical significance for rejecting the null hypothesis
via bootstrapping over both the reference models and the samples in the benchmark, using pivotal
intervals [42] to correct for uncertainty in the bootstrapping process. By bootstrapping the models,
we consider the effect of our reference model selection M. By bootstrapping the samples, we
additionally include the error in our estimation of the scores themselves. Thus, given the estimate
6 = Sp(M)— Hp,_(Sp,(M)) and corresponding bootstrap estimates 41, ..., 4,,, we compute the

p-confidence lower bound for § as Sl,p =20 — SLP where 5{1 is the g-quantile of 31, e b, From
this, we obtain the p-value by inverting this lower bound with respect to g. Thus, we reject the null

hypothesis for a given § with significance level p by computing the lowest p such that 26 — 5’1_p > 9.

Threat Model In accordance with [17], we briefly outline the threat model assumed by CONSTAT.
Since we only require the ability to measure the performance of the model on the benchmark, our
method is a black-box benchmark-level detection method that is robust to semantic preserving op-
erations. Furthermore, we make no additional assumptions on potential metadata contamination.
However, we do rely on the existence of reference models which we can use to estimate the perfor-
mance of uncontaminated models. Notably, however, we do not assume these reference models to
have a similar performance or architecture as the model we wish to test.

4 Evaluation

In this section, we evaluate CONSTAT empirically. We first demonstrate CONSTAT’s effectiveness,
showing it outperforms prior methods in detecting and quantifying contamination across a range
of intentionally contaminated models (§4.2)). Next, we investigate the contamination of our chosen
reference models (§4.3), popular model families (§4.4), and top Open LLM Leaderboard models
(§4.5). Further, we conduct an ablation study in a simulated environment in App. [B|to validate several
design choices of CONSTAT.

4.1 Experimental Setup

Reference Models We select 20 models from reputable providers, including Meta’s LLAMA model
families [2,143], Microsoft’s PHI-2 [27]] and PHI-3 [1]], Google’s GEMMA-1.1 [21]], several MISTRAL
models [28], FALCON-7b [3], and the fully open-source OLMO [25]. A detailed overview of these
reference models is available in App.[C]

Benchmarks We select a diverse set of four of the most popular LLM benchmarks to evaluate
CONSTAT: GSMSk [16] is a benchmark for mathematical reasoning, ARC-Challenge [15] is a
multiple-choice benchmark for science questions, MMLU [26] is a multiple-choice general purpose
benchmark and Hellaswag [54] is a dataset for commonsense natural language inference. Due to
computational constraints, we limit the number of samples in each benchmark to 2000.

Reference Benchmarks To generate reference data for syntax-specific and sample-specific contam-
ination we query GPT-4-TURBO [36] to rephrase samples from the original benchmark and generate
new synthetic samples. We generate around 1000 synthetic samples per benchmark and refer to
App. [Cfor further details on the generation process. To detect benchmark-specific contamination, we
select appropriate reference benchmarks that measure performance on the same task: for GSM8k, we
use MathQA [4]], for ARC-Challenge we use SCIQ [47], and for Hellaswag we use the Lambada-
OpenAl benchmark [38]]. For MMLU, we did not select any reference benchmark and thus measured
only syntax- and sample-specific contamination.

Evaluation For evaluation, we use the LM Evaluation Harness [20] in a 5-shot setting. We report
estimated effects § along with the p-value for the null hypothesis that the effect ¢ is less than 0.

92424 https://doi.org/10.52202/079017-2935

4.2 Validating Contamination Detection with CONSTAT in a Controlled Setting

In this section, we demonstrate the effectiveness of CONSTAT in detecting and quantifying contami-
nation in a controlled setting and compare it to multiple baselines. For this purpose, we finetune both
LLAMA-2-INSTRUCT-7b and PHI-2 using a variety of hyperparameters and contamination scenarios
on each benchmark separately. We vary the number of epochs, the learning rate, the portion of
contaminated training samples, whether or not few-shot examples are used during fine-tuning, and
whether the model is trained on the original benchmark samples or on rephrased data. For more
details, we refer to App. [C} We trained a total of 70 models, 9 of which finished training at a loss
spike and were therefore excluded from further analysis. 46 of the remaining models were trained on
the actual benchmark and should therefore exhibit both syntax- and sample-specific contamination.
The rest were trained on rephrased benchmark data and should therefore only exhibit sample-specific
contamination. To quantify the true sample-specific contamination effect, we only use half of each
benchmark for contamination and measure the performance gap to the other half.

Detecting Contamination We first check whether CONSTAT can accurately detect the presence
of contamination. We compare CONSTAT against several baselines [12} 35 40, 41} 52] that aim
to detect contamination based on the presence of benchmark samples in the training data. Most
of these baselines [[12, 135} 41} 52]] require a detection threshold to be chosen for each model and
benchmark separately. This tuning process requires uncontaminated samples, making it impossible
to apply these methods in practice. For comparison to CONSTAT, we tuned these thresholds on the
uncontaminated half of the benchmark, which is the most ideal (but unrealistic) scenario. We extract
a p-value for these baselines by bootstrapping the samples in the benchmarks and checking how often
TPR@ 1%FPR is bigger than 1%. Models are considered contaminated for any method if p < 0.05.
The only baseline applicable in a realistic setting is Shi [40] and we use their recommendation to
consider a model contaminated if the score returned by their method is above 0.85.

Results in Table [T] show that CONSTAT sig- Table 1: Percentage of syntax- and sample-specific
nificantly outperforms all other methods with- contaminated models detected by several methods.
out needing prior knowledge of uncontaminated

samples. In particular, we find that CONSTAT Method Syntax [%] Sample [%]
can detect 89% of syntax-specifically contami- Carlini et al. [12] 76.1* 65.6
nated models, while the best baseline achieves ~ Mireshghallah et al. [35] 76.1" 68.9°
only 85%. The gap widens further for sample- gﬁonz e{ 21[145 2] ;ig* %g*
specific contamination, where CONSTAT detects Sh; agj’ 21‘ 7 1 6 4
98% of contaminated models, while the best

CONSTAT 89.1 98.4

baseline only detects 71%. The only baseline
that can be applied in a realistic setting, Shi [40], * indicates that the method needs unrealistic access to
performs significantly worse than CONSTAT. uncontaminated samples for hyperparameter selection.

We thus conclude that CONSTAT is the only contamination detection method that can reliably detect
contamination and significantly outperforms all baselines even if they are tuned optimally using
oracle access to the uncontaminated samples.

Quantifying Contamination To evaluate U
CONSTAT’s ability to estimate the sample- 75%-

> 50%- j‘,ﬁ%ﬁ -

Estimated &

[N}
[@5}

specific contamination effect, we compare its
estimate to ground truth measurements on un-
contaminated samples. As shown in Fig.[2] we
observe excellent predictiveness at a coefficient &
of determination of 72 = 0.94. The only three

------- Identity
4 Contaminated Model

models that show a significantly higher estimate 0%- : ‘ : :

than the true effect achieve a perfect score on the 0% 25% 50% 5%
contaminated samples, capping the true effect R Actual &

and explaining the overestimation. Figure 2: Estimated § as a function of the true ¢ for

the finetuned models. 2-sigma intervals are shown.

Detailed Analysis on GSM8k We conduct an in-depth analysis of contaminated models finetuned
on GSMBK, referring to App.[A.2]for a detailed table with all p-values. We finetuned 18 models on
this benchmark, one of which remained undetected under sample-specific contamination detection.

https://doi.org/10.52202/079017-2935 92425

Table 2: Contamination results for the reference models on syntax-specific, sample-specific, and
benchmark-specific contamination. We only report tests for which the multiple testing corrected

p-value is lower than 5% and include the non-corrected p-value, the estimated effect 4, the 95% lower

bound of the effect 50,95 and the model performance on the benchmark. S stands for sample-specific
and B for benchmark-specific contamination. All numbers are reported in percentages.

Model Benchmark Type Perf. [%] p [%] 51%) bo.05 [%]
LLAMA-3-70b ARC S 69.03 0.03 6.61 3.21
MISTRAL-7b-v0.1 GSM8k S 39.04 0.15 8.25 4.48
MISTRAL-7b-v0.1 Hellaswag S 83.65 0.24 3.14 1.27
LLAMA-2-INSTRUCT-70b Hellaswag S 85.55 0.41 3.37 1.29
MISTRAL-INSTRUCT-7b-v0.2 ARC B 62.46 0.04 10.62 5.95
MISTRAL-INSTRUCT-7b-v0.2 Hellaswag B 84.55 0.18 3.52 1.56
PHI-2 GSM8k B 58.91 <1072 36.42 26.46
PHI-3-MINI GSM8k B 76.65 0.29 16.30 6.33
OLMO-INSTRUCT-7b GSM8k B 11.75 <1072 8.86 4.99

For the detected syntax-specifically contaminated models, we observe an average increase in & with
a factor of 2.28 when transitioning from syntax-specific to sample-specific contamination. This
indicates that the models still generalize somewhat to semantically equivalent samples. Furthermore,
the models that were not detected by the syntax-specific contamination detection are exactly those
models that were trained on rephrased data or were trained for just one epoch. This indicates that these
models can still generalize to semantically equivalent samples. Since these scenarios are also more
likely to occur in practice, this shows that it is crucial to also consider sample-specific contamination
when applying CONSTAT. Finally, the model that remained undetected by the sample-specific
contamination detection was a PHI-2 model trained with a lower learning rate. For this model, the
actual contamination effect is approximately 5%, which is relatively small and thus indicates that
CONSTAT is not missing any major contamination.

4.3 Contamination of Reputable Reference Models

To determine if our set of reference models exhibit signs of contamination, we perform a leave-one-out
analysis, where we evaluate the contamination of model M using M,er \ { M} as reference models.
To control for performing multiple p-value tests and reduce the chance of false positives, we apply
the Benjamini-Hochberg [9] procedure per benchmark and contamination type to control the false
discovery rate at 5%. We report all significant results in Table [2|and we discuss them for each type of
contamination below.

Syntax-Specific Contamination As expected, we do not find syntax-specific contamination in any
reference model, i.e., none of the models fail to generalize to semantically equivalent samples.

Sample-Specific Contamination We find four instances of sample-specific contamination, all
with very significant p-values of less than p = 0.5% and considerable estimated contamination
effects between 3% and 8%. Specifically, we find contamination of LLAMA-3-70b on ARC, of
MISTRAL-7b-v0.1 and LLAMA-2-INSTRUCT-70b on Hellaswag, and MISTRAL-7b-v0.1 on GSM8k.
We note that the contamination of LLAMA-2-INSTRUCT-70b on Hellaswag is noted by its model
provider [43]], but the other model providers do not provide any contamination report for their models.

We investigate these models further on the other benchmarks where the corrected p-value using the
Benjamini-Hochberg procedure was not significant. We discuss these results below and refer to
App.[Alfor a full overview of their sample-specific contamination. We find that MISTRAL-7b-v0.1
achieves relatively low p-values on both remaining benchmarks (8% for ARC, 15% for MMLU).
Furthermore, we additionally evaluated MISTRAL-7b-v(.2 after obtaining these results and found
similar results for this model (see Table [I7)in App. [E). Therefore, we exclude MISTRAL-7b-v0.1
from our set of reference models. While in particular LLAMA-3-70b also exhibits low p-values
for other benchmarks, none fall below p < 1%. It is thus highly likely that also LLAMA-3-70b
and LLAMA-2-INSTRUCT-70b are contaminated across several benchmarks, but we keep both as
reference models to ensure that we do not obtain a higher false positive rate in our further analysis.

92426 https://doi.org/10.52202/079017-2935

Benchmark-Specific Contamination While we find several instances of benchmark-specific
contamination in the reference models, several at very low p-values (p < 0.01%), this requires a
more nuanced interpretation. For example, both PHI models exhibit very large effect sizes (> 15%)
and small p-values (p < 0.01%) for contamination on GSM8k. We suspect that this is due to their
reasoning-focused training process and small model size. While GSM8k allows free text answers,
giving the model tokens to reason, MathQA is a multiple-choice benchmark that requires the model
to answer with a single token indicating the chosen option and therefore gives no room for this
reasoning ability to shine.

4.4 Contamination of Popular Model Families

We now use CONSTAT to detect contamination in four popular model families, discussing results for
QWEN-1.5 [6] and YT [53] below, while deferring discussions of STABLELM-2 [8]] and INTERNLM-

2 110 to App.[A.T]

QWEN-1.5 We evaluate all chat models from the QWEN-1.5 model family, with sizes 1.8b, 4b, 7b,
14b, 72b, and 110b. The only case of sample-specific contamination is for the 4b model on GSM8k
with p < 10~* and an estimated effect of 5.4%. The larger models show significant benchmark-
specific contamination on ARC and Hellaswag, with p-values smaller than 1% and estimated effects
between 8% and 14%.

Y1 We evaluate both the 6b and 34b parameter base models of the YT model-family. Only Y1-34b
shows significant contamination, with sample-specific contamination at p < 0.2% and estimated
effects of around 6% on both ARC and Hellaswag. We find additional sample-specific contamination
on GSMSk of around 4% at a p-value of p = 6% and syntax-specific contamination on Hellaswag
at a p-value of p = 5%. Thus, we conclude that this model shows significant contamination across
multiple benchmarks.

4.5 Contamination of Top Open LLM Leaderboard Models

We use CONSTAT to investigate contamination in the top three 7B models on the open LLM Leader-
boarcﬂ BARRAHOME/MISTROLL-7b-v2.2, YAM-PELEG/EXPERIMENT26-7b, and MTSAIR/-
MULTI_VERSE_MODEL and find that all three models exhibit significant benchmark-specific con-

tamination. Specifically, all models show strong contamination with estimated effects of 6> 10%
for the benchmarks where the reference benchmark is not included in the Open LLM Leaderboard
(GSMB8k, Hellaswag, and ARC). Further, all models show significant sample-specific contamination

on GSMS8k with 6 ~ 9%. For more detailed results, we refer to App. |A

This inflated performance could be caused by a model selection bias, as the Open LLM Leaderboard
features thousands of models. This issue is exacerbated by the recent trend of merging models
[22,150] where hyperparameters are frequently selected based on their benchmark performance. We
therefore urge the community to be more cautious when selecting models from the leaderboard.

5 Related Work

Contamination Detection Contamination detection methods can be broadly divided into two main
categories. The first category [[10, 14,19/ 291136, 43| 45| 51] focuses on analyzing the training data
directly to identify overlaps with the benchmarks used for model evaluation. However, training data
is rarely shared, even for open-weight models, making it irrelevant for third-party contamination
detection. The second category [[18} 123} 24,31 [34} 137,140,141, 149] relies solely on access to the model
and its predictions, aiming to detect contamination through model queries. As noted by Dekoninck
et al. [L7]], some of these methods require metadata (e.g., benchmark name, canonical ordering)
to be leaked along with the benchmark samples in the training data [23] 24, [37]]. Methods that do
not require metadata depend on perplexity-based metrics to measure the model’s uncertainty on
benchmark samples, but these can be easily circumvented by training on rephrased samples [17]. It is
important to note that none of these methods can estimate the influence of contamination and that
they are outperformed by CONSTAT in terms of detection accuracy (see §4.2).

Rank on Open LLM Leaderboard as of the 4th of May 2024.

https://doi.org/10.52202/079017-2935 92427

An alternative approach is presented by Zhu et al. [[57], who measure model performance on rephrased
benchmarks instead of the original benchmarks to obtain more accurate estimates of model perfor-
mance. However, their results vary significantly across benchmarks, they do not provide a statistical
framework for contamination detection, and they only demonstrate that evaluating on rephrased
samples partially recovers the results of uncontaminated base models. Furthermore, they do not
go beyond measuring performance on rephrased benchmarks and can therefore also be evaded by
training on rephrased samples [17].

Reference Benchmarks Recent studies have introduced new benchmarks designed to evaluate
performance on tasks similar to those in prior popular benchmarks and thus can be used to estimate
the degree of contamination. GSM1k [55]] was developed to closely replicate the efforts behind
GSMS8k and to compare model performances between these benchmarks. However, GSM 1k lacks
a statistical test, and the slight variations between GSM8k and GSM 1k might partially explain the
contamination levels observed in their analysis. Another recent benchmark, SWE-bench [30], focuses
on evaluating performance on coding tasks. By comparing their results with those of Human-Eval
[13], one can visually interpret potential contamination in Human-Eval. However, the absence of a
statistical test hinders precise contamination detection. In both scenarios, CONSTAT can improve
their findings, enabling accurate estimations of contamination in existing models.

6 Discussion

Limitations Our method estimates the effect of contamination on performance relative to a set
of reference models. Therefore, if these reference models are also contaminated, our method
only measures the effect relative to this base level of contamination. However, our leave-one-out
experiment, presented in §4.3, helps identify and exclude contaminated models, partially mitigating
this limitation. Furthermore, it is important to note that accurate relative performance measurements
are sufficient for both model selection and to assess methodological improvements, which are the
most important use cases of benchmarks.

Further, our work uses an LLM to generate synthetic samples, introducing potential distributional
biases into the synthetic benchmark D,.;. We briefly discuss these biases here. Firstly, synthetic
benchmark may contain more mislabeled samples. However, since these samples equally affect all
models, CONSTAT accounts for this in its difficulty correction. Secondly, synthetic samples generated
by a model are likely easier for that model itself to solve. Therefore, contamination results for the
model used to generate the samples would be unreliable for sample-specific contamination detection.
However, these limitations are not inherent flaws of CONSTAT, and can be mitigated by using more
sophisticated synthetic benchmark generation techniques.

Impact Model evaluation is a crucial part of LLM development, with benchmarks playing a key role
in evaluating model performance on tasks like code generation, question answering, and summariza-
tion. Contamination of these benchmarks can inflate performance estimates, potentially misleading
researchers and practitioners. To address this, CONSTAT provides a statistical framework to estimate
the impact of contamination on model performance. This enables more accurate evaluations and
allows for the removal of suspicious models from leaderboards, ensuring a fairer evaluation of model
capabilities. Furthermore, it is important to note that CONSTAT can be applied to any model, not just
LLMs, as long as the model’s performance can be measured on a benchmark.

7 Conclusion

We present CONSTAT, a statistical framework designed to detect contamination and estimate its effect
on model performance. Unlike existing methods, CONSTAT is based on a novel, performance-based
definition of contamination and compares performance with various reference benchmarks to obtain a
detailed contamination analysis that distinguishes between syntax-, sample-, and benchmark-specific
contamination. We investigate CONSTAT’s effectiveness in an extensive control study and demonstrate
that it not only outperforms existing methods but also, in contrast to them, does not require prior
knowledge about uncontaminated samples. Finally, we use CONSTAT to investigate contamination in
popular models and find, among others, very high levels of contamination in MISTRAL-7b-v0.1 and
Y1-34b and high levels of contamination in LLAMA-3-70b and LLAMA-2-INSTRUCT-70b.

92428 https://doi.org/10.52202/079017-2935

Acknowledgements

This work has been done as part of the EU grant ELSA (European Lighthouse on Secure and Safe Al,
grant agreement no. 101070617) and was funded in part by the Swiss National Science Foundation
(SNSF) [200021_207967]. Views and opinions expressed are however those of the authors only
and do not necessarily reflect those of the European Union or European Commission. Neither the
European Union nor the European Commission can be held responsible for them.

The work has received funding from the Swiss State Secretariat for Education, Research and Innova-
tion (SERI).

References

[1] Marah Abdin, Sam Ade Jacobs, Ammar Ahmad Awan, Jyoti Aneja, Ahmed Awadallah, Hany
Awadalla, Nguyen Bach, Amit Bahree, Arash Bakhtiari, Harkirat Behl, Alon Benhaim, Misha
Bilenko, Johan Bjorck, Sébastien Bubeck, Martin Cai, Caio César Teodoro Mendes, Weizhu
Chen, Vishrav Chaudhary, Parul Chopra, Allie Del Giorno, Gustavo de Rosa, Matthew Dixon,
Ronen Eldan, Dan Iter, Amit Garg, Abhishek Goswami, Suriya Gunasekar, Emman Haider,
Junheng Hao, Russell J. Hewett, Jamie Huynh, Mojan Javaheripi, Xin Jin, Piero Kauffmann,
Nikos Karampatziakis, Dongwoo Kim, Mahoud Khademi, Lev Kurilenko, James R. Lee, Yin Tat
Lee, Yuanzhi Li, Chen Liang, Weishung Liu, Eric Lin, Zeqi Lin, Piyush Madan, Arindam Mitra,
Hardik Modi, Anh Nguyen, Brandon Norick, Barun Patra, Daniel Perez-Becker, Thomas
Portet, Reid Pryzant, Heyang Qin, Marko Radmilac, Corby Rosset, Sambudha Roy, Olatunji
Ruwase, Olli Saarikivi, Amin Saied, Adil Salim, Michael Santacroce, Shital Shah, Ning Shang,
Hiteshi Sharma, Xia Song, Masahiro Tanaka, Xin Wang, Rachel Ward, Guanhua Wang, Philipp
Witte, Michael Wyatt, Can Xu, Jiahang Xu, Sonali Yadav, Fan Yang, Ziyi Yang, Donghan Yu,
Chengruidong Zhang, Cyril Zhang, Jianwen Zhang, Li Lyna Zhang, Yi Zhang, Yue Zhang,
Yunan Zhang, and Xiren Zhou. Phi-3 technical report: A highly capable language model locally
on your phone, 2024.

[2] Al@Meta. Llama 3 model card. 2024. URL https://github.com/meta-1lama/11lama3/blob/
main/MODEL_CARD.md.

[3] Ebtesam Almazrouei, Hamza Alobeidli, Abdulaziz Alshamsi, Alessandro Cappelli, Ruxandra
Cojocaru, Merouane Debbah, Etienne Goffinet, Daniel Heslow, Julien Launay, Quentin Malartic,
Badreddine Noune, Baptiste Pannier, and Guilherme Penedo. The falcon series of language
models: Towards open frontier models. 2023.

[4] Aida Amini, Saadia Gabriel, Shanchuan Lin, Rik Koncel-Kedziorski, Yejin Choi, and Hannaneh
Hajishirzi. Mathqa: Towards interpretable math word problem solving with operation-based for-
malisms. In Jill Burstein, Christy Doran, and Thamar Solorio, editors, Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Vol-
ume 1 (Long and Short Papers), pages 2357-2367. Association for Computational Linguistics,
2019. doi: 10.18653/V1/N19-1245. URL https://doi.org/10.18653/v1/n19-1245|

[5] Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
Johan Schalkwyk, Andrew M. Dai, Anja Hauth, Katie Millican, David Silver, Slav Petrov,
Melvin Johnson, loannis Antonoglou, Julian Schrittwieser, Amelia Glaese, Jilin Chen, Emily
Pitler, Timothy P. Lillicrap, Angeliki Lazaridou, Orhan Firat, James Molloy, Michael Is-
ard, Paul Ronald Barham, Tom Hennigan, Benjamin Lee, Fabio Viola, Malcolm Reynolds,
Yuanzhong Xu, Ryan Doherty, Eli Collins, Clemens Meyer, Eliza Rutherford, Erica Moreira,
Kareem Ayoub, Megha Goel, George Tucker, Enrique Piqueras, Maxim Krikun, Iain Barr,
Nikolay Savinov, Ivo Danihelka, Becca Roelofs, Anais White, Anders Andreassen, Tamara von
Glehn, Lakshman Yagati, Mehran Kazemi, Lucas Gonzalez, Misha Khalman, Jakub Sygnowski,
and et al. Gemini: A family of highly capable multimodal models. CoRR, abs/2312.11805,
2023. doi: 10.48550/ARXIV.2312.11805.

[6] Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin

Ge, Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu,
Gao Liu, Chenggiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng

https://doi.org/10.52202/079017-2935 92429

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://doi.org/10.18653/v1/n19-1245

Ren, Chuangi Tan, Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang
Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen
Yu, Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru
Zhang, Chang Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang Zhu. Qwen technical
report. CoRR, abs/2309.16609, 2023. doi: 10.48550/ARXIV.2309.16609. URL https:
//doi.org/10.48550/arXiv.2309.16609

[7] Edward Beeching, Clémentine Fourrier, Nathan Habib, Sheon Han, Nathan Lambert, Nazneen
Rajani, Omar Sanseviero, Lewis Tunstall, and Thomas Wolf. Open llm leaderboard. |https:
//huggingface.co/spaces/HuggingFaceH4/open_11m_leaderboard, 2023.

[8] Marco Bellagente, Jonathan Tow, Dakota Mahan, Duy Phung, Maksym Zhuravinskyi, Reshinth
Adithyan, James Baicoianu, Ben Brooks, Nathan Cooper, Ashish Datta, Meng Lee, Emad
Mostaque, Michael Pieler, Nikhil Pinnaparju, Paulo Rocha, Harry Saini, Hannah Teufel, Niccol6
Zanichelli, and Carlos Riquelme. Stable LM 2 1.6b technical report. CoRR, abs/2402.17834,
2024. doi: 10.48550/ARXIV.2402.17834. URL https://doi.org/10.48550/arXiv.2402,
17834.

[9] Yoav Benjamini and Yosef Hochberg. Controlling the false discovery rate: A practical
and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series
B (Methodological), 57(1):289-300, 1995. doi: https://doi.org/10.1111/j.2517-6161.1995.
tb02031.x. URL https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161,
1995.tb02031.x.

[10] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In Proc.
of NeurIPS, 2020.

[11] Zheng Cai, Maosong Cao, Haojiong Chen, Kai Chen, Keyu Chen, Xin Chen, Xun Chen, Zehui
Chen, Zhi Chen, Pei Chu, Xiaoyi Dong, Haodong Duan, Qi Fan, Zhaoye Fei, Yang Gao, Jiaye
Ge, Chenya Gu, Yuzhe Gu, Tao Gui, Aijia Guo, Qipeng Guo, Conghui He, Yingfan Hu, Ting
Huang, Tao Jiang, Penglong Jiao, Zhenjiang Jin, Zhikai Lei, Jiaxing Li, Jingwen Li, Linyang
Li, Shuaibin Li, Wei Li, Yining Li, Hongwei Liu, Jiangning Liu, Jiawei Hong, Kaiwen Liu,
Kuikun Liu, Xiaoran Liu, Chengqi Lv, Haijun Lv, Kai Lv, Li Ma, Runyuan Ma, Zerun Ma,
Wenchang Ning, Linke Ouyang, Jiantao Qiu, Yuan Qu, Fukai Shang, Yunfan Shao, Demin
Song, Zifan Song, Zhihao Sui, Peng Sun, Yu Sun, Huanze Tang, Bin Wang, Guoteng Wang,
Jiaqi Wang, Jiayu Wang, Rui Wang, Yudong Wang, Ziyi Wang, Xingjian Wei, Qizhen Weng,
Fan Wu, Yingtong Xiong, and et al. Internlm?2 technical report. CoRR, abs/2403.17297, 2024.
doi: 10.48550/ARXIV.2403.17297. URL |https://doi.org/10.48550/arXiv.2403.17297.

[12] Nicholas Carlini, Florian Tramer, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Kather-
ine Lee, Adam Roberts, Tom B. Brown, Dawn Song, Ulfar Erlingsson, Alina Oprea, and
Colin Raffel. Extracting training data from large language models. In 30th USENIX Security
Symposium, USENIX Security 2021, August 11-13, 2021, 2021.

[13] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Pondé de Oliveira Pinto, Jared
Kaplan, Harrison Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul
Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke
Chan, Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad
Bavarian, Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias
Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex
Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Joshua Achiam, Vedant
Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie
Mayer, Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and
Wojciech Zaremba. Evaluating large language models trained on code. CoRR, abs/2107.03374,
2021. URL https://arxiv.org/abs/2107.03374.

92430 https://doi.org/10.52202/079017-2935

https://doi.org/10.48550/arXiv.2309.16609
https://doi.org/10.48550/arXiv.2309.16609
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
https://doi.org/10.48550/arXiv.2402.17834
https://doi.org/10.48550/arXiv.2402.17834
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.48550/arXiv.2403.17297
https://arxiv.org/abs/2107.03374

[14] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker Schuh,
Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes, Yi Tay,
Noam Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope,
James Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke,
Anselm Levskaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier Garcia, Vedant
Misra, Kevin Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David Luan, Hyeontaek
Lim, Barret Zoph, Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani Agrawal,
Mark Omernick, Andrew M. Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat, Aitor
Lewkowycz, Erica Moreira, Rewon Child, Oleksandr Polozov, Katherine Lee, Zongwei Zhou,
Xuezhi Wang, Brennan Saeta, Mark Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov, and Noah Fiedel. Palm: Scaling language
modeling with pathways. CoRR, abs/2204.02311, 2022. doi: 10.48550/arXiv.2204.02311.

[15] Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick,
and Oyvind Tafjord. Think you have solved question answering? try arc, the AI2 reasoning
challenge. ArXiv preprint, abs/1803.05457, 2018.

[16] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. ArXiv preprint, abs/2110.14168,
2021.

[17] Jasper Dekoninck, Mark Niklas Miiller, Maximilian Baader, Marc Fischer, and Martin T. Vechev.
Evading data contamination detection for language models is (too) easy. CoRR, abs/2402.02823,
2024. doi: 10.48550/ARX1V.2402.02823. URL |https://doi.org/10.48550/arXiv.2402)|
02823.

[18] Chunyuan Deng, Yilun Zhao, Xiangru Tang, Mark Gerstein, and Arman Cohan. Investigating
data contamination in modern benchmarks for large language models. CoRR, abs/2311.09783,
2023. doi: 10.48550/ARXIV.2311.09783.

[19] Jesse Dodge, Maarten Sap, Ana Marasovi¢, William Agnew, Gabriel Ilharco, Dirk Groeneveld,
Margaret Mitchell, and Matt Gardner. Documenting large webtext corpora: A case study on the
colossal clean crawled corpus. In Proc. of EMNLP, 2021. doi: 10.18653/v1/2021.emnlp-main.
98.

[20] Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles
Foster, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas
Muennighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron,
Lintang Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework
for few-shot language model evaluation, 2023.

[21] Thomas Mesnard Gemma Team, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Laurent
Sifre, Morgane Riviere, Mihir Sanjay Kale, Juliette Love, Pouya Tafti, Léonard Hussenot, and
et al. Gemma. 2024. doi: 10.34740/KAGGLE/M/3301. URL https://www.kaggle.com/m/
3301.

[22] Charles Goddard, Shamane Siriwardhana, Malikeh Ehghaghi, Luke Meyers, Vlad Karpukhin,
Brian Benedict, Mark McQuade, and Jacob Solawetz. Arcee’s mergekit: A toolkit for merging
large language models. CoRR, abs/2403.13257, 2024. doi: 10.48550/ARXIV.2403.13257. URL
https://doi.org/10.48550/arXiv.2403.13257.

[23] Shahriar Golchin and Mihai Surdeanu. Data contamination quiz: A tool to detect and estimate
contamination in large language models. CoRR, abs/2311.06233, 2023. doi: 10.48550/ARXIV.
2311.06233.

[24] Shahriar Golchin and Mihai Surdeanu. Time travel in llms: Tracing data contamination in large
language models. CoRR, abs/2308.08493, 2023. doi: 10.48550/ARXIV.2308.08493.

[25] Dirk Groeneveld, 1z Beltagy, Pete Walsh, Akshita Bhagia, Rodney Kinney, Oyvind Tafjord,
Ananya Harsh Jha, Hamish Ivison, Ian Magnusson, Yizhong Wang, Shane Arora, David Atkin-
son, Russell Authur, Khyathi Raghavi Chandu, Arman Cohan, Jennifer Dumas, Yanai Elazar,

https://doi.org/10.52202/079017-2935 92431

https://doi.org/10.48550/arXiv.2402.02823
https://doi.org/10.48550/arXiv.2402.02823
https://www.kaggle.com/m/3301
https://www.kaggle.com/m/3301
https://doi.org/10.48550/arXiv.2403.13257

Yuling Gu, Jack Hessel, Tushar Khot, William Merrill, Jacob Morrison, Niklas Muennighoff,
Aakanksha Naik, Crystal Nam, Matthew E. Peters, Valentina Pyatkin, Abhilasha Ravichander,
Dustin Schwenk, Saurabh Shah, Will Smith, Emma Strubell, Nishant Subramani, Mitchell
Wortsman, Pradeep Dasigi, Nathan Lambert, Kyle Richardson, Luke Zettlemoyer, Jesse Dodge,
Kyle Lo, Luca Soldaini, Noah A. Smith, and Hannaneh Hajishirzi. Olmo: Accelerating the
science of language models. CoRR, abs/2402.00838, 2024. doi: 10.48550/ARXIV.2402.00838.
URL https://doi.org/10.48550/arXiv.2402.00838.

[26] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. In Proc. of ICLR,
2021.

[27] Mojan Javaheripi, Sébastien Bubeck, Marah Abdin, Jyoti Aneja, Caio César Teodoro Mendes,
Weizhu Chen, Allie Del Giorno, Ronen Eldan, Sivakanth Gopi, Suriya Gunasekar, et al. Phi-
2: The surprising power of small language models. https://www.microsoft.com/en-us/
research/blog/phi-2-the-surprising-power-of-small-language-models/, 2023.

[28] Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chap-
lot, Diego de Las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril,
Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b. CoRR, abs/2310.06825,
2023. doi: 10.48550/ARXIV.2310.06825.

[29] Minhao Jiang, Ken Ziyu Liu, Ming Zhong, Rylan Schaeffer, Siru Ouyang, Jiawei Han, and
Sanmi Koyejo. Investigating data contamination for pre-training language models. CoRR,
abs/2401.06059, 2024. doi: 10.48550/ARXIV.2401.06059. URL https://doi.org/10.48550/
arxXiv.2401.06059.

[30] Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and
Karthik Narasimhan. Swe-bench: Can language models resolve real-world github issues?
CoRR, abs/2310.06770, 2023. doi: 10.48550/ARX1V.2310.06770. URL https://doi.org/10.
48550/arXiv.2310.06770.

[31] Yucheng Li. An open source data contamination report for large language models. CoRR,
abs/2310.17589, 2023. doi: 10.48550/ARXIV.2310.175809.

[32] Wing Lian, Bleys Goodson, Eugene Pentland, Austin Cook, Chanvichet Vong, and "Teknium".
Openorca: An open dataset of gpt augmented flan reasoning traces. |https://https:
//huggingface.co/Open-0rca/0OpenOrca, 2023.

[33] Stephanie Lin, Jacob Hilton, and Owain Evans. TruthfulQA: Measuring how models mimic
human falsehoods. In Proc. of ACL, 2022. doi: 10.18653/v1/2022.acl-long.229.

[34] Justus Mattern, Fatemehsadat Mireshghallah, Zhijing Jin, Bernhard Scholkopf, Mrinmaya
Sachan, and Taylor Berg-Kirkpatrick. Membership inference attacks against language mod-
els via neighbourhood comparison. In Findings of ACL, 2023. doi: 10.18653/V1/2023.
FINDINGS-ACL.719.

[35] Fatemehsadat Mireshghallah, Kartik Goyal, Archit Uniyal, Taylor Berg-Kirkpatrick, and Reza
Shokri. Quantifying privacy risks of masked language models using membership inference
attacks. In Proc. of EMNLP, 2022. doi: 10.18653/V1/2022. EMNLP-MAIN.570.

[36] OpenAl. GPT-4 technical report. CoRR, abs/2303.08774, 2023. doi: 10.48550/arXiv.2303.
08774.

[37] Yonatan Oren, Nicole Meister, Niladri S. Chatterji, Faisal Ladhak, and Tatsunori B. Hashimoto.
Proving test set contamination in black box language models. CoRR, abs/2310.17623, 2023.
doi: 10.48550/ARXIV.2310.17623.

[38] Denis Paperno, German Kruszewski, Angeliki Lazaridou, Quan Ngoc Pham, Raffaella Bernardi,
Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Ferndndez. The LAMBADA
dataset: Word prediction requiring a broad discourse context. In Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics, ACL 2016, August 7-12, 2016, Berlin,

92432 https://doi.org/10.52202/079017-2935

https://doi.org/10.48550/arXiv.2402.00838
https://www.microsoft.com/en-us/research/blog/phi-2-the-surprising-power-of-small-language-models/
https://www.microsoft.com/en-us/research/blog/phi-2-the-surprising-power-of-small-language-models/
https://doi.org/10.48550/arXiv.2401.06059
https://doi.org/10.48550/arXiv.2401.06059
https://doi.org/10.48550/arXiv.2310.06770
https://doi.org/10.48550/arXiv.2310.06770
https://https://huggingface.co/Open-Orca/OpenOrca
https://https://huggingface.co/Open-Orca/OpenOrca

Germany, Volume 1: Long Papers. The Association for Computer Linguistics, 2016. doi:
10.18653/V1/P16-1144. URL https://doi.org/10.18653/v1/pl6-1144.

[39] Oscar Sainz, Jon Ander Campos, Iker Garcia-Ferrero, Julen Etxaniz, Oier Lopez de Lacalle,
and Eneko Agirre. NLP evaluation in trouble: On the need to measure LLM data contamination
for each benchmark. In Findings of the Association for Computational Linguistics: EMNLP
2023, Singapore, December 6-10, 2023, 2023.

[40] Weijia Shi. Detect-pretrain-code-contamination. https://github.com/swj0419/
detect-pretrain-code-contamination, 2023.

[41] Weijia Shi, Anirudh Ajith, Mengzhou Xia, Yangsibo Huang, Daogao Liu, Terra Blevins, Danqi
Chen, and Luke Zettlemoyer. Detecting pretraining data from large language models. CoRR,
abs/2310.16789, 2023. doi: 10.48550/ARXIV.2310.16789.

[42] Robert J Tibshirani. Bootstrap confidence intervals. Stanford University. Department of
Statistics. Laboratory for Computational ..., 1984.

[43] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas
Blecher, Cristian Canton-Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes,
Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony
Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian
Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut
Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov,
Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta,
Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiao-
qing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng
Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurélien
Rodriguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation
and fine-tuned chat models. CoRR, abs/2307.09288, 2023. doi: 10.48550/arXiv.2307.09288.

[44] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David
Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J.
van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew
R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, C J Carey, Ilhan Polat, Yu Feng, Eric W.
Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A.
Quintero, Charles R. Harris, Anne M. Archibald, Antdnio H. Ribeiro, Fabian Pedregosa, Paul
van Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific
Computing in Python. Nature Methods, 17:261-272, 2020. doi: 10.1038/541592-019-0686-2.

[45] Thuy-Trang Vu, Xuanli He, Gholamreza Haffari, and Ehsan Shareghi. Koala: An index for
quantifying overlaps with pre-training corpora. In Proc. of EMNLP, 2023.

[46] Grace Wahba. Estimating the Smoothing Parameter, pages 45-65. 1990. doi: 10.1137/1.
9781611970128.ch4. URL https://epubs.siam.org/doi/abs/10.1137/1.9781611970128,
ché4.

[47] Johannes Welbl, Nelson F. Liu, and Matt Gardner. Crowdsourcing multiple choice science
questions. In Leon Derczynski, Wei Xu, Alan Ritter, and Tim Baldwin, editors, Proceedings of
the 3rd Workshop on Noisy User-generated Text, NUT@EMNLP 2017, Copenhagen, Denmark,
September 7, 2017, pages 94—106. Association for Computational Linguistics, 2017. doi:
10.18653/V1/W17-4413. URL https://doi.org/10.18653/v1/wl7-4413.

[48] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony
Moi, Pierric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer,
Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain
Gugger, Mariama Drame, Quentin Lhoest, and Alexander Rush. Transformers: State-of-the-art
natural language processing. In Proc. of EMNLP, 2020. doi: 10.18653/v1/2020.emnlp-demos.6.

[49] Ruijie Xu, Zengzhi Wang, Run-Ze Fan, and Pengfei Liu. Benchmarking benchmark leakage in
large language models, 2024.

https://doi.org/10.52202/079017-2935 92433

https://doi.org/10.18653/v1/p16-1144
https://github.com/swj0419/detect-pretrain-code-contamination
https://github.com/swj0419/detect-pretrain-code-contamination
https://epubs.siam.org/doi/abs/10.1137/1.9781611970128.ch4
https://epubs.siam.org/doi/abs/10.1137/1.9781611970128.ch4
https://doi.org/10.18653/v1/w17-4413

[50] Prateek Yadav, Derek Tam, Leshem Choshen, Colin A. Raffel, and Mohit Bansal. Ties-
merging: Resolving interference when merging models. In Alice Oh, Tristan Nau-
mann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine, editors, Ad-
vances in Neural Information Processing Systems 36: Annual Conference on Neural
Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, Decem-
ber 10 - 16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
1644c9af28ab7916874f6fd6228a9bcf-Abstract-Conference.html.

[51] Shuo Yang, Wei-Lin Chiang, Lianmin Zheng, Joseph E. Gonzalez, and Ion Stoica. Re-
thinking benchmark and contamination for language models with rephrased samples. CoRR,
abs/2311.04850, 2023. doi: 10.48550/ARXIV.2311.04850.

[52] Samuel Yeom, Irene Giacomelli, Matt Fredrikson, and Somesh Jha. Privacy risk in machine
learning: Analyzing the connection to overfitting. In 3/st IEEE Computer Security Foundations
Symposium, CSF 2018, Oxford, United Kingdom, July 9-12, 2018, 2018. doi: 10.1109/CSF.
2018.00027.

[53] Alex Young, Bei Chen, Chao Li, Chengen Huang, Ge Zhang, Guanwei Zhang, Heng Li,
Jiangcheng Zhu, Jianqun Chen, Jing Chang, Kaidong Yu, Peng Liu, Qiang Liu, Shawn Yue,
Senbin Yang, Shiming Yang, Tao Yu, Wen Xie, Wenhao Huang, Xiaohui Hu, Xiaoyi Ren, Xinyao
Niu, Pengcheng Nie, Yuchi Xu, Yudong Liu, Yue Wang, Yuxuan Cai, Zhenyu Gu, Zhiyuan Liu,
and Zonghong Dai. Yi: Open foundation models by 01.ai. CoRR, abs/2403.04652, 2024. doi:
10.48550/ARXIV.2403.04652. URL https://doi.org/10.48550/arXiv.2403.04652.

[54] Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a
machine really finish your sentence? In Anna Korhonen, David R. Traum, and Lluis Marquez,
editors, Proceedings of the 57th Conference of the Association for Computational Linguistics,
ACL 2019, Florence, Italy, July 28- August 2, 2019, Volume 1: Long Papers, pages 4791—
4800. Association for Computational Linguistics, 2019. doi: 10.18653/V1/P19-1472. URL
https://doi.org/10.18653/v1/pl19-1472.

[55] Hugh Zhang, Jeff Da, Dean Lee, Vaughn Robinson, Catherine Wu, Will Song, Tiffany Zhao,
Pranav Raja, Dylan Slack, Qin Lyu, Sean Hendryx, Russell Kaplan, Michele Lunati, and
Summer Yue. A careful examination of large language model performance on grade school
arithmetic, 2024.

[56] Kun Zhou, Yutao Zhu, Zhipeng Chen, Wentong Chen, Wayne Xin Zhao, Xu Chen, Yankai Lin,
Ji-Rong Wen, and Jiawei Han. Don’t make your LLM an evaluation benchmark cheater. CoRR,
abs/2311.01964, 2023. doi: 10.48550/ARXIV.2311.01964.

[57] Wenhong Zhu, Hongkun Hao, Zhiwei He, Yunze Song, Yumeng Zhang, Hanxu Hu, Yiran Wei,
Rui Wang, and Hongyuan Lu. CLEAN-EVAL: clean evaluation on contaminated large language
models. CoRR, abs/2311.09154, 2023. doi: 10.48550/ARX1V.2311.09154.

92434 https://doi.org/10.52202/079017-2935

http://papers.nips.cc/paper_files/paper/2023/hash/1644c9af28ab7916874f6fd6228a9bcf-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/1644c9af28ab7916874f6fd6228a9bcf-Abstract-Conference.html
https://doi.org/10.48550/arXiv.2403.04652
https://doi.org/10.18653/v1/p19-1472

Table 3: Full overview of sample-specific contamination in MISTRAL-7b-v0.1, LLAMA-2-INSTRUCT-
70b and LLAMA-3-70b. All numbers are reported in percentages.

Model Benchmark Perf. [%] p[%] 6[%] bo.05 [%]
LLAMA-2-INSTRUCT-70b ARC 61.86 14.68 1.96 —1.01
GSMS8k 55.80 58.60 —0.41 —4.42
Hellaswag 85.55 0.41 3.37 1.29
MMLU 56.85 32.91 0.71 —2.10
LLAMA-3-70b ARC 69.03 0.03 6.61 3.21
GSM8k 81.58 15.45 2.05 —1.49
Hellaswag 86.45 1.01 2.86 0.90
MMLU 76.46 5.76 3.35 —0.21
MISTRAL-7b-v0.1 ARC 58.96 7.91 2.21 —0.40
GSMS8k 39.04 0.15 8.25 4.48
Hellaswag 83.65 0.24 3.14 1.27
MMLU 58.01 15.23 1.88 —1.05

A Additional Results

We present the complete results for the experiments discussed in §4] here and include a discussion
on the STABLELM-2 and INTERNLM-2 model families. We provide a table with the results for all
evaluated model families where p < 1% in Table[4]

A.1 Discussion on INTERNLM-2 and STABLELM-2

INTERNLM-2 We evaluated four models in the INTERNLM-2 model family: the models with size
1.8b and 7b, and the math-base and math models, also of 7b parameters. Overall, we found very little
evidence of contamination in these models, with no model showing significant (p < 1%) sample-
specific contamination. However, we did find some evidence for benchmark-specific contamination
for GSM8k and Hellaswag for several models in the model family. Specifically, INTERNLM-2-7b
and INTERNLM-2-MATH-7b show significant benchmark-specific contamination on GSM8k with
p < 0.5% and estimated effects of 20% and 40% respectively. The size of this effect is likely due to
the same reasons as the measured contamination in the PHI models, where the models are too small to
solve mathematical questions in one go and have been trained/finetuned to perform chain-of-thought
mathematics. The benchmark-specific contamination on Hellaswag is present for all three 7b models
in the family, with 0.5% < p < 1% and estimated effects of 6% to 11%.

STABLELM-2 For STABLELM-2, we evaluated 6 models in the model family (12b, INSTRUCT-
12b, 1.6b, INSTRUCT-1.6b, ZEPHYR-3b and ALPHA-7b-v2). We found only one instance of sample-
specific contamination, with the 12b model showing slight (p = 0.7%) contamination for ARC.
Notably, we found that all of the models in this family show benchmark-specific contamination for
GSMS8k with estimated effects between 15% and 40%.

A.2 Results for GSM8k Contaminated Models

We present the complete results for the contaminated models finetuned on the GSM8k benchmark in
Table[5] For a detailed explanation of each of the settings, we refer to App.[C] We do mention here
that in the realistic setting, we only train for 1 epoch, without any few-shot samples in the prompt
and with additional background instruction-tuning data from the OpenOrca dataset [32].

https://doi.org/10.52202/079017-2935 92435

Table 4: Complete results for all evaluated model families for all tests with result p < 1%. All
numbers in the table are reported in percentages.

Model Benchmark Type Perf. [%] p [%] 5 [%] 50.95 [%]
QWEN-INSTRUCT-1.5-14b ARC B 56.91 0.71 11.77 5.94
QWEN-INSTRUCT-1.5-72b ARC B 64.68 0.01 12.59 7.61
QWEN-INSTRUCT-1.5-110b ARC B 69.45 0.12 9.33 4.47
QWEN-INSTRUCT-1.5-4b GSMS8k S 6.52 <1072 5.35 4.01
QWEN-INSTRUCT-1.5-7b Hellaswag B 78.65 0.74 7.46 3.00
QWEN-INSTRUCT-1.5-14b Hellaswag B 82.15 0.07 6.48 3.74
QWEN-INSTRUCT-1.5-72b Hellaswag B 86.35 <1072 8.24 6.05
Y1-34b ARC S 63.99 0.20 5.00 2.12
Y1-34b Hellaswag S 86.15 <1072 6.51 4.40
Y1-34b Hellaswag B 86.15 0.14 3.96 1.89
INTERNLM-2-7b GSM8k B 62.09 0.43 19.27 7.98
INTERNLM-2-MATH-7b GSMS8k B 72.93 <1072 39.40 27.15
INTERNLM-2-7b Hellaswag B 80.10 0.41 6.58 3.19
INTERNLM-2-MATH-7b Hellaswag B 77.65 0.90 8.55 3.11
INTERNLM-2-MATH-BASE-7b Hellaswag B 79.65 0.40 11.41 5.51
STABLELM-2-12b ARC S 59.47 0.68 4.61 1.59
STABLELM-2-1.6b GSM8k B 18.88 <1072% 16.56 12.95
STABLELM-2-INSTRUCT-1.6b GSM8k B 42.00 <1072 2779 19.27
STABLELM-2-ZEPHYR-3b GSMS8k B 51.63 <107% 48.78 44.34
STABLELM-2-12b GSMB8k B 58.00 0.39 17.92 6.96
STABLELM-2-INSTRUCT-12b GSMS8k B 68.84 <1072 32.93 21.09
STABLELM-2-INSTRUCT-12b Hellaswag B 8625 <1072 7.04 4.88
YAM-PELEG/EXPERIMENT26-7b ARC B 72.44 <1072 22.36 17.28
GSM8k S 74.53 0.24 7.60 3.19
GSM8k B 7453 < 107% 29.69 18.15
Hellaswag B 88.60 <1072 13.11 10.27
BARRAHOME/MISTROLL-7b-v2.2 ARC B 72.53 <1072 22.21 17.06
GSM8k S 74.53 0.34 7.34 3.05
GSMB8k B 74.53 <1072 29.28 17.77
Hellaswag B 88.60 <1072 1295 10.15
MTSAIR/MULTI_VERSE_MODEL ARC B 72.44 <1072 2212 16.97
GSMB8k S 74.68 0.53 7.20 2.65
GSM8k B 7468 <1072 29.84 18.43
Hellaswag B 88.55 <1072 12.14 9.56

92436 https://doi.org/10.52202/079017-2935

Table 5: Complete results for the contaminated models finetuned on GSM8k. LLAMA-2 is the
LLAMA-2-INSTRUCT-7b model. ¢ is the actual effect measured on the uncontaminated samples. The
other values are the estimates p-values and effects for syntax- and sample-specific contamination. All
numbers in the table are reported in percentages.

Model Setting Perf. [%] 6 [%] Dsyniax [%] Osyntax [] Dsample [%] Osample [%]

LLAMA-2 Default 92.11 79.38 <1072 40.35 <1072 82.77
Default, rephrased 64.64 50.40 99.14 —6.80 <1072 55.72
learning rate 1074 73.29 69.96 <1072 43.60 <1072 72.18
learning rate 1075 3885 1551 <1072 12.62 <1072 19.08
Trained for 1 epoch 25.19 7.92 0.94 5.42 <1072 11.94
Other few-shot samples ~ 89.53 76.35 < 1072 38.08 <1072 82.80
No few-shot samples 80.27 6573 <1072 37.36 <1072 71.74
Realistic 69.80 50.71 <1072 32.38 <1072 56.99
Realistic, rephrased 40.52 20.67 94.50 —4.47 <1072 25.65

PHI-2 Default 79.51 36.03 <1072 14.96 <1072 41.46
Default, rephrased 69.20 19.95 94.93 —4.07 <1072 22.31
learning rate 10™* 82.25 6225 <1072 33.39 <1072 68.42
learning rate 10> 60.09 6.45 39.06 0.64 21.38 2.27
Trained for 1 epoch 55.39 9.02 6.98 3.90 0.05 10.34
Other few-shot samples ~ 81.34 38.76 < 1072 19.95 <1072 43.56
No few-shot samples 64.19 20.55 0.75 6.48 <1072 21.61
Realistic 59.79 12.06 4.93 4.30 <1072 16.45
Realistic, rephrased 60.55 6.30 88.04 —2.73 1.48 6.92

https://doi.org/10.52202/079017-2935 92437

B Ablation Study via Simulation

To further investigate the performance of CONSTAT, we conduct an ablation study using simulations.
This approach allows us to test various scenarios and understand the behavior of CONSTAT under
different conditions without the need for finetuning or computationally intense evaluations. Further-
more, it helps in verifying the p-values returned by various tests while avoiding the risk of tuning our
final test to our analysis in §4] We first explain the simulation setup and then present the results.

B.1 Simulation and Setup

Simulation In the simulation, samples are modeled as real numbers representing their complexity.
Each sample x in a benchmark D is drawn from a benchmark-specific distribution D. Therefore,
a benchmark D can be specified by a number n € Z-, indicating the number of samples, and a
distribution D, from which the samples are drawn. Given the benchmarks (n, D) and (nef, Dret), a
model is represented as M = (m, myf) € R2, where each number indicates the quality of the model
on the respective benchmarks. The probability that a model M answers a sample x € D correctly is
given by the formula min(1, exp(—z/m)). Note that this probability increases as the quality of the
model m grows and decreases as the complexity of the sample = increases.

If mys < m for a given model, the model is contaminated. Reference models can be drawn from
a distribution M over the real numbers such that m..; = m for each reference model. To simulate
noise in the evaluation of models, we can add noise to the quality of the reference models, resulting
N Myer = M.

Statistical Tests We compare CONSTAT against various other statistical tests that one could
construct. First, we include various variants of CONSTAT. CONSTAT-NO-SORT does not sort the
reference models by their and fits the hardness correction function Hp,, directly on the scores
(Sp,(M;), Sp(M;)). CONSTAT-NO-RANDOM does not include a random model in the set of
reference models. CONSTAT-NO-BOOTSTRAP only performs bootstrapping over the samples and
not over the reference models.

We also include two alternative tests. MEAN-TEST directly compares performance on the reference
and original benchmarks, considering a model contaminated if its performance on the original bench-
mark is significantly higher. NORMALIZED-TEST instead computes the normalized performance
with respect to the models by computing the means yp, itp,, and standard deviations o p, o p,, of the
reference models on each benchmark. It then bootstraps the reference models and samples to obtain
the p-value as the probability that the normalized performance o3,' (Sp(M) — pup) of the model on
the original benchmark is higher than on the reference benchmark. Therefore, NORMALIZED-TEST
essentially corrects for first- and second-order distributional differences between D and Di.y.

Reporting Results We report results for specific distributions M, D and D;s for a model M
for which we aim to detect possible contamination. For each choice of distributions, we run 1000
simulations, each drawing new reference models and benchmarks from the given distributions and
performing the tests described before. This ablation focuses on the uncontaminated case, where
M = My, as avoiding false positives is crucial. In Fig. [3a] we show an example plot of the resulting
CDF of the returned p-value when D = Di.t. As expected, the CDF for each method is very close to
the identity line for the uncontaminated model. Ideally, the curve for uncontaminated models should
be as close as possible to this identity line to ensure reliable p-values. Above the line is especially
problematic, as this would be the cause of false positives. Furthermore, by swapping the distributions
D and Dy, one would obtain a mirror image of the plot. This means that a CDF that is below the
identity line in a given situation, would be above the identity line in the mirror image, and is therefore
also problematic for the same reason.

We now report results for various scenarios. In each case, we aim to ensure that a specific test fails
and explain why this is the case. In all explored scenarios, CONSTAT performs as expected, while the
other methods fail. Unless specified otherwise, we use 20 reference models and 1000 samples for
each benchmark, in line with our results presented in §4 A full overview of each parameter setting
can be found in Table@ We always set the quality of the model under consideration to (1, 1).

92438 https://doi.org/10.52202/079017-2935

Table 6: Settings for the simulation scenarios. We use the union of two distributions to indicate the
distribution that samples from both distributions with equal probability. The ¢ column indicates the
noise added to the reference models, using a normal distribution with mean 0 and standard deviation
o. A normal distribution is denoted using the notation A (1,) where o is the standard deviation.

Scenario M D Dret o
Different Distributions ~ N(1,0.3) N(0.4,0.3) N(O 8,0.2) 0
Non-Linearity N(0.6,0.2) AN(0.8,0.1) UN(1.4,0.1) N(0.3,0.1) UN(1,0.1) 0
Noise N(0.8,0.1) N(1,0.4) N(1,0.4) 0.05
Bootstrapping Models ~ A(0.6, 1) N(0.8,0.1) UN(1.4,0.1) N(0.3,0.1) UN(1,0.1) 0.1
No Random Model N(4,1) N(4,0.2) UN(0.8, 0. 8) N(0.8,0.8) 0.05

B.2 Results

Different Distributions The MEAN-TEST should fail if the difficulty of one benchmark is different
than the other. We slightly decrease the difficulty of the samples in the original benchmark to make
MEAN-TEST return false positives, as shown in Fig. [3b] Despite M being uncontaminated, the
p-values returned by MEAN-TEST show a very steep CDF.

Non-Linearity NORMALIZED-TEST assumes a linear relationship between performances on refer-
ence and original benchmarks, but non-linear relationships can occur. For instance, it is non-linear
for sample-specific contamination in the GSM8k benchmark (see Fig.[T)). Therefore, we change the
benchmark distributions to ensure a non-linear relationship. The result shown in Fig.|3c|shows that
NORMALIZED-TEST returns a very steep CDF. We note that CONSTAT-NO-SORT also returns a
steep CDF in this particular case.

Noise When reference models do not have the same quality on both benchmarks, noise is introduced
in the signal that the test receives. Our theoretical analysis in §3|corrects for this noise by sorting the
reference models by performance on each benchmark. CONSTAT-NO-SORT is more susceptible to
this noise. We showcase this for an uncontaminated model in Fig.[3d|by keeping D = Dy, but now
adding a small amount of noise to the reference models. CONSTAT-NO-SORT returns a steep CDF
and should not be used in practice due to the noisy nature of real-world scenarios.

Bootstrapping Models Bootstrapping over reference models is necessary for reliable p-values.
Without bootstrapping, the test would rely on the specific instantiation of the reference models,
leading to p-values that are either too certain, always returning 0 or 1. We repeat the non-linear
scenario with added noise to the reference models and a wider distribution over them. As shown in
Fig.[Be] CONSTAT-NO-BOOTSTRAP returns a CDF that is very steep at either edge.

No Random Model Adding a random model to the reference models in CONSTAT provides further
regularization. The effect of this addition only becomes apparent when we use fewer reference models
in a non-linear scenario. In such cases, all reference models are relatively close together and the
smoothing spline overfits to this local part of the curve. We demonstrate this in Fig. [3f] using only five
reference models and a non-linear relationship between the benchmarks. CONSTAT-NO-RANDOM
shows a rather steep CDF in this scenario.

We conclude that CONSTAT is robust to various scenarios and provides reliable p-values in all cases.
The other tests fail in the scenarios we have presented, highlighting the importance of the design
choices made in CONSTAT.

https://doi.org/10.52202/079017-2935 92439

ConStat
Mean-Test

(.8 - — Normalized-Test
—— ConStat-No-Sort
—— ConStat-No-Bootstrap
0.6- —— ConStat-No-Random
---- Identity
Fp entity
0.4-
0.2-
0.0-; : : : : :
0.0 0.2 0.4 0.6 0.8 1.0

a A simple scenario where all tests should return a CDF
close to the identity line.

1.0-
0.8-
0.6-
F, P ConStat
0.4- —— Mean-Test
’ —— Normalized-Test
—— ConStat-No-Sort
0.2- —— ConStat-No-Bootstrap
—— ConStat-No-Random
-=--- Identity
0.0- ‘ ‘ ‘ ‘ ‘
0.0 0.2 0.4 0.6 0.8 1.0

p

¢ The relationship between performances on the refer-
ence and original benchmarks is non-linear.

1.0~ —— ConStat
—— Mean-Test
0.8- — Normalized-Test
—— ConStat-No-Sort
—— ConStat-No-Bootstrap
0.6- —— ConStat-No-Random
---- Identit
Fp entity
0.4-
0.2-
0.0- ‘ ‘ ‘ ‘ ‘
0.0 0.2 0.4 0.6 0.8 1.0

e The reference models are noisy and the relationship
between the benchmarks is non-linear.

1.0-

0.8-

0.6-

JonStat
F}) ConS

0.4- —— Mean-Test

: —— Normalized-Test
—— ConStat-No-Sort,

0.2- —— ConStat-No-Bootstrap
—— ConStat-No-Random
---- Identity

0.0- : : : : :

0.0 0.2 0.4 0.6 0.8 1.0

p

b A scenario where we make the distributions of the
benchmarks different.

1.0-
0.8-
0.6-
Fp ConStat
0.4- — Mean-Test
’ —— Normalized-Test
—— ConStat-No-Sort
0.2- —— ConStat-No-Bootstrap
—— ConStat-No-Random
===- Identity
0.0- ‘ ‘ ‘ ‘ ‘
0.0 0.2 0.4 0.6 0.8 1.0

p

d The reference models are noisy and the relationship
between the benchmarks is linear.

1.0-

0.8-

0.6-

Fp ConStat

0.4- ~— Mean-Test

’ —— Normalized-Test
—— ConStat-No-Sort

0.2- —— ConStat-No-Bootstrap
—— ConStat-No-Random
---- Identity

0.0- 7 ‘ ‘ ‘ ‘ ‘

0.0 0.2 0.4 0.6 0.8 1.0

p .
f A small number of reference models and a non-linear
relationship between the benchmarks. CONSTAT-NoO-
BOOTSTRAP and CONSTAT are the same in this case.

Figure 3: CDF of various statistical tests for uncontaminated models in different scenarios.

92440

https://doi.org/10.52202/079017-2935

C Experimental Details

We describe the full details for the experiments presented in §4 This includes the preprocessing stage
of the benchmarks, the data generation process, the fine-tuning of the models on the benchmarks, and
the evaluation of the models, including the reference models used. Additionally, we provide details
on the computational resources necessary to run the experiments. Licensing information for all assets
used in the experiments is provided in App.

Preprocessing We select four benchmarks for our experiments, ARC [[15], GSM8k [16], Hellaswag
[54], and MMLU [26]. Due to the large size of MMLU, we first select a subset of the topics
from which it consists. Specifically, we select the following topics: Abstract Algebra, Anatomy,
Astronomy, Business Ethics, Clinical Knowledge, College Biology, College Chemistry, College
Computer Science, College Mathematics, College Medicine, College Physics, Computer Security,
Conceptual Physics, Econometrics, and Electrical Engineering. We randomly select 2000 samples
from each of the benchmarks. These samples were then split into two equally-sized sets, one of which
was used for contaminating the fine-tuned models.

For the chosen reference benchmarks we limit the number of samples to 2000. We choose this number
based on the trade-off between tight confidence bounds and computational budget. Computational
complexity increases linearly with the number of samples, while the size of confidence intervals
decreases. We found that 2000 samples provide tight confidence bounds and allow us to evaluate
over 50 models within our budget.

Data Generation For each benchmark, we generate a rephrased version of the benchmark and a
synthetic benchmark. For both these purposes, we use GPT-4-TURBO [36]]. Specifically, for the
rephrased benchmarks, we use a system prompt asking the model to rephrase the input (including
options for multiple-choice benchmarks) of a given sample. We use a different system prompt to
generate rephrased training samples, including the input and output, to finetune the models trained on
rephrased data for our experiments in §4.2] By using separate prompts for training and evaluation,
we ensure that the evaluation did not occur on the same data as the training.

For the synthetic benchmarks, we write a system prompt that asks to generate new synthetic samples
for the benchmark. To obtain faithful synthetic samples, we use few-shotting where the model is
given several examples of the benchmark. By placing these generated samples in the "assistant" field
of the chat model and changing the given few-shot examples for each sample we generate, we ensure
both faithful and diverse samples. We generate 1000 samples for each benchmark.

To ensure high data quality for rephrasing and synthetic sample generation, we performed the
following procedure:

* We manually tested around 10 samples for each benchmark with various system prompts,
iteratively refining the prompts until we were satisfied with the output quality.

* We performed a manual check of approximately 100 samples for each benchmark to identify
common mistakes and evaluate overall data quality. For instance, for the GSM8k benchmark,
we found that some generated samples did not result in an integer answer, or the model
used a rounding operation. These samples were removed by checking if the answer was an
integer and ensuring no rounding was involved.

Post-processing was then applied to the synthetically generated benchmark samples. First, duplicates
within the synthetic samples were removed by searching for high 1-gram overlap ratios between two
samples. Second, we removed samples with a high 1-gram overlap ratio with the original benchmark
samples, ensuring the synthetic samples were not too similar to the originals.

The system prompts used for the rephrased benchmarks and synthetic benchmarks are available in
the code repository.

Finetuning We explain the finetuning process for the PHI-2 and LLAMA-2-INSTRUCT-7b models
that were used in §4.2] We use the Hugging Face Transformers library [48] for the finetuning process.

Specifically, we applied full finetuning with batch size 16 and the Adam optimizer on different
datasets and using different hyperparameters. We use the following default hyperparameters:

https://doi.org/10.52202/079017-2935 92441

* A learning rate of 5 - 1075,

» The dataset on which we train is the contaminatable part of a given benchmark.
* We train for 5 epochs.

* The prompt includes the exact few-shot samples used for evaluation.

We then train 8 other models where we always change specific parameters in this default setting.
Specifically, we train models that diverge from the default setting in the following ways:

1. Instead of training with the exact samples from the benchmark, we train on the rephrased
benchmark.

. We change the learning rate to 10~°.

. We change the learning rate to 10~

. We only train for 1 epoch.

. We train without any few-shot samples in the prompt.

AN L AW

. We train with a random set of few-shot samples instead of the few-shot samples from the
benchmark.

7. We do not include any few-shot samples in the prompt, include additional background
instruction-tuning data from the OpenOrca dataset [32], and only train for 1 epoch.

8. We do the same as in the previous setting, with the additional change that we train on the
rephrased benchmark instead of the actual one.

By including such a wide range of possible settings, we ensure that we cover a wide range of possible
contamination effects. As can be seen in Fig. 2] the resulting models indeed show varying levels of
contamination from 0% up to 80%.

Reference Models The following models were used as reference models in our experiments: PHI-2,
PHI-3, LLAMA-2-7b, LLAMA-2-INSTRUCT-7b, LLAMA-2-13b, LLAMA-2-INSTRUCT-13b, LLAMA-
2-INSTRUCT-70b, LLAMA-3-8b, LLAMA-3-INSTRUCT-8b, LLAMA-3-70b, LLAMA-3-INSTRUCT-
70b, MISTRAL-7b-v0.1, MISTRAL-INSTRUCT-7b-v0.1, MISTRAL-INSTRUCT-7b-v0.2, MIXTRAL-
INSTRUCT-8Xx7b, MIXTRAL-INSTRUCT-8x22b, FALCON-7b,FALCON-INSTRUCT-7b, GEMMA-1.1-
7b, GEMMA-1.1-INSTRUCT-7b, OLMO-INSTRUCT-7b. As discussed in §4.3] we removed MISTRAL-
7b-v0.1 from the reference models after a contamination analysis.

Evaluation We evaluate the models with v0.4.1 of the LM Evaluation Harness [20]. We use 5-shot
evaluation for all models and provide the custom fork of the evaluation harness to allow for the
evaluation on all the synthetic and rephrased benchmarks in our code repository.

Compute We spent around 300 USD on the OpenAl API to generate all benchmarks. Furthermore,
we used a single Nvidia H100 GPU for around 1 month to finetune and evaluate all models. Finally,
for models that were too large to fit on a single GPU, we used the Together API to run inference. We
spent an additional 263 USD on this platform.

92442 https://doi.org/10.52202/079017-2935

D Licensing Information

We include the license for all models, benchmarks and other assets used in this paper in Table[7]

Table 7: Table with assets used, description of their use and the license under which they are
distributed. Sections are split by the type of asset: benchmarks, code repositories and then models.

Asset Description & Use License Name
MMLU |[26] General-purpose benchmark used for evaluation MIT License
Hellaswag [54] General-purpose benchmark used for evaluation MIT License

GSMSk [16] General-purpose benchmark used for evaluation MIT License
ARC-Challenge [15] General-purpose benchmark used for evaluation CC-BY-SA-4.0
OpenOreca [32] Instruction-tuning dataset used in finetuning pro- MIT License

cess

LM Evaluation Harness [20]] Framework used to perform evaluations MIT License

1401 Repository to run the [40] baseline Not Specified

Scipy [44] Adapted code for smoothing spline fitting BSD 3-Clause License

LLAMA-2 [43]

LLAMA-3 [2]

FALCON [3]

GEMMA-1.1 [21]]
YAM-PELEG/EXPERIMENT26-
7b
BARRAHOME/MISTROLL-7b-
v2.2
MTSAIR/MULTI_VERSE_MODEL
MISTRAL [28]

PHI-2 [27]

PHI-3 [1]
QWEN-1.5 [6]

STABLELM-2 [8]

INTERNLM-2 [[L1]]
OLMo [25]

Y1 [53]

GPT-4-TURBO

Includes all LLAMA-2 models, were evaluated for
contamination and used for finetuning

Includes all LLAMA-3 models, were evaluated for
contamination

Includes all FALCON models, were evaluated for
contamination

Includes all GEMMA-1.1 models, were evaluated
for contamination

Was evaluated for contamination

Was evaluated for contamination

Was evaluated for contamination

Includes all MISTRAL models, were evaluated for
contamination

Was evaluated for contamination and used for fine-
tuning

Was evaluated for contamination.

Includes all QWEN-1.5 models, were evaluated for
contamination

Includes all STABLELM-2 models, were evaluated
for contamination

Includes all INTERNLM-2 models, were evaluated
for contamination

Includes all OLMO models, were evaluated for
contamination

Includes all Y1 models, were evaluated for contam-
ination

Used to generate synthetic and rephrased bench-
marks

Llama 2 Community
License Agreement
Llama 3 Community
License Agreement
Apache 2.0 License

Gemma Terms of Use
Apache 2.0 License
MIT License

Apache 2.0 License
Apache 2.0 License

MIT License

MIT License

Tongyi Qianwen Li-
cense Agreement
Stability Ai Non-
Commercial Research
Community License
Agreement

Apache 2.0 License

Apache 2.0 License

Yi Series Models
Community License
Agreement

OpenAl Terms of Use

https://doi.org/10.52202/079017-2935

92443

Table 8: Contamination results for YAM-PELEG/EXPERIMENT26-7b, MTSAIR/-
MULTI_VERSE_MODEL, BARRAHOME/MISTROLL-7b-v2.2. B is benchmark-specific, S is
sample-specific and Y is syntax-specific contamination. All numbers are reported in percentages.

Model Benchmark Perf. [%] Type pl[%] 0[%] bo.05 [%]

BARRAHOME/MISTROLL-7b-v2.2 ARC 72.53 <1072 22.21 17.06
55.90 —0.22 —4.88
88.15 —3.09 —7.26

<1072 29.28 17.77

0.34 7.34 3.05
34.00 0.79 —2.49

<1072 12.95 10.15
96.48 —3.25 —6.01
12.88 1.35 —0.57

GSMBk 74.53

Hellaswag 88.60

MMLU 58.89 35.65 0.71 —2.41

85.66 —1.83 —4.62

MTSAIR/MULTI_VERSE_MODEL ARC 72.44 <1072 22.12 16.97
51.07 0.13 —4.49

87.29 —2091 —6.99

GSM8k 74.68 <1072 29.84 18.43

0.53 7.20 2.65
47.26 0.12 —3.02
<1072 12.14 9.56
96.40 —3.19 —5.92
10.12 1.50 —0.40

Hellaswag 88.55

MMLU 58.98 33.99 0.82 —2.33

81.48 —1.52 —4.30

YAM-PELEG/EXPERIMENT26-7b ARC 72.44 <1072 22.36 17.28
60.10 —0.53 —5.26

90.97 —-3.81 —8.09

GSM8k 74.53 <1072 29.69 18.15

0.24 7.60 3.19
14.74 2.07 —1.19
<1072 13.11 10.27
96.52 —3.25 —6.00
13.35 1.36 —0.59
23.81 1.36 —1.79
78.91 —1.36 —4.17

Hellaswag 88.60

MMLU 59.03

HNLNI L NI L NI LDL NI L NI LN LN N <N < T

E All Test Results

We present all results for each performed test in this section. Tables Table [8} Table 23] contain these
results, grouped by model family.

92444 https://doi.org/10.52202/079017-2935

Table 9: Contamination results for QWEN-INSTRUCT-1.5-4b, QWEN-INSTRUCT-1.5-7b, QWEN-
INSTRUCT-1.5-1.8b. B is benchmark-specific, S is sample-specific and Y is syntax-specific contami-
nation. All numbers are reported in percentages.

Model Benchmark Perf. [%] Type p [%] 5 [%] 50,95 [%]

QWEN-INSTRUCT-1.5-1.8b ARC 38.40 97.39 —6.47 —12.37
65.23 —1.17 —6.56
75.55 —1.38 —4.72
16.59 6.43 —4.08
26.48 1.46 —2.38

5.62 3.43 —0.13

100.00 —9.29 —13.98
99.73 —-7.34 —11.27
82.43 —2.45 —-7.91

GSM8k 31.16

Hellaswag 60.90

MMLU 41.69 34.60 0.56 —2.43

32.23 0.79 —-2.15

QWEN-INSTRUCT-1.5-4b ARC 42.06 30.33 6.03 —22.11
32.46 0.79 —3.96

86.90 —2.10 —5.24

GSM8k 6.52 99.82 —25.43 —36.93

<1072 5.35 4.01
11.87 1.59 —0.61
93.97 —3.53 —7.06
66.77 —0.85 —4.22
26.14 1.36 —3.00

Hellaswag 69.35

MMLU 50.36 45.01 0.25 —2.87

88.31 —2.14 —5.09

QWEN-INSTRUCT-1.5-7b ARC 55.12 3.05 14.29 2.24
59.77 —0.47 —-3.61

57.67 —0.33 —3.28

GSM8k 55.12 59.20 —1.38 —11.91

9.79 3.73 —1.09
29.53 1.16 —2.54

0.74 7.46 3.00
90.61 —1.87 —4.18
15.20 1.74 —1.16
69.80 —1.02 —4.37
50.88 —0.02 —3.04

Hellaswag 78.65

MMLU 57.82

K NLNT L NTI R NI R NDL NI L NT NIRRT DTN T

https://doi.org/10.52202/079017-2935 92445

Table 10: Contamination results for QWEN-INSTRUCT-1.5-14b, QWEN-INSTRUCT-1.5-72b, QWEN-
INSTRUCT-1.5-110b. B is benchmark-specific, S is sample-specific and Y is syntax-specific contami-
nation. All numbers are reported in percentages.

Model Benchmark Perf. [%] Type pl%] (%] do.05 [%]
QWEN-INSTRUCT-1.5-110b ARC 69.45 B 0.12 9.33 4.47
S 54.00 —0.20 —4.13

Y 56.38 —0.25 —3.29

GSMS8k 82.11 B 79.77 =215 —7.64

S 20.01 2.05 —1.94

Y 7.08 2.80 —0.35

Hellaswag 84.25 B 29.03 0.69 —1.48

S 93.86 —2.31 —4.71

Y 25.42 0.93 —1.50

MMLU 74.00 S 65.01 —0.85 —4.87

Y 67.92 —0.72 —3.40

QWEN-INSTRUCT-1.5-14b ARC 56.91 B 0.71 11.77 5.94
S 88.65 —2.50 —5.72

Y 32.93 0.77 —2.11

GSMS8k 68.39 B 5.12 10.28 —0.04

S 1.13 6.37 1.89

Y 75.33 —1.45 —4.94

Hellaswag 82.15 B 0.07 6.48 3.74

S 98.89 —3.14 —5.39

Y 3.41 2.61 0.27

MMLU 64.94 S 70.02 —1.12 —4.76

Y 34.23 0.67 —2.02

QWEN-INSTRUCT-1.5-72b ARC 64.68 B 0.01 12.59 7.61
S 70.96 —1.34 —5.42

Y 6.07 2.77 —0.17

GSMS8k 79.45 B 5.76 9.74 —0.42

S 38.33 0.77 —3.41

Y 98.90 —4.39 —7.54

Hellaswag 86.35 B <1072 8.24 6.05

S 14.24 1.48 —0.76

Y 27.24 0.76 —1.31

MMLU 74.29 S 11.91 2.65 —1.18

Y 22.85 1.23 —1.48

Table 11: Contamination results for OLMO-INSTRUCT-7b. B is benchmark-specific, S is sample-
specific and Y is syntax-specific contamination. All numbers are reported in percentages.

Model Benchmark Perf. [%] Type pl[%] 6[%] d0.05 [%]
OLMO-INSTRUCT-7b ARC 46.08 B 2268 7.22 —11.30
S 4529 0.16 —2.93

Y 53.61 —0.10 —3.10

GSM8k 11.75 B <1072 8.86 4.99

S 731 214 —0.33

Y 57.97 —0.25 —2.52

Hellaswag ~ 79.95 B 2.99 263 0.41

S 5.04 2.38 0.00

Y 1790 114 —1.08

MMLU 4194 S 70.97 —0.69 —2.88

Y 4880 0.03 —2.61

92446 https://doi.org/10.52202/079017-2935

Table 12: Contamination results for GEMMA-1.1-INSTRUCT-2b, GEMMA-1.1-INSTRUCT-7b. B is
benchmark-specific, S is sample-specific and Y is syntax-specific contamination. All numbers are
reported in percentages.

Model Benchmark Perf. [%] Type pl%] 6[%] do.05 [%]

GEMMA-1.1-INSTRUCT-2b ARC 44.71 9947 -7.12 —-11.79
26.13 0.69 —2.88
73.27 —0.96 —3.51

100.00 —28.17 —38.87
90.87 —1.80 —3.67
95.11 —2.43 —4.72
89.68 —4.47 —-9.01
87.14 —2.47 —5.07
21.24 0.64 —4.85

GSM8k 10.61

Hellaswag 63.25

MMLU 35.64 74.14 —0.93 —3.74

85.61 —1.75 —4.17

GEMMA-1.1-INSTRUCT-7b ARC 58.02 9.31 3.64 —1.02
10.48 2.13 —-0.74

44.06 0.21 —2.44

GSM8k 50.80 98.63 —13.67 —23.14

81.05 —2.23 —6.10
64.59 —0.72 —4.00

1.79 5.79 1.59

3.21 3.18 0.40
13.92 1.76 —1.16
58.46 —0.31 —3.06
90.68 —2.09 —4.58

Hellaswag 76.85

MMLU 53.70

KDL LTI LT LDLNE LWL W

https://doi.org/10.52202/079017-2935 92447

Table 13: Contamination results for INTERNLM-2-7b, INTERNLM-2-MATH-7b, INTERNLM-
2-MATH-BASE-7b, INTERNLM-2-1.8b. B is benchmark-specific, S is sample-specific and Y is
syntax-specific contamination. All numbers are reported in percentages.

Model Benchmark Perf. [%] Type p (%] 5 [%] 5095 [%]

INTERNLM-2-1.8b ARC 39.93 B 100.00 —19.05 —23.95
S 85.40 —2.29 —6.76
Y 75.13 —1.28 —4.52
B 5.93 7.98 —0.37
S 19.37 1.64 —1.62
Y 91.30 —2.63 —5.83
B 98.31 —6.84 —11.65
S 43.03 0.03 —5.80
Y 40.35 0.33 —5.29
S 82.17 —1.54 —4.35
Y 52.23 —0.13 —-3.12
B 100.00 —13.68 —18.74
S 3.51 3.44 0.34
Y 27.51 0.92 —-1.79
B 0.43 19.27 7.98
S 11.63 3.17 —1.21
Y 84.26 —2.10 —5.58
B 0.41 6.58 3.19
S 2.64 2.73 0.46
Y 30.02 0.65 —1.53
S 33.66 0.80 —2.38
Y 9.90 2.20 —0.62

INTERNLM-2-MATH-7b ARC 52.82 B 84.86 —3.14 —8.28
S
Y
B
S
Y
B
S
Y
S
Y
B
S
Y
B
S
Y
B
S
Y
S
Y

GSMS8k 24.03

Hellaswag 63.05

MMLU 41.26

INTERNLM-2-7b ARC 55.55

GSM8k 62.09

Hellaswag 80.10

MMLU 57.77

41.52 041 —3.09
21.28 152 —1.61
<1072 39.40 27.15
64.34 —0.89 —4.87
71.92 —1.16 —4.36
0.90 8.55 3.11
5.57 280 —0.11
33.90 0.64 —2.48
33.57 0.86 —2.49
53.43 —0.14 —3.15
64.31 —0.99 —5.50
21.60 149 —1.68
38.46 0.52 —2.32
83.60 —7.17 —18.75
1.48 5.45 1.57
14.23 236 —1.25
0.40 11.41 5.51
4.63 2.41 0.05
35.40 0.48 —1.80
48.63 0.08 —3.16
11.60 236 —0.93

GSM8k 72.93

Hellaswag 77.65

MMLU 57.48

INTERNLM-2-MATH-BASE-7b ARC 56.23

GSM8k 35.63

Hellaswag 79.65

MMLU 52.83

92448 https://doi.org/10.52202/079017-2935

Table 14: Contamination results for LLAMA-2-INSTRUCT-7b, LLAMA-2-7b, LLAMA-2-INSTRUCT-
13b, LLAMA-2-13b, LLAMA-2-INSTRUCT-70b. B is benchmark-specific, S is sample-specific and Y
is syntax-specific contamination. All numbers are reported in percentages.

Model Benchmark Perf. [%] Type pl[%] 6[%] bo.05 [%]

LLAMA-2-13b ARC 56.23 98.26 —5.46 —9.43
13.56 1.62 —0.92
48.39 0.07 —2.02
72.02 —-3.41 —13.58
13.14 1.74 —1.24
78.51 —1.33 —4.12
97.33 -2.01 -3.69

2.07 2.38 0.51
51.41 —0.03 —1.49

GSM8k 23.81

Hellaswag 82.35

MMLU 48.52 73.33 —0.88 —-3.21

70.56 —0.76 -3.14

LLAMA-2-7b ARC 52.56 59.44 —0.66 —5.10
4.07 2.89 0.21

18.31 1.14 —1.06

GSM8k 13.42 38.75 1.60 —5.56

35.13 0.37 —1.68
53.37 —0.09 —2.38
98.22 —2.42 —4.35

5.41 2.03 —0.05
44.09 0.13 —1.66

Hellaswag 78.95

MMLU 41.31 7.68 2.91 —0.54

14.99 1.54 —-1.14

LLAMA-2-INSTRUCT-13b ARC 56.57 3.70 4.98 0.49
72.99 —0.89 —3.46

78.67 —1.15 —3.56

GSMS8k 36.69 35.55 2.70 —8.22

35.35 0.62 —2.92
35.94 0.66 —2.46
77.82 —0.85 —2.75
18.86 1.05 —0.95
10.86 1.30 —0.47

Hellaswag 82.35

MMLU 46.83 80.09 —1.26 —3.55

86.45 —1.72 —4.08

LLAMA-2-INSTRUCT-70b ARC 61.86 28.49 1.34 —2.70
14.68 1.96 —1.01

87.74 —1.77 —4.21

GSMS8k 55.80 7.23 9.18 —1.11

58.60 —0.41 —4.42
57.70 —0.33 —3.55
6.44 1.64 —0.15
0.41 3.37 1.29
71.66 —0.52 —-2.11

Hellaswag 85.55

MMLU 56.85 32.91 0.71 —2.10

43.26 0.25 —2.25

LLAMA-2-INSTRUCT-7b ARC 51.02 4.74 5.01 0.13
82.83 —1.52 —4.05

76.26 —0.96 —-3.19

GSM8k 22.74 16.17 5.40 —2.92

68.05 —0.59 —3.00

7.90 2.35 —-0.41
91.52 —-1.61 —3.52
93.08 —1.88 -3.89
53.49 —0.12 —2.13
86.64 —1.67 -3.78
43.76 0.20 —2.22

Hellaswag 78.10

MMLU 43.24

Ku<Kunw<o<Kw<<{LNOK<<NT LW NTLDLNTLNTLNTLN <N <NW< 0w

https://doi.org/10.52202/079017-2935 92449

Table 15: Contamination results for LLAMA-3-INSTRUCT-70b, LLAMA-3-70b, LLAMA-3-8b,
LLAMA-3-INSTRUCT-8b. B is benchmark-specific, S is sample-specific and Y is syntax-specific

contamination. All numbers are reported in percentages.

Model Benchmark Perf. [%] Type pl[%] 6[%] 00.95 [%]
LLAMA-3-70b ARC 69.03 B 46.06 0.26 —4.05
S 0.03 6.61 3.21
Y 1.95 3.35 0.73
GSM8k 81.58 B 92.86 —5.03 —9.55
S 15.45 2.05 —1.49
Y 23.24 1.13 —1.60
Hellaswag 86.45 B 7774 —0.74 —2.43
S 1.01 2.86 0.90
Y 94.19 —2.01 —3.82
MMLU 76.46 S 5.76 3.35 —0.21
Y 55.02 —0.12 —2.21
LLAMA-3-8b ARC 56.91 B 99.41 —-6.46 —10.30
S 62.47 —0.39 —2.68
Y 49.13 0.04 —2.09
GSM8k 49.36 B 99.38 —15.27 —24.75
S 7.20 4.06 —0.59
Y 1.94 4.52 1.04
Hellaswag 80.90 B 99.26 —2.66 —4.35
S 44.87 0.15 —1.70
Y 94.78 —1.48 —2.94
MMLU 61.16 S 4.18 3.01 0.18
Y 10.88 1.78 —0.63
LLAMA-3-INSTRUCT-70b ARC 70.22 B 28.64 1.45 —2.80
S 75.48 —1.37 —5.12
Y 68.86 —0.52 —2.79
GSMS8k 89.99 B 73.62 —1.21 —7.54
S 9.39 3.05 —1.03
Y 20.00 1.23 —1.50
Hellaswag 85.30 B 18.97 0.87 —0.88
S 97.73 —2.45 —4.38
Y 89.67 —1.24 —2.67
MMLU 77.53 S 43.27 0.17 —3.56
Y 15.82 1.18 -1.07
LLAMA-3-INSTRUCT-8b ARC 60.75 B 45.04 0.25 —3.77
S 66.87 —0.77 —3.88
Y 44.33 0.20 —2.09
GSM8k 75.89 B 7.93 8.40 —1.20
S 23.07 1.49 —2.25
Y 70.85 —0.89 —-3.63
Hellaswag 78.10 B 99.46 —-3.02 —4.95
S 98.96 —2.96 —4.85
Y 90.89 —1.43 -3.18
MMLU 62.23 S 76.69 —1.17 —3.80
Y 27.51 0.74 —1.53

92450 https://doi.org/10.52202/079017-2935

Table 16: Contamination results for PHI-2, PHI-3-MINI, PHI-3-SMALL, PHI-3-MEDIUM. B is
benchmark-specific, S is sample-specific and Y is syntax-specific contamination. All numbers are
reported in percentages.

Model Benchmark Perf. [%] Type pl%] §[%] bo.05 [%]

PHI-2 ARC 58.45 B 70.14 —1.29 —5.43
S 97.63 —4.51 —7.80
Y 53.03 —0.08 —2.39
B <1072 36.42 26.46
S 56.18 —0.26 —4.03
Y 28.20 1.04 —2.09
B 4.64 3.46 0.08
S 100.00 —4.80 —6.73
Y 26.31 0.83 —1.68
S 99.39 —5.01 —7.87
Y 40.50 032 —2.16
B 59.70 —0.61 —4.72
S 99.78 —6.94 —10.60
Y 49.33 0.05 —2.51
B 0.29 16.30 6.33
S 89.75 —2.86 —6.29
Y 86.35 —1.73 —4.29
B 1.15 3.38 1.17
S 100.00 —6.34 —8.37
Y 62.19 —0.35 —2.26
S 09.01 —4.94 —8.05
Y 40.40 0.29 —2.15

PHI-3-SMALL ARC 67.83 B 7484 —1.88 —6.62
S
Y
B
S
Y
B
S
Y
S
Y
B
S
Y
B
S
Y
B
S
Y
S
Y

GSM8k 58.91

Hellaswag 76.30

MMLU 51.96

PHI-3-MINI ARC 59.90

GSM&8k 76.65

Hellaswag 80.55

MMLU 63.49

63.09 —0.76 —4.55
26.75 1.15 —1.84

0.58 15.04 5.04
61.30 —0.70 —5.04
58.49 —0.36 —3.31

0.02 5.41 3.38
81.51 —1.14 —3.27
71.57 —0.60 —2.40
89.80 —2.89 —6.67
40.60 0.37 —-2.29
83.99 —2.73 —7.16
87.56 —2.68 —6.57
91.94 —2.57 —5.55

0.03 21.11 10.78
37.34 0.76 —3.23
65.15 —0.66 —3.59

0.02 4.54 2.51
9244 —1.83 —3.87
20.51 0.87 —0.89
63.19 —0.73 —4.64
51.35 —0.04 —2.64

GSM8k 87.95

Hellaswag 84.70

MMLU 71.33

PHI-3-MEDIUM ARC 66.55

GSM8k 86.35

Hellaswag 86.05

MMLU 74.14

https://doi.org/10.52202/079017-2935 92451

Table 17: Contamination results for MISTRAL-7b-v0.1, MISTRAL-7b-v0.2. B is benchmark-specific,
S is sample-specific and Y is syntax-specific contamination. All numbers are reported in percentages.

Model Benchmark Perf. [%] Type pl[%] 6[%] d0.95 [%]
MISTRAL-7b-v0.1 ~ ARC 58.96 B 95.01 —-4.46 —-8.76
S 7.91 221 —0.40

Y 28.07 0.79 —1.52

GSM8k 39.04 B 87.59 —7.71 —18.04

S 0.15 8.25 4.48

Y 66.44 —0.87 —4.42

Hellaswag 83.65 B 65.34 —042 —2.19

S 0.24 3.4 1.27

Y 16.97 094 —0.68

MMLU 58.01 S 15.23 1.88 —1.05

Y 11.08 1.88 —0.69

MISTRAL-7b-v0.2 ARC 58.19 B 98.02 —5.63 —10.01
S 23.24 1.17 —1.38

Y 45.61 0.15 —2.11

GSM8k 37.60 B 89.88 —8.55 —18.87

S 0.54 6.57 2.68

Y 76.32 —1.53 —5.07

Hellaswag 82.80 B 58.14 —0.25 —-2.11

S 1.28 2.60 0.69

Y 50.08 —-0.01 —1.60

MMLU 56.71 S 49.62 0.06 —2.87

Y 2794 089 —1.61

92452 https://doi.org/10.52202/079017-2935

Table 18: Contamination results for MISTRAL-INSTRUCT-7b-v0.3, MISTRAL-INSTRUCT-7b-v0.2,
MISTRAL-INSTRUCT-7b-v0.1. B is benchmark-specific, S is sample-specific and Y is syntax-specific
contamination. All numbers are reported in percentages.

Model Benchmark Perf. [%] Type p[%] 5[%] 30,95 [%]

MISTRAL-INSTRUCT-7b-v0.1 ARC 54.35 99.97 —-9.04 —12.92
95.10 —2.83 —5.40
73.29 —0.86 —-3.17
98.51 —13.89 —23.86
85.29 —2.45 —5.63
90.91 —2.67 —5.83
90.11 —-1.68 —-3.97
97.12 —2.47 —4.62
53.04 —-0.13 —2.51

GSM8k 35.86

Hellaswag 74.90

MMLU 49.69 29.29 0.77 —1.76

72.16 —0.87 —3.36

MISTRAL-INSTRUCT-7b-v0.2 ARC 62.46 0.04 10.62 5.95
64.89 —0.70 —4.17

80.34 —1.29 —3.80

GSMS8k 42.61 80.76 —5.71 —16.01

94.39 —4.26 —8.35
8491 -2.10 —5.24

0.18 3.52 1.56
81.26 —1.04 —-3.01
12.47 1.10 —0.56

Hellaswag 84.55

MMLU 55.06 18.63 1.48 —1.28

42.67 0.25 —2.21

MISTRAL-INSTRUCT-7b-v0.3 ARC 62.37 88.82 —3.24 —7.59
94.57 —3.64 —7.38

66.69 —0.62 —3.06

GSMB8k 48.22 94.33 —10.60 —20.56

35.14 1.03 —-3.81
89.74 —2.69 —6.15

5.20 1.90 —-0.02
62.58 —0.40 —2.42
37.49 0.28 —-1.31
14.15 1.88 —0.93
34.01 0.63 —-1.89

Hellaswag 84.25

MMLU 56.56

MU NTANETLLADLNTLNATLNT DK NWLNT02W

https://doi.org/10.52202/079017-2935 92453

Table 19: Contamination results for MIXTRAL-INSTRUCT-8x22b, MIXTRAL-INSTRUCT-8X7b. B is
benchmark-specific, S is sample-specific and Y is syntax-specific contamination. All numbers are

reported in percentages.

Model Benchmark Perf. [%] Type p[%] 5 [%] b0.95 [%]
MIXTRAL-INSTRUCT-8x22b ARC 72.95 B 0.77 6.01 2.00
S 10.63 2.64 —1.07
Y 20.07 1.10 —1.42
GSM8k 85.97 B 44.60 0.69 —3.86
S 65.36 —0.68 —4.37
Y 21.06 1.18 —1.46
Hellaswag 89.00 B 14.01 1.19 —0.62
S 22.49 0.82 —1.13
Y 26.36 0.62 —1.25
MMLU 74.14 S 29.85 0.97 —2.57
Y 59.95 —0.23 —2.42
MIXTRAL-INSTRUCT-8X7b ARC 69.54 B 73.09 —1.49 —5.59
S 47.27 0.11 —3.48
Y 68.30 —0.55 —2.85
GSM8k 65.66 B 95.56 —8.84 —18.06
S 69.87 —1.06 —4.53
Y 83.79 —1.78 —4.63
Hellaswag 87.60 B 20.79 0.82 —0.85
S 14.57 1.15 —0.76
Y 6.31 1.34 —0.10
MMLU 66.73 S 26.75 1.07 —1.93
Y 77.86 —0.98 —-3.09

92454 https://doi.org/10.52202/079017-2935

Table 20: Contamination results for STABLELM-2-12b, STABLELM-2-ZEPHYR-3b, STABLELM-
2-1.6b, STABLELM-2-ALPHA-7b-v2. B is benchmark-specific, S is sample-specific and Y is
syntax-specific contamination. All numbers are reported in percentages.

Model Benchmark Perf. [%] Type p [%] 5 [%] 50.95 [%]

STABLELM-2-ALPHA-7b-v2 ARC 44.28 100.00 —10.65 —15.06
60.46 —0.58 —-3.99
45.14 0.14 —2.76
61.89 —1.10 —7.51
27.98 0.65 —1.12
90.92 —1.72 —3.80

100.00 —5.41 —7.36

3.88 2.65 0.23
43.34 0.15 —2.18

GSM8k 5.31

Hellaswag 77.20

MMLU 42.13 3.20 4.00 0.49

26.45 1.11 —1.87

STABLELM-2-ZEPHYR-3b ARC 44.80 23.74 5.20 —-10.17
75.44 —1.43 —4.93

56.38 —0.32 —3.55

GSMS8k 51.63 <1072 48.78 44.34

3.29 5.47 0.54
75.39 —1.45 —4.92
35.74 0.74 —-3.18

100.00 —7.45 -9.83
44.96 0.15 —3.67

Hellaswag 72.95

MMLU 40.29 83.87 —1.61 —4.45

STABLELM-2-1.6b ARC 43.43 100.00 —-26.35 —31.68
14.90 241 —241

56.10 —0.30 —3.49

GSM8k 18.88 <1072 16.56 12.95

23.94 1.22 —1.64
49.96 0.00 —2.92
100.00 —5.16 —7.61
5.19 4.31 —0.06
31.06 1.02 —2.93

Hellaswag 71.05

MMLU 35.69 29.73 1.25 —2.34

32.27 0.84 —2.20

STABLELM-2-12b ARC 59.47 99.97 —-14.01 —-19.28
0.68 4.61 1.59

1.10 3.78 1.12

GSM8k 58.00 0.39 17.92 6.96

11.92 3.10 —1.34
17.98 1.85 —1.51
18.16 0.98 —0.87

2.96 2.16 0.25
30.69 0.49 -1.15
77.34 —1.46 —4.67
7272 —0.98 -3.70

Hellaswag 84.45

B
S
Y
B
S
Y
B
S
Y
S
Y
B
S
Y
B
S
Y
B
S
Y
S
Y 35.87 0.63 —2.46
B
S
Y
B
S
Y
B
S
Y
S
Y
B
S
Y
B
S
Y
B
S
Y
MMLU 56.51 S
Y

https://doi.org/10.52202/079017-2935 92455

Table 21: Contamination results for STABLELM-2-INSTRUCT-12b, STABLELM-2-INSTRUCT-1.6b.
B is benchmark-specific, S is sample-specific and Y is syntax-specific contamination. All numbers

are reported in percentages.

Model

Benchmark Perf. [%)]

STABLELM-2-INSTRUCT-1.6b

STABLELM-2-INSTRUCT-12b

ARC

GSM8k

Hellaswag

MMLU

ARC

GSM8k

Hellaswag

MMLU

42.66

42.00

69.60

38.31

64.25

68.84

86.25

55.50

Type p[%] 6 [%] bo.95 [%]
29.38 5.53 —19.03
70.33 —1.20 —5.11
48.97 0.00 —3.39

<1072 27.79 19.27
26.27 1.77 —2.67
62.76 —0.67 —4.32
31.25 1.08 —4.38

100.00 —5.99 —8.50
68.68 —1.21 —5.21
61.21 —0.66 —4.05

9.37 2.50 —0.64
2.17 26.11 5.20

67.88 —1.15 —5.28
18.72 1.61 —1.31

<1072 3293 21.09
17.74 237 —1.86
32.26 0.88 —2.41

<1072 7.04 4.88
98.40 —3.43 —5.84

3.32 2.18 0.24

90.13 —2.49 —5.67

44.42 0.25 —2.74

MO NTALNTLNTLALNT LN <N

Table 22: Contamination results for FALCON-INSTRUCT-7b, FALCON-7b. B is benchmark-specific,
S is sample-specific and Y is syntax-specific contamination. All numbers are reported in percentages.

Model Benchmark Perf. [%] Type pl[%] 6[%] 00.05 [%]
FALCON-7b ARC 4684 B 99.96 —8.77 —12.77
S 7877 —1.23 —3.80

Y 39.48 0.30 —2.10

GSM8k 425 B 95.19 —8.40 —15.69

S 89.76 —1.36 —2.70

Y 79.29 —0.83 —2.50

Hellaswag 7850 B 100.00 —4.13 —5.97

S 247 2.67 0.44

Y 62.41 —0.32 —2.09

MMLU 26.10 S 6827 —0.39 —2.13

Y 16.74 135 —1.48

FALCON-INSTRUCT-7b ARC 4505 B 71.90 —1.48 —5.71
S 94.92 —-3.15 —5.90

Y 7785 —1.17 —3.64

GSM8k 440 B 94.97 -850 —15.86

S 4971 0.04 —1.47

Y 4132 023 —1.43

Hellaswag 69.15 B 99.80 —4.81 —7.94

S 84.96 —1.67 —4.17

Y 95.80 —3.43 —6.23

MMLU 26.30 S 3159 0.38 —1.52

Y 54.78 —0.16 —2.63

92456 https://doi.org/10.52202/079017-2935

Table 23: Contamination results for Y1-34b, Y1-6b. B is benchmark-specific, S is sample-specific
and Y is syntax-specific contamination. All numbers are reported in percentages.

Model Benchmark Perf. [%] Type pl[%] 6[%] bo.05 [%]

Y1-34b ARC 63.99 99.86 —14.18 —20.29
0.20 5.00 2.12

16.29 1.58 —1.06

GSM8k 66.79 95.95 —9.04 —18.47

6.10 429 —0.30
59.86 —0.52 —3.85
0.14 3.96 1.89
<1072 6.1 4.40
4.97 1.75 0.01

Hellaswag 86.15

MMLU 71.48 41.94 0.49 —3.22

24.43 1.09 —1.57

YI-6b ARC 54.44 100.00 —15.81 —20.49
4.82 3.03 0.03

40.58 0.35 —2.22

GSM&8k 33.59 70.57 —=3.51 —14.79

28.13 1.35 —2.50
22.92 1.53 —-1.91
51.87 —0.10 —2.27

8.65 1.94 —0.39
68.03 —0.65 —2.92
42.25 0.40 -3.03
57.89 —0.33 —3.22

Hellaswag 77.30

MMLU 57.38

L NLNT L NI NT NN NI < N T

https://doi.org/10.52202/079017-2935 92457

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We show the effectiveness of our method in §4]and give a detailed analysis of
the contamination of the model families mentioned in the abstract and introduction.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In §6] we explicitly discuss the limitations of our approach.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

92458 https://doi.org/10.52202/079017-2935

Justification: We do not include any theoretical results in this paper. However, in §3|we do
discuss how CONSTAT can be derived from statistical principles.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.

The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide experimental details in §4]and App. [C]and publish the code for
reproducing the results.

Guidelines:

The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

https://doi.org/10.52202/079017-2935 92459

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We will publish the code to reproduce our results with clear instructions on how
to reproduce them. We note that we will not include the synthetically generated benchmarks
to avoid further contamination of LLMs. However, our code includes instructions on how to
generate these benchmarks.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/,
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide an overview of the experimental setup in §4.1] Further details are
provided in App.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: CONSTAT is a statistical test and thus has a well-defined statistical significance
which we always report in our experiments.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

92460 https://doi.org/10.52202/079017-2935

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We give a brief explanation of the cost for reproducing our experiments in
App. [C] Our code also includes details on the computing resources needed.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We confirm that all authors have read and understood the NeurIPS Code of
Ethics and that the research conducted in this paper conforms to it.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discuss the impact of this work in a separate paragraph in §6
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

https://doi.org/10.52202/079017-2935 92461

https://neurips.cc/public/EthicsGuidelines

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: None of the data or models released in this paper pose a high risk for misuse.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We provide the necessary licenses and terms of use in App. D} We obliged by
all these licenses.

Guidelines:
» The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

92462 https://doi.org/10.52202/079017-2935

* If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a
dataset.

 For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
13. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We release our code with an Apache-2.0 License. We provide a README file
with instructions on how to use our code and generate the benchmarks.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: We do not include crowdsourcing experiments or research with human subjects
in this paper.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: We do not include crowdsourcing experiments or research with human subjects
in this paper.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

https://doi.org/10.52202/079017-2935 92463

paperswithcode.com/datasets

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

92464 https://doi.org/10.52202/079017-2935

