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Abstract

In offline reinforcement learning (RL), addressing the out-of-distribution (OOD)
action issue has been a focus, but we argue that there exists an OOD state issue
that also impairs performance yet has been underexplored. Such an issue describes
the scenario when the agent encounters states out of the offline dataset during
the test phase, leading to uncontrolled behavior and performance degradation. To
this end, we propose SCAS, a simple yet effective approach that unifies OOD
state correction and OOD action suppression in offline RL. Technically, SCAS
achieves value-aware OOD state correction, capable of correcting the agent from
OOD states to high-value in-distribution states. Theoretical and empirical results
show that SCAS also exhibits the effect of suppressing OOD actions. On standard
offline RL benchmarks, SCAS achieves excellent performance without additional
hyperparameter tuning. Moreover, benefiting from its OOD state correction feature,
SCAS demonstrates enhanced robustness against environmental perturbations.

1 Introduction

Deep reinforcement learning (RL) shows promise in solving sequential decision-making problems,
gaining increasing interest for real-world applications [42, 57, 63, 53, 7]. However, deploying RL
algorithms in extensive scenarios poses persistent challenges, such as risk-sensitive exploration [13]
and time-consuming episode collection [27]. Recent advances view offline RL as a hopeful solution
to these challenges [34]. Offline RL aims to learn a policy from a fixed dataset without further
interactions [32]. It can tap into existing large-scale datasets for safe and efficient learning [23, 37, 50].

In offline RL research, a well-known concern is the out-of-distribution (OOD) action issue: the
evaluation of OOD actions causes extrapolation error [12], which can be exacerbated by bootstrapping
and result in severe value overestimation [34]. To address this issue, a large body of work has emerged
to directly or indirectly suppress OOD actions during training, employing various techniques such as
policy constraint [12, 30, 10], value penalization [31, 2, 6], and in-sample learning [29, 14, 71].

Distinguished from most previous works, this paper argues that, apart from the OOD action issue,
there exists an OOD state issue that also impairs performance yet has received limited attention in
the field. Such an issue refers to the agent encountering states out of the offline dataset during the
policy deployment phase (i.e., test phase). The occurrence of OOD states can be attributed to OOD
actions, stochastic environments, and real-world perturbations. Since typical offline RL algorithms
do not involve policy training in OOD states, the agent tends to behave in an uncontrolled manner
once entering OOD states in the test phase. This can further exacerbate the state deviation from the
offline dataset and lead to severe degradation in performance [34, 75].

In mitigating this OOD state issue, existing limited work attempts to train the policy to correct the
agent from OOD states to in-distribution (ID) states [75, 22]. Technically, Zhang et al. [75] construct
a dynamics model and a state transition model and align them to guide the agent to ID regions, while
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Figure 1: The resulting state distributions of offline RL algorithms and optimal values of states.
(a,b,c) The state distributions generated by the learned policies of various algorithms compared with
that of the offline dataset on halfcheetah-medium-expert. (d) The corresponding optimal value of
each state, which is obtained by running TD3 online to convergence. SCAS-induced state distribution
is almost entirely within the support of the offline distribution and avoids the low-value areas, while
CQL and TD3BC tend to produce OOD states with extremely low values.

Jiang et al. [22] resort to an inverse dynamics model for policy constraint. However, they deal with the
OOD state and OOD action issues separately, requiring extra OOD action suppression components and
complex distribution modeling, which sacrifices computational efficiency and algorithmic simplicity.
Moreover, correcting the agent to all ID states impartially could be problematic, especially when the
dataset contains substantial suboptimal states. As a result, the performance of prior methods also
leaves considerable room for improvement.

In this paper, we aim to address these two fundamental OOD issues simultaneously by proposing
a simple yet effective approach for offline RL. We term our method SCAS due to its integration of
OOD State Correction and OOD Action Suppression. We start with solving an analytical form of a
value-aware state transition distribution, which is within the dataset support but skewed toward high-
value states. Then, we align it with the dynamics induced by the trained policy on perturbed states via
KL divergence. This operation intends to correct the agent from OOD states to high-value ID states, a
concept we refer to as value-aware OOD state correction. Through some derivations, it also eliminates
the necessity of training a multi-modal state transition model. Furthermore, we show theoretically and
empirically that, while designed for OOD state correction, SCAS regularization also exhibits the effect
of OOD action suppression. We evaluate SCAS on the offline RL benchmarks including D4RL [9]
and NeoRL [49]. SCAS achieves excellent performance with consistent hyperparameters without
additional tuning. Moreover, benefiting from its OOD state correction ability, SCAS demonstrates
improved robustness against environmental perturbations.

To summarize, the main contributions of this work are:

• We systematically analyze the underexplored OOD state issue in offline RL and propose a simple
yet effective approach SCAS unifying OOD state correction and OOD action suppression.

• Our approach achieves value-aware OOD state correction, which circumvents modeling complex
distributions and significantly improves performance over vanilla OOD state correction methods.

• Empirically1, our approach demonstrates superior performance on standard offline RL benchmarks
and enhanced robustness in perturbed environments without additional hyperparameter tuning.

2 Preliminaries

In reinforcement learning, we generally characterize the environment as a Markov Decision Pro-
cess (MDP) M = (S,A, P,R, γ, d0), with state space S, action space A, transition dynamics
P : S × A → ∆(S), reward function R : S × A → R, discount factor γ ∈ [0, 1), and initial state
distribution d0 [61]. The agent interacts with the environment and seeks a policy π : S → ∆(A) to
maximize the expected discounted return η(π):

η(π) = Es0∼d0,at∼π(·|st),st+1∼P (·|st,at)

[ ∞∑
t=0

γtR(st, at)

]
. (1)

1Our code is available at https://github.com/maoyixiu/SCAS.
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For any policy π, we define the value function as V π(s) = Eπ [
∑∞

t=0 γ
tR(st, at)|s0 = s] and the

state-action value function (Q-value function) as Qπ(s, a) = Eπ [
∑∞

t=0 γ
tR(st, at)|s0 = s, a0 = a].

Offline RL. In offline RL, the agent can only access a static dataset D = {(sit, ait, sit+1, r
i
t)}. We

denote the empirical behavior policy ofD by β(a|s) and the empirical dynamics model by M(s′|s, a),
both of which depict the conditional distributions observed in the dataset [12]. Typical actor-critic
algorithms [56, 18] evaluate policy π by minimizing Bellman loss:

LQ(θ) = E(s,a,s′)∼D[(Qθ(s, a)−R(s, a)− γEa′∼πϕ(·|s′)Qθ′(s′, a′))2], (2)

where πϕ and Qθ are the parameterized policy and Q function, and Qθ′ is a target network whose
parameters are updated via Polyak averaging [42].

Simultaneously, policy improvement in policy iteration is achieved via maximizing the Q-value:

Lπ(ϕ) = −Es∼D,a∼πϕ
[Qθ (s, a)] . (3)

OOD action issue. In offline RL, OOD actions refer to actions outside the support of the behavior
policy β(·|s) at a specific state s ∈ D. Since the Q-values of OOD actions can be poorly estimated
and the policy improvement is towards maximizing the estimated Qθ, the resulting policy tends to
prioritize the OOD actions with overestimated values, leading to poor performance [12].

3 OOD State Correction

The following focuses on the OOD state issue and OOD state correction in offline RL. In Section 3.1,
we systematically analyze the OOD state issue, introduce the concept of OOD state correction, and
point out limitations of prior methods. Then we present the proposed approach SCAS in Section 3.2.

3.1 OOD State Issue in Offline RL

In offline RL, OOD states refer to states not in the offline dataset. The OOD state issue (Definition 1)
pertains to scenarios where the agent enters OOD states during the test phase, potentially resulting in
catastrophic failure [34]. However, such a topic is rarely investigated in the literature, and existing
studies lack deep insights. We mathematically formulate the OOD state issue as follows.
Definition 1 (OOD state issue). There exists s ∈ S, such that dπMT

(s) > 0 and dD(s) = 0, where
MT is the MDP of the test environment, π is any learned policy, dπMT

is the state probability density
induced by π inMT , and dD is the state probability density in the offline dataset.

Origins and consequence of OOD states. During the test phase, the OOD states occur primarily
in three scenarios: (i) OOD actions: the learned policy, not perfectly constrained within the support
of the behavior policy, executes unreliable OOD actions, leading to OOD states. (ii) Stochastic
environment: the initial state of the actual environment may fall outside the offline dataset. In
addition, stochastic dynamics can also lead to states outside the dataset, even when taking ID actions
in ID states. (iii) Perturbations: commonly seen in real-world robot applications, some unexpected
perturbations can propel the agent into OOD states (e.g., wind, human interference).

During offline training, the typical Bellman updates involve only ID states, and the policies in
OOD states are not trained. As a result, when encountering OOD states in the test phase, the agent
would exhibit uncontrolled behavior, and the state deviation from the offline dataset can be further
exacerbated over time steps, severely degrading performance [34].

OOD state correction. To mitigate this OOD state issue, an intuitive solution is to train a policy
capable of correcting the agent from OOD states to ID states, a concept known as OOD state
correction [75]. Specifically, during offline training, we can perturb the original state s in the dataset
into ŝ to generate substantial OOD states. Then consider the scenario where the agent starts from
ŝ, follows the trained policy π, and transitions to the next state ŝ′. To reduce state deviation, ŝ′ is
expected to be close to the offline dataset. Thus we can align the distribution of ŝ′ with an ID state
distribution to regularize the policy and achieve OOD state correction.

Continuing the above train of thought, SDC [75] generates the ID state distribution by feeding the
original state s into a trained state transition model N(s′|s) of the dataset. This model characterizes
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the conditional state transition distribution in the dataset and is implemented by a conditional
variational auto-encoder (CVAE) [58]. After pretraining a dynamics model M(s′|s, a) and the state
transition model N(s′|s), SDC introduces the following policy regularizer for OOD state correction:

min
π

E
s∼D

E
ŝ∼Nσ(s)

[MMD(M(·|ŝ, π(·|ŝ)), N(·|s))] , (4)

where ŝ is a Gaussian noise perturbed version of the original state s, σ is the standard deviation of
the Gaussian, M(·|ŝ, π(·|ŝ)) is shorthand for Eâ∼π(·|ŝ)M(·|ŝ, â), and MMD is the maximum mean
discrepancy measure. More recently, OSR [22] directly aligns the trained policy distribution at the
perturbed state with a CVAE inverse dynamics model to constrain the policy in OOD states.

Limitations. However, the regularizers of prior methods are only designed to deal with this OOD
state issue. To mitigate OOD actions, they require an additional conservative Q learning (CQL)
term [31] in value estimation to penalize Q-values of OOD actions. In addition, the state transition
distribution and the inverse dynamics distribution are multi-modal in many scenarios [43]. The neces-
sity of extra OOD action suppression components and complex distribution modeling compromises
their computational efficiency and algorithmic simplicity. Moreover, correcting the agent to all ID
states impartially could be problematic, particularly when the offline dataset contains a large portion
of suboptimal states. In such cases, vanilla OOD state correction can lead to suboptimal behaviors.
Consequently, there is also significant potential for improvement in the performance of prior methods.

For a more comprehensive discussion of related work, please refer to Appendix A.

3.2 Value-aware OOD State Correction

The objective of this work is to formulate a simple yet effective policy regularizer for offline RL that
unifies OOD state correction and OOD action suppression. Moreover, we aim to achieve value-aware
OOD state correction, involving the correction of the agent from OOD states to high-value ID states.

Value-aware state transition. For the ID state distribution to which the agent is corrected, we
expect a value-aware state transition distribution N∗(·|s) that lies within the support of the dataset
state transition distribution N(·|s) but is skewed toward high-value states s′. To ensure stability and,
more importantly, to enable our subsequently designed algorithm to circumvent modeling complex
distributions, we seek a soft optimal version of it. To this end, we consider the following problem2:

max
N∗

E
s∼D

[
α E
s′∼N∗(·|s)

V (s′)−DKL(N
∗(·|s)∥N(·|s))

]
, (5)

where α is a hyperparameter to balance the two terms.

The optimization problem above has a closed-form solution:

N∗(s′|s) = 1

Z(s)
exp (αV (s′))N(s′|s), (6)

where Z(s) =
∑

s′ exp (αV (s′))N(s′|s) is a normalization factor. It can be seen from Eq. (6) that
supp(N∗(·|s)) ⊆ supp(N(·|s)). Note that α is a key hyperparameter that controls the significance
of the values of next states in SCAS’s OOD state correction. As α increases, N∗(·|s) becomes more
skewed toward the optimal s′ in the support of N(·|s).

OOD state correction. In order to produce substantial OOD states, we perturb each state s ∈ D
with Gaussian noise N (0, σ2), resulting in perturbed state ŝ. It is worth noting that the dataset used
for RL training remains unchanged. We perturb the states solely to formulate the regularizer.

We anticipate the following value-aware OOD state correction scenario, where the agent starts
from OOD state ŝ, follows the trained policy π, and transitions to the high-value ID state s′ in the
distribution of N∗(·|s). To this end, we train the policy π to align the dynamics induced by π on
the perturbed state ŝ with the value-aware state transition distribution at the original state s via KL
divergence. That is, we regularize π by minimizing:

min
π

E
s∼D

E
ŝ∼Nσ(s)

DKL(N
∗(·|s)∥M(·|ŝ, π(·|ŝ))). (7)

2Note that the regularizer DKL(N
∗(·|s)∥N(·|s)) can constrain the support of N∗(·|s) within that of N(·|s),

because if supp(N∗(·|s)) ⊈ supp(N(·|s)) at some state s, then DKL(N
∗(·|s)∥N(·|s)) = ∞.
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By substituting the analytical solution of N∗ from Eq. (6) into the KL divergence, we have

argmin
π

DKL(N
∗(·|s)∥M(·|ŝ, π(·|ŝ))) = argmax

π
E

s′∼N(·|s)

[
exp (αV (s′))

Z(s)
logM(s′|ŝ, π(·|ŝ))

]
.

Note that N is the state transition distribution in the dataset, and s ∼ D, s′ ∼ N(·|s) is equivalent to
(s, s′) ∼ D. Thus minimizing Eq. (7) is equivalent to maximizing following regularizer:

R(π) = E
(s,s′)∼D

E
ŝ∼Nσ(s)

[
exp (αV (s′))

Z(s)
logM(s′|ŝ, π(·|ŝ))

]
. (8)

As a result, R(π) effectively eliminates the need for a pre-trained multi-modal state transition
model (N or N∗) and enables direct sampling from the dataset for optimization.

However, the normalization factor Z(s) in R(π) can be challenging to compute. We note that the
regularizer R(π) is derived from the minimization of the KL divergence in Eq. (7). Since we aim
to minimize this KL at every state s in D and Z(s) only affects the relative weights at different
s, it matters less to precisely restore the correct state weights in D by computing Z(s), which is
empirically hard to estimate and may bring more instability. Thus, we replace Z(s) in R(π) with an
empirical normalizer exp(αV (s)) for computational stability:

R1(π) = E
(s,s′)∼D

E
ŝ∼Nσ(s)

[
exp (αV (s′))

exp (αV (s))
logM(s′|ŝ, π(·|ŝ))

]
. (9)

We provide further rationale behind this choice of the empirical normalizer in Appendix C.1.

Tractable optimization. Now we shift focus to the optimization of R1(π). The expectation with
respect to π can be moved outside the logarithm by Jensen’s inequality:

R1(π) ≥ E
(s,s′)∼D

E
ŝ∼Nσ(s)

E
a∼π(·|ŝ)

[
exp (αV (s′))

exp (αV (s))
logM(s′|ŝ, a)

]
, (10)

where the equality holds when π is deterministic. In general, it is convenient to maximize the lower
bound in Eq. (10) using the reparameterization trick. However, to ensure the equality case in Eq. (10),
we opt to train a deterministic policy π. In this case, we can directly maximize R1(π) by computing
the gradient of π using automatic differentiation [46].

In contrast to model-based RL methods that typically use the learned dynamics model to roll out
multi-step trajectories for policy training [20, 73], our algorithm utilizes the dynamics model to
propagate the gradient of policy and regularize policy training, resulting in significantly enhanced
computational efficiency. Moreover, the nature of one-step dynamics prediction in our method is
advantageous for maintaining relatively high prediction accuracy.

4 Analysis of OOD Action Suppression

This section focuses on the OOD action issue and shows that the proposed regularizer also exhibits
the effect of OOD action suppression. In other words, it can also prevent the policy from taking
OOD actions, thereby simultaneously addressing the fundamental OOD action issue in offline RL. In
offline RL, OOD actions are exclusively defined on ID states. This is because actor-critic training is
limited to ID states, and any actions on OOD states would not affect training and cause the OOD
action issue mentioned in Section 2. Consequently, for the analysis of OOD actions, it is essential to
consider ID states. We define R̄, R̄1 as the ID state version of R,R1, where ŝ = s. R̄ and R̄1 can be
regarded as special cases of R and R1, when ŝ sampled from N (s, σ2) is equal to s:

R̄(π) = E
(s,s′)∼D

[
exp (αV (s′))

Z(s)
logM(s′|s, π(·|s))

]
, (11)

R̄1(π) = E
(s,s′)∼D

[
exp (αV (s′))

exp (αV (s))
logM(s′|s, π(·|s))

]
. (12)
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The proposed regularizer functions as follows: when the agent encounters OOD states, it drives the
agent to choose actions leading to ID states, as discussed in Section 3.2. When the agent is in ID
states, the ID state part of it comes into play. In the following, we show that it helps circumvent
taking OOD actions by analyzing the maximizer of R̄, R̄1 in tabular MDPs.
Proposition 1. Suppose that the environment dynamics is deterministic, then both R̄(π) and R̄1(π)
achieve their global maximum at the policy π∗, where3

π∗(a|s) = 1

Z(s)
exp (αV (M(s, a)))β(a|s) (13)

The support of π∗ is within that of the behavior policy β:

supp(π∗(·|s)) ⊆ supp(β(·|s)), ∀s ∼ D (14)

and π∗ makes the following equation hold:

N∗(·|s) = M(·|s, π∗(·|s)), ∀s ∼ D (15)

Under the deterministic dynamics condition, Proposition 1 shows that π∗ is constrained within the
support of the behavior policy. Thus, our regularizer helps to keep the policy from taking OOD
actions. Moreover, π∗ is able to exactly align M(·|s, π∗(·|s)) with N∗(·|s), indicating the guidance
of the agent to the high-value ID state distributions.

Furthermore, we show in Proposition 2 that even under stochastic dynamics, the optimization of R̄
and R̄1 still yields policies constrained within the support of β. Hence, SCAS also exhibits the effect
of OOD action suppression in this more general scenario.
Proposition 2. When the dynamics is stochastic, the maximizers of both R̄(π) and R̄1(π) are
constrained within the support of the behavior policy:

supp(π∗(·|s)) ⊆ supp(β(·|s)), ∀s ∼ D (16)
supp(π∗

1(·|s)) ⊆ supp(β(·|s)), ∀s ∼ D (17)

5 Implementation Details

Algorithm 1 SCAS
1: Initialize dynamics model Mω, policy network

πϕ, Q-network Qθ, and target Q-network Qθ′

2: // Dynamics Model Training
3: for each gradient step do
4: Update ω by minimizing LM (ω) in Eq. (18)
5: end for
6: // Policy Training
7: for each gradient step do
8: Update θ by minimizing LQ(θ) in Eq. (2)
9: Update ϕ by maximizing Jπ(ϕ) in Eq. (20)

10: Update target network: θ′ ← (1− τ)θ′ + τθ
11: end for

SCAS is easy to implement and we design the
practical algorithm to be as simple as possible,
retaining algorithmic simplicity and improv-
ing computational efficiency.

Dynamics model. We employ a determinis-
tic dynamics model Mω . The loss for training
the model is

LM (ω) = E
(s,a,s′)∼D

[∥Mω(s, a)−s′∥22] (18)

Policy improvement. With a deterministic
model, we replace the log-likelihood in R1(π)
with mean squared error. It is a common ap-
proach in RL algorithms to convert a maxi-
mum likelihood estimation problem into a re-
gression problem when dealing with Gaussians with fixed variance [10]. As discussed in Section 3.2,
we also adopt a deterministic policy model πϕ. Thus, we have the following policy regularizer:

R2(πϕ) = E
(s,s′)∼D

E
ŝ∼Nσ(s)

[
exp (αVθ (s

′))

exp (αVθ (s))
∥Mω(ŝ, πϕ(ŝ))− s′∥22

]
, (19)

where Vθ(s) = Qθ(s, π̄ϕ(s)) and π̄ϕ means πϕ with detached gradients. Using deterministic policy
also simplifies the training process without learning a V -function. Combining R2(πϕ) with the
standard policy improvement objective, we update the policy by maximizing:

Jπ(ϕ) = (1− λ)Es∼D [Qθ (s, πϕ(s))] + λR2(πϕ), (20)
3Here for clarity, we use the notation M with slightly different meanings in different cases: in the stochastic

setting, M : S ×A → ∆(S); in the deterministic setting, M : S ×A → S.
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where λ is a hyperparameter to balance the two terms. Additionally, following TD3+BC [10], we
also normalize Qθ in the first term in each mini-batch to maintain a balanced scale across tasks.

Overall algorithm. Putting everything together, we present our final algorithm in Algorithm 1.

6 Experiments

In this section, we conduct several experiments to examine the performance and properties of SCAS.
Please refer to Appendices D and E for experimental details and additional results.

6.1 Empirical Evidence of OOD State Correction and OOD Action Suppression

OOD state correction. To examine the OOD state correction ability, we compare the state distri-
butions generated by the learned policies of different algorithms with the state distribution of the
offline dataset. In detail, we first train SCAS, CQL [31], and TD3+BC [10], and then collect 50,000
samples by running the trained policies separately. We also sample 50,000 states randomly from the
offline dataset for comparison. Figures 1(a) to 1(c) plot the state distributions in halfcheetah-medium-
expert [9] with t-SNE [62], and Figure 1(d) visualizes the optimal value of each state. We access
these values from the learned value function obtained by running TD3 [11] online to convergence.

In Figures 1(a) and 1(b), we observe that the policies learned by CQL and TD3+BC tend to produce
OOD states. As depicted in Figure 1(d), these OOD states have extremely low values, so entering
them can be detrimental to performance. In contrast, the state distribution induced by SCAS is almost
entirely within the support of the offline distribution, demonstrating the OOD state correction ability
of SCAS. Moreover, we also note that in the low-value area of the offline state distribution (the grey
circle in Figure 1(d)), SCAS exhibits a very low state density, which could be attributed to SCAS’s
value-aware OOD state correction. We refer the reader to Appendix E.2 for additional experiments
validating the OOD state correction effects.

0 0.1 0.2 0.3 0.4 0.5
Gradient Steps (×106)

103

104

hopper-medium-v2
SCAS: MC return
SCAS: Q
Off-policy RL: Q
SDC w/o CQL: Q
OSR w/o CQL: Q

0 0.1 0.2 0.3 0.4 0.5
Gradient Steps (×106)

103

104

105 hopper-medium-expert-v2

Figure 2: Oracle Q-values of SCAS (estimated by MC
return) and learned Q-values of SCAS and other algo-
rithms across optimization steps. Only SCAS’s OOD state
correction term can achieve OOD action suppression and
prevent value over-estimation (divergence).

OOD action suppression. We empir-
ically evaluate the OOD action sup-
pression effects through the lens of
value estimates. We compare SCAS
with three baselines: (1) ordinary off-
policy RL which is SCAS with λ =
0 (all other implementations are the
same); (2) SDC [75] without additional
CQL [31] term to suppress OOD ac-
tions; (3) OSR [22] without additional
CQL term. We conduct experiments
on D4RL datasets [9]. Since value
over-estimation (divergence) is the main
consequence and evidence of OOD ac-
tions [12], we plot the learned Q-values
of SCAS and the baselines in Figure 2.
We also include the oracle Q-values of SCAS by rollouting the trained policy for 1, 000 episodes and
evaluating the Monte-Carlo return. Additional results are provided in Appendix E.1.

The results show that the learned Q-values of ordinary off-policy RL, SDC without CQL, and OSR
without CQL diverge at early learning stages, suggesting that the algorithms suffer from severe OOD
actions. By contrast, the learned Q-values of SCAS stay close to the oracle Q-values. This indicates
that SCAS regularization alone is able to suppress OOD actions.

6.2 Comparisons on Offline RL Benchmarks

Tasks. We evaluate SCAS on D4RL [9] and NeoRL [49] benchmarks. In D4RL, we conduct
experiments on Gym locomotion tasks and much more challenging AntMaze tasks. Due to the space
limit, the results on NeoRL are deferred to Table 4 in Appendix E.3.

7
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Table 1: Averaged normalized scores on Gym locomotion and AntMaze tasks over five random seeds.

Dataset (v2) BC MOPO OneStep TD3BC CQL IQL OSR SDC SCAS (Ours)

halfcheetah-med 42.0 73.1 50.4 48.3 47.0 47.4 45.1±0.8 45.9±0.5 46.6±0.2
hopper-med 56.2 38.3 87.5 59.3 53.0 66.2 62.0±3.6 64.7±3.5 102.5±0.3
walker2d-med 71.0 41.2 84.8 83.7 73.3 78.3 80.1±1.8 82.7±1.9 82.3±3.0
halfcheetah-med-rep 36.4 69.2 42.7 44.6 45.5 44.2 43.3±0.2 45.1±0.5 44.0±0.3
hopper-med-rep 21.8 32.7 98.5 60.9 88.7 94.7 42.1±12.3 94.8±6.5 101.6±1.0
walker2d-med-rep 24.9 73.7 61.7 81.8 81.8 73.8 78.1±1.8 78.5±6.0 78.1±4.5
halfcheetah-med-exp 59.6 70.3 75.1 90.7 75.6 86.7 63.7±14.5 76.3±5.2 91.7±2.7
hopper-med-exp 51.7 60.6 108.6 98.0 105.6 91.5 78.9±16.4 99.9±8.5 109.7±3.5
walker2d-med-exp 101.2 77.4 111.3 110.1 107.9 109.6 108.1±4.4 109.2±1.4 108.4±3.7
halfcheetah-rand 2.6 35.9 2.3 11.0 17.5 13.1 1.6±0.1 14.2±0.7 12.2±3.2
hopper-rand 4.1 16.7 5.6 8.5 7.9 7.9 3.7±2.6 3.1±2.8 31.4±0.1
walker2d-rand 1.2 4.2 6.9 1.6 5.1 5.4 -0.1±0.0 0.2±0.4 1.4±1.1

locomotion total 472.7 593.3 735.4 698.5 708.9 718.8 606.7 714.6 810.1

antmaze-umaze 66.8 0.0 54.0 73.0 82.6 89.6 87.4±5.0 81.4±3.8 90.4±4.3
antmaze-umaze-div 56.8 0.0 57.8 47.0 10.2 65.6 55.6±8.0 49.6±10.4 63.8±16.7
antmaze-med-play 0.0 0.0 0.0 0.0 59.0 76.4 22.6±7.6 55.0±9.6 76.6±3.9
antmaze-med-div 0.0 0.0 0.6 0.2 46.6 72.8 19.6±5.8 56.6±10.3 80.4±5.4
antmaze-large-play 0.0 0.0 0.0 0.0 16.4 42.0 0.0±0.0 20.8±8.0 49.0±4.0
antmaze-large-div 0.0 0.0 0.2 0.0 3.2 46.0 0.0±0.0 25.8±7.5 50.6±7.2

antmaze total 123.6 0.0 112.6 120.2 218 392.4 185.2 289.2 410.8

runtime 30m 900m 120m 60m 250m 100m 300m 420m 140m

hyperparameter tuning w/o w/ w/o w/o w/ w/o w/ w/ w/o

Baselines. We compare SCAS with prior state-of-the-art offline RL methods as well as the ones
specifically designed for OOD state correction, including BC [48], MOPO [73], OneStep RL [5],
CQL [31], TD3+BC [10], IQL [29], SDC [75] and OSR [22].

Hyperparamter tuning. Offline RL methods are appealing for their ability to generate effective
policies without online interaction. Nevertheless, many existing offline RL works involve dataset-
specific hyperparameter tuning. The reduction of hyperparameter tuning is crucial for improving
practical applicability. In this work, SCAS uses a single set of hyperparameters for all datasets in
D4RL and NeoRL benchmarks to obtain the reported results.

Comparisons with baselines. On D4RL, comparisons of performance, runtime, and hyperparameter
tuning information are shown in Table 1. We refer the reader to Appendix E.8 for learning curve
details of SCAS. On the Gym locomotion tasks, SCAS outperforms prior methods on most datasets
and achieves the highest total score with a single set of hyperparameters. On the challenging AntMaze
tasks, SCAS performs better than IQL and outperforms other methods by a very large margin. In
NeoRL (Table 4), SCAS performs comparably to MOBILE [59] and outperforms other baselines.

Runtime. We present the runtime of algorithms at the bottom of Table 1. SCAS exhibits significantly
lower runtime than MOPO, SDC, and OSR and is comparable to other model-free baselines.

Generality. SCAS is a generic model-based regularizer that can be easily integrated into existing
offline RL algorithms. The corresponding results and analysis are provided in Appendix E.5.

6.3 Comparisons in Perturbed Environments

In this section, we evaluate the algorithms in a more real-world setting where the agent receives
uncertain perturbations during test time. OOD state correction is even more critical in such scenarios
since the agent can enter OOD states after perturbation. To simulate this scenario, we add varying
steps of Gaussian noise with a magnitude of 0.5 to the actions conducted by the policy during test
time. Specifically, the policy is trained on standard D4RL datasets but is tested in the perturbed
environments. We control the strength of perturbations by adjusting the number of perturbation steps.
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Figure 3: Comparisons in the perturbed environments with varying perturbation levels. The pertur-
bation steps are the steps of Gaussian noise added to the conducted actions in an episode. SCAS
exhibits better robustness against environmental perturbations during the test phase.
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(a) Effects of the inverse temperature α.
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(b) Effects of the balance coefficient λ.

Figure 4: Parameter study on the inverse temperature α and the balance coefficient λ. (a) An appro-
priately large α is crucial for achieving good performance. (b) The proposed SCAS regularization is
essential and demonstrates robustness to changes in λ.

Figure 3 shows the results of TD3+BC, CQL, SDC, and SCAS on various datasets over five random
seeds. We observe that SCAS consistently outperforms previous methods across different perturbation
levels and also exhibits less performance degradation against perturbations. Therefore, SCAS enjoys
better robustness against perturbations in the complex and unpredictable environments.

6.4 Parameter Study

We examine the effects of the inverse temperature α, the balance coefficient λ, and the noise scale σ.
Due to the space limit, the results for σ and on additional datasets are deferred to Appendix E.6. A
sensitivity analysis on dynamics model errors is also provided in Appendix E.7.

Inverse temperature α. α is the key hyperparameter in SCAS for achieving value-aware OOD
state correction. If α = 0, the effect degenerates to vanilla OOD state correction. Figure 4(a) displays
the learning curves of SCAS with different α. The results show that a large α is crucial for achieving
good performance (also verified on more tasks in Figure 6), clearly demonstrating the effectiveness
of our value-aware OOD state correction. However, too large α (α = 10) induces less satisfying
performance, probably due to the increased variance of the learning objective.

Balance coefficient λ. λ in Eq. (20) controls the balance between vanilla policy improvement and
SCAS regularization. We vary λ within the range [0, 1] and present the learning curves of SCAS in
Figure 4(b). Notably, SCAS is able to converge to good performance over a very wide range of λ (also
verified on more tasks in Figure 7). An interesting finding is that even when λ = 1 and the signal
from RL improvement (max Q) is removed, SCAS still performs well on most tasks. This could be
attributed to the fact that value-aware OOD state correction implies some sort of improvement in
policy by maximizing the values of policy-induced next states.

7 Conclusion and Limitations

In this paper, we systematically analyze the OOD state issue in offline RL and propose SCAS, a
simple yet effective approach that unifies OOD state correction and OOD action suppression. SCAS
also achieves value-aware OOD state correction, significantly improving performance over vanilla
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OOD state correction. Empirical results validate the properties of SCAS, showcasing its superior
performance on the offline RL benchmarks and its enhanced robustness in perturbed environments.

However, our work also has some limitations. For example, current SCAS primarily focuses on
continuous control tasks. In discrete settings, algorithmic components like state perturbation strategy
would be different, which would be an interesting direction for future work. Moreover, we anticipate
employing more advanced dynamics models, such as ensembles [73] and diffusion models [21], to
further improve the performance of our method.
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A Related Work

Model-free offline RL. In offline RL, extrapolation error and overestimation caused by OOD ac-
tions pose significant challenges. Among model-free solutions, value regularization methods penalize
the Q-values of OOD actions [31, 2, 28, 36, 3, 72, 40], while policy constraint approaches compel the
trained policy to be close to the behavior policy, either explicitly via divergence penalties [69, 30, 10],
implicitly by weighted behavior cloning [47, 45, 67, 39], or directly through specific parameterization
of the policy [12, 15]. Relatively independently, in-sample learning methods formulate the Bellman
target using only the actions in the dataset to avoid OOD actions [5, 29, 76, 71]. Recently, some
works aim to learn the optimal policy within the support of the dataset (known as in-support or
in-sample optimal policy) in a theoretically sound way and are less affected by the average quality
of the dataset [39, 40, 68]. However, existing popular offline RL approaches primarily focus on the
OOD action issue during training and often neglect the OOD state issue during the test phase.

Model-based offline RL. Model-based RL methods learn a model of the environment and generate
synthetic data from that model to optimize the policy [60, 20, 24]. To ensure conservatism in offline
RL, Kidambi et al. [25] and Yu et al. [73] estimate the uncertainty in the model and apply reward
penalties for state-action pairs with high uncertainty. Some model-based approaches also introduce
conservatism similarly to model-free ones, employing techniques like value regularization [74] and
policy constraint [41]. Recently, Sun et al. [59] conducts uncertainty quantification through the
inconsistency of Bellman estimations under the learned dynamics ensemble. However, model-based
methods often come with a high computational burden [20], and their effectiveness relies heavily
on the quality of the trained model [43]. In contrast, our algorithm leverages the dynamics model
to propagate policy gradients, make one-step predictions, and regularize policy training, leading to
significantly improved computational efficiency and relatively high prediction accuracy.

OOD state correction. In offline RL, OOD state correction deserves more attention as the state
deviation during the test phase can accumulate over time steps, severely degrading performance [34].
Existing limited solutions aim to train the policy to correct the agent from OOD states to ID
states [75, 22]. Specifically, SDC [75] builds a dynamics model and a state transition model, and aligns
the policy-induced next state distributions at OOD states with the state transition model. On the other
hand, OSR [22] utilizes an inverse dynamics model to constrain the policy at OOD states. Compared
with prior methods, our proposed SCAS efficiently unifies OOD state correction and OOD action
suppression in offline RL and additionally achieves value-aware OOD state correction. The DICE
series of works [44, 33, 38] share similar motivations with SCAS to some extent; however, there are
significant differences between the two. Firstly, DICE is based on a linear programming framework
of RL, while SCAS is based on a dynamic programming framework. Therefore, the theoretical
foundations and learning paradigms of the two are inherently different. Secondly, SCAS only corrects
encountered OOD states, whereas DICE algorithms require the policy-induced occupancy distribution
to align with the dataset distribution. Therefore, DICE’s constraints are stricter, potentially making
it more susceptible to the average quality of the dataset. Lastly, theoretical and empirical evidence
indicate that DICE algorithms have a problem of gradient cancellation [38], which imposes certain
limitations on their practical effectiveness.

B Proofs

In this section, we present the proofs for the theories in the paper.

B.1 Derivation of the Value-aware State Transition Distribution

We show that Eq. (6) is the optimal solution of the optimization problem Eq. (5):

max
N∗

E
s∼D

[
α E
s′∼N∗(·|s)

V (s′)−DKL(N
∗(·|s)∥N(·|s))

]
(21)
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We can optimize N∗ at each s ∈ D separately. Thus we consider the following optimization problem:

max
Ñ

α E
s′∼Ñ(·|s)

V (s′)−DKL(Ñ(·|s)∥N(·|s))

s.t.
∑
s′

Ñ(s′|s) = 1, ∀s ∈ D
(22)

This constrained optimization problem is convex, and the Lagrangian is:

L(Ñ) = α E
s′∼Ñ(·|s)

V (s′)−DKL(Ñ(·|s)∥N(·|s)) + ν

(∑
s′

Ñ(s′|s)− 1

)
(23)

The KKT condition gives:

∂L
∂Ñ(s′|s)

= αV (s′)− log Ñ(s′|s)− 1 + logN(s′|s) + ν = 0 (24)

Solving for Ñ gives the closed form solution N∗:

N∗(s′|s) = exp (αV (s′)− 1 + ν)N(s′|s), ∀s ∼ D (25)

By the condition
∑

s′ N
∗(s′|s) = 1, we can directly solve the Lagrangian multiplier ν and replace

exp(ν − 1) with a normalization factor:

N∗(s′|s) = 1

Z(s)
exp (αV (s′))N(s′|s), ∀s ∼ D (26)

where Z(s) =
∑

s′ exp (αV (s′))N(s′|s) is the normalization factor.

B.2 Proof of Proposition 1

Proposition 3 (Proposition 1 in the main paper). Suppose that the environment dynamics is determin-
istic, then both R̄(π) and R̄1(π) achieve their global maximum at the policy π∗, where4

π∗(a|s) = 1

Z(s)
exp (αV (M(s, a)))β(a|s) (27)

The support of π∗ is within that of the behavior policy β:

supp(π∗(·|s)) ⊆ supp(β(·|s)), ∀s ∼ D (28)

and π∗ makes the following equation hold:

N∗(·|s) = M(·|s, π∗(·|s)), ∀s ∼ D (29)

Proof. We start with R̄(π).

argmax
π

R̄(π) (30)

=argmax
π

E
(s,s′)∼D

[
1

Z(s)
exp (αV (s′)) logM(s′|s, π(·|s))

]
(31)

=argmax
π

E
s∼D

E
s′∼N(·|s)

[
1

Z(s)
exp (αV (s′)) logM(s′|s, π(·|s))

]
(32)

=argmax
π

E
s∼D

E
s′∼N∗(·|s)

[logM(s′|s, π(·|s))] (33)

=argmin
π

E
s∼D

E
s′∼N∗(·|s)

[logN∗(s′|s)− logM(s′|s, π(·|s))] (34)

=argmin
π

E
s∼D

DKL(N
∗(·|s)∥M(·|s, π(·|s))) (35)

4Here for clarity, we use the notation M with slightly different meanings in different cases: in the stochastic
setting, M : S ×A → ∆(S); in the deterministic setting, M : S ×A → S.
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The third equality holds because of the relationship between N∗ and N in Eq. (6):

N∗(s′|s) = 1

Z(s)
exp (αV (s′))N(s′|s), ∀s ∼ D (36)

Therefore, the maximizer of R̄(π) is equal to the solution of the minimization problem in Eq. (35).
Now consider the two distributions N∗(·|s) and M(·|s, π(·|s)) in Eq. (35).

N∗(s′|s) = 1

Z(s)
exp (αV (s′))N(s′|s) (37)

=
1

Z(s)
exp (αV (s′))

∑
a

β(a|s)M(s′|s, a) (38)

For analytical clarity, we use the notation M with slightly different meanings in different cases: in
the stochastic setting, M : S ×A → ∆(S); in the deterministic setting, M : S ×A → S. With the
deterministic dynamics assumption,

N∗(s′|s) = 1

Z(s)
exp (αV (s′))

∑
a

β(a|s)I [M(s, a) = s′] (39)

=
∑
a

1

Z(s)
exp (αV (s′))β(a|s)I [M(s, a) = s′] (40)

=
∑
a

1

Z(s)
exp (αV (M(s, a)))β(a|s)I [M(s, a) = s′] (41)

On the other hand,

M(s′|s, π(·|s)) =
∑
a

M(s′|s, a)π(a|s) (42)

=
∑
a

π(a|s)I [M(s, a) = s′] (43)

Now we define π∗(a|s) as

π∗(a|s) := 1

Z(s)
exp (αV (M(s, a)))β(a|s) (44)

We first show that π∗ is a valid policy, that is, π∗ is normalized.

π∗(a|s) = 1

Z(s)
exp (αV (M(s, a)))β(a|s) (45)

=
exp (αV (M(s, a)))β(a|s)∑

s′ exp (αV (s′))N(s′|s)
(46)

=
exp (αV (M(s, a)))β(a|s)∑

s′ exp (αV (s′))
∑

a β(a|s)M(s′|s, a)
(47)

=
exp (αV (M(s, a)))β(a|s)∑

a

∑
s′ exp (αV (s′))β(a|s)M(s′|s, a)

(48)

=
exp (αV (M(s, a)))β(a|s)∑
a exp (αV (M(s, a)))β(a|s)

(49)

Therefore,
∑

a π
∗(a|s) = 1.

Substitute Eq. (44) into Eq. (41),

N∗(s′|s) =
∑
a

π∗(a|s)I [M(s, a) = s′] (50)

Comparing Eq. (43) with Eq. (50), it holds that N∗(s′|s) = M(s′|s, π∗(·|s)),∀s ∼ D. As a result,

E
s∼D

DKL(N
∗(·|s)∥M(·|s, π∗(·|s))) = 0 (51)
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Considering the non-negativity of KL divergence, the optimization problem in Eq. (35) achieves its
global minimum at π∗. Therefore, R̄(π) also achieves its global maximum at π∗.

Now we consider R̄1(π).
argmax

π
R̄1(π) (52)

=argmax
π

E
(s,s′)∼D

[exp (α (V (s′)− V (s))) logM(s′|s, π(·|s))] (53)

=argmax
π

E
(s,s′)∼D

[
Z(s)

exp (αV (s))Z(s)
exp (αV (s′)) logM(s′|s, π(·|s))

]
(54)

=argmax
π

E
s∼D

E
s′∼N(·|s)

[
Z(s)

exp (αV (s))Z(s)
exp (αV (s′)) logM(s′|s, π(·|s))

]
(55)

=argmax
π

E
s∼D

E
s′∼N∗(·|s)

[
Z(s)

exp (αV (s))
logM(s′|s, π(·|s))

]
(56)

=argmin
π

E
s∼D

E
s′∼N∗(·|s)

[
Z(s)

exp (αV (s))
(logN∗(s′|s)− logM(s′|s, π(·|s)))

]
(57)

=argmin
π

E
s∼D

[
Z(s)

exp (αV (s))
DKL(N

∗(·|s)∥M(·|s, π(·|s)))
]

(58)

The fourth equality holds because of the relationship between N∗ and N in Eq. (36).

As shown above, it holds that N∗(s′|s) = M(s′|s, π∗(·|s)),∀s ∼ D. As a result,

E
s∼D

[
Z(s)

exp (αV (s))
DKL(N

∗(·|s)∥M(·|s, π(·|s)))
]
= 0 (59)

Considering Z(s)/exp (αV (s)) > 0 and the non-negativity of KL divergence, the optimization
problem in Eq. (58) achieves its global minimum at π∗. Therefore, R̄1(π) also achieves its global
maximum at π∗.

In conclusion, when the environment dynamics is deterministic, both R̄(π) and R̄1(π) achieve their
global maximum at the policy π∗, and π∗ makes the following equation hold:

N∗(·|s) = M(·|s, π∗(·|s)), ∀s ∼ D (60)
Moreover, because π∗(a|s) = 1

Z(s) exp (αV (M(s, a)))β(a|s), the support of π∗ is included by that
of the behavior policy β:

supp(π∗(·|s)) ⊆ supp(β(·|s)), ∀s ∼ D (61)

B.3 Proof of Proposition 2

Proposition 4 (Proposition 2 in the main paper). When the dynamics is stochastic, the maximizers of
both R̄(π) and R̄1(π) are constrained within the support of the behavior policy:

supp(π∗(·|s)) ⊆ supp(β(·|s)), ∀s ∼ D (62)
supp(π∗

1(·|s)) ⊆ supp(β(·|s)), ∀s ∼ D (63)

Proof. We start with R̄(π).

R̄(π) : = E
(s,s′)∼D

[
1

Z(s)
exp (αV (s′)) logM(s′|s, π(·|s))

]
(64)

= E
(s,s′)∼D

[
1

Z(s)
exp (αV (s′)) log

(∑
a

M(s′|s, a)π(a|s)

)]
(65)

Let π denote any valid policy. For ∀s ∈ D, define ϵ(s) and n(s) as follows:

ϵ(s) :=
∑
a

I[β(a|s) = 0]π(a|s) (66)

n(s) :=
∑
a

I[β(a|s) > 0] (67)

18

93585https://doi.org/10.52202/079017-2967



For ∀s ∈ D, there exists at least one action a such that (s, a) ∈ D. Thus it holds that n(s) > 0,∀s ∈
D. Then for ∀s ∈ D,∀π, define πin as follows:

πin(a|s) =
{

π(a|s) + ϵ(s)
n(s) , β(a|s) > 0,

0, β(a|s) = 0.
(68)

πin can be seen as a projection of π onto β’s support. Besides, for ∀s ∈ D,∑
a

πin(a|s) =
∑
a

I[β(a|s) > 0]

(
π(a|s) + ϵ(s)

n(s)

)
(69)

=
∑
a

I[β(a|s) > 0]π(a|s) + ϵ(s) (70)

=
∑
a

I[β(a|s) > 0]π(a|s) +
∑
a

I[β(a|s) = 0]π(a|s) (71)

=
∑
a

π(a|s) (72)

= 1 (73)

Thus πin is a valid policy.

Now we compare R̄(πin) with R̄(π). For ∀(s, s′) ∈ D,∑
a

M(s′|s, a)πin(a|s)−
∑
a

M(s′|s, a)π(a|s) (74)

=
∑
a

M(s′|s, a) (πin(a|s)− π(a|s)) (75)

=
∑

{a|β(a|s)>0}

M(s′|s, a) (πin(a|s)− π(a|s)) (76)

=
∑

{a|β(a|s)>0}

M(s′|s, a) ϵ(s)
n(s)

(77)

≥ 0 (78)

The second equality holds because, in tabular MDPs, the empirical dynamics model M exactly
computes the conditional distribution observed in the dataset. For transitions not contained in the
dataset, M = 0 [12]. The final inequality holds because ϵ(s) ≥ 0.

Therefore,

R̄(πin)− R̄(π) (79)

= E
(s,s′)∼D

[
1

Z(s)
exp (αV (s′)) log

(∑
a M(s′|s, a)πin(a|s)∑
a M(s′|s, a)π(a|s)

)]
(80)

≥ E
(s,s′)∼D

[
1

Z(s)
exp (αV (s′)) log (1)

]
(81)

≥ 0 (82)

Now suppose π is not constrained within the support of the behavior policy at some state s1 ∈ D:
supp(π(·|s1)) ⊈ supp(β(·|s1)). That is, ∃ã1 such that π(ã1|s1) > 0 and β(ã1|s1) = 0. Thus it
holds that ϵ(s1) =

∑
a I[β(a|s1) = 0]π(a|s1) > 0. On the other hand, since s1 ∈ D, there exists at

least one action a1 and one state s′1 such that (s1, a1, s′1) ∈ D. Thus it holds that β(a1|s1) > 0 and
M(s′1|s1, a1) > 0. As a result,∑

a

M(s′1|s1, a)πin(a|s1)−
∑
a

M(s′1|s1, a)π(a|s1) (83)

=
∑

{a|β(a|s1)>0}

M(s′1|s1, a)
ϵ(s1)

n(s1)
(84)

> 0 (85)
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In such case, R̄(πin) > R̄(π). Therefore, if π is not constrained within the support of the behavior
policy at some state s1 ∈ D, we can find another policy πin that is constrained within the support of
the behavior policy and achieves higher objective function R̄(πin). Consequently, R̄(π) must achieve
its maximum at support constrained policy π∗: supp(π∗(·|s)) ⊆ supp(β(·|s)), ∀s ∼ D.

Now we consider R̄1(π).

R̄1(π) : = E
(s,s′)∼D

[exp (α (V (s′)− V (s))) logM(s′|s, π(·|s))] (86)

= E
(s,s′)∼D

[
exp (α (V (s′)− V (s))) log

(∑
a

M(s′|s, a)π(a|s)

)]
(87)

With the same definition of ϵ(s), n(s) and πin as in Eq. (66), Eq. (67) and Eq. (68), it also holds that

R̄1(πin)− R̄1(π) (88)

= E
(s,s′)∼D

[
exp (α (V (s′)− V (s))) log

(∑
a M(s′|s, a)πin(a|s)∑
a M(s′|s, a)π(a|s)

)]
(89)

≥ E
(s,s′)∼D

[exp (α (V (s′)− V (s))) log (1)] (90)

≥ 0 (91)

As before, when supposing π is not constrained within the support of the behavior policy at some
state s1 ∈ D, it holds that R̄1(πin) > R̄1(π). Therefore, R̄1(π) must achieve its maximum at support
constrained policy π∗

1 : supp(π∗
1(·|s)) ⊆ supp(β(·|s)), ∀s ∼ D.

In conclusion, when the environment dynamics is stochastic, the maximizers of both R̄(π) and R̄1(π)
are constrained within the support of the behavior policy:

supp(π∗(·|s)) ⊆ supp(β(·|s)), supp(π∗
1(·|s)) ⊆ supp(β(·|s)), ∀s ∼ D (92)

C Further Discussions

C.1 Rationale for Choosing exp(αV (s)) as the Empirical Normalizer

Firstly, choosing exp(αV (s)) is intended to obtain something similar to the advantage function.
With this normalizer, the weight of our regularizer is exp(α(V (s′)− V (s))), which is comparable
to the weight exp(αA(s, a)) in Advantage Weighted Regression (AWR) [47]. Here, V (s′)− V (s)
represents the relative advantage of the next state s′ compared to the current state s, while A(s, a)
reflects the relative advantage of taking action a in s compared to following the current policy.
Comparison of the objectives of SCAS and AWR:

SCAS: exp(α(V (s′)− V (s))) log(M(s′|ŝ, π(ŝ))) (93)

AWR: exp(αA(s, a)) log π(a|s) (94)

Secondly, as discussed in the paper, introducing any normalizer that depends only on s (independent
of s′) does not affect the development and analysis of our method; it is merely for computational
stability. In AWR-based methods, there also exists a normalizer Z(s) and they usually disregard
it [47, 45]. The rationale behind this is similar.

C.2 Pessimism and Robustness in SCAS

In a specific sense, SCAS, which unifies OOD state correction and OOD action suppression, also
integrates pessimism and state robustness. (1) Regarding pessimism: The OOD action suppression
effect of SCAS aligns with the pessimism commonly discussed in offline RL work (being pessimistic
about OOD actions) [31, 70, 30, 3, 54]. Unlike traditional policy constraint methods [69, 30, 10, 47],
our approach does not require the training policy to align with the behavior policy; it only requires the
successor states to be within the dataset support, which is a more relaxed constraint. (2) Regarding
state robustness: The OOD state correction effect of SCAS is aimed at improving the agent’s
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robustness to OOD states during the test phase. Compared with previous works, SCAS unifies
OOD state correction and OOD action suppression and additionally achieves value-aware OOD state
correction. Some offline RL literature on state robustness differs from our approach; they typically
consider noisy observations [72], such as sensor errors. In contrast, SCAS addresses state robustness
concerning actual OOD states encountered during test time, rather than noisy observations.

C.3 Regularization Effect at ID States

In SCAS, there is regularization on the policy’s output actions at ID states. In our regularizer, the
perturbed states ŝ are sampled from N (s, σ2), and a large portion of ŝ will fall near the original ID
state s or even be approximately equal to s. Therefore, the policy’s output actions at ID states are also
regularized. For this part of the regularization, its role is equivalent to the ID state regularizer analyzed
in Section 4, which has been theoretically shown to have the effect of suppressing OOD actions.
Moreover, the experimental results in Section 6 also demonstrate that our OOD state correction
regularizer addresses the traditional issue with OOD actions.

C.4 Differences between the OOD Action Issue and the OOD State Issue

We further elucidate the differences between the well-known OOD action issue and the OOD state
issue we analyzed. Most offline RL works focus on the OOD action issue in the training phase. That
is, the trained policy outputs OOD actions to compute the target Q, which results in extrapolation
error and value divergence during training [12]. In contrast, the OOD state issue we defined and
analyzed is in the test phase. That is, the agent can enter states out of the offline dataset during test,
potentially resulting in catastrophic failure.

D Experimental Details

Table 2: Hyperparameters in SCAS.

Hyperparameter Value

Policy training

Optimizer Adam [26]
Critic learning rate 3× 10−4

Actor learning rate 2× 10−4 with cosine schedule
Batch size 256
Discount factor 0.99
Gradient Steps 106

Target network update rate 0.005
Policy update frequency 2
Number of Critics 4
Inverse temperature α 5
Balance coefficient λ 0.25
Noise scale σ 0.003

Dynamics training

Optimizer Adam
Learning rate 1× 10−3

Batch size 256
Gradient Steps 5× 105

Architecture
Actor input-256-256-output
Critic input-256-256-1
Dynamics input-256-256-256-256-output

All hyperparameters of SCAS are included in Table 2. Note that we use this same set of hyper-
parameters to obtain all the results reported in this paper (except for parameter study). Following
TD3+BC [10], we normalize the states in all datasets except for antmaze-large. We clip the expo-
nentiated weight exp (αVθ (s

′)− αVθ (s)) in Eq. (19) to (−∞, 50]. Following the suggestions in the
benchmark [9], we subtract 1 from the rewards for the Antmaze datasets.
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Our evaluation criteria follow those used in most previous works. For the Gym locomotion tasks, we
average returns over 10 evaluation trajectories and 5 random seeds, while for the Ant Maze tasks, we
average over 100 evaluation trajectories and 5 random seeds. The reported results are the normalized
scores, which are offered by the D4RL benchmark [9] to measure how the learned policy compared
with random and expert policy:

D4RL score = 100× learned policy return− random policy return
expert policy return− random policy return

The results of baselines reported in Table 1 are obtained as follows. We re-run OSR [22] on all datasets
using their official codebase5 and tune the hyperparameters for each dataset as specified in their paper.
We implement SDC [75] and re-run it on all datasets. We use the SDC-related hyperparameters
as specified in their paper, and sweep the CQL-related hyperparameters in {1,2,5,10,20} for each
dataset. We re-run OneStep RL [5] on all datasets using their official codebase6 and the default
hyperparameters. We implement BC [48] based on the TD3+BC repository7 and re-run it on all
datasets. The results of other baselines are taken from [3] and [68]. The runtime in Table 1 is obtained
by running offline RL algorithms on halfcheetah-medium-replay-v2 on a GeForce RTX 3090.

Figures 1(a) to 1(d) share the same embedding function obtained by running t-SNE on the set of all
200,000 samples (50,000 samples each from the dataset, CQL, TD3+BC, and SCAS). This ensures
a clear visual comparison. Figure 1(d) contains all the 200,000 samples, which is the union of the
points in Figures 1(a) to 1(c).

E Additional Experimental Results

E.1 Additional Value Estimation Results

Under the same setting of Figure 2, we conduct experiments on the additional datasets. The results
are shown in Figure 5. We omit the Q values of Off-policy RL, SDC w/o CQL, and OSR w/o CQL at
higher numbers of optimization steps, because these Q values diverge in the early learning stage, and
plotting their Q values at later optimization steps would result in an excessive range on the vertical
axis. The additional results also show that only SCAS’s OOD state correction term can achieve OOD
action suppression and prevent value over-estimation.

0 0.25 0.5 0.75 1
Gradient Steps (×106)

102

103

104

105

106

walker2d-medium-v2
SCAS: MC return
SCAS: Q
Off-policy RL: Q
SDC w/o CQL: Q
OSR w/o CQL: Q

0 0.25 0.5 0.75 1
Gradient Steps (×106)

102

103

104

105

106

walker2d-medium-expert-v2

Figure 5: Oracle Q-values of SCAS (estimated by MC return) and learned Q-values of SCAS and
other algorithms across optimization steps. Here Off-policy RL is SCAS with weight λ = 0 in
Eq. (20). Only SCAS’s OOD state correction term can achieve OOD action suppression and prevent
value over-estimation (divergence).

E.2 Additional Results on OOD State Correction

To further examine the OOD state correction effects of SCAS, we conduct experiments on a modified
D4RL maze2d-open-v0 [9]. It is a 2D point robot navigation task in a rectangle map with vertices
(0, 0) and (3, 5). The agent needs to reach the goal at (2, 3). We modify the dataset by removing all

5https://github.com/Jack10843/OSR
6https://github.com/davidbrandfonbrener/onestep-rl
7https://github.com/sfujim/TD3_BC
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the transitions containing states in a rectangle with vertices (0, 0) and (1.5, 2.5). During test, we let
the initial state be randomly distributed in this OOD region. We train algorithms over 106 gradient
steps and average returns over 1000 evaluation trajectories.

The results of BC [48], TD3+BC [10], CQL [31], MOPO [73], IQL [29], and SCAS are reported in
Table 3. With the OOD state correction signals, SCAS corrects the agent out of the OOD region more
quickly and stably, achieving significantly better performance than typical offline RL methods.

Table 3: Comparisons in modified maze2d-open-v0 over five random seeds.

BC TD3+BC CQL MOPO IQL SCAS

Steps out of OOD 84.7±44.7 58.0±35.7 63.8±33.0 50.6±25.4 37.7±6.7 22.8±3.1
D4RL score 38.5±25.4 63.9±39.3 41.2±42.0 110.1±78.8 335.0±114.9 571.9±2.7

E.3 Comparisons on the NeoRL Benchmark

Table 4: Averaged normalized scores on the NeoRL benchmark over four random seeds.

BC TD3BC CQL EDAC MOPO MOBILE SCAS

Hopper-High 43.1 75.3 76.6 52.5 11.5 87.8 100.5±7.8
Hopper-Med 51.3 70.3 64.5 44.9 1.0 51.1 94.6±9.3
Hopper-Low 15.1 15.8 16.0 18.3 6.2 17.4 19.7±1.2
Walker2d-High 72.6 69.6 75.3 75.5 18.0 74.9 74.6±0.7
Walker2d-Med 48.7 58.5 57.3 57.6 39.9 62.2 63.4±1.0
Walker2d-Low 28.5 43.0 44.7 40.2 11.6 37.6 34.4±1.3
HalfCheetah-High 71.3 75.3 77.4 81.4 65.9 83.0 77.0±0.5
HalfCheetah-Med 49.0 52.3 54.6 54.9 62.3 77.8 53.1±0.1
HalfCheetah-Low 29.1 30.0 38.2 31.3 40.1 54.7 31.5±0.2

total 408.7 490.1 504.6 456.6 256.5 546.5 548.7
hyperparameter tuning w/o w/ w/ w/ w/ w/ w/o

We also evaluate SCAS on the NeoRL benchmark [49]. NeoRL is a benchmark designed to simulate
real-world scenarios by collecting datasets using a more conservative policy, aligning closely with
realistic data collection scenarios. The narrow and limited data makes it challenging for offline
RL algorithms. The results are shown in Table 4. The results of baselines are taken directly from
the MOBILE paper [59]. According to Appendix C in [59], these results are obtained by tuning
hyperparameters per dataset. For SCAS, we use the same fixed set of hyperparameters as specified in
Appendix D. Without additional hyperparameter tuning, SCAS still performs comparably to MOBILE
and outperforms other baselines in total scores.

E.4 Comparisons with Additional Baselines

The original SCAS requires only one single hyperparameter configuration in implementations. For
a fair comparison with DW [19], EDAC [2], RORL [72], SQL [71], and EQL [71], we roughly
select λ from {0.025, 0.25} for each dataset, referring to this variant as SCAS-ht. The results of
SCAS-ht and these methods are reported in Table 5. Among the ensemble-free methods, SCAS-ht
achieves the highest performance in both mujoco locomotion and antmaze domains. Compared with
ensemble-based methods, SCAS-ht also performs better on antmaze tasks. DW [19] reweights ID
data points by their values for behavior regularization and does not account for OOD states during
the test phase. In contrast, our approach considers an OOD state correction scenario, resulting in
enhanced robustness during the test phase and better performance.

E.5 Results of Combining SCAS Regularizer into Various Offline RL Objectives

The SCAS regularizer is compatible with various offline RL objectives. We conduct experiments to
combine SCAS with CQL [31], IQL [29], and TD3BC [10]. Comparisons between these combined
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Table 5: Comparisons with additional baselines on the D4RL benchmark. Here SCAS-ht means
SCAS with slight hyperparameter tuning, selecting λ from {0.025, 0.25}. The results of SCAS-ht
are averaged over 5 random seeds and the others are taken from their papers.

Dataset Ensemble-free Ensemble-based

DW+CQL DW+IQL SQL EQL DQL SCAS-ht EDAC RORL

halfcheetah-med 46.5 47.7 48.3 47.2 51.1 58.5±1.1 65.9 66.8
hopper-med 66.1 62.5 75.5 74.6 90.5 102.5±0.3 101.6 104.8
walker2d-med 82.1 80.8 84.2 83.2 87 90.8±2.6 92.5 102.4
halfcheetah-med-rep 45.1 44.6 44.8 44.5 47.8 52.9±1.4 61.3 61.9
hopper-med-rep 88.6 79.7 99.7 98.1 101.3 101.6±1.0 101.0 102.8
walker2d-med-rep 75.3 65.1 81.2 76.6 95.5 88.1±4.2 87.1 90.4
halfcheetah-med-exp 86.1 93.7 94.0 90.6 96.8 91.7±2.7 106.3 107.8
hopper-med-exp 92.9 81.0 111.8 105.5 111.1 109.7±3.5 110.7 112.7
walker2d-med-exp 109.7 109.7 110.0 110.2 110.1 110.8±1.0 114.7 121.2

locomotion total 692.4 664.8 749.5 730.5 791.2 806.6 841.1 870.8

antmaze-umaze 72.7 81.3 92.2 93.2 93.4 90.4±3.6 0.0 96.7
antmaze-umaze-div 34.0 61.0 74.0 65.4 66.2 66.4±14.3 0.0 90.7
antmaze-med-play 4.0 78.7 80.2 77.5 76.6 83.6±3.1 0.0 76.3
antmaze-med-div 1.3 64.7 79.1 70.0 78.6 84.6±5.0 0.0 69.3
antmaze-large-play 2.0 40.0 53.2 45.6 46.4 59.4±5.0 0.0 16.3
antmaze-large-div 0.0 42.0 52.3 42.5 56.6 56.2±5.4 0.0 41.0

antmaze total 114.0 367.7 431.0 394.2 417.8 440.6 0.0 390.3

Table 6: Comparisons on the D4RL benchmark. Here +SCAS means adding the SCAS regularizer.
The results are averaged over 5 random seeds.

Dataset CQL CQL TD3BC TD3BC IQL IQL SCAS+SCAS +SCAS +SCAS

halfcheetah-med 47.0 46.5 48.3 44.1 47.4 46.8 46.6
hopper-med 53.0 96.1 59.3 66.6 66.2 76.8 102.5
walker2d-med 73.3 84.9 83.7 81.9 78.3 84.0 82.3
halfcheetah-med-rep 45.5 43.6 44.6 40.5 44.2 44.2 44.0
hopper-med-rep 88.7 100.2 60.9 79.4 94.7 102.3 101.6
walker2d-med-rep 81.8 78.6 81.8 76.2 73.8 76.2 78.1
halfcheetah-med-exp 75.6 92.9 90.7 89.6 86.7 92.7 91.7
hopper-med-exp 105.6 108.2 98.0 108.9 91.5 101.9 109.7
walker2d-med-exp 107.9 104.3 110.1 106.0 109.6 105.4 108.4

total 678.4 755.5 677.4 693.2 692.4 730.3 764.9

algorithms and the original ones are shown in Table 6. We find that applying the SCAS regularizer
leads to improved performance for these popular algorithms, which could be attributed to the OOD
state correction effects of SCAS. However, we also find that these combined methods do not achieve
better performance than the original SCAS (comparable on most tasks and worse on some tasks). We
hypothesize that this is because SCAS already has the effect of OOD action suppression, and when
combined with offline RL objectives that also aim for OOD action suppression, it may become overly
conservative. As a result, the combined algorithms may perform worse than the original SCAS on
some sub-optimal datasets.

E.6 Additional Parameter Study Results

In this section, we present additional parameter study results conducted on four challenging Antmaze
tasks, including antmaze-large-play-v2, antmaze-large-diverse-v2, antmaze-medium-play-v2, and
antmaze-medium-diverse-v2.

Inverse Temperature α. The inverse temperature α is the key hyperparameter in SCAS for achieving
value-aware OOD state correction. It controls the significance of the values of next states in SCAS’s
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OOD state correction. If α = 0, the effect corresponds to vanilla OOD state correction. As α gets
larger, SCAS is more inclined to correct the agent to the high-value ID states. Thus we can assess
the effectiveness of value-aware OOD state correction compared to vanilla OOD state correction by
varying α. Here we test SCAS with different α and the results are shown in Figure 6. We observe that
a large α is crucial for achieving good performance on all the antmaze tasks, clearly demonstrating
the effectiveness of our value-aware OOD state correction. However, too large α (α = 10) induces
less satisfying performance, probably due to the increased variance of the learning objective. In
general, we find that choosing α = 5 leads to the best performance.
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Figure 6: Additional results from the parameter study on the inverse temperature α. The curves are
averaged over 5 random seeds, with the shaded area representing the standard deviation across seeds.

Balance Coefficient λ. The balance coefficient λ controls the balance between vanilla policy
improvement and SCAS regularization. If we set λ = 0, SCAS degenerates into the vanilla off-policy
RL algorithm. Here we vary λ in {0, 0.25, 0.5, 0.75, 1} and present the corresponding learning
curves of SCAS in Figure 7. Notably, SCAS is able to converge to good performance over a very
wide range of λ. However, if λ = 0, the vanilla off-policy RL suffers from extrapolation error and
overestimation, demonstrating poor performance. We also observe a very interesting fact that even
when λ = 1 and the signal from RL improvement (max Q) is removed, SCAS still performs well on
most tasks. This could be attributed to the fact that value-aware OOD state correction implies some
sort of improvement in policy by maximizing the values of policy-induced next states.
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Figure 7: Additional results from the parameter study on the balance coefficient λ. The curves are
averaged over 5 random seeds, with the shaded area representing the standard deviation across seeds.

Noise Scale σ. The noise scale σ is the standard deviation of the Gaussian noise added to the original
states for formulating the SCAS regularizer. Here we test SCAS with different σ and present the
corresponding learning curves in Figure 8. We observe a significant performance drop with too large
σ (σ = 1) on all the tasks, due to the heavily corrupted learning signal. On the other hand, when
σ = 0 (without noise), the performance is also less satisfying. With σ = 0, SCAS is still able to
prevent the agent at ID states from entering OOD states, maintaining the agent in safe regions, but it
cannot correct the agent from OOD states to ID states as reliably as the original SCAS. In general,
we find that choosing σ = 0.001 or 0.01 leads to the best performance.
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Figure 8: Additional results from the parameter study on the noise scale σ. The curves are averaged
over 5 random seeds, with the shaded area representing the standard deviation across seeds.
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Figure 9: Performance of SCAS under different dynamics model checkpoints, which are obtained
at different steps in the dynamics model training process. The figure plots the training loss of the
dynamics model Mω and the corresponding normalized return of SCAS over 5 random seeds.

E.7 Sensitivity Analysis on Dynamics Model Errors

To empirically investigate SCAS under different dynamics model errors, we run SCAS using different
checkpoints of the trained dynamics model, which are obtained at different steps in the dynamics
model training process. The model error is controlled by the number of trained steps. The results are
shown in Figure 9. The figure plots the training loss of the dynamics model Mω and the corresponding
normalized return of SCAS over 5 random seeds. We observe that the performance of SCAS increases
with the number of trained steps of the dynamics model (i.e. the accuracy of the model) and stabilizes
at a high level.

E.8 Learning Curves of SCAS

Learning curves on Gym locomotion tasks and Antmaze tasks are presented in Figure 10 and Figure 11
respectively. The curves are averaged over 5 random seeds, with the shaded area representing the
standard deviation across seeds.

F Broader Impact

Offline RL holds promise for facilitating practical RL applications in domains like robotics, healthcare,
and education, where data collection is often costly or risky. However, it is important to recognize
its potential negative societal impacts. One concern is that biases in offline data may transfer to the
learned policy. In addition, offline RL may affect employment by automating tasks traditionally

26

93593https://doi.org/10.52202/079017-2967



performed by humans, like factory automation or autonomous driving. Addressing these challenges
will contribute to the responsible development and deployment of offline RL algorithms.

From an academic standpoint, this research systematically analyze the OOD state issue in offline RL
and propose SCAS, a simple yet effective approach that unifies OOD state correction and OOD action
suppression. This work potentially offers researchers a new perspective on analyzing the OOD state
issue and enhancing test-time robustness in offline RL. Besides, SCAS also holds the promise to be
extended to safe RL [1, 17, 13], meta RL [8, 65, 66, 64, 4], and multi-agent RL [35, 52, 55, 51, 16].
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Figure 10: Learning curves of SCAS on Gym locomotion tasks. The curves are averaged over 5
random seeds, with the shaded area representing the standard deviation across seeds.
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Figure 11: Learning curves of SCAS on AntMaze tasks. The curves are averaged over 5 random
seeds, with the shaded area representing the standard deviation across seeds.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please refer to Section 7.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: Please refer to Appendix B.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Please refer to Appendix D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

30

93597https://doi.org/10.52202/079017-2967



Answer: [Yes]

Justification: Please refer to the code in the supplemental material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Please refer to Appendix D.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The results in the paper are accompanied by standard deviations across multiple
seeds.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Please refer to Appendix D.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Please refer to Appendix F.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The creators or original owners of assets used in the paper are properly credited
and the license and terms of use are explicitly mentioned and properly respected.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The code is well documented and anonymized.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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