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Abstract

We introduce a novel class of generative models based on piecewise deterministic
Markov processes (PDMPs), a family of non-diffusive stochastic processes con-
sisting of deterministic motion and random jumps at random times. Similarly to
diffusions, such Markov processes admit time reversals that turn out to be PDMPs
as well. We apply this observation to three PDMPs considered in the literature: the
Zig-Zag process, Bouncy Particle Sampler, and Randomised Hamiltonian Monte
Carlo. For these three particular instances, we show that the jump rates and ker-
nels of the corresponding time reversals admit explicit expressions depending on
some conditional densities of the PDMP under consideration before and after a
jump. Based on these results, we propose efficient training procedures to learn
these characteristics and consider methods to approximately simulate the reverse
process. Finally, we provide bounds in the total variation distance between the
data distribution and the resulting distribution of our model in the case where the
base distribution is the standard d-dimensional Gaussian distribution. Promising
numerical simulations support further investigations into this class of models.

1 Introduction

Diffusion-based generative models [Ho et al., 2020, Song et al., 2021] have recently achieved state-
of-the-art performance in various fields of application [Dhariwal and Nichol, 2021, Croitoru et al.,
2023, Jeong et al., 2021, Kong et al., 2021]. In their continuous time interpretation [Song et al.,
2021], these models leverage the idea that a diffusion process can bridge the data distribution µ⋆ to a
base distribution π, and its time reversal can transform samples from π into synthetic data from µ⋆.
Anderson [1982] showed that the time reversal of a diffusion process, i.e., the backward process, is
itself a diffusion with explicit drift and covariance functions that are related to the score functions
of the time-marginal densities of the original, forward diffusion. Consequently, the key element
of these generative models is learning these score functions using techniques such as (denoising)
score-matching [Hyvärinen, 2005, Vincent, 2011].

In this work we propose a new family of generative models which use piecewise deterministic
Markov processes (PDMPs) as noising processes instead of diffusions. PDMPs were introduced
around forty years ago [Davis, 1984, 1993] and since then have been successfully applied in various
fields, including communication networks [Dumas et al., 2002], biology [Berg and Brown, 1972,
Cloez, Bertrand et al., 2017], risk theory [Embrechts and Schmidli, 1994], and the reliability of
complex systems [Zhang et al., 2008]. More recently, PDMPs have been intensively studied in the
context of Monte Carlo algorithms [Fearnhead et al., 2018] as alternatives to Langevin diffusion-
based methods and Metropolis-Hastings mechanisms. This renewed interest in PDMPs has led to
the development of novel processes, such as the Zig-Zag process (ZZP) [Bierkens et al., 2019a],
the Bouncy Particle Sampler (BPS) [Bouchard-Côté et al., 2018], and the Randomised Hamiltonian
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Monte Carlo (RHMC) [Bou-Rabee and Sanz-Serna, 2017]. PDMPs offer several advantages com-
pared to Langevin-based methods, such as better scalability and reduced computational complexity
in high-dimensional settings [Bierkens et al., 2019a]. In the context of generative modelling PDMPs
offer several potential advantages over diffusion processes. A key strength is their ability to effec-
tively model data distributions supported on constrained or restricted domains. By adjusting their
deterministic dynamics, PDMPs can easily incorporate boundary behaviour, making them straight-
forward to implement in such settings [Bierkens et al., 2018, Davis, 1993]. Similarly, PDMPs can
model data on Riemannian manifolds by employing flows that respect the manifold’s geometry (see,
e.g., Yang et al. [2022] for a PDMP on the sphere). Moreover, PDMPs are well-suited for modelling
data distributions that combine a continuous density and a positive mass on a lower dimensional
manifold [Bierkens et al., 2022].

Our contributions are the following:

1) Leveraging the existing literature on time reversals of Markov jump processes [Conforti and
Léonard, 2022], we characterise the time reversal of any PDMP under appropriate conditions. It
turns out that this time reversal is itself a PDMP with characteristics related to the original PDMP;
see Proposition 1.
2) We further specify the characteristics of the time-reversal processes associated with the three
aforementioned PDMPs: ZZP, BPS, and RHMC. For these processes, Proposition 2 shows the cor-
responding time-reversals are PDMPs with simple reversed deterministic motion and with jump rates
and kernels that depend on (ratios of) conditional densities of the velocity of the forward process
before and after a jump. In contrast to common diffusion models, the emphasis is on distributions
of the velocity, similar to the case of the underdamped Langevin diffusion [Dockhorn et al., 2022],
which includes an additional velocity vector akin to the PDMPs we consider. Moreover, the struc-
ture of the backward jump rates and kernels closely connects to the case of continuous time jump
processes on discrete state spaces [Sun et al., 2023, Lou et al., 2024].
3) We define our piecewise deterministic generative models employing either ZZP, BPS, or RHMC
as forward process, transforming data points to a noise distribution of choice, and develop method-
ologies to estimate the backward rates and kernels. Then, we define the corresponding backward
process based on approximations of the time reversed ZZP, BPS, and RHMC obtained with the
estimated rates and kernels. In Section 4 we test our models on simple toy distributions.
4) We obtain a bound for the total variation distance between the data distribution and the distribu-
tion of our generative models taking into account two sources of error: first, the approximation of the
characteristics of the backward PDMP, and second, its initialisation from the limiting distribution of
the forward process; see Theorem 1.

2 PDMP based generative models

2.1 Piecewise deterministic Markov processes

Informally, a PDMP [Davis, 1984, 1993] on the measurable space (RD,B(RD)) is a stochastic
process that follows deterministic dynamics between random times, while at these times the process
can evolve stochastically on the basis of a Markov kernel. In order to define a PDMP precisely, we
need three components, called characteristics of the PDMP: a vector field Φ : R+ × RD → RD,
which governs the deterministic motion, a jump rate λ : R+ × RD → R+, which defines the
law of random event times, and finally a jump kernel Q : R+ × RD × B(RD) → [0, 1], which is
applied at event times and defines the new state of the process. Let us give an informal description
of the evolution of a PDMP Zt, clarifying the role of the three characteristics. Suppose at time
T ∈ R+ the PDMP is at state z ∈ RD, that is ZT = z. The deterministic motion of the PDMP
is described by the ODE dZT+s = Φ(T + s, ZT+s)ds for s ⩾ 0, with initial condition ZT = z.
We introduce the differential flow φ : (t, s, z) 7→ φt,t+s(z), which solves the ODE in the sense that
dφt,t+s(z) = Φ(T + s, φt,t+s(z))ds for s ⩾ 0. The process evolves deterministically according
to φ until the next event time T + τ , where τ is a random variable with law P(τ > s|ZT =
z) = exp(−

∫ s
0
λ(φT,T+u(z))du), i.e. the exponential distribution with non-homogeneous rate

s 7→ λ(φT,T+s(z)). We can, at least in principle, simulate τ by solving

τ = inf

{
t > 0 :

∫ t

0

λ(T + u, φT,T+u(z))du ⩾ E

}
(1)

2
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where E ∼ Exp(1). The process is then defined on [T,T+ τ) by ZT+t = φT,T+t(ZT) for t ∈
[0, τ). At time T + τ the process jumps to a new state that is drawn from the Markov kernel Q,
hence we set ZT+τ ∼ Q(T + τ, φT,T+τ (z), · ). A realisation of the path of a PDMP for a given
time horizon can then be obtained following this procedure (see also Algorithm 1 in Appendix C.1
for a pseudo-code). The formal construction of a PDMP can be found in Appendix A.1.

Typically a PDMP has several types of jumps, which can be represented by a family of jump rates
and kernels (λi, Qi)i∈{1,...,ℓ}. A PDMP of such type can be obtained with the construction we have
described by setting

λ(t, z) =

ℓ∑
i=1

λi(t, z) , Q(t, z,dz′) =

ℓ∑
i=1

λi(t, z)

λ(t, z)
Qi(t, z,dz

′) . (2)

An alternative, equivalent construction of a PDMP with λ,Q satisfying (2) is given in Appendix A.2.
Finally, we say a PDMP is homogeneous (as opposed to the non-homogeneous case we have de-
scribed) when the characteristics do not depend on time, that is Φ : RD → RD, λ : RD → R+,
and Q : RD × B(RD) → [0, 1]. In all this work, we suppose that the PDMPs that we consider are
non-explosive in the sense of Davis [1993], that is they are such that the time of the n-th random
event goes to +∞ as n → +∞, almost surely (see Durmus et al. [2021] for conditions ensuring
this).

We now introduce the three PDMPs we consider throughout the paper. All these PDMPs are time-
homogeneous and live on a state space of the form E = Rd × V, for V ⊂ Rd, assuming V0 ∈ V.
Then, Zt can be decomposed as Zt = (Xt, Vt), where Xt ∈ Rd is the component of interest and
has the interpretation of the position of a particle, whereas Vt ∈ V is an auxiliary vector playing the
role of the particle’s velocity. In the sequel, if there is no risk of confusion, we take the convention
that any z ∈ Rd × V, and we write z = (x, v) for x ∈ Rd and v ∈ V. All the PDMPs below have a
stationary distribution of the form π(dx)⊗ ν(dv), where π has density proportional to x 7→ e−ψ(x),
for ψ : Rd → R a continuously differential potential, and ν is a simple distribution on V for the
velocity vector. In our experiments we take π to be the standard normal distribution, while ν is the
standard normal when V = Rd or the uniform distribution when V is a compact set. Figure 1 shows
sample paths for the position vector of the three PDMPs we introduce below.

Figure 1: Trace plots for ZZP (left), BPS (centre), RHMC (right). In all cases λr = 1 and Tf = 10.

The Zig-Zag process The Zig-Zag process (ZZP) [Bierkens et al., 2019a] is a PDMP with state
space EZ = Rd × {−1, 1}d. The deterministic motion is determined by the homogeneous vector
field ΦZ(x, v) = (v, 0)T, i.e. the particle moves with constant velocity v. For i ∈ {1, . . . , d} we
define the jump rates λZi (x, v) := (vi∂iψ(x))+ + λr, where (a)+ = max(0, a), ∂i denotes the i-th
partial derivative, and λr ⩾ 0 is a user chosen refreshment rate. The corresponding (deterministic)
jump kernels are given by QZ

i ((x, v), (dy,dw)) = δ(x,RZ
i v)

(dy,dw), where δz denotes the Dirac
measure at z ∈ E. Here, RZ

i is the operator that reverses the sign of the i-th component of the
vector to which it is applied, i.e. RZ

i v = (v1 . . . , vi−1,−vi, vi+1, . . . , vd). The ZZP falls within
our definition of PDMP taking λ,Q as in (2). As shown in Bierkens et al. [2019a], the ZZP has
invariant distribution π ⊗ ν, where ν is the uniform distribution over {±1}d. Moreover, Bierkens
et al. [2019b] shows that for any λr ⩾ 0 the law of the ZZP converges exponentially fast to its
invariant distribution e.g. when π is a standard normal distribution.

The Bouncy Particle sampler The Bouncy Particle sampler (BPS) [Bouchard-Côté et al., 2018] is
a PDMP with state space is EB = Rd×VB, where VB = Rd or VB = Sd−1 := {v ∈ Rd : ∥v∥ = 1}.

3
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The deterministic motion is governed as ZZP by the homogeneous vector field defined for z =
(x, v) ∈ E by ΦB(x, v) = (v, 0)T. Now we introduce two jump rates which correspond to two types
of random events: reflections and refreshments. Reflections enforce that µ(x, v) = π(x)ν(v) is the
invariant density of the process, where π(dx) ∝ exp(−ψ(x))Leb(dx) is a given distribution and ν is
either a standard normal distribution when VB = Rd or the uniform distribution on Sd−1 when VB =
Sd−1. Reflections are associated to the homogeneous jump rate (x, v) 7→ λB1 (x, v) = ⟨v,∇ψ(x)⟩+,
while refreshments are associated to (x, v) 7→ λB2 (x, v) = λr for λr > 0. The corresponding jump
kernels are QB

1 ((x, v), (dy,dw)) = δ(x,RB
x v)

(dy,dw) , QB
2 ((x, v), (dy,dw)) = δx(dy)ν(dw),

where RB
x v = v − 2(⟨v,∇ψ(x)⟩/|∇ψ(x)|2)∇ψ(x) . The operator RB

x reflects the velocity v off the
hyperplane that is tangent to the contour line of ψ passing though point x. The norm of the velocity is
unchanged by the application of RB, and this gives the interpretation that RB is an elastic collision
of the particle off such hyperplane. As observed in Bouchard-Côté et al. [2018], BPS requires a
strictly positive λr to avoid being reducible, that is to make sure the process can reach any area
of the state space. Exponential convergence of the BPS to its invariant distribution was shown by
Deligiannidis et al. [2019], Durmus et al. [2020].

Randomised Hamiltonian Monte Carlo Randomised Hamiltonian Monte Carlo (RHMC) [Bou-
Rabee and Sanz-Serna, 2017] refers to the PDMP with state space EH = Rd × Rd which is
characterised by Hamiltonian deterministic flow and refreshments of the velocity vector from the
standard normal distribution. The flow is governed by the homogeneous vector field defined by
(x, v) 7→ ΦH(x, v) = (v,−∇ψ(x))T, where ψ is the potential of π. The jump rate coincides with
the refreshment part of BPS, i.e., it is the constant function λH : (x, v) 7→ λr > 0 and jump kernel
QH((x, v), (dy,dw)) = δx(dy)ν(dw). When the stationary distribution π is a standard Gaussian,
the deterministic dynamics (xt, vt)t⩾0 satisfy dxt = vtdt, dvt = −xtdt, which for t ⩾ 0 has
solution xt = x0 cos(t) + v0 sin(t) and vt = −x0 sin(t) + v0 cos(t), where (x0, v0) is the initial
condition. It is well known that Hamiltonian dynamics preserve the density µ(x, v) = π(x)ν(v)
[Neal, 2010], where ν is the standard normal distribution, while velocity refreshments are necessary
to ensure the process is irreducible. Exponential convergence of the law of this PDMP to µ was
shown in Bou-Rabee and Sanz-Serna [2017].

Remark 1 (Noise schedule) Similarly to diffusion models we can introduce a noise schedule β(t)
that regulates the amount of randomness injected at time t. This can be achieved using the time
change of a given PDMP with characteristics (Φ, λ,Q) as forward process, resulting in the PDMP
with characteristics (Φβ , λβ , Q) for Φβ(t, z) = β(t)Φ(t, z) and λβ(t, z) = β(t)λ(t, z).

2.2 Time reversal of PDMPs

In this section we characterise the time reversal of a PDMP. This key result, stated in Proposi-
tion 1, is essential to be able to use PDMPs for generative modelling. The time reversal of a
PDMP (Zt)t∈[0,Tf ] with initial distribution µ0 is the process that at time t ∈ [0,Tf ] has distribution
µ0PTf−t,where µ0Ps denotes the law of Zs. It follows that the law of the time reversal at time Tf is
µ0, which is the key observation in the context of generative modelling. Characterisations of the law
of time reversed Markov processes with jumps were obtained in Conforti and Léonard [2022] and
in the following statement we adapt their Theorem 5.7 to our setting, showing that the time reversal
of a PDMP with characteristics (Φ, λ,Q) is a PDMP with reversed deterministic motion and jump
rates and kernels satisfying (3).

Proposition 1 Consider a non-explosive PDMP (Zt)t⩾0 with characteristics (Φ, λ,Q) and initial
distribution µ0 on RD. In addition, let Tf be a time horizon. Suppose that Φ is locally bounded,
(t, z) 7→ λ(t, z) is continuous in both its variables, and

∫ Tf

0
E[λ(t, Zt)]dt < ∞. Assume the

technical conditions H3, H4, postponed to the appendix. Then, the corresponding time reversal
process is a PDMP with characteristics (

←−
Φ ,
←−
λ ,
←−
Q), where

←−
Φ(t, z) = −Φ(Tf − t, z) and

←−
λ ,
←−
Q

are the unique solutions to the following balance equation: for almost all t ∈ [0,Tf ],

µ0PTf−t(dy)
←−
λ (t, y)

←−
Q(t, y, dz) = µ0PTf−t(dz)λ(Tf − t, z)Q(Tf − t, z,dy) , (3)

where µ0Pt stands for the distribution of Zt starting from µ0.

The proof is postponed to Appendix A.4. The condition H3 is standard in the literature on PDMPs
[Davis, 1993] and is verified for ZZP, BPS, and RHMC. H4 is a technical assumption on the do-

4

93339https://doi.org/10.52202/079017-2961



main of the generator of the forward PDMP and has been shown to hold e.g. for the ZZP. In the
next proposition we derive expressions for the backward jump rate and kernel satisfying (3) corre-
sponding to a forward PDMP with characteristics with the same structure as those of ZZP, BPS, and
RHMC. We state the result assuming the PDMP has only one jump type, but the generalisation to the
case of ℓ > 1 jump mechanisms of the form (2) can be immediately obtained applying Proposition 2
to each pair (λi, Qi) for i ∈ {1, . . . , ℓ}. We refer to Appendix A.6 for the details.

Proposition 2 Consider a non-explosive PDMP (Xt, Vt)t⩾0 with characteristics (Φ, λ,Q) and ini-
tial distribution µX0 ⊗µV0 on R2d. In addition, let Tf be a time horizon. Suppose that Φ and λ satisfy
the same conditions as Proposition 1, in particular the technical conditions H3, H4 postponed to
the appendix. Suppose in addition that for any t ∈ (0,Tf ], the conditional distribution of Vt given
Xt has a transition density (x, v) 7→ pt(v|x) with respect to some reference measure µVref on Rd.

(1) (Deterministic jumps). SupposeQ((y, w), (dx,dv)) = δy(dx)δRyw(dv) where for any y ∈ Rd,
Ry : Rd → Rd is an involution which preserves µVref , i.e., R−1

y = Ry and µVref(dRyw) = µVref(dw).
Then for almost all t ∈ [0,Tf ] and any (y, w) ∈ R2d such that pTf−t(w|y) > 0 it holds that

←−
λ (t, (y, w)) =

pTf−t(Ryw|y)
pTf−t(w|y)

λ(Tf − t, (y,Ryw)) ,
←−
Q((y, w), (dx, dv)) = δy(dx)δRyw(dv) .

(2) (Refreshments). Suppose Q((y, w), (dx, dv)) = δy(dx)ν(dv|y), where ν is a transition kernel
on Rd × B(Rd), and λ(t, (y, w)) = λ(t, y). Suppose also for any y ∈ Rd, ν(·|y) is absolutely
continuous with respect to µVref . Then for almost all t ∈ [0,Tf ] and any (y, w) ∈ R2d such that
pTf−t(w|y) > 0 it holds that

←−
λ (t, (y, w)) =

(dν/dµV
ref)(w|y)

pTf−t(w|y)
λ(Tf−t, y),

←−
Q(t, (y, w), (dx, dv)) = δy(dx)pTf−t(v|x)µVref(dv).

The proof is postponed to Appendix A.5. We remark that we consider that µV0 is a distribution on
Rd also when µV0 (V) = 1 for V ⊂ Rd, in which case the reference measure can simply be chosen
such that µVref(V) = 1. Applying Proposition 2 we are able to derive explicit expressions for the
characteristics of the time reversals of ZZP, RHMC, and BPS. The rigorous statements and their
proofs can be found in Appendix A.7. For ZZP and BPS we assume the following condition on π,
the limiting distribution for the position vector of the forward process.

H1 Recall π(x) ∝ e−ψ(x). It holds that ψ ∈ C2(Rd) and supx∈Rd ∥∇2ψ(x)∥ < +∞.

This assumption is satisfied e.g. by any multivariate normal distribution. For BPS and RHMC we
suppose that for any t ∈ (0,Tf ], the conditional distribution of Vt given Xt has a transition density
(x, v) 7→ pt(v|x) with respect to the Lebesgue measure. Moreover, for all samplers we assume H4.

Time reversal of ZZP In order to apply Proposition 2 we additionally assume that∫
|∂iψ(x)|dµ⋆(x) < ∞ for all i = 1, . . . , d. We find that the deterministic motion is defined

by
←−
ΦZ(y, w) = (−w, 0)T for any (y, w) ∈ R2d, while the backward rates and kernels are for

i = 1, . . . , d and for all (y, w) ∈ R2d such that pTf−t(w|y) > 0,

←−
λ Z
i (t, (y, w)) =

pTf−t(R
Z
i w|y)

pTf−t(w|y)
λZi (y,R

Z
i w) ,

←−
QZ
i ((y, w), (dx, v)) = δ(y,RZ

i w)(dx, v) . (4)

Time reversal of BPS Whereas in Appendix A.7 we consider the case where the velocity of
BPS is initialised on Sd−1, we can formally apply Proposition 2 to the case of ν is the standard d-
dimensional Gaussian distribution assuming that

∫
|∇ψ(x)|dµ⋆(x) <∞. The drift of the backward

BPS is clearly the same as for the backward ZZP, while jump rates and kernels are for all t ∈ [0,Tf ]
and (y, w) ∈ R2d such that pTf−t(w|y) > 0

←−
λ B

1 (t, (y, w)) =
pTf−t(R

B
y w|y)

pTf−t(w|y)
λB1 (y,R

B
y w),

←−
QB

1 ((y, w), (dx,dv)) = δ(y,RB
yw)(dx, dv) ,

5
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←−
λ B

2 (t, (y, w)) = λr
ν(w)

pTf−t(w|y)
,

←−
QB

2 (t, (y, w), (dx, dv)) = pTf−t(v|y)δy(dx)dv . (5)

Time reversal of RHMC. The deterministic motion of the backward RHMC follows the system
of ODEs

←−
ΦH(x, v) = (−v,∇ψ(x))T, which, when the limiting distribution π is Gaussian, has

solution xt = x0 cos(t)− v0 sin(t) and vt = x0 sin(t) + v0 cos(t). The backward refreshment rate
and kernel coincide with those of BPS as given in (5).

Remark 2 (Variance exploding PDMPs) Similarly to the case of diffusion models [Song et al.,
2021], we can define variance exploding PDMPs choosing ψ(x) = 0 for all x ∈ Rd, that is when
π(dx) is the Lebesgue measure. In this case, the deterministic motion of RHMC coincides with ZZP
and BPS, and all three processes have only velocity refreshment events.

2.3 Approximating the characteristics of time reversals of PDMPs

In Section 2.2 we showed that the backward jump rates and kernels of ZZP, BPS, and RHMC, involve
the conditional densities of the velocity vector of the forward process given its position vector at all
times t ∈ [0,Tf ]. These conditional densities are unavailable in analytic form, hence in this section
we develop methods to learn the jump rates and kernels of our time reversed PDMPs. In Appendix D
we give the pseudo codes and more detailed descriptions of the training procedure for our models,
together with a comparison with diffusion models.

Approximating the jump rates of the backward ZZP via ratio matching In the case of ZZP, we
need to approximate for any i ∈ {1, . . . , d}, the rates in (4). Since the terms λZi (x,R

Z
i v) are known,

it is sufficient to estimate the density ratios rZi (x, v, t) := pt(R
Z
i v|x)/pt(v|x) for all states (x, v) such

that pt(v|x) > 0. To this end, we introduce a class of functions {sθ : Rd × {−1, 1}d × [0,Tf ] →
Rd+ : θ ∈ Θ} for some parameter set Θ ⊂ Rdθ and aim to find a parameter θ⋆ ∈ Θ such that for any
i ∈ {1, . . . , d}, the i-th component of sθ⋆ , denoted by sθ⋆i (·), is an approximation of rZi . We then
approximate the backward ZZP by using the rates λ̄Zi (t, (x, v)) = sθ⋆i (x, v,Tf − t)λZi (x,RZ

i v). To
address the problem of fitting θ, we consider different loss functions inspired by the ratio matching
(RM) problem considered in Hyvärinen [2007].

From a discrete probability density p± on {−1, 1}d, RM consists in learning the d ratios v 7→
p±(Riv)/p±(v) for i ∈ {1, . . . , d}. This problem was motivated in Hyvärinen [2007] as a means
to estimate p± without requiring its normalising constant, similarly to score matching applied to
estimate continuous probability densities [Hyvärinen, 2005]. In our context we are interested only
in the ratios, hence as opposed to Hyvärinen [2007] we do not model the conditional distributions
(x, v) 7→ pt(v|x), but directly the ratios rZi . Adapting the ideas of Hyvärinen [2007] to our context,
we introduce the function G : r 7→ (1 + r)−1 and define the Explicit Ratio Matching objective
function

ℓE(θ) =

∫ Tf

0

dt ω(t)

d∑
i=1

E
[
{G(sθi (Xt, Vt, t))−G(ri(Xt, Vt, t))}2

+ {G(sθi (Xt,R
Z
i Vt, t))−G(ri(Xt,R

Z
i Vt, t))}2

]
.

(6)

where ω : [0,Tf ] → R∗
+ is a probability density, and (Xt, Vt)t⩾0 is a ZZP initialised from

µ⋆ ⊗ Unif({−1, 1}d). This objective function considers simultaneously the square error in the
estimation of both (x, v, t) 7→ ri(x, v, t) and (x, v, t) 7→ ri(x,RZ

i v, t), where the function G im-
proves numerical stability, particularly when one of the two ratios is very small. Clearly ℓE(θ) = 0
if and only if sθi (x, v, t) = ri(x, v, t) for almost all x, v, t and all i. Moreover, the choice of G
allows us to optimise without knowledge of the true ratios, as shown in the following result.

Proposition 3 It holds that argminθ ℓE(θ) = argminθ ℓI(θ) for

ℓI(θ) =

∫ Tf

0

dt ω(t)

d∑
i=1

E
[
G2(sθi (Xt, Vt, t)) +G2(sθi (Xt,R

Z
i Vt, t))− 2G(sθi (Xt, Vt, t))

]
, (7)

where (Xt, Vt)t∈R+
is a ZZP starting from µ⋆ ⊗Unif({−1, 1}d).

6
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Therefore we aim to solve the minimisation problem associated with ℓI, which has for empirical
counterpart

θ 7→ 1

N

N∑
n=1

d∑
i=1

G2(sθi (X
n
τn , V nτn , τn)) +G2(sθi (X

n
τn ,RZ

i V
n
τn , τn))− 2G(sθi (X

n
τn , V nτn , τn))

where {τn}Nn=1 are i.i.d. samples from ω, independent of {(Xn
t , V

n
t )t⩾0}Nn=1, which areN i.i.d. re-

alisations of the ZZP respectively starting at the n-th training data point with velocity V n0 , where
{V n0 }Nn=1 are i.i.d. observations of Unif({−1, 1}d).
Notice that the loss above has computational cost increasing linearly in d because d+ 1 evaluations
of the model are needed for each datum. This can be improved considering an estimate for the ratio
which does not take as input the whole velocity vector (see Appendix D.1 for the details). This
variation has computational cost that is constant in the dimension, but might have lower accuracy.

Approximating the characteristics of BPS and RHMC For BPS and RHMC, Proposition 2
shows that if we aim to sample from the backward process, we have to estimate both ratios of the
conditional density of the velocity of the forward PDMP given its position at any time t ∈ [0,Tf ],
and also to be able to sample from such densities as prescribed by the backward jump kernel (5).
In order to address both requirements, we introduce a parametric family of conditional probability
distributions {pθ : θ ∈ Θ} of the form (x, v, t) 7→ pθ(v|x, t), where Θ ⊂ Rdθ , which we model
with the framework of normalising flows (NFs) [Papamakarios et al., 2021]. The advantage of NFs
lays in their feature that, once the network is learned, it is possible both to obtain an estimate of
the density at a given state and time, and also to generate samples which are approximately from
(x, v, t) 7→ pt(v|x). However, training conditional NFs can be challenging in high dimensions.

Focusing on BPS, we now illustrate how we can use NFs to learn the backward jump rates and
kernels. We aim to find a parameter θB⋆ such that pθB⋆ (v|x, t) is a good approximation of pt(v|x),
the conditional density of the forward BPS with respect to the Lebesgue measure. We choose to
optimise θ following the maximum likelihood approach, which gives the theoretical loss

ℓML(θ) = −
∫ Tf

0

dt ω(t)E [log pθ(Vt|Xt, t)] , (8)

where ω : [0,Tf ] → R∗
+ is a probability density, and (Xt, Vt)t⩾0 is a a BPS initialised from

µ⋆ ⊗ ν, with ν denoting the density of the d-dimensional standard normal distribution. The optimal
parameter θB⋆ can then be found minimising the empirical counterpart of ℓML(θ):

θB⋆ = argmin
θ

1

N

N∑
n=1

log pθ(V
n
τn |Xn

τn , τn), (9)

where {τn}Nn=1 are i.i.d. samples from ω, independent of {(Xn
t , V

n
t )t⩾0}Nn=1, which areN i.i.d. re-

alisations of the ZZP respectively starting at the n-th training data point with velocity V n0 , where
{V n0 }Nn=1 are i.i.d. observations from the multivariate standard normal distribution. Once we have
obtained the optimal parameter θB⋆ , we can define our approximation of the backward refresh-
ment mechanism of BPS taking the rate λ̄B2 (t, (x, v)) = λr × ν(v)/pθB⋆ (v|x,Tf−t) and the kernel
Q̄B

2 (t, (y, w), (dx, dv)) = pθB⋆ (v|y,Tf − t)δy(dx)dv. Similarly, we estimate the backward reflec-
tion ratio of BPS as λ̄B1 (t, (x, v)) = λB1 (x,R

B
x v)× pθB⋆

(RB
x v|x,Tf−t)/pθB⋆ (v|x,Tf−t).

2.4 Simulating the backward process

We now discuss how we can simulate the backward PDMP with exact backward flow map
(t, x, v) 7→ φ−t(x, v) and jump characteristics λ and Q that are approximations of the jump rates
and kernels of the time reversed PDMPs obtained as discussed in Section 2.3. We recall that the
backward rates have the general form λ(t, (x, v)) = sθ(x, v,Tf − t)λ(x,Rv), where sθ is an esti-
mate of a density ratio and R is a suitable involution. In principle such a PDMP can be simulated
following the procedure described in Section 2.1, but the generation of the random jump times via
(1) requires the integration of λ(t, φ−t(x, v)) with respect to t. This cannot be achieved since λ
is defined through a neural network. A standard approach in the literature (see e.g. Bertazzi et al.
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[2022, 2023]) is to discretise time and (informally) approximate the integral in (1) with a finite sum.
Here we focus on approximations based on splitting schemes discussed in Bertazzi et al. [2023],
adapting their ideas to the non-homogeneous case. Such splitting schemes approximate a PDMP
with a Markov chain defined on the time grid {tn}n∈{0,...,N}, with t0 = 0 and tN = Tf . The
key idea is that the deterministic motion and the jump part of the PDMP are simulated separately
in a suitable order, obtaining second order accuracy under suitable conditions (see Theorem 2.6 in
Bertazzi et al. [2023]). Now, we give an informal description of the splitting scheme that we use
for RHMC, that is based on splitting DJD in Bertazzi et al. [2023], where D stands for deterministic
motion and J for jumps. We define our Markov chain based on the step sizes {δj}j∈{1,...,N}, where
δj = tj − tj−1. Suppose we have defined the Markov chain on {tk}k∈{0,...,n} for n < N and
that the state at time tn is (xtn , vtn). The next state is obtained following three steps. First, the
particle moves according to its deterministic motion for a half-step, that is we define an interme-
diate state (x̃tn , ṽtn) = φ−δn+1/2(xtn , vtn). Second, we turn our attention to the jump part of the
process. In this phase, the particle is only allowed to move through jumps and there is no deter-
ministic motion. This means that the rate is frozen to the value λ(tn + δn+1/2, (x̃tn , ṽtn)) and thus
the integral in (1) can be computed trivially. The proposal for the next event time is then given by
τn+1 ∼ Exp(λ(tn+δn+1/2, (x̃tn , ṽtn))). If τn+1 ⩽ δn+1, we draww ∼ Q(tn+δn+1/2, (x̃tn , ṽtn), ·)
and update ṽtn = w, else we leave ṽtn unchanged. Finally we conclude with an additional half-step
of deterministic motion, letting (xtn+1

, vtn+1
) = φ−δn+1/2(x̃tn , ṽtn). We refer to Appendix C.2 for

a detailed description of the schemes used for each process together with the pseudo-codes.

3 Error bound in total variation distance

In this section, we give a bound on the total variation distance between the data distribution µ⋆ and
the law of the synthetic data generated by a PDMP with initial distribution π ⊗ ν and approximate
characteristics obtained, e.g., with the methods described in Section 2.3. We obtain our result com-
paring the law of such PDMP to the law of the exact time reversal obtained in Section 2.2, that is the
PDMP with the analytic characteristics of Proposition 2 and with initial distribution L(XTf

, VTf
),

i.e. the law of the forward PDMP at time Tf when initialised from µ⋆ ⊗ ν. In Theorem 1 below
we then take into account two of the three sources of error in our models: (i) the error introduced
initialising the backward PDMP from the limiting distribution of the forward, (ii) the error due to
the approximation of the backward rates and kernels. For simplicity we neglect the discretisation
error caused by the methods discussed in Section 2.4.

We shall assume the following condition, which deals with the error introduced by initialising the
backward PDMP from π ⊗ ν.

H2 The forward PDMP with semigroup (Pt)t⩾0 is such that there exist γ,C > 0 for which

∥π ⊗ ν − µ⋆ ⊗ νPt∥TV ⩽ Ce−γt.

Informally, H2 is verified for some C <∞ when π is a multivariate standard Gaussian distribution
for ZZP and BPS if the tails of µ⋆ are at least as light as those of π, while for RHMC it is enough
if µ⋆ has finite second moments. We refer to Appendix E.1 for a more detailed discussion on this
aspect. We are now ready to state our result.

Theorem 1 Consider a non-explosive PDMP (Xt, Vt)t⩾0 with initial distribution µ⋆⊗ν, stationary
distribution π⊗ν, and characteristics (Φ, λ,Q). Let Tf be a time horizon. Suppose the assumptions
of Proposition 1 as well as H2 hold. Let (Xt, V t)t∈[0,Tf ] be a non-explosive PDMP initial distribu-
tion π ⊗ ν and characteristics (Φ, λ,Q), where Φ(t, (x, v)) = Φ(Tf − t, (x, v)) for all t ∈ [0,Tf ]
and (x, v) ∈ R2d. Then it holds that

∥µ⋆ − L(XTf
)∥TV ⩽ Ce−γTf + 2E

[
1− exp

(
−
∫ Tf

0

gTf−t(Xt, Vt)dt

)]
, (10)

where

gt(x, v) =
(
←−
λ ∧ λ )(t, (x, v))

2
∥
←−
Q(t, (x, v), ·)−Q(t, (x, v), ·)∥TV +

∣∣←−λ (t, (x, v))− λ(t, (x, v))
∣∣

(11)
and
←−
λ ,
←−
Q are as given by Proposition 1.
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Dataset i-DDPM BPS RHMC ZZP

Checkerboard 2.49 ± 0.98 1.96 ± 1.51 4.27 ± 3.36 0.81 ± 0.19
Fractal tree 8.04 ± 5.58 2.25 ± 1.70 4.41 ± 4.35 1.12 ± 0.58
Gaussian grid 23.19 ± 9.72 4.59 ± 4.03 4.01 ± 3.32 4.43 ± 4.05
Olympic rings 2.03 ± 1.60 2.07 ± 1.19 2.41 ± 2.24 1.43 ± 0.86
Rose 6.77 ± 5.81 1.92 ± 1.57 2.16 ± 1.59 0.90 ± 0.35

Table 1: MMD ↓, in units of 1e−3, averaged over 6 runs, with the corresponding standard deviations.

Fractal tree ZZP i-DDPM Olympic rings BPS i-DDPM

Figure 2: Comparative results on two-dimensional generation of synthetic datasets.

The proof is postponed to Appendix E.2. The first term in (10) is caused by initialising the process
from π ⊗ ν, while the second term represents the error introduced by the approximate jump rate
λ and kernel Q. For the sake of illustration we obtain a simple upper bound to (10) in the case
of ZZP (for the details see Appendix E.3). We assume the conditions of Theorem 1 are satisfied
and also that the expected error of the learned rates λ̄Zi is bounded by a constant, in the sense
that E[|rZi (Xt, Vt,Tf − t) − sθi (Xt, Vt,Tf − t)|λZi (Xt,RZ

i Vt)] ⩽ M for all t ∈ [0,Tf ] and i ∈
{1, . . . , d}. The latter condition is similar to the standard assumption asked on the approximation of
the score in diffusion models [Chen et al., 2023]. Under these conditions we obtain the bound

∥µ⋆ − L(XTf
)∥TV ⩽ Ce−γTf + 4MTfd . (12)

4 Numerical simulations

In this section, we test our piecewise deterministic generative models on simple synthetic datasets.

Design We compare the generative models based on ZZP, BPS, and RHMC with the improved
denoising diffusion probabilistic model (i-DDPM) given in Nichol and Dhariwal [2021]. For all of
our models, we choose the standard normal distribution as target distribution for the position vector,
as well as for the velocity vector in the cases of BPS and RHMC. The accuracy of trained generative
models is evaluated by the kernel maximum mean discrepancy (MMD). We refer to Appendix F for
a detailed description of the parameters and networks choices.

Sample quality In Table 1 we report the MMD score for five, 2-dimensional toy distributions. We
observe that the PDMP based generative models perform well compared to i-DDPM in all of these
five datasets. In particular, ZZP and i-DDPM are implemented with the same neural network archi-
tecture, hence ZZP appears to compare favourably to i-DDPM with the same model expressivity.
The results of Table 1 are supported by the plots of generated data shown in Figure 2, illustrating
how ZZP and BPS are able to generate more detailed edges compared to i-DDPM.

In Figure 4, we compare the output of RHMC and i-DDPM for a very small number of reverse steps.
We observe how in this setting the data generated by RHMC are noticeably closer to the true data
distribution compared to i-DDPM. This phenomenon is observed also for BPS as shown in Table 2,
and is intuitively caused by the refreshment kernel, which is able to generate velocities that correct
wrong positions. Respecting this intuition, ZZP does not perform as well as BPS and RHMC for
a small number of reverse steps since its velocities are constrained to {−1, 1}. Nonetheless, ZZP
generates the most accurate results in our experiments given a large enough number of reverse steps.

Table 2 and Figure 3 show that PDMP-based models require a smaller computational time to gener-
ate samples of a given quality compared to i-DDPM. This is the case because PDMP models require
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considerably less backward steps than i-DDPM, although each step is more expensive (see Table 2).
Additional results can be found in Appendix F, including promising results applying ZZP to the
MNIST dataset.

Table 2: MMD ↓ for various number of backward steps,
Rose dataset.

steps i-DDPM BPS RHMC ZZP

2 696.28 165.09 26.48 358.25
5 192.17 22.18 3.00 89.49
10 45.08 5.48 1.75 11.31
25 12.34 1.58 0.60 1.20
100 8.72 3.66 1.72 1.04
time/step(ms) 3.94 45.8 15.1 11.2

Figure 3: MMD ↓, runtime (ms) per
method, Rose dataset.

Gaussian grid i-DDPM, 2 steps i-DDPM, 10 steps RHMC, 2 steps RHMC, 10 steps

Rose dataset i-DDPM, 2 steps i-DDPM, 10 steps RHMC, 2 steps RHMC, 10 steps

Figure 4: Comparing RHMC and i-DDPM for small number of reverse steps.

5 Discussion and conclusions

We have introduced new generative models based on piecewise deterministic Markov processes, de-
veloping a theoretically sound framework with specific focus on three PDMPs from the sampling
literature. While this work lays the foundations of this class of methods, it also opens several direc-
tions worth investigating in the future.

Similarly to other generative models, our PDMP based algorithms are sensitive to the choice of the
network architecture that is used to approximate the backward characteristics. Therefore, it is crucial
to investigate which architectures are most suited for our algorithms in order to achieve state of the
art performance in real world scenarios. For instance, in the case of BPS and RHMC it could be
beneficial to separate the estimation of the density ratios and the generation of draws of the velocity
conditioned on the position and time. For the case of ZZP, efficient techniques to learn the network in
a high dimensional setting need to be investigated, while network architectures that resemble those
used to approximate the score function appear to adapt well to the case of density ratios. Moreover,
there are several alternative PDMPs that could be used as generative models and that we did not
consider in detail in this paper, as for instance variance exploding alternatives.
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Jun Yang, Krzysztof Łatuszyński, and Gareth O Roberts. Stereographic Markov chain Monte Carlo.
arXiv preprint arXiv:2205.12112, 2022.

Huilong Zhang, Franccois Dufour, Y. Dutuit, and Karine Gonzalez. Piecewise deterministic markov
processes and dynamic reliability. Proceedings of the Institution of Mechanical Engineers, Part
O: Journal of Risk and Reliability, 222:545–551, 12 2008. doi: 10.1243/1748006XJRR181.

13

93348 https://doi.org/10.52202/079017-2961



Appendix

The Appendix is organised as follows. Appendix A includes the details and the proofs regarding
Section 2.1 and Section 2.2. Appendix B contains details and proofs regarding the framework of
density ratio matching. Appendix C gives details and pseudo-codes for the exact simulation of our
forward processes (see Appendix C.1), and also for the splitting schemes that are used to approxi-
mate the backward processes (see Appendix C.2). Appendix D details the algorithms used to train
our generative models and outlines the computational differences with the popular framework of
denoising diffusion models. Appendix E contains the proof for Theorem 1 and some related details
Finally, Appendix F contains the details on the numerical simulations, as well as additional results.

A PDMPs and their time reversals

A.1 Construction of a PDMP

Here we describe the formal construction of a PDMP with the characteristics (Φ, λ,Q). To this
end, consider the differential flow φ : (t, s, z) 7→ φt,t+s(z), which solves the ODE, dzt+s =
Φ(t+ s, zt+s)ds for s ⩾ 0, i.e. zt+s = φt,t+s(zt). We define by recursion on n ∈ N the process on
(Zt)t∈[0,Tn] on [0,Tn] and the increasing sequence of jump times (Tn)n∈N starting from an initial
state Z0 and setting T0 = 0. Assume that (Ti)i∈{0,...,n} and (Zt)t∈[0,Tn] are defined for some
n ∈ N. We now define (Zt)t∈[Tn,Tn+1]. First, we define

τn+1 = inf

{
t > 0 :

∫ t

0

λ(Tn + u, φTn,Tn+u(ZTn
))du ⩾ En+1

}
(13)

where En+1 ∼ Exp(1), and set the n + 1-th jump time Tn+1 = Tn + τn+1. The process is then
defined on [Tn,Tn+1) by ZTn+t = φTn,Tn+t(ZTn

) for t ∈ [0, τn+1). Finally, we set ZTn+1
∼

Q(Tn+1, φTn,Tn+τn+1
(ZTn

), ·). The process (Zt)t⩾0 is a Markov process by [Jacobsen, 2005,
Theorem 7.3.1].

A.2 Construction of a PDMP with multiple jump types

In this section we describe the formal construction of a non-homogeneous PDMP with the charac-
teristics (Φ, λ,Q) where λ,Q are of the form

λ(t, z) =

ℓ∑
i=1

λi(t, z) , Q(t, z,dz′) =

ℓ∑
i=1

λi(t, z)

λ(t, z)
Qi(t, z,dz

′) . (14)

Recall the differential flow φ : (t, s, z) 7→ φt,t+s(z), which solves the ODE, dzt+s = Φ(t +
s, zt+s)ds for s ⩾ 0, i.e. zt+s = φt,t+s(zt). Similarly to the case of one type of jump only, we start
the PDMP from an initial state Z0, assume it is defined as (Zt)t∈[0,Tn] on [0,Tn] for some n ∈ N,
and we now define define (Zt)t∈[Tn,Tn+1]. First, we define the proposals (τ in+1)i∈{1,...,ℓ} for next
event time as

τ in+1 = inf

{
t > 0 :

∫ t

0

λi(Tn + u, φTn,Tn+u(ZTn
))du ⩾ Ein+1

}
where Ein+1 ∼ Exp(1) for i ∈ {1, . . . , ℓ}. Then define i∗ = argmini∈{1,...,ℓ} τ

i
n+1 and set the next

jump time to
Tn+1 = Tn + τ i

∗

n+1.

The process is then defined on [Tn,Tn+1) by ZTn+t = φTn,Tn+t(ZTn
) for t ∈ [0, τn+1). Finally,

we set ZTn+1
∼ Qi∗(Tn+1, φTn,Tn+τn+1

(ZTn
), ·).

A.3 Extended generator

In order to obtain the generator of a PDMP, Theorem 26.14 of Davis [1993] requires "standard
conditions" on the characteristics (see conditions (24.8) in Davis [1993]). We state these conditions
for a non-homogeneous PDMP in the next assumption.
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H3 The non-homogeneous characteristics (Φ, λ,Q) satisfy the following conditions:

1. Φ is locally Lipschitz and the associated flow map φ has infinite explosion time;

2. λ is such that u 7→ λ(φt,t+u(x)) is integrable on [0, ε(x, t)) for some ε(x, t) > 0 and all
(t, x) ∈ R+ × E.

3. Q is measurable and such that Q(t, x, {x}) = 0 for all (t, x) ∈ R+ × E.

4. Let (Tn)n∈{0,1,... } be the random sequence of event times of the PDMP and define Nt =∑∞
k=0 1t⩾Tk

. It holds that Ex[Nt] <∞ for all (t, x) ∈ R+ × E.

Notably, the PDMP is required to be non-explosive in the sense that the expected number of random
events after any time t starting the PDMP from any state should be finite. These conditions are veri-
fied for all the three PDMPs we consider as forward processes. Assuming H3 we can apply Theorem
26.14 in Davis [1993] to the homogeneous PDMP obtained including the time variable, which gives
that the extended generator of the non-homogeneous PDMP with characteristics (Φ, λ,Q) is given
by

Ltf(z) = ⟨Φ(t, z),∇zf(z)⟩+ λ(t, z)

∫
Rd

(f(y)− f(z))Q(t, z,dy) , (15)

for all functions f ∈ dom(Lt), that is the space of measurable functions such that

Mf
t = f(Zt)− f(Z0)−

∫ t

0

Lsf(Zs)ds

is a local martingale. We also introduce the Carré du champ Γt(f, g) := Lt(fg)− fLtg − gLtf,
with domain dom(Γt) := {f, g : f, g, fg ∈ dom(Lt)} which in the case of a PDMP with generator
(15) takes the form

Γt(f, g)(z) = λ(t, z)

∫
Rd

(f(y)− f(z))(g(y)− g(z))Q(t, z,dy) .

A.4 Proof of Proposition 1

In order to prove Proposition 1 we apply Conforti and Léonard [2022, Theorem 5.7] and hence
in this section we verify the required assumptions. Before starting, we state the following techni-
cal condition which we omitted in Proposition 1 and is assumed in Conforti and Léonard [2022,
Theorem 5.7].

H4 It holds C2
c(Rd) ⊂ dom(Lt) for any t ∈ R+.

We now turn to verifying the remaining assumptions in Conforti and Léonard [2022, Theorem 5.7].
The “General Hypotheses” of Conforti and Léonard [2022] are satisfied since we assume the vector
field Φ is locally bounded, the switching rate (t, z) 7→ λ(t, z) is a continuous function, and the jump
kernel Q is such that Q(t, x, ·) is a probability distribution. In particular these assumptions imply
that

sup
t∈[0,T ],|z|⩽ρ

∫
Rd

(1 ∧ |z − y|2)λ(t, z)Q(t, z,dy) ⩽ sup
t∈[0,T ],|z|⩽ρ

λ(t, z) <∞ for all ρ ⩾ 0.

Then, Conforti and Léonard [2022, Theorem 5.7] requires a further integrability condition, which is
satisfied when ∫

[0,T ]×Rd×Rd

(1 ∧ |z − y|2)µ0Pt(dz)λ(t, z)Q(t, z,dy) <∞.

It is then sufficient to have that ∫ Tf

0

E[λ(t, Zt)]dt <∞ (16)

Finally, Conforti and Léonard [2022, Theorem 5.7] requires some technical assumptions which we
now discuss. Introduce the class of functions that are twice continuously differentiable and com-
pactly supported, denoted by C2c (Rd), and for f ∈ C2c (Rd) consider the two following conditions:∫ T

0

∫
Rd

µ0Pt(dz)|Ltf(z)|dt <∞, (17)
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∫ T

0

∫
Rd

µ0Pt(dz)|Γt(f, g)(z)|dt <∞ for all g ∈ C2c (Rd). (18)

We define F := {f ∈ C2c (E) : (17), (18) hold }. We need to verify that F ≡ C2c (E). Let us start by
considering (17): we find∫ T

0

µ0Pt(dz)|Ltf(z)|dt

⩽
∫ T

0

µ0Pt(dz)

(
|⟨Φ(t, z),∇f(z)⟩|+ λ(t, z)

∫
|u(y)− u(z)|Q(t, z,dy)

)
dt.

Since f ∈ C2c (E) we have that |⟨Φ(t, z),∇f(z)⟩| is compactly supported and hence integrable, while
the second term is finite assuming

∫ T
0
E[λ(t, Zt)]dt <∞. Under the latter assumption, (18) can be

easily verified.

A.5 Proof of Proposition 2

Let us denote the initial condition of the forward PDMP by µ0 = µX0 ⊗ µV0 . First of all, notice that,
for a PDMP with position-velocity decomposition and homogeneous jump kernel, the flux equation
(3) becomes

µ0Pt̃(dy,dw)
←−
λ (t, (y, w))

←−
Q(t, (y, w), (dx, dv)) = µ0Pt̃(dx, dv)λ(t̃, (x, v))Q((x, v), (dy,dw))

where t̃ = Tf − t. Moreover, since the jump kernel leaves the position vector unchanged we obtain
that this is equivalent to

µ0Pt̃(dw|y)
←−
λ (t, (y, w))

←−
Q(t, (y, w), (dx, dv)) = µ0Pt̃(dv|y)λ(t̃, (y, v))Q((x, v), (dy,dw)),

where µ0Pt(dw|y) is the conditional law of the velocity vector given the position vector at time t
with initial distribution µ0.

Suppose first that Q((y, w), (dx,dv)) = δy(dx)δRyw(dv) for an involution Ry . Then we find

µ0Pt̃(dw|y)
←−
λ (t, (y, w))

←−
Q(t, (y, w), (dx, dv)) = µ0Pt̃(dRyw|y)λ(t̃, (y,Ryw))δy(dx)δRyw(dv)

where we used that δRyw(dv) = δRyv(dw) since Ry is an involution. Under our assumptions we
have

µ0Pt̃(dRyw|y) = pt̃(Ryw|y)µVref(dw), µ0Pt̃(dw|y) = pt̃(w|y)µVref(dw),
since we assumed µVref(dw) = µVref(dRyw). Hence we find for any (y, w) ∈ R2d such that
pt̃(w|y) > 0

←−
λ (t, (y, w))

←−
Q(t, (y, w), (dx, dv)) =

pt̃(Ryw|y)
pt̃(w|y)

λ(t̃, (y,Ryw))δy(dx)δRyw(dv).

This can only be satisfied if

←−
λ (t, (y, w)) =

pt̃(Ryw|y)
pt̃(w|y)

λ(t̃, (y,Ryw)), Q(t, (y, w), (dx,dv)) = δy(dx)δRyw(dv).

Consider now the second case, that is Q((y, w), (dx, dv)) = δy(dx)ν(dv|y) and λ(t, (y, w)) =
λ(t, y). The flux equation (3) can be rewritten as

µ0Pt̃(dw|y)
←−
λ (t, (y, w))

←−
Q(t, (y, w), (dx,dv)) = µ0Pt̃(dv|y)λ(t̃, y)δy(dx)ν(dw|y)

Under our assumptions we have ν(dw|y) = (dν/dµVref)(w|y)µVref(dw) and µ0Pt̃(dw|y) =
pt̃(w|y)µVref(dw) for some measure µVref . Hence for any (y, w) ∈ R2d such that pt̃(w|y) > 0
we obtain

←−
λ (t, (y, w))

←−
Q(t, (y, w), (dx,dv)) =

(dν/dµVref)(w|y)
pt̃(w|y)

λ(t̃, y)pt̃(dv|y)δy(dx).

This is satisfied when
←−
λ (t, (y, w)) =

(dν/dµVref)(w|y)
pt̃(w|y)

λ(t̃, y),
←−
Q(t, (y, w), (dx, dv)) = µ0Pt̃(dv|y)δy(dx).
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A.6 Extension of Proposition 2 to multiple jump types

Proposition 2 considers PDMPs with one type of jump, while here we discuss the case of charac-
teristics of the form (14), which is e.g. the case of ZZP and BPS. In this setting we can assume the
backward jump rate and kernel have a similar structure, that is

←−
λ (t, z) =

ℓ∑
i=1

←−
λ i(t, z) ,

←−
Q(t, z,dz′) =

ℓ∑
i=1

←−
λ i(t, z)
←−
λ (t, z)

←−
Q i(t, z,dz

′) ,

in which case the balance condition (3) can be rewritten as

µ0PTf−t(dy)

ℓ∑
i=1

←−
λ i(t, y)

←−
Q i(t, y, dz) = µ0PTf−t(dz)

ℓ∑
i=1

λi(Tf − t, z)Qi(Tf − t, z,dy) .

It is then enough that

µ0PTf−t(dy)
←−
λ i(t, y)

←−
Q i(t, y,dz) = µ0PTf−t(dz)λi(Tf − t, z)Qi(Tf − t, z,dy)

holds for all i ∈ {1, . . . , ℓ}. It follows that it is sufficient to apply Proposition 2 to each pair (λi, Qi)
to obtain (

←−
λ i,
←−
Q i) such that (3) holds.

A.7 Time reversals of ZZP, BPS, and RHMC

In this section we give rigorous statements regarding time reversals of ZZP, BPS, and RHMC. For
all samplers we rely on Proposition 2 and hence we focus on verifying its assumptions. In the cases
of ZZP and RHMC we assume the technical condition H4 since proving it rigorously is out of the
scope of the present paper. We remark that this can be proved with techniques as in Durmus et al.
[2021], which show H4 in the case of BPS.

Proposition 4 (Time reversal of ZZP) Consider a ZZP (Xt, Vt)t∈[0,Tf ] with initial distribution
µ⋆ ⊗ ν, where ν = Unif({±1}d) and invariant distribution π ⊗ ν, where π has potential ψ satisfy-
ing H1. Assume that H4 holds and that

∫
µ⋆(dx)|∂iψ(x)| < ∞ for all i = 1, . . . , d. Then the time

reversal of the ZZP has vector field
←−
ΦZ(x, v) = (−v, 0)T

and jump rates and kernels are given for all (y, w) ∈ R2d such that PTf−t(w|y) > 0 by

←−
λ Z
i (t, (y, w)) =

pTf−t(R
Z
i w|y)

pTf−t(w|y)
λZi (y,R

Z
i w),

←−
QZ
i ((y, w), (dx, v)) = δ(y,RZ

i w)(dx, v)

for i = 1, . . . , d.

Proof We verify the conditions of Proposition 2 corresponding to deterministic transitions and
rely on Appendix A.6 to apply the proposition to each pair (λZi , Q

Z
i ). First notice the vector

field Φ(x, v) = (v, 0)T is clearly locally bounded and (t, x) 7→ λ(x, v) is continuous since
ψ is continuously differentiable. Moreover, the ZZP can be shown to be non-explosive apply-
ing Durmus et al. [2021, Proposition 9]. Then, we need to verify (16). First, observe that
E[λi(Xt, Vt)] ⩽ E[|∂iψ(Xt)|]. Then

E[|∂iψ(Xt)|] = E
[∣∣∣∣∂iψ(X0) +

∫ 1

0

⟨Xt −X0,∇∂iψ(X0 + s(Xt −X0))⟩ds
∣∣∣∣]

⩽ E[|∂iψ(X0)|] + E
[∫ 1

0

|⟨Xt −X0,∇2ψ(X0 + s(Xt −X0))ei⟩|ds
]

where ei is the i-th vector of the canonical basis. Notice that |Xt −X0| ⩽ t
√
d. Thus we find

E[|∂iψ(Xt)|] ⩽ E[|∂iψ(X0)|] + t
√
d sup
x∈Rd

∥∇2ψ(x)∥
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and therefore∫ Tf

0

E[λ(Xt, Vt)]dt ⩽ Tf

d∑
i=1

(
E|∂iψ(X0)|+

Tf
2

√
d sup
x∈Rd

∥∇2ψ(x)∥
)
.

Since Eµ⋆
|∂iψ(X)| < ∞ and because we are assuming H1, we obtain (16). Finally, notice that

Pt(dv|x) is absolutely continuous with respect to the counting measure on {1,−1}d, which is
clearly invariant with respect to RZ

i . □

Proposition 5 (Time reversal of BPS) Consider a BPS (Xt, Vt)t∈[0,Tf ] with initial distribution
µ⋆⊗ν, where ν = Unif(Sd−1), and invariant distribution π⊗ν, where π has potential ψ satisfying
H1. Assume that Eµ⋆

[|∇ψ(X)|] < ∞. Then there exists a density pt(w|y) := d(µ0Pt)(dw|y)/ν(dw).
Moreover, the time reversal of the BPS has vector field

←−
ΦB(x, v) = (−v, 0)T ,

while the jump rates and kernels are given for all t, y, w ∈ [0,Tf ]×R2d such that pTf−t(w|y) > 0
by

←−
λ B

1 (t, (y, w)) =
pt̃(R

B
y w|y)

pt̃(w|y)
λB1 (y,R

B
y w),

←−
QB

1 ((y, w), (dx, dv)) = δ(y,RB
yw)(dx, dv),

←−
λ B

2 (t, (y, w)) = λr
1

pTf−t(w|y)
,
←−
QB

2 (t, (y, w), (dx, dv)) = µ0PTf−t(dv|y)δy(dx)dv, (19)

where t̃ = Tf − t.

Remark 3 Under the assumption that ν is the uniform distribution on the sphere, it is natural to
take µV

ref = ν, which gives that dν/dµV
ref = 1 and hence the backward refreshment rate is as in (19).

When ν is the d-dimensional Gaussian distribution, the natural choice is to let µV
ref be the Lebesgue

measure and hence we obtain a rate as given in (5).

Proof We verify the general conditions of Proposition 2, then focusing on the deterministic jumps
and the refreshments relying on Appendix A.6. The BPS was shown to be non-explosive for
any initial distribution in Durmus et al. [2021, Proposition 10]. Since λ(t, (x, v)) = λ(x, v) =
⟨v,∇ψ(x)⟩+, with a similar reasoning of the proof of Proposition 4 we have

E[λ(Xt, Vt)] = E

[(
⟨Vt,∇ψ(X0)⟩+

∫ 1

0

⟨Vt,∇2ψ(X0 + s(Xt −X0))(Xt −X0)⟩ds
)

+

]
.

Taking advantage of |Vt| = 1 we have |Xt −X0| ⩽ t and thus we find

E[λ(Xt, Vt)] ⩽ E
[
|∇ψ(X0)|+

∫ 1

0

|∇2ψ(X0 + s(Xt −X0))(Xt −X0)|ds
]

⩽ E [|∇ψ(X0)|] + t sup
x∈Rd

∥∇2ψ(x)∥.

This is sufficient to obtain (16) since E[|∇ψ(X0)|] < ∞ and we assume H1. Moreover, H4 holds
by Durmus et al. [2021, Proposition 23]. Finally notice that Pt(dv|x) is absolutely continuous with
respect to µV

ref = Unif(Sd−1), which satisfies µB
ref(R

B(x)v) = µB
ref(v) for all x, v ∈ Rd × Sd−1.

All the required assumptions in Proposition 2 are thus satisfied. □

Proposition 6 (Time reversal of RHMC) Consider a RHMC (Xt, Vt)t∈[0,Tf ] with initial distribu-
tion µ⋆ ⊗ ν, where ν is the d-dimensional standard normal distribution, and invariant distribution
π ⊗ ν, where π has potential ψ ∈ C1(Rd). Suppose that H4 holds and that for any y ∈ Rd,
Pt(dw|y) is absolutely continuous with respect to Lebesgue measure, with density pt(w|y). Then
the time reversal of the RHMC has vector field

←−
ΦH(x, v) = (−v,∇ψ(x))T ,

while the jump rates and kernels are given for all (y, w) ∈ R2d such that pTf−t(w|y) > 0 by

←−
λ H

2 (t, (y, w)) = λr
ν(w)

pTf−t(w|y)
,
←−
QH

2 (t, (y, w), (dx,dv)) = pTf−t(v|y)δy(dx)dv.
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Proof First of all, RHMC is non-explosive by Durmus et al. [2021, Proposition 8]. Then Φ is
locally bounded and (16) is trivially satisfied. Finally, we can take µV

ref to be the Lebesgue measure.
□

B Density ratio matching

B.1 Ratio matching with Bregman divergences

We now describe a general approach to approximate ratios of densities based on the minimisation of
Bregman divergences [Sugiyama et al., 2011], which as we discuss is closely connected to the loss
of Hyvärinen [2007].

For a differentiable, strictly convex function f we define the Bregman divergence Bf (r, s) := f(r)−
f(s)− f ′(s)(r− s). Given two time-dependent probability density functions on R2d, p, q, we wish
to approximate their ratio r(x, v, t) = pt(x,v)/qt(x,v) for t ∈ [0,Tf ] with a parametric function
sθ : Rd × Rd × [0,Tf ]→ R+ by solving the minimisation problem

min
θ

∫ Tf

0

ω(t)E
[
Bf (r(Xt, Vt, t), sθ(Xt, Vt, t))

]
dt,

where the expectation is with respect to the joint density qt(x, v), that is (Xt, Vt) ∼ qt, while ω is
a probability density function for the time variable. Well studied choices of the function f include
e.g. f(r) = r log r − r, that is related to a KL divergence, or f(r) = (r − 1)2, related to the square
loss, or f(r) = r log r − (1 + r) log(1 + r), which corresponding to solving a logistic regression
task. Ignoring terms that do not depend on θ we can rewrite the minimisation as

min
θ

∫ Tf

0

ω(t)
(
Ept
[
f ′(sθ(Xt, Vt, t))sθ(Xt, Vt, t)− f(sθ(Xt, Vt, t))

]
− Eqt

[
f ′(sθ(Xt, Vt, t))

])
dt.

Notably this is independent of the true density ratio and thus it is a formulation with similar spirit
to implicit score matching. Naturally, in practice the loss can be approximated empirically with a
Monte Carlo average.

B.2 Details and proofs regarding Hyvärinen’s ratio matching

B.2.1 Connection to Bregman divergences

In the next statement, we show that the loss ℓI defined in (6), or equivalently its explicit counterpart
ℓE (see Proposition 3), can be put in the framework of Bregman divergences.

Corollary 1 Recall G(r) = (1 + r)−1 and let f(r) = (r−1)2/2. The task minθ ℓE(θ) is equivalent
to

min
θ

d∑
i=1

Ept
[
Bf (G(sθi (Xt, Vt, t)),G(ri(Xt, Vt, t)))

+ Bf (G(sθi (Xt,R
Z
i Vt, t)),G(ri(Xt,R

Z
i Vt, t)))

]
Proof The result follows by straightforward computations. □

B.2.2 Proof of Proposition 3

The proof follows the same lines as Hyvärinen [2007, Theorem 1]. We find

ℓE(θ) = C +

∫ Tf

0

ω(t)

d∑
i=1

Ept
[
G2(sθi (Xt, Vt, t)) +G2(sθi (Xt,R

Z
i Vt, t))

− 2G(ri(Xt, Vt, t))G(sθi (Xt, Vt, t))− 2G(sθi (Xt,R
Z
i Vt, t))G(ri(Xt,R

Z
i Vt, t))

]
dt,
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Algorithm 1: Pseudo-code for the simulation of a homogeneous PDMP
Input : Time horizon T, initial condition (x, v).
Set t = 0, (X0, V0) = (x, v);
while t < T do

draw E ∼ Exp(1);
compute the next event time, that is τ ∈ R+ such that

∫ τ
0
λ(φu(Xt, Vt))du = E ;

if t+ τ > T then
set ZT = φT−t(Zt);

else
simulate Zt+τ ∼ Q(φs(Zt), ·);

end
set t = t+ τ ;

end

where C is a constant independent of θ. Then plugging in the expression of G we can rewrite the
last term as

Ept
[
G(sθi (Xt,R

Z
i Vt, t))G(ri(Xt,R

Z
i Vt, t))

]
=

∫ ∑
v∈{±1}d

pt(x, v)G(sθi (x,R
Z
i v, t))

pt(x,RZ
i v)

pt(x, v) + pt(x,RZ
i v)

dx

= Ept
[
G(sθi (Xt, Vt, t))

pt(Xt,RZ
i Vt)

pt(Xt, Vt) + pt(Xt,RZ
i Vt)

]
.

Therefore we find

ℓE(θ) = C +

∫ Tf

0

ω(t)

d∑
i=1

Ept

[
G2(sθi (Xt, Vt, t)) +G2(sθi (Xt,R

Z
i Vt, t))

− 2G(sθi (Xt, Vt, t)) pt(Xt, Vt)

pt(Xt, Vt) + pt(Xt,RZ
i Vt)

− 2G(sθi (Xt, Vt, t)) pt(Xt,RZ
i Vt)

pt(Xt, Vt) + pt(Xt,RZ
i Vt)

]
dt

= C +

∫ Tf

0

ω(t)

d∑
i=1

Ept
[
G2(sθi (Xt, Vt, t)) +G2(sθi (Xt,R

Z
i Vt, t))− 2G(sθi (Xt, Vt, t))

]
dt.

C Simulation of forward and backward PDMPs

C.1 Simulation of the forward PDMPs

The forward PDMPs that we consider can all be simulated exactly by solving the integral (13), at
least when the limiting distribution is the multivariate standard normal. This is possible because for
each process we can easily simulate the random event times as well as their deterministic dynamics.
The general procedure for the simulation of a time-homogeneous PDMP up to a fixed time horizon T
is given in Algorithm 1. In the remainder of the section we give additional details on the simulation
of each process.

RHMC: The case of RHMC is trivial, since the random events have the exponential distribution
with constant parameter λr and the deterministic dynamics are given by xt = x0 cos(t) + v0 sin(t)
and vt = −x0 sin(t) + v0 cos(t), where (x0, v0) is the initial condition. Hence all the steps in
Algorithm 1 can be performed and the state (XT, VT) can be easily obtained.

ZZP: Notice the event rates of ZZP are of the form λi(x, v) = (vixi)+ when the stationary distri-
bution is the standard normal. In this case we find that each coordinate of the ZZP is independent,
that is the evolution of ((Xt)i, (Vt)i) is not affected by ((Xt)j , (Vt)j) for i, j = 1, . . . , d with i ̸= j.
Therefore we can simulate each coordinate of the ZZP in parallel following the procedure in Algo-
rithm 1. Let us illustrate how one can obtain the next event time τ of the i-th coordinate when the
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process is at (xi, vi). We have that τ solves
∫ τ
0
(vixi+u)+du−E = 0 for E ∼ Exp(1). This gives

the following quadratic equation for τ :

τ2

2
+ vixiτ − vixi(−vixi)+ −

1

2
(−vixi)2+ − E = 0,

which has solution

τ = −vixi +
√
(vixi)2+ + 2E.

BPS: In the case of BPS one has to simulate a proposal for both the next reflection event, τb and
for the next refreshment event, τr, then accepting the smallest of the two as event time. Obtaining
the proposal for the next refreshment time is straightforward since the rate is constant. The proposal
for the following reflection time can be obtained similarly to the case of ZZP, but noticing that in
this case the event rate is λ(x, v) = ⟨v, x⟩+. Then τb solves

∫ τb
0
(⟨v, x⟩ + |v|2u)+du − E = 0 for

E ∼ Exp(1). Noticing that it must be τb > ⟨v,x⟩/|v|2, this gives the following quadratic equation for
τb:

|v|2

2
τ2b + ⟨v, x⟩τb +

1

2
(−⟨v, x⟩)2+ − E = 0,

which has solution

τb =
−⟨v, x⟩+

√
⟨v, x⟩2+ + 2|v|2E
|v|2

.

C.2 Simulation of time reversed PDMPs with splitting schemes

Here we discuss the splitting schemes we use to discretise the backward PDMPs. For further details
on this class of approximations we refer the reader to Bertazzi et al. [2023].

RHMC: We have already discussed the splitting scheme DJD for RHMC in Section 2.4, and we
give the pseudo-code in Algorithm 2.

Algorithm 2: Splitting scheme DJD for the time reversed RHMC

Initialise either from (X0, V 0) ∼ π ⊗ ν or (X0, V 0) ∼ π(dx)pθ∗(dv|x,Tf );
for n = 0, . . . , N − 1 do

(X̃, Ṽ ) = φH
−δn+1/2(Xtn , V tn) ;

t̃ = Tf − tn − δn+1

2 ;
Estimate ratio: s = ν(Ṽ )/pθ∗ ( Ṽ | X̃, t̃ ) ;
Draw proposal τn+1 ∼ Exp(sλr) ;
if τn+1 ⩽ δn+1 then

Draw Ṽ ∼ pθ∗( · |X̃, t̃ );
end
(Xtn+1

, V tn+1
) = φH

−δn+1/2(X̃, Ṽ );
end

ZZP: For ZZP we apply the splitting scheme DJD discussed in Section 2.4, with the only differ-
ence that we allow multiple velocity flips during the jump step similarly to Bertazzi et al. [2023].
Algorithm 3 gives a pseudo-code.

BPS: In the case of BPS, we follow the recommendations of Bertazzi et al. [2023] and adapt their
splitting scheme RDBDR, where R stands for refreshments, D for deterministic motion, and B for
bounces. We give a pseudo-code in Algorithm 4. We remark that an alternative is to use the scheme
DJD for BPS, simulating reflections and refreshments in the J part of the splitting. This choice has
the advantage of reducing the number of model evaluations.
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Algorithm 3: Splitting scheme DJD for the time reversed ZZP

Initialise (X0, V 0) ∼ π ⊗ ν;
for n = 0, . . . , N − 1 do

X̃ = Xtn −
δn+1

2 V tn ;
Ṽ = V tn ;
t̃ = Tf − tn − δn+1

2 ;
Estimate density ratios: sθ

∗
(X̃, Ṽ , t̃ ) ;

for i = 1 . . . , d do
With probability (1− exp(−δn+1 s

θ∗

i (X̃, Ṽ , t̃ ) λi(X̃,RZ
i Ṽ ))) set Ṽ = RZ

i Ṽ ;
end
Xtn+1

= X̃ − δn+1

2 Ṽ ;
V tn+1 = Ṽ ;

end

Algorithm 4: Splitting scheme RDBDR for the time reversed BPS

Initialise either from (X0, V 0) ∼ π ⊗ ν or (X0, V 0) ∼ π(dx)pθ∗( · |x,Tf ) ;
for n = 0, . . . , N − 1 do

Ṽ = V tn ;
Estimate density ratio: s2 = ν(Ṽ )/pθ∗ ( Ṽ | Xtn , Tf−tn) ;
With probability (1− exp(−λrs2 δn+1

2 )) draw Ṽ ∼ pθ∗( · |Xtn ,Tf − tn) ;
X̃ = Xtn −

δn+1

2 V tn ;
t̃ = Tf − tn − δn+1

2 ;
Estimate density ratio: s1 = pθ∗ (R

B

X̃
Ṽ | X̃, t̃ )/pθ∗ ( Ṽ | X̃, t̃ ) ;

With probability (1− exp(−δn+1s1λ1(X̃,RB
X̃
Ṽ ))) set Ṽ = RB

X̃
Ṽ ;

Xtn+1
= X̃ − δn+1

2 Ṽ ;
Estimate density ratio: s2 = ν(Ṽ )/pθ∗ ( Ṽ | Xtn+1

, Tf−tn+1) ;
With probability (1− exp(−λrs2 δn+1

2 )) draw Ṽ ∼ pθ∗( · |Xtn ,Tf − tn+1) ;
V tn+1

= Ṽ ;
end

D Training the generative models

In this section, we present the algorithmic procedures used to train our generative models, and
outline computational differences with the popular framework of denoising diffusion models. In
Table 3 we list the backward rates and kernels of the time reversal associated with each forward
PDMP introduced in Section 2.1. In Appendix D.1 we give the procedure used for ZZP, while
in Appendix D.2 we focus on RHMC and BPS, which can be trained with the same approach.
In Appendix D.3 we compare the training phase of PDMP-based and diffusion-based generative
models.

D.1 Fitting the ZZP-based generative model

In the case of ZZP, we only need to approximate the jump rates
←−
λ Z
i of the backward process,

since we have access to the true backward kernel. To this end, we introduce a class of functions
{sθ : Rd × {−1, 1}d × [0,Tf ]→ Rd+ : θ ∈ Θ} for some parameter set Θ ⊂ Rdθ such that for any
i ∈ {1, . . . , d}, the i-th component of sθ(y, w, t), denoted by sθi (y, w, t), is an approximation of

rZi (y, w, t) =
pTf−t(R

Z
i w|y)

pTf−t(w|y)
.
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Process Backward Rates Backward Kernels

ZZP for i = 1, . . . , d for i = 1, . . . , d
←−
λ Z
i (t, (y, w)) =

pTf−t(R
Z
i w | y)

pTf−t(w | y)
λZi
(
y,RZ

i w
) ←−

QZ
i

(
(y, w), (dx, dv)

)
= δ(

y,RZ
i w
)(dx,dv)

RHMC
←−
λ H(t, (y, w)) = λr

ν(w)

pTf−t(w | y)
←−
QH
(
t, (y, w), (dx, dv)

)
= pTf−t(v | y) δy(dx) dv

BPS
←−
λ B

1 (t, (y, w)) =
pTf−t(R

B
y w | y)

pTf−t(w | y)
λB1
(
y,RB

y w
)

←−
QB

1

(
(y, w), (dx,dv)

)
= δ(

y,RB
yw
)(dx, dv)

←−
QB

2

(
t, (y, w), (dx, dv)

)
= pTf−t(v | y) δy(dx) dv

←−
λ B

2 (t, (y, w)) = λr
ν(w)

pTf−t(w | y)

Table 3: Time Reversal Characteristics of ZZP, RHMC, BPS.

We learn sθ by minimising the empirical counterpart of the implicit ratio matching loss ℓI given in
(7). We define such empirical loss ℓ̂I as the function ℓ̂I : θ 7→ L̂I(sθ, (X

n
τn , V nτn , τn)Nn=1) for

L̂I(sθ, (X
n
τn , V nτn , τn)Nn=1)

=
1

N

N∑
n=1

d∑
i=1

(
G2(sθi (X

n
τn , V nτn , τn)) +G2(sθi (X

n
τn ,RZ

i V
n
τn , τn))− 2G(sθi (X

n
τn , V nτn , τn))

)
,

(20)
where {τn}Nn=1 are i.i.d. samples from ω, independent of {(Xn

t , V
n
t )t⩾0}Nn=1, which areN i.i.d. re-

alisations of the ZZP respectively starting at the n-th training data point Xn
0 with velocity V n0 ,

where {V n0 }Nn=1 are i.i.d. observations of Unif({−1, 1}d). Algorithm 5 shows the pseudo code for
our training algorithm. We remark that the simulation of the forward ZZP follows the guidelines
explained in Appendix C.1.

Algorithm 5: Training loop for ZZP-based generative models

Input: Time distribution ω on [0,Tf ], model sθ
while θ has not converged do

Get random data batch {Xn
0 }Bn=1;

Sample {τn}Bn=1 ∼ ω⊗B ;
Sample {V n0 }Bn=1 ∼ Unif({±1}d)⊗B ;
for n = 1 to B do

Simulate (Xn
τn , V nτn) by running a ZZP from (Xn

0 , V
n
0 );

Compute loss ℓ̂I(θ)← L̂I(s
θ, (Xn

τn , V nτn , τn)Bn=1) ;
Perform optimization step on ℓ̂I(θ);

Output: trained model sθ
∗

A computationally efficient model for the ZZP. The computation of L̂I in each iteration of Al-
gorithm 5 requires evaluating d+1 times the model sθ for each data-point. Indeed, the loss function
(7) requires evaluating sθ for each component flip of the velocity vector. Hence the computational
cost of the algorithm scales linearly in the data dimension d.

In order to overcome this computational burden we build an alternative model leveraging the fol-
lowing observation:

pt(vi|x, v−i) ≈ pt(vi|x), (21)
where v−i denotes the vector containing all components of v other than the i-th. The approximation
in (21) is motivated by the fact that we expect the components of the velocity to be nearly indepen-
dent conditional on the position vector. This is because the position of the process holds most of the
information regarding the velocity of each coordinate. Under (21) we find that a good approximation
for the ratio rZi (x, v, t) is given by

rZi (x, vi, t) :=
pt(−vi|x)
pt(vi|x)

.
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Hence it is reasonable to estimate the simplified ratios rZi rather than the true ratios rZi (x, v, t). In
particular this can be achieved with a model sθ that requires the current position and time, and only
the i-th velocity component rather than the full vector v.

Following the reasoning above we build an alternative model which takes as input the position vector
and the time variable and outputs a 2d-dimensional vector, that is {sθ : Rd × [0,Tf ] → R2d

+ : θ ∈
Θ}. We introduce the following notation for the output of the neural network sθ:

sθ : (x, t) 7→
(
sθ+(x, t), s

θ
−(x, t)

)
∈ R2d

+ , (22)

where sθ+ and sθ− are both vectors in Rd and denote the two, d-dimensional blocks in the output of
sθ. The model will be trained in such a way that sθ+,i(x, t), that is the i-th component of the vector
sθ+(x, t), approximates rZi (x,+1, t), i.e. in the case vi = +1. Similarly, we estimate rZi (x,−1, t)
with sθ−,i(x, t).

Let us now describe how we can train this model in such a way that the computational cost remains
constant in the dimensionality of the data. For any w ∈ {1,−1}d, we introduce the projection
operator Πiw defined for any w ∈ {±1}d, i ∈ {1, . . . , d}, y ∈ Rd, t ∈ [0,Tf ] as

Πiws
θ(y, t) = sθsign(wi),i

(y, t), (23)

where we have sign(wi) = + when wi = +1 and sign(wi) = − when wi = −1. In words,
Πiws

θ(y, t) selects either sθ+ or sθ− in (22) based on sign(wi) and returns the estimate of the i-th
ratio at (y, t) corresponding to the velocity wi. Using the operator Πiw we can re-formulate the loss
(7) as

ℓ̃I(θ) =

∫ Tf

0

dt ω(t)

d∑
i=1

E
[
G2(ΠiVt

sθ(Xt, t)) +G2(Πi−Vt
sθ(Xt, t))− 2G(ΠiVt

sθ(Xt, t))
]
.

The associated empirical loss is ℓ̂I : θ 7→ L̂Simple
I (sθ, (Xn

τn , V nτn , τn)Nn=1) were

L̂Simple
I (sθ, (xn, vn, tn)Nn=1) =

1

N

N∑
n=1

d∑
i=1

(
G2(Πivns

θ(xn, tn)) +G2(Πi−vns
θ(xn, tn))− 2G(Πivns

θ(xn, tn))
)
,

(24)

where {τn}Nn=1 and {(Xn
t , V

n
t )t⩾0}Nn=1 are obtained as in (20). This simplified model can then be

trained using the same procedure shown in Algorithm 5, but where the loss above is used instead of
the loss (20). The computational cost for the training of this model is clearly constant in the data
dimension d, since only a single evaluation of the model sθ is needed for each data-point.

D.2 Fitting the RHMC and BPS-based generative models

In the case of RHMC and BPS both the backward rate and backward jump kernel are characterised
by pt(v|x). We introduce a parametric family of conditional probability distributions {pθ : θ ∈ Θ}
of the form (x, v, t) 7→ pθ(v|x, t), where Θ ⊂ Rdθ , which we model with normalising flows (NFs)
[Papamakarios et al., 2021], as it permits both obtaining an estimate of the density, at a given state
and time, and also to generate samples according to this distribution. To train our model, we rely on
the maximum likelihood population loss method, as derived in (8), and use its empirical counterpart
(9). The final BPS and RHMC training algorithm is given in Algorithm 6. The simulation of the
forward BPS and RHMC follows the methods listed in Appendix C.1.

D.3 Computational comparison with diffusion models

We provide a short comparison of the computational complexity of our PDMP generative methods
with diffusion models, as each generative method admits the same design: a fixed forward process
{Xt}0⩽t⩽Tf

ran from time 0 to Tf , with XTf
approximately distributed as a standard Gaussian

N (0, Id) (using the Variance-Preserving process in the case of diffusion models [Song et al., 2021]),
a corresponding backward process {

←−
X t}0⩽t⩽Tf

, and a generative process {
←−
X θ
t }0⩽t⩽Tf

being an
approximation to the true backward process, initialized from

←−
X θ

0 ∼ N (0, Id).
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Algorithm 6: Training loop for RHMC and BPS based generative models
Input: Time distribution ω on [0,Tf ], model pθ
while θ has not converged do

Get random data batch {Xn
0 }Bn=1;

Sample {τn}Bn=1 ∼ ω⊗B ;
Sample {V n0 }Bn=1 ∼ N (0, Id)

⊗B ;
for n = 1 to B do

Simulate (Xn
τn , V nτn) running a RHMC/BPS from (Xn

0 , V
n
0 );

Lθ ← − 1
B

∑B
n=1 log pθ(V

n
τn |Xτn , τn);

Perform optimisation step on Lθ;
Output: trained model pθ∗

Using conventional notations for diffusion models [Song et al., 2021] we denote by (ᾱt)0⩽t⩽Tf
the

variance-preserving noise schedule, such that the distribution of the forward process at any time t is
given by

Xt
d
=
√
ᾱtX0 +

√
1− ᾱtGt , (25)

where Gt ∼ N (0, Id). The generative process {
←−
X θ
t }0⩽t⩽Tf

is typically defined by a denoiser
neural network ϵθ, θ ∈ Rdθ , trained with the denoiser loss

ℓθdiffusion = E
[∥∥∥ϵθ(Xt, t)−

Xt −
√
ᾱtX0√

1− ᾱt

∥∥∥2
2

]
,

where t ∼ ω is the time parameter. We display the training algorithm for diffusion models in
Algorithm 8. For the sake of comparison we give in Algorithm 7 the general procedure used for
PDMP-based generative models.

Algorithm 7: Training loop for PDMP-based
generative models
Input: Time distribution ω on [0,Tf ], model

sθ

while θ has not converged do
Get random data batch {Xn

0 }Bn=1;
Sample {τn}Bn=1 ∼ ω⊗B ;
Sample {V n0 }Bn=1 ∼ Unif({±1}d)⊗B ;
for n = 1 to B do

Simulate (Xn
τn , V nτn) by running

PDMP from (Xn
0 , V

n
0 );

Compute loss Lθ ;

Perform optimization step on Lθ;

Output: trained model sθ
∗

Algorithm 8: Training loop for diffusion-
based generative models
Input: Time distribution ω on [0,Tf ], noise

schedule {ᾱt}
Tf

t=0, model ϵθ
while θ has not converged do

Get random data batch {Xn
0 }Bn=1;

Sample {τn}Bn=1 ∼ ω⊗B ;
Sample {ϵn}Bn=1 ∼ N (0, Id)

⊗B ;
for n = 1 to B do

Compute
Xn
τn =

√
ᾱτn Xn

0 +
√
1− ᾱτn ϵn;

Compute loss
Lθ ← 1

B

∑B
n=1

∥∥ϵθ(Xn
τn , τn)− ϵn

∥∥2;
Perform optimization step on Lθ;

Output: trained model ϵθ
∗

Computational differences in training the models We compare the training algorithms:

• The simulation of the forward process {Xt}0⩽t⩽Tf
is more efficient in the case of diffusion

models, since the distribution of Xt given X0 is explicitly characterizable as given in (25),
whereas in the case of PDMPs the complexity scales with the expected number of random
jumps in [0,Tf ].

• Computing the loss function has the same computational cost (number of evaluations of the
network relative to the dimension of the data) for PDMP and diffusion models (assuming
we are using the simplified model for ZZP, as introduced in Appendix D.1).
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Computational differences in the generative processes Since we are using the splitting scheme
for our PDMPs, simulating the backward processes admits a computational complexity growing lin-
early with the chosen number of backward steps N , alike diffusion models [Song et al., 2021]. The
latter models require only a single network inference per backward step. However, as measured in
Table 2, each backward step is costlier in the case of our PDMP samplers. We provide an explanation
for each sampler:

• ZZP Using the simplified model introduced in Appendix D.1 and Algorithm 3, only one
network inference is required per backward step, to approximate the backward rate. How-
ever, this approach requires a slight modification to the neural network architecture, in-
volving a doubled channel output and adjustments for the element selection mechanisms
(projection operator (23)), resulting in a higher cost per step than diffusion models.

• RHMC Using Algorithm 2, one likelihood computation from the normalizing flow is
needed, to approximate the backward rate. Additionally, at most one random variable must
be drawn from the normalizing flow, which approximates the backward kernel.

• BPS Using Algorithm 4, three likelihood computations are required from the normalizing
flow, to approximate backward rates. Moreover, at most two random variables need to be
sampled from the normalizing flow, which approximates the backward kernel. The final
cost per step depends on the chosen normalizing flow architecture, but is higher for BPS
than for all other samplers.

It should be noted that, in our experiments, each generative PDMP model requires less backward
steps than the diffusion model, leading to a smaller overall computational time for equal generation
quality, as showed in Figure 3.

E Discussion and proof for Theorem 1

E.1 Discussion on H2

In this section we discuss H2 in the case of ZZP, BPS, and RHMC. For all three of these samplers,
existing theory shows convergence of the form

∥δ(x,v)Pt − π ⊗ ν∥V ⩽ C ′e−γtV (x, v), (26)

where V : R2d → [1,∞) is a positive function and ∥µ∥V := sup|g|⩽V |µ(g)| is the V -norm. When
the initial condition of the process is µ⋆ ⊗ ν, we obtain the bound

∥µ⋆ ⊗ νPt − π ⊗ ν∥V ⩽ C ′e−γtµ⋆ ⊗ ν(V ),

which translates to a bound in TV distance, since we assume V ⩾ 1. Conditions on π ensuring (26)
can be found for ZZP in Bierkens et al. [2019b], for BPS in Deligiannidis et al. [2019], Durmus
et al. [2020], and for RHMC in Bou-Rabee and Sanz-Serna [2017]. Observe that we can set the
constant C in H2 to C = C ′µ⋆ ⊗ ν(V ). Clearly, C is finite whenever µ⋆ ⊗ ν(V ) < ∞. Since
V is such that lim|z|→∞ V (z) = +∞, showing C is finite requires suitable tail conditions on the
initial distribution µ⋆ ⊗ ν. Inspecting the results of the papers mentioned above, one can verify that
µ⋆ ⊗ ν(V ) < ∞ when π is a multivariate standard Gaussian distribution as long as: (i) the tails of
µ⋆ are at least as light as those of π for ZZP and BPS, (ii) µ⋆ has finite second moments for RHMC.

E.2 Proof of Theorem 1

First notice that
∥µ⋆ − L(XTf

)∥TV ⩽ ∥µ⋆ ⊗ ν − L(XTf
, V Tf

)∥TV , (27)

hence we focus on bounding the right hand side. Under our assumptions, the forward PDMP
(Xt, Vt)t∈[0,Tf ] admits a time reversal that is a PDMP (

←−
X t,
←−
V t)t∈[0,Tf ] with characteristics

(
←−
Φ ,
←−
λ ,
←−
Q) satisfying the conditions in Proposition 1. Therefore, it holds µ⋆ ⊗ ν = L(

←−
XTf

,
←−
V Tf

)
and so (27) can be written as

∥µ⋆ − L(XTf
)∥TV ⩽ ∥L(

←−
XTf

,
←−
V Tf

)− L(XTf
, V Tf

)∥TV ,
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We introduce the intermediate PDMP (X̃t, Ṽt)t∈[0,Tf ] with initial distribution L(XTf
, VTf

)

and characteristics (
←−
Φ , λ,Q). In particular, (X̃t, Ṽt)t∈[0,Tf ] has the same characteristics as

(Xt, V t)t∈[0,Tf ], but different initial condition By the triangle inequality for the TV distance we
find

∥µ⋆ − L(XTf
)∥TV ⩽ ∥L(

←−
XTf

,
←−
V Tf

)− L(X̃Tf
, ṼTf

)∥TV + ∥L(X̃T , ṼTf
)− L(XTf

, V Tf
)∥TV.

Applying the data processing inequality to the second term, we find the bound

∥µ⋆ − L(XTf
)∥TV ⩽ ∥L(

←−
XTf

,
←−
V Tf

)− L(X̃Tf
, ṼTf

)∥TV + ∥L(XTf
, VTf

)− π ⊗ ν∥TV. (28)

The second term in (28) can be bounded applying H2, hence it is left to bound the first term. We
introduce the Markov semigroups Pt,

←−
P t, P t : R+ × R2d × B(R2d) → [0, 1] defined respectively

as Pt((x, v), ·) := P(x,v)((Xt, Vt) ∈ ·),
←−
P t((x, v), ·) := P(x,v)((

←−
X t,
←−
V t) ∈ ·), and P̃t((x, v), ·) :=

P(x,v)((X̃t, Ṽt) ∈ ·). Recall that for any probability distribution η on (R2d,B(R2d)), ηPt(·) =∫
R2d η(dx, dv)Pt((x, v), ·), and similarly for ηP̃t(·) and η

←−
P t(·). Finally, to ease the notation we

denote QTf
:= L(XTf

, VTf
) = (µ⋆ ⊗ ν)PTf

. Then we can rewrite the first term in (28) as

∥L(
←−
XTf

,
←−
V Tf

)− L(X̃Tf
, ṼTf

)∥TV = ∥QTf

←−
P Tf

−QTf
P̃Tf
∥TV

⩽
∫
QTf

(dx,dv)∥δ(x,v)
←−
P Tf

− δ(x,v)P̃Tf
∥TV. (29)

Therefore we wish to bound ∥δ(x,v)
←−
P Tf

− δ(x,v)P̃Tf
∥TV. A bound for the TV distance between

two PDMPs with same initial condition and deterministic motion, but different jump rate and kernel
was obtained in Durmus et al. [2021, Theorem 11] using the coupling inequality

∥δ(x,v)
←−
P Tf

− δ(x,v)P̃Tf
∥TV ⩽ 2P(x,v)

(
(
←−
XTf

,
←−
V Tf

) ̸= (X̃Tf
, ṼTf

)
)
,

and then bounding the right hand side. Following the proof of Durmus et al. [2021, Theorem 11] we
have that a synchronous coupling of the two PDMPs satisfies

P(x,v)

(
(
←−
XTf

,
←−
V Tf

) ̸= (X̃Tf
, ṼTf

)
)
⩽ 2E(x,v)

[
1− exp

(
−
∫ Tf

0

gt(
←−
X t,
←−
V t)dt

)]
,

where

gt(x, v) =
1

2

(←−
λ (t, (x, v)) ∧ λ(t, (x, v))

)∥∥∥←−Q(t, (x, v), ·)−Q(t, (x, v), ·)
∥∥∥
TV

+
∣∣∣←−λ (t, (x, v))− λ(t, (x, v))

∣∣∣ .
Since L(

←−
X t,
←−
V t) = L(XTf−t, VTf−t) for t ∈ [0,Tf ], we can rewrite this bound as

P(x,v)

(
(
←−
XTf

,
←−
V Tf

) ̸= (X̃Tf
, ṼTf

)
)
⩽ 2E(x,v)

[
1− exp

(
−
∫ Tf

0

gTf−t(Xt, Vt)dt

)]
.

Plugging this bound in (29) we obtain

∥L(
←−
XTf

,
←−
V Tf

)− L(X̃Tf
, ṼTf

)∥TV ⩽ 2E

[
1− exp

(
−
∫ Tf

0

gTf−t(Xt, Vt)dt

)]
.

This concludes the proof.

E.3 Application to the ZZP

Here we give the details on the bound (12), which considers the case of ZZP. First, we upper bound
the function gt defined in (11). We focus on the first term in (11), that is

g1t (x, v) =
(
←−
λ Z ∧ λ̄Z )(t, (x, v))

2
∥
←−
QZ(t, (x, v), ·)− Q̄Z(t, (x, v), ·)∥TV.
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We find

∥
←−
QZ(t, (x, v), ·)− Q̄Z(t, (x, v), ·)∥TV = sup

A

∣∣∣∣∣
d∑
i=1

1(x,RZ
i v)∈A

(←−
λ Z
i (t, (x, v))←−

λ Z(t, (x, v))
− λ̄Zi (t, (x, v))

λ̄Z(t, (x, v))

)∣∣∣∣∣
⩽ sup

A

∣∣∣∣∣
d∑
i=1

1(x,RZ
i v)∈A

(←−
λ Z
i (t, (x, v))− λ̄Zi (t, (x, v))←−

λ Z(t, (x, v))
+

λ̄Zi (t, (x, v))←−
λ Z(t, (x, v))

− λ̄Zi (t, (x, v))

λ̄Z(t, (x, v))

)∣∣∣∣∣
⩽

(
d∑
i=1

|
←−
λ Z
i (t, (x, v))− λ̄Zi (t, (x, v))|←−

λ Z(t, (x, v))

)
+
|λ̄Z(t, (x, v))−

←−
λ Z(t, (x, v))|

←−
λ Z(t, (x, v))

In the last inequality we used that λ̄Z is non-negative. Therefore we find

g1t (x, v) ⩽
1

2

(
d∑
i=1

|
←−
λ Z
i (t, (x, v))− λ̄Zi (t, (x, v))|

)
+

1

2
|λ̄Z(t, (x, v))−

←−
λ Z(t, (x, v))|

⩽
d∑
i=1

|
←−
λ Z
i (t, (x, v))− λ̄Zi (t, (x, v))|.

Noticing that

|
←−
λ Z
i (t, (x, v))− λ̄Zi (t, (x, v))| = |rZi (x, v, t)− sθi (x, v, t)| λZi ((x,RZ

i v).

we find

gt(x, v) ⩽ 2

d∑
i=1

|rZi (x, v, t)− sθi (x, v, t)| λZi ((x,RZ
i v)

Finally, we use the inequality 1− e−z ⩽ z, which holds for z ⩾ 0, to conclude that

E

[
1− exp

(
−
∫ Tf

0

gTf−t(Xt, Vt)dt

)]

⩽ 2

d∑
i=1

E

[∫ Tf

0

|rZi (Xt, Vt,Tf − t)− sθi (Xt, Vt,Tf − t)| λZi (Xt,R
Z
i Vt)dt

]
.

F Experimental details

We run our experiments on 50 Cascade Lake Intel Xeon 5218 16 cores, 2.4GHz. Each experiment
is ran on a single CPU and takes between 1 and 5 hours to complete, depending on the dataset and
the sampler at hand.

For each forward PDMP, we take a time horizon Tf equal to 5, and set the refreshment rate λr to
1. For training, we choose the uniform distribution Uniform([0,Tf ]) as the time distribution ω. For
the simulation of backward PDMPs with splitting schemes, we use a quadratic schedule for the time
steps, that is (δn)n∈{1,...,N} given by δn = Tf × ((n/N)2 − (n−1/N)2).

For i-DDPM, we follow the design choices introduced in Nichol and Dhariwal [2021] and in partic-
ular we use the variance preserving (VP) process, the cosine noise schedule, and linear time steps.

F.1 Continuation of Section 4

2D datasets In our experiments we consider the five datasets displayed in Figure 5. The Gaus-
sian grid consists of a mixture of nine Gaussian distribution with imbalanced mixture weights
{.01, .02, .02, .05, .05, .1, .1, .15, .2, .3}. We load 100000 training samples for each dataset, and
use 10000 test samples to compute the evaluation metrics. We use a batch size of 4096 and train our
model for 25000 steps.
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refresh rate 0.0 0.1 0.5 1.0 2.0 5.0 10.0
process

BPS 0.286 0.069 0.048 0.052 0.045 0.048 0.072
RHMC 0.324 0.040 0.041 0.033 0.040 0.047 0.072
ZZP 0.040 0.045 0.040 0.036 0.038 0.035 0.057

Table 4: Mean of 2-Wasserstein W2 ↓, on Gaussian grid dataset, averaged over 10 runs.

time horizon 2 5 10 15
process

BPS 0.031 0.040 0.040 0.041
HMC 0.025 0.036 0.036 0.033
ZZP 0.031 0.033 0.030 0.046

Table 5: Mean 2-Wasserstein W2 ↓ for different time horizon, averaged over 10 runs.

Detailed setup For ZZP and i-DDPM we use a neural network consisting of eight time-
conditioned multi-layer perceptron (MLP) blocks with skip connections, each of which consisting
of two fully connected layers of width 256. The time variable t passes through two fully connected
layers of size 1× 32 and 32× 32, and is fed to each time conditioned block, where it passes through
an additional 32 × 64 fully connected layer before being added element-wise to the middle layer.
The model size is 6.5 million parameters. For ZZP, we apply the softplus activation function
x 7→ 1/β log(1 + exp(βx)) to the output of the network, with β = 1, to constrain it to be positive
and stabilise behaviour for outputs close to 1.

In the case of RHMC and BPS, we use neural spline flows [Durkan et al., 2019] to model the
conditional densities of the forward processes, as it shows good performance among available archi-
tectures. We leverage the implementation from the zuko package [Rozet et al., 2022]. We set the
number of transforms to 8, the hidden depth of the network to 8 and the hidden width to 256. To
condition on x, t, we feed them to three fully connected layers of size d× 8, 8× 8 and 8× 8, where
d is either the dimension of Xt, or d = 1 in the case of the time variable. The resulting vectors
are then concatenated and fed to the conditioning mechanism of zuko. The resulting model has 3.8
million parameters.

We take advantage of the approaches described in Section 2.3 to learn the characteristics of the
backward processes.

All experiments are conducted using PyTorch [Paszke et al., 2019]. The optimiser is Adam [Kingma
and Ba, 2015] with learning rate 5e-4 for all neural networks.

Additional results In Table 4 we show the accuracy in terms of the refreshment rate, while in
Table 5 we show different choices of the time horizon. In both cases, we consider the Gaussian
mixture data and we use the 2-Wasserstein metric to characterise the quality of the generated data.
Figure 5 shows the generated data by the best model for each process.

F.2 MNIST digits

We consider the task of generating handwritten digits training the ZZP on the MNIST dataset. We
use the simplified loss function given in Equation (24) in Appendix D.1 and use the simplified
model and loss. In Figure 6 we show promising results obtained with the design choices described
previously in Appendix F.1, apart from the differences that follow. The optimiser is Adam [Kingma
and Ba, 2015] with learning rate 2e-4. We use a U-Net following the implementation of Nichol and
Dhariwal [2021], where the hidden layers are set to [128, 256, 256, 256], where we fix the number
of residual blocks to 2 at each level, and add self-attention block at resolution 16×16, with 4 heads.
We duplicate the channel of the penultimate layer, and make each copy go through separate MLPs
to obtain the two vectors (sθ+(·, ·), sθ−(·, ·)) ∈ R2d

+ (as in (22)). We use an exponential moving
average with a rate of 0.99. At every layer, we use the silu activation function, while we apply
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Checkerboard ZZP RHMC BPS i-DDPM

Fractal tree ZZP RHMC BPS i-DDPM

Olympic rings ZZP RHMC BPS i-DDPM

Rose ZZP RHMC BPS i-DDPM

Gaussian mixture ZZP RHMC BPS i-DDPM

Figure 5: Generation for the various datasets.
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Figure 6: Generation for the ZZP trained on MNIST.

the softplus to the output of the network, with β = 0.2. We train the model for 40000 steps with
batch size 128.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research, ad-
dressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and precede the (optional) supplemental material. The checklist does NOT
count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evalu-
ation. While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No]
" provided a proper justification is given (e.g., "error bars are not reported because it would be too
computationally expensive" or "we were unable to find the license for the dataset we used"). In
general, answering "[No] " or "[NA] " is not grounds for rejection. While the questions are phrased
in a binary way, we acknowledge that the true answer is often more nuanced, so please just use your
best judgment and write a justification to elaborate. All supporting evidence can appear either in the
main paper or the supplemental material, provided in appendix. If you answer [Yes] to a question,
in the justification please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We believe the abstract and introduction reflect the contributions of the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We believe we made the limitations of our work clear.
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Guidelines:
• The answer NA means that the paper has no limitation while the answer No means

that the paper has limitations, but those are not discussed in the paper.
• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: To the best of our abilities, we made sure all theoretical statements have sound
proofs and precise sets of assumptions.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have indicated all the design choices that we used to obtain the results of
our experiments.
Guidelines:
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: we provide all the necessary codes to reproduce our experiments.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All the design choices are specified in the paper or in the supplementary
material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report the standard deviations to our tables, or report when the results are
based on a single run.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide information on the type of compute workers that were used.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research in this paper respects the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: Our work does not have immediate societal impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
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Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite all the packages that are used in the paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the pack-

age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?
Answer: [Yes]
Justification: The codes used to obtain the numerical simulations are provided and are
accessible.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?
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Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.
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