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Abstract
LiDAR data exhibits significant domain gaps due to variations in sensors, vehicles,
and driving environments, creating “language barriers” that limit the effective
use of data across domains and the scalability of LiDAR perception models. To
address these challenges, we introduce the LiDAR Translator (LiT), a framework
that directly translates LiDAR data across domains, enabling both cross-domain
adaptation and multi-domain joint learning. LiT integrates three key components:
a scene modeling module for precise foreground and background reconstruction, a
LiDAR modeling module that models LiDAR rays statistically and simulates ray-
drop, and a fast, hardware-accelerated ray casting engine. LiT enables state-of-the-
art zero-shot and unified domain detection across diverse LiDAR datasets, marking
a step toward data-driven domain unification for autonomous driving systems.
Source code and demos are available at: https://yxlao.github.io/lit.
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Figure 1: LiT translates LiDAR scenes across domains, capturing target domains’ characteristics.
By unifying the LiDAR “languages”, LiT enables effective zero-shot and multi-dataset joint learning.
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1 Introduction

LiDAR provides accurate geometry measurements of the surrounding environment, making it one of
the most popular sensor choices for various autonomous systems [1, 2, 3, 4, 5]. Despite its importance,
perception models trained on a specific LiDAR setup often struggle to generalize across different
sensors [6, 7, 8], primarily due to the domain gaps attributable to variations in sensor intrinsic
characteristics and driving environments. These gaps, akin to “language barriers,” significantly
degrade model performance when transferring between different LiDAR sensors and hinder effective
joint training across multiple datasets. In a real-world scenario, it takes tremendous time and resources
to collect, annotate, and train just one model for a specific LiDAR setup [9, 10, 11]. Consequently,
this barrier acts as a bottleneck in training scale-up, which has been a driving force behind recent
rapid advancements in other areas of representation learning, such as 2D vision [12, 13, 14, 15] and
natural language processing (NLP) [16, 17, 18, 19]. Addressing the “language barriers” in the context
of LiDAR data is therefore crucial for unlocking similar advancements within autonomous driving.

Recent efforts [6, 20] have already acknowledged the significance of “language barriers” within
LiDAR data as a meaningful challenge. However, solutions to date primarily focus on model-driven
approaches, attempting to bridge these gaps through adaptations within the perception model itself.
While these methods have shown promise in bridging domain gaps in certain contexts, they introduce
a notable drawback: the cost of customizing model structure and training data for new, specific
domains. This requirement demands significant resources and limits the scalability and flexibility of
deploying autonomous systems across varied environments.

To this end, we present the LiDAR Translator (LiT), a novel data-driven approach that functions
similarly to a language translator, converting disparate LiDAR “dialects” into a common “language”
(Fig. 1), and further unleashing the zero-shot capacity and joint training potential of LiDAR-based
models. The overall pipeline is available in Fig. 4. Specifically, LiT reconstructs the source do-
main scene with neural implicit representations, capturing both the static background and dynamic
foreground elements (Sec. 4.1). Then, LiT simulates the target domain LiDAR sensor model using
a custom GPU-accelerated ray casting engine, generating translated LiDAR scans that faithfully
replicate the target domain’s characteristics (Sec. 4.2). By doing so, LiT effectively bridges the
gap between different LiDAR “languages,” enabling seamless domain adaptation and unification of
disparate LiDAR datasets. Through this well-designed framework, LiT effectively bridges the gap
between different LiDAR “languages,” facilitating seamless domain unification of LiDAR datasets.

LiT advances domain adaptation through data-side unification and multi-domain joint learning [6].
We show in our experiments that, in single-source adaptation scenarios, LiT demonstrates superior
zero-shot detection performance compared to existing model-driven and data-driven techniques. Addi-
tionally, by translating multiple data sources into a unified target domain, LiT facilitates multi-dataset
joint training, where combining data from various sources not only improves model performance
beyond single-source training but also establishes a new paradigm for data-centric learning strategies.

2 Related work

3D representation learning. In the realm of autonomous driving, achieving the unification of
perception models for LiDAR data across different domains presents a distinct challenge, one
that diverges from the significant progress observed in 2D domains where large-scale pre-training
has dramatically enhanced downstream task performance [21]. Specifically in the domain of 3D
representation learning, the field is still in an exploratory phase. Many existing studies have focused
on training models from scratch, tailored to specific datasets [22]. Initially, this research largely
targeted the recognition of individual objects [23, 24, 25, 26, 27]. Over time, it has evolved to address
the more complex task of interpreting real-world, scene-centric point clouds [22, 28, 29, 30], marking
a notable advance in our understanding of 3D data. Inspired by the achievements of large-scale
representation learning and the effectiveness of multi-dataset synergistic approaches, such as Point
Prompt Training (PPT) [6], LiT aims to overcome the constraints of model-side adaptations by
utilizing a data-driven approach to bridging domain gaps.

LiDAR domain adaptation. LiDAR domain adaptation is critical for enabling models trained
on one domain to effectively operate in another, accommodating variations such as sensor types
and environmental conditions [31, 32, 33, 34, 35]. Techniques have varied widely: SN [36] tackles
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Table 1: Vanilla zero-shot capacity. Without LiDAR translation, the performance of the 3D object
detection model drops dramatically when applied to different domains. LiT is capable of translating
LiDAR data across domains and can significantly improve the performance of the 3D object detection
model. APBEV and AP3D of the car category at IoU = 0.7 of the SECOND-IoU [50] model are shown.

Method Waymo → KITTI Waymo → nuScenes nuScenes → KITTI
APBEV ↑ AP3D ↑ APBEV ↑ AP3D ↑ APBEV ↑ AP3D ↑

Without translation 67.64 27.48 32.91 17.24 51.84 17.92
With LiT translation 82.55 69.94 37.00 22.19 80.54 60.13

object size discrepancies through normalization based on object statistics; ST3D [7] and ST3D++ [8]
utilize a self-training pipeline with pseudo-labels for fine-tuning; LiDAR-Distillation [37] mitigates
beam-induced domain shifts with a progressive framework; SPG [38] aims to fill in missing points in
foreground areas; and 3D-CoCo [39] employs domain-specific encoders and contrastive learning for
transferable representation. LiT aligns with these efforts by employing zero-shot object detection as
a primary benchmark to measure its effectiveness in domain adaptation. However, LiT’s ambition
extends beyond mere adaptation; it aims to unify the “languages” of multiple LiDAR domains,
exploring the synergistic potential of such unified data.

Autonomous driving simulator. Simulators play an important role in autonomous driving re-
search by making data collection and annotation much easier and cheaper. Initial efforts leveraged
ground-truth information extracted from graphic engines, such as CARLA [40], by utilizing various
simulators [41, 42, 43, 44, 45]. Despite their utility, these sim-to-real approaches often involve
complex dependencies on simulator engines, which can be cumbersome and costly to establish, and
still result in a notable sim-to-real gap. In response to these challenges, subsequent studies like
LiDARsim [46] and PCGen [47] have attempted to bridge this gap by simulating point clouds from
real data through multi-step, data-driven pipelines. More recent advances, including UniSim [48]
and LiDAR-NeRF [49], have explored the use of neural implicit fields to simulate new sensor views.
However, these methods primarily generate data reflective of the source domain and do not adequately
address variations across datasets. Different from these works, LiT enables direct translation of
real-world source data into target domain LiDAR characteristics, effectively bridging the domain gap
through simulation.

3 Pilot study

3.1 Exploring language barriers among LiDARs

The progression of autonomous driving technologies is intimately tied to the diversity and quality of
LiDAR data, which provides a detailed three-dimensional representation of environments. Operating
in varied settings, autonomous vehicles utilize diverse LiDAR sensors, each characterized by unique
specifications like field of view, beam count, and ray-drop behavior. This results in notable variations
across datasets such as Waymo [10], nuScenes [11], and KITTI [9], creating significant domain gaps
akin to language barriers between LiDAR “languages”.

These gaps manifest in various forms, including alterations in point cloud density due to beam
count differences and changes in spatial coverage from FoV variations. Additionally, scene content
differences (such as vehicle sizes, orientations, and types) mirror the geographical and operational
diversity of each dataset, adding layers of complexity to the domain-specific challenges (as visualized
in Fig. 2). Such disparities obstruct the direct application of models trained on one dataset to another
(see Table 1) and further pose significant obstacles to exploring synergistic training across these
datasets. By tackling these barriers head-on, LiT aims to unlock the potential of data scale.

We wish to break the language barriers among LiDARs with our LiDAR Translator.

3.2 Embracing data-driven domain unification

Previous attempts to bridge domain gaps [7, 8], particularly through unsupervised domain adaptation
techniques, have achieved limited success. These model-based approaches focus on adapting the
model to fit the target domain, often neglecting the underlying variations in data characteristics. As a
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Figure 2: Domain gaps for LiDARs. Top Row: LiDAR ray angles have significantly different
distributions. We model their statistical distributions as detailed in Sec. 4.2. Middle Row: Foreground
vehicle sizes can differ across datasets. Bottom Row: We show the ideal ray casting results from
LiDARs mounted at 1.6 meters height to a reconstructed vehicle placed 20 meters in front.
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Figure 3: Comparing LiT with model-based adaptation. (a) Training a model on source domain
data and directly applying it to the target domain typically results in poor performance due to the
domain gap. (b) Model-based adaptation techniques [7] adapt the model to the target domain but
do not explicitly model the target domain data LiDAR characteristics and data distribution. (c)
LiT directly translates LiDAR data from the multiple source domains to a unified target domain,
effectively bridging the domain gaps and enabling joint training across multiple datasets.

result, while they may narrow the domain gap to a degree, they do not fully exploit the potential of
diverse datasets to bolster model robustness and generalization.

Contrary to model-side adaptation, data-driven adaptation presents a more practical and efficient
avenue for LiDAR domain unification without the need for additional adjustment on the base model.
By translating LiDAR data from various source domains into a standardized target domain “language”,
we can unify discrepancies across datasets. This harmonization creates a cohesive dataset that reflects
the diversity of multiple sources, addressing the issue of negative transfer and enriching the training
data to boost model performance and generalizability in different settings.

Specifically, if we can translate data from an available source domain to an unseen target domain,
we can further use the translated data for model training and fulfill downstream tasks on the target
domain, effectively achieving zero-shot cross-domain learning. Moreover, if we can unify multiple
source domains into one target domain, model training can further take advantage of a larger scale of
data training to push the model’s generalization capabilities to a higher level, as illustrated in Fig. 3.
In a word, embracing data-driven domain unification has great potential in both zero-shot adaptations
from source to target and large-scale multi-domain joint training.

We treat data-driven domain unification as the original point of our LiDAR Translator.
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Figure 4: LiT pipeline overview. LiT translates LiDAR data across domains, integrating scene
modeling (Sec. 4.1) and LiDAR modeling (Sec. 4.2) with GPU-accelerated ray casting. LiT is highly
efficient, as it can translate a multi-frame LiDAR scene in typically less than one minute (Table 6).

4 LiDAR translator

4.1 Scene modeling

Foreground modeling. Previous work ReSimAD [51] relies on hand-crafted 3D vehicle assets
from simulator engines [40], which limits the diversity of the foreground objects and the realism of
the simulated data. In contrast, LiT reconstructs the foreground objects from multi-frame LiDAR
point clouds, which are more representative of real-world data with diverse vehicle geometries. To
achieve this, we first track the vehicles across multiple LiDAR frames, where the tracking information
is typically provided by LiDAR datasets [9, 10, 11]. Inspired by the recent success of implicit
neural representations [52, 53] in reconstructing shapes from LiDAR point clouds, we train an
SDF-based reconstruction model on the ShapeNetV2 [54] vehicle category and apply it to reconstruct
the foreground objects from multi-frame LiDAR point clouds. With this approach, we can accurately
reconstruct the detailed geometry of diverse vehicle shapes. As shown in our experiments in Table 5,
the increase in foreground diversity leads to a significant performance increase in zero-shot detection
tasks. We refer the reader to Sec. A.1 for details and visualizations on the foreground modeling.

Background modeling. The primary goal of background modeling is to faithfully reconstruct the
background environment. However, the efficiency and scalability of the background modeling method
are equally important, especially when dealing with joint training on multiple large-scale datasets.
ReSimAD [51] uses NeuS [55] for background reconstruction, which requires custom training for
each scene with time measured in hours. In contrast, LiT models the scene as the zero-level set of a
3D implicit field defined by a hierarchical neural kernel field [56, 57]. This approach is generalizable,
eliminating the need for retraining on every new LiDAR sequence and significantly reducing LiT’s
full-scene translation time to less than a minute for a 200-frame LiDAR scene, as detailed in Table 6.
This efficiency plays a crucial role in enabling the scalability of LiT across various datasets. We refer
readers to Sec. A.2 in the supplementary material for further details and visualizations on background
modeling.

Module adaptability. Both the foreground and background modeling are crucial modules for
achieving high fidelity in scene representation, enabling accurate domain adaptation. In LiT,
these modules are designed to be swappable, allowing for the integration of more advanced scene
representation methods as they are developed. While the specific modeling techniques are important,
our primary contribution lies in how these components work together within our domain translation
framework to enable effective domain unification.

4.2 LiDAR modeling
Modeling the different LiDAR characteristics is a critical step in domain adaptation, as it directly
affects the simulated data distribution and characteristics of the target domain. Unlike existing
work [51] that relies on full-scale simulators, we develop a custom LiDAR modeling and ray casting
pipeline that is more flexible and efficient, and it does not require complex dependencies when using
simulator engines. We model the LiDAR characteristics of beam angles. All of these are made
possible by our hardware-accelerated LiDAR ray casting engine.
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Figure 5: LiDAR modeling with statistical ray
angles and ray-drop. We compare the chamfer
distance between the real-world LiDAR data and
the simulated LiDAR data on nuScenes. The cham-
fer distance is smallest when both statistical model-
ing and ray-drop modeling are applied. The cham-
fer distances are clipped at 1.0m for visualization.

Statistical modeling of LiDAR ray angles.
The naive implementation for LiDAR ray gen-
eration is to evenly distribute the rays in the hor-
izontal axis, based on the LiDAR’s horizontal
field of view (FOV) and beam counts. How-
ever, this approach does not accurately reflect
the real-world LiDAR characteristics, which are
often non-homogeneous in the vertical direction,
as shown in the top row of Fig. 2. To address
this issue, we conduct a statistical analysis of
LiDAR rays, focusing on the ray distribution in
the vertical axis. First, for each LiDAR ray in
the dataset, we compute its vertical angle based
on the ray’s xy-plane distance and z-axis dis-
tance. Then, we calculate the distribution of
the vertical angles and identify the peak angles
where the majority of the LiDAR rays are con-
centrated. Specifically, this is done by finding
H statistical modes in the distribution of vertical
angles, where H is the height of the range image
or the number of beams in the LiDAR sensor.
Notably, we do not require manual labeling of
target domain data, only a small amount of target domain LiDAR data to perform this statistical
analysis. After the modeling, our LiDAR ray generation module then generates rays based on these
identified peak angles, ensuring that our simulated LiDAR data is representative of real-world LiDAR
characteristics. Fig. 5 shows the average Chamfer distance between the real-world LiDAR data
and the self-to-self translated LiDAR data on nuScenes. The chamfer distance is reduced when
statistical modeling is applied (blue curve) compared to the vanilla case (red curve), indicating that
the simulated LiDAR data more closely resemble the real-world LiDAR data.

LiDAR ray-drop modeling. Ray-drop of LiDAR rays is frequent in real-world scenarios due to
various factors, including object reflectivity, absorption, or occlusion. We model this phenomenon by
training a ray-drop predictor model that predicts the likelihood of a ray being dropped. To collect the
ray-drop dataset, we reconstruct background and foreground scenes and perform ray casting using
the dataset’s own LiDAR parameters. For each ray, we record whether it hits a mesh or not in the
simulated scene. Inspired by PCGen [47], we collect the ray direction r, the point distance d, and
the ray incident angle θ for each ray. Then, we train an MLP-based ray-drop model with positional
encoding [58], to predict the likelihood of a ray being dropped. The MLP network takes (r, d, θ) with
positional encoding as input, and outputs the probability of the ray being dropped.

For quantitative evaluation, we perform a self-to-self translation task on the nuScenes dataset to assess
the quality of the ray-drop modeling. Fig. 5 shows the chamfer distance decreases when ray-drop
modeling is applied, and it shows the combined effects of applying both statistical modeling and
ray-drop modeling together. For qualitative evaluation, we present the visualization of the ray-drop
model trained on the nuScenes dataset in Fig. 6. The simulated LiDAR points, especially those
proximal to vehicles, effectively resemble the nuScenes dataset’s characteristic patterns.

Ground-truth target pattern
from a different scene

Translated target LiDAR
without ray-drop

Translated target LiDAR
with ray-drop

Figure 6: Ray-drop modeling visualization. The left image shows the translated nuScenes frame
without ray-drop modeling, where it has a dense circular LiDAR pattern near the vehicle. The middle
image, with ray-drop modeling applied, displays sparser LiDAR points near the vehicle, closely resem-
bling nuScenes’ scan patterns. The right image is a real nuScenes LiDAR scan from another scene.
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Figure 7: Deploying LiT-modeled LiDAR to a new scene. The LiT pipeline allows flexible compo-
sition of LiDARs and scenes, even when the scene is not modeled by LiT. We show visualizations
of the synthetic Mai City scene [59] (column 1), and the LiT-simulated LiDAR scans in nuScenes
patterns following a moving vehicle trajectory (column 2-4).

Hardware accelerated LiDAR ray casting. While existing work [51] relies on integrating with
full-scale simulators like CARLA [40], which can be cumbersome to recompile and less efficient to
run, we have developed a hardware-accelerated LiDAR ray casting engine for LiT that offers greater
flexibility and efficiency. Specifically, our LiDAR ray casting engine emits rays based on the LiDAR
modeling, computes the location of the ray-mesh hit point, the surface normal at that point, and the
incident angle of the ray, providing the necessary data to simulate target domain points. Given the
surface normal n of the triangle hit by the ray and the ray direction r, the incident angle θ is computed
as θ = arccos ((r · n)/(∥r∥∥n∥)). LiT’s ray casting engine is accelerated on both CPU with Intel
Embree and GPU with Nvidia OptiX, enabling real-time ray casting (22Hz to 31Hz) when running
on a single GPU. The efficiency of this engine allows LiT to translate a multi-frame LiDAR scene
typically in less than one minute, making large-scale domain unification tasks feasible. For more
detailed runtime statistics, refer to Table 6.

Flexible composition of LiDARs and scenes. LiT’s flexible pipeline allows seamless deployment of
LiT-modeled LiDARs to new environments that are not necessarily modeled by LiT. As demonstrated
in Fig. 7, we can deploy a LiT-modeled LiDAR in nuScenes’s style in a given new environment, such
as the Mai City [59] scene. This flexibility allows LiT to work with various sources of reconstructed
3D maps, while being able to simulate LiDAR scans with target LiDAR sensor characteristics, which
is particularly useful for deploying new LiDARs or simulating out-of-distribution scenarios.

5 Experiment

5.1 Experimental settings

Datasets. Our experiments are conducted on three widely utilized datasets for autonomous driving
research: KITTI [9], Waymo [10], and nuScenes [11]. These datasets present a diverse range of
LiDAR characteristics, including varying beam counts and sensor configurations, making them
ideal for evaluating our LiDAR translation approach, LiT. Adaptation scenarios covered include
cross-beam-count adaptations such as Waymo → nuScenes (high-beam to low-beam) and nuScenes
→ KITTI (low-beam to high-beam), as well as adaptations within the same beam count but different
LiDAR characteristics like Waymo → KITTI. Table 6 provides an overview of the dataset statistics,
including details on LiDAR beams and the distribution of foreground objects.

Evaluation metrics. To evaluate how well our translated point clouds match the statistical distribu-
tion of the target domain, we follow LiDARGen [60] and UltraLiDAR [61] to compute Maximum-
Mean Discrepancy (MMD) and Jensen-Shannon divergence (JSD) in BEV voxel occupancy between
the source domain point clouds translated to the target domain style and the actual target domain
point clouds. As the source and target domains come from entirely different scenes, we measure the
overall distributional similarity rather than per-scene alignment, providing a quantitative measure of
how well LiT captures the general characteristics of the target domain.

The downstream detection task evaluation follows the KITTI benchmark standards, focusing on the
car category. We report Average Precision (AP) across 40 recall positions at an Intersection over
Union (IoU) threshold of 0.7 for both bird’s eye view (BEV) and 3D detection. For KITTI, metrics are
reported for front-view annotations only, while for Waymo and nuScenes, we extend our evaluation to
include full ring-view point clouds generated from top-mounted LiDAR sensors, while other LiDARs

7

93773 https://doi.org/10.52202/079017-2973



Table 2: Statistical alignment with target domain. We report the distributional differences between
translated and ground-truth target domains with Maximum-Mean Discrepancy (MMD) and Jensen-
Shannon divergence (JSD). Baseline represents LiDAR data from the source domain.

Task Beam count
MMDBEV ↓ JSDBEV ↓

Baseline LiT Baseline LiT

Waymo → KITTI 64-beam → 64-beam 8.817e-04 3.268e-04 0.273 0.180
Waymo → nuScenes 64-beam → 32-beam 2.310e-03 6.583e-04 0.380 0.205
nuScenes → KITTI 32-beam → 64-beam 8.725e-04 2.107e-04 0.220 0.164

Table 3: Single source domain unification. We compare the APBEV and AP3D of the car category
at IoU = 0.7 as well as the domain gap closed by different methods. Source only denotes that the
pre-trained detector is directly evaluated on the target domain, and Oracle represents the detection
results trained on the fully annotated target domain. We highlight the best results in bold.

Task Method SECOND-IoU [50] PV-RCNN [62]
APBEV ↑ / AP3D ↑ Closed gap ↑ APBEV ↑ / AP3D ↑ Closed gap ↑

Waymo → KITTI

Source only 67.64 / 27.48 – 61.18 / 22.01 –

SN [36] 78.96 / 59.20 +72.33% / +69.00% 79.78 / 63.60 +66.91% / +68.76%
ST3D [7] 82.19 / 61.83 +92.97% / +74.72% 84.10 / 64.78 +82.45% / +70.71%

ReSimAD [51] – – 81.01 / 58.42 +71.33% / +60.19%
LiT 82.55 / 69.94 +95.27% / +92.36% 84.35 / 65.68 +83.35% / +72.19%

Oracle 83.29 / 73.45 – 88.98 / 82.50 –

Waymo → nuScenes

Source only 32.91 / 17.24 – 34.50 / 21.47 –

SN [36] 33.23 / 18.57 +01.69% / +07.54% 34.22 / 22.29 -01.50% / +04.80%
ST3D [7] 35.92 / 20.19 +15.87% / +16.73% 36.42 / 22.99 +10.32% / +08.89%

ReSimAD [51] – – 37.85 / 21.33 +18.00% / -00.81%
LiT 37.00 / 22.19 +21.56% / +28.08% 38.77 / 23.48 +22.94% / +11.76%

Oracle 51.88 / 34.87 – 53.11 / 38.56 –

nuScenes → KITTI

Source only 51.84 / 17.92 – 68.15 / 37.17 –

SN [36] 40.03 / 21.23 -37.55% / +05.96% 60.48 / 49.47 -36.82% / +27.13%
ST3D [7] 75.94 / 54.13 +76.63% / +59.50% 78.36 / 70.85 +49.02% / +74.30%

ReSimAD [51] – – – –
LiT 80.54 / 60.13 +91.26% / +76.01% 85.82 / 74.87 +84.83% / +83.17%

Oracle 83.29 / 73.45 – 88.98 / 82.50 –

are not used in our experiment. The evaluations are conducted using the SECOND-IoU [50] and
PV-RCNN [62] models, following the evaluation protocol of previous works [36, 7, 51].

Baselines and comparison. For the domain unification tasks, LiT is evaluated against key baselines
in autonomous driving domain adaptation: (i) SN [36], which normalizes object sizes using target
domain statistics; (ii) ST3D [7], employing iterative pseudo label generation and curriculum-based
training; (iii) ReSimAD [51], a method combining reconstruction and simulation; and (iv) Oracle, the
theoretical performance upper bound via full target domain supervision.

5.2 Experimental results

Statistical alignment with target domain. To validate the effectiveness of our LiDAR translation
approach directly, we compare the distributional differences between translated and ground-truth
target domains, as shown in Table 2. Across all adaptation scenarios, LiT significantly reduces both
MMD and JSD metrics compared to the baseline, which is the LiDAR data from the source domain.
More substantial improvements are observed in cross-beam-count scenarios (64-beam → 32-beam
and 32-beam → 64-beam), where LiT achieves 3 ∼ 4× reduction in MMDBEV.

Single source domain unification. In the single source domain adaptation setting as shown in
Table 3, LiT consistently outperforms all baselines, including the model-based adaptation approach
ST3D and data-based adaptation approach ReSimAD, in both the APBEV and AP3D metrics across
different settings. Notably, in the challenging nuScenes → KITTI tasks, where the low-beam LiDAR
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Table 4: Multi source domain unification. We compare models trained with one, two, and three
source domains. In the table, W = Waymo, N = nuScenes, and K = KITTI. We report the APBEV and
AP3D of the car category at IoU = 0.7. The last row represents the “oracle” K → K model trained
with full target-domain supervision. Remarkably, in the W + N → K task, LiT surpasses the oracle
performance in SECOND-IoU’s APBEV even when the target domain is never seen during training.
When all three source domains are used, LiT surpasses the oracle performance in all metrics.

Task Method Zero-shot SECOND-IoU [50] PV-RCNN [62]
APBEV ↑ / AP3D ↑ Closed gap ↑ APBEV ↑ / AP3D ↑ Closed gap ↑

W → K Source Only Yes 67.64 / 27.48 – 61.18 / 22.01 –
LiT Yes 82.55 / 69.94 +95.27% / +92.36% 84.35 / 65.68 +83.35% / +72.19%

N → K Source Only Yes 51.84 / 17.92 – 68.15 / 37.17 –
LiT Yes 80.54 / 60.13 +91.26% / +76.01% 85.82 / 74.87 +84.83% / +83.17%

W + N → K Source Only Yes 67.26 / 22.05 – 77.82 / 34.05 –
LiT Yes 84.45 / 71.58 +107.24% / +96.36% 84.15 / 75.50 +56.72% / +85.55%

W + N + K → K LiT No 87.52 / 75.76 – 90.67 / 82.67 –

K → K Oracle No 83.29 / 73.45 – 88.98 / 82.50 –

Table 5: Ablation studies. We report the performance of LiT with nuScenes → KITTI translation
tasks with SECOND-IoU [50] model to study the effects of different configurations in LiT.
Group Setting APBEV ↑ AP3D ↑
Source only – 51.84 17.92

Foreground diversity
Shared 1 foreground mesh 76.51 55.30
Shared 50 foreground mesh 77.23 57.27
Foreground simulation only 80.14 48.45

Foreground inaccuracies
Noise std = 0.01m 77.14 57.84
Noise std = 0.02m 77.25 56.78
Noise std = 0.05m 69.57 35.37

Background inaccuracies
Noise std = 0.01m 78.02 61.43
Noise std = 0.02m 78.70 57.99
Noise std = 0.05m 76.76 58.21

Foreground and background inaccuracies
Noise std = 0.01m 77.54 59.60
Noise std = 0.02m 76.90 56.09
Noise std = 0.05m 72.03 36.18

LiT full model – 80.54 60.13

data from nuScenes is adapted to the high-beam LiDAR data from KITTI, LiT achieves significant
improvements over ST3D, closing the gap of APBEV from 76.63% to 91.26% and 49.02% to 84.83%
for SECOND-IOU and PV-RCNN, respectively.

Multi source domain unification. As shown in Table 4, the performance of LiT improves further
when trained with multiple source domains, highlighting the benefits of being able to leverage diverse
data sources via LiDAR translation. In a zero-shot setup, combining Waymo and nuScenes training
sets naively (source only) does not improve the performance much or may harm the performance in
some scenarios. After LiT translation, the combined Waymo nuScenes training set achieves much
better performance compared to the naive combination and single source domain training. Remark-
ably, LiT surpasses the oracle performance (achieving APBEV of 84.45 over 83.29) in SECOND-IoU
under the Waymo + nuScenes → KITTI adaptation task, demonstrating its effectiveness in zero-shot
scenario when the target domain is never seen during training. When all three source domains are
used, LiT achieves the best performance, surpassing the oracle performance in all metrics.

Foreground diversity. The diversity of foreground objects plays an important role in the domain
adaptation’s performance. Specifically, when transitioning from a single shared foreground mesh to
50 shared meshes sees an improvement in both APBEV and AP3D. Furthermore, with only foreground
simulation, LiT still manages to achieve reasonable performance, showcasing LiT’s robustness. The
results are shown in Table 5.
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Table 6: Full-scene LiDAR translation in under 1 minute. We present averaged runtime and key
statistics for the LiT LiDAR translation pipeline. Here, a “scene” is a LiDAR sequence containing
multiple LiDAR point cloud “frames”. Runtime is measured on a single NVIDIA RTX 4090 GPU.
Pipeline Item Waymo → KITTI Waymo → nuScenes nuScenes → KITTI

Background
modeling

# Frames per scene 198.07 198.07 40.26
# Points per frame 146,580.51 146,580.51 23,988.50
# Points per scene 29,033,201.66 29,033,201.66 965,776.97
# Vertices of recon mesh 1,843,176.99 1,843,176.99 1,200,037.31

Recon. time per frame 0.11 Sec. 0.11 Sec. 0.16 Sec.
Recon. time per scene 21.97 Sec. 21.97 Sec. 6.51 Sec.

Foreground
modeling

# Vehicles per scene 45.20 45.20 49.15
# LiDAR frames per vehicle 79.03 79.03 11.42
# Multi-Frame points per vehicle 40,506.01 40,506.01 1,089.57

Recon. time per scene 24.74 Sec. 24.74 Sec. 29.04 Sec.

Ray casting

# Emitted LiDAR rays per frame 119,232.00 34,880.00 119,232.00
# Ray hit per frame 115,937.99 29,834.54 116,058.03

Ray casting time per frame 0.04 Sec. 0.03 Sec. 0.03 Sec.
Ray casting time per scene 8.89 Sec. 6.09 Sec. 1.27 Sec.

LiT translation time per scene (all frames) 55.60 Sec. 52.80 Sec. 36.82 Sec.

Scene modeling inaccuracies. To understand how modeling accuracy affects performance, we
simulate inaccuracies by adding Gaussian noise with std = 0.01m, 0.02m, and 0.05m to the recon-
structed mesh vertices of foreground-only, background-only, and both foreground and background.
As shown in Table 5, the detection model is more sensitive to inaccuracies in the foreground compared
to background, which is expected as foreground objects are the main target for object detection. Even
with scene modeling inaccuracies, LiT still substantially outperforms the source-only (no translation)
baseline, demonstrating the robustness of our approach.

Runtime performance. Table 6 shows the runtime performance and key statistics of LiT’s LiDAR
translation process. We report the average runtime and data statistics of 50 scenes from each dataset.
The runtime is measured on a desktop PC with a single NVIDIA RTX 4090 GPU. Notably, LiT is
capable of translating a full multi-frame LiDAR scene from one domain to another in under a minute.
After the reconstruction steps are done, the LiDAR ray casting process is highly efficient and can run
in real-time. The efficiency of LiT demonstrates its scalability in real-world applications, where the
ability to quickly adapt sensor data to different domains can enhance perception systems.

6 Conclusion

In conclusion, we present the LiDAR Translator (LiT), a pioneering framework that unifies LiDAR
data into a common “language” in a comprehensive system consisting of scene modeling, LiDAR
modeling, and domain adaptation. LiT overcomes domain discrepancies in LiDAR data from diverse
sensor setups and environments, enabling seamless integration of multiple LiDAR datasets, enhancing
zero-shot detection capabilities, and improving the representation quality of pre-trained models across
a variety of scenarios. Additionally, LiT’s efficiency streamlines data preprocessing, reducing both
time and computational demands, and facilitating quicker development cycles in autonomous systems.
This acceleration promotes rapid advancements and the deployment of safer, more effective vehicles.

Social impact and limitations. The LiT framework significantly advances autonomous driving
by facilitating domain adaptation for LiDAR data, which could enhance transportation safety and
efficiency. However, it has limitations, such as its exclusive reliance on LiDAR data, its dependency
on annotated source datasets for foreground reconstruction, and its current focus on vehicle objects
solely. Future enhancements should aim to incorporate other object types and sensor modalities, as
well as reduce dependency on extensive labeling, to broaden LiT’s applicability and impact.

Acknowledgement. This work is supported by the National Natural Science Foundation of China
(No. 62201484), Alibaba Innovative Research Fund, HKU Startup Fund, and HKU Seed Fund for
Basic Research.
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A.1 Foreground modeling details

Tracking and fusion. Reconstructing foreground objects directly from each LiDAR frame is
suboptimal as it does not take into account the multiple viewing angles of the object as the LiDAR
sensor or the object moves. To address this issue, we fuse the point clouds from multiple LiDAR
frames to reconstruct the foreground objects. Typically, tracking information is provided as unique
object identifiers in the LiDAR datasets [9, 10, 11], where vehicles are tracked across multiple frames
using these identifiers. For each identified vehicle, its point clouds from different frames are aligned
based on their bounding box information and then fused.

Mesh reconstruction. With multiple LiDAR frames, the fused point clouds are incomplete and
noisy due to the sparsity and scanning gaps inherent in LiDAR data. To faithfully reconstruct
the foreground objects while addressing the noise and sparsity issues, we need to introduce prior
knowledge of vehicle geometries. Inspired by the success of neural implicit surface reconstruction
for object shape modeling [63, 52], we first train an SDF-based model with the ShapeNetV2 [54]
vehicle category and then apply this model to reconstruct the foreground object meshes. In essence,
given a latent code, the model maps 3D points to a signed distance field (SDF) representing the mesh
surface, where the key here is to solve for the latent code given multi-view point cloud observations.

Given a set of points from LiDAR scans, {xi}Ni=1, our goal is to find a latent code, z, that best
represents the underlying surface that these points belong to. This optimization process is guided by
minimizing the Signed Distance Function (SDF) loss, defined as:

LSDF =
1

N

N∑
i=1

(∥fθ (z,xi)− 0∥1) + λ∥z∥22,

where fθ (z,xi) denotes the predicted SDF value for point xi given the latent code z, and the
target SDF value for points on the object surface is set to zero. The term λ∥z∥22 adds an L2
regularization on the latent code to encourage generalization by penalizing its magnitude, with λ
being the regularization coefficient.

Notably, as our mesh is reconstructed from point clouds, it is not limited to using human-created
vehicle 3D assets, which is a key difference from ReSimAD [51]. This optimization process effectively
adapts the generic vehicle geometry learned from ShapeNet to fit the specific geometry of the vehicle
represented in the sparse and noisy LiDAR point cloud. By iteratively refining the latent code, we can
generate a mesh that accurately captures the detailed geometry of the vehicle, even in the presence of
data sparsity and noise inherent to LiDAR scans. We show some example visualizations of foreground
modeling in Fig. 8.

The hyperparameters for scene modeling are shown in Table 7. For background modeling, while
most parameters are consistent across both Waymo and nuScenes datasets, a key difference is their
frame rates. Specifically, every other frame is skipped in the Waymo dataset, which is attributed to
its denser point clouds and a higher LiDAR frame rate of 10Hz, in contrast to the 2Hz frame rate of
nuScenes. Consequently, we sample the Waymo dataset at 5Hz to ensure a comparable point cloud
density and maintain reconstruction quality across datasets.
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(b) Previous Work: Static 3D Assets

Multi-view LiDAR scans Reconstructed mesh

Figure 8: Foreground modeling samples. We show some examples of foreground modeling with
LiT. The left columns show the original LiDAR point clouds collected from multiple LiDAR frames.
The rightmost column shows the reconstructed mesh from the multi-view LiDAR inputs. The
reconstructed mesh will then be used by LiT to perform target-domain LiDAR ray casting.

A.2 Background modeling details

Next, we reconstruct the background scene mesh with point clouds from multiple LiDAR frames.
For each LiDAR frame point cloud, foreground objects are removed based on the bounding box
information. Then, point clouds from multiple frames are transformed and fused in world coordinates
by the ego vehicle’s pose and LiDAR-to-ego pose.

To reconstruct the background scene mesh from the fused point cloud, we follow neural kernel
field [57], where the reconstructed shape is modeled as the zero level set of a 3D implicit field
fθ : R3 → R defined as a hierarchical neural kernel field. This field combines positive definite
kernels, weighted and conditioned on the inputs, and centered at the midpoints of voxels within the
predicted hierarchy:

fθ(x|Xin,Nin) =
∑
i,l

α
(l)
i K

(l)
θ (x,x

(l)
i |Xin,Nin),

where α
(l)
i are scalar coefficients at the ith voxel at level l in the hierarchy. Then, the kernel for the

lth level, K(l)
θ , is defined as:

K
(l)
θ (x,x′) = ⟨ϕ(l)

θ (x|Xin,Nin), ϕ
(l)
θ (x′|Xin,Nin)⟩ ·K(l)

b (x,x′).

Given the voxel hierarchy and predicted normals, the implicit surface is computed by minimizing
a specific loss function to find optimal coefficients. This process aims to align the neural kernel
field gradient with the normals at voxel centers and to approximate zero at all input points. We
employ the pre-trained kitchen-and-sink model which is able to generalize to diverse datasets. For
a fair comparison, the model has not been trained on the LiDAR datasets that we use in this work.
Compared with ReSimAD with their NeuS [55]-based background modeling, our approach is more
efficient as it does not require custom training for each scene.

The hyperparameters for scene modeling are shown in Table 7. Additional visualizations of the
background modeling are provided in Fig. 9. For foreground modeling, we utilize a fixed number of
steps and a predefined learning rate to reconstruct the foreground objects. We use the same parameters
for both Waymo and nuScenes datasets.

A.3 LiDAR statistical modeling visualization

As discussed in Sec. 4.2, we conduct a statistical modeling of LiDAR rays to model the distribution
of the vertical angles. We identify the peak angles where the majority of the LiDAR rays are
concentrated and generate rays based on these identified peak angles. This ensures that our simulated
LiDAR data is representative of real-world LiDAR characteristics. We illustrate this effect visually in
Fig. 10, while the LiDAR statistics of each dataset are presented in Fig. 2.
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Table 7: Parameters for scene modeling. The left table shows the parameters for background
modeling. The right table shows the parameters for foreground modeling.

Background parameters Waymo nuScenes

Skip every N frames 2 1
LiDAR frame rate 5Hz 2Hz
Enabled LiDARs [TOP] [TOP]
Voxel size 0.25 0.25
Normal estimation kNN 64 64
Normal estimation drop angle 85◦ 85◦

Solver max iteration 2,000 2,000
Solver convergence tolerance 1e-5 1e-5

Foreground parameters Value

Latent code optimizer iterations 500
Optimizer learning rate 5e-5
Number of samples per iteration 8000
Meshing voxel resolution 128
Maximum batch size 323

Latent code clamp distance 0.1
Statistical outlier kNN 20
Statistical outlier std ratio 1.0

Background modeling
(Waymo)

Background modeling
(nuScenes)

Figure 9: Background modeling samples. We provide additional visualization samples of back-
ground modeling for Waymo and nuScenes.

Range image sampled without statistical modeling

Range image sampled with statistical modeling

Figure 10: Effects of LiDAR statistical modeling visualized with range image. We illustrate the
effect of statistical modeling of LiDAR ray angles with a scene from nuScenes. The top row shows
the 2D range image sampled without statistical modeling, and the bottom row shows the 2D range
image sampled using statistical modeling. The bottom row shows fewer artifacts (e.g. the horizontal
gap) as the sampled rays are more concentrated around the peak angles.
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A.4 Evaluation of scene and LiDAR modeling

We perform evaluation on the quality of the scene and LiDAR modeling as an integrated system.
To do this, we perform a self-to-self translation task on the source domain, where we use LiT to
reconstruct the scene and perform LiDAR ray casting using the same dataset’s LiDAR parameters.
We then calculate the Chamfer distance between the original point cloud Pgt and the ray casted point
cloud Psim:

CD(Psim, Pgt) =
1

|Psim|
∑

x∈Psim

min
y∈Pgt

∥x− y∥22 +
1

|Pgt|
∑
y∈Pgt

min
x∈Psim

∥y − x∥22.

The distributions of the Chamfer distances for the Waymo and nuScenes datasets are shown in Fig. 11.
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Figure 11: Chamfer distance distributions. We evaluate the quality of the scene and LiDAR
modeling. For a given dataset, we use LiT to reconstruct the scene and perform a self-to-self
translation of the scene. We then measure the Chamfer distance between the original and the
translated point cloud. The distributions of the Chamfer distances for the Waymo and nuScenes
datasets are shown. In general, Waymo has lower Chamfer distances compared to nuScenes, which is
attributed to the denser point cloud from the higher LiDAR resolutions and sampling rate in Waymo.

A.5 Training details

We provide hyperparameters used for training in Table 8.

Table 8: Training hyperparameters for domain adaptation tasks. This summary presents the
hyperparameters for training detection models under single-source domain unification settings. The
table includes configurations for Second-IOU and PV-RCNN models.

Waymo → KITTI Waymo → nuScenes nuScenes → KITTI

Second-IOU PV-RCNN Second-IOU PV-RCNN Second-IOU PV-RCNN

Optimizer Adam Adam Adam Adam Adam Adam
Scheduler One-Cycle One-cycle One-csycle One-Cycle One-Cycle One-Cycle
Learning rate 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4
Momentum 0.9 0.9 0.9 0.9 0.9 0.9
Weight decay 1e-2 1e-3 1e-2 1e-3 1e-2 1e-3
Batch size 32 16 32 16 32 16
Epochs (ft.) 10 10 10 10 10 10
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We confirm that the main claims made in the abstract and introduction accu-
rately reflect the paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of our work in the conclusion section of the paper.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: We do not include theoretical results in our paper.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We describe the data processing, experimental setup, and evaluation metrics in
detail in the main paper and supplemental material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We provide access to the code, with instructions on data preparation, training
and evaluation.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide detailed information on the dataset, hyperparameters, and evalua-
tion metrics in the main paper and supplemental material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: Our evaluation and comparison are based on standard metrics as used in prior
works in the domain. We have not included statistical significance tests in the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide hardware details and runtime statistics for our pipeline.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We reviewed the NeurIPS Code of Ethics and confirm that our research
conforms to the guidelines.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss the societal impacts of our work in the conclusion section of the
paper.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not pose such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite and respect the licenses of all assets used in the paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not introduce new assets in the paper.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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