MultiOrg: A Multi-rater Organoid-detection Dataset
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Abstract

High-throughput image analysis in the biomedical domain has gained significant
attention in recent years, driving advancements in drug discovery, disease pre-
diction, and personalized medicine. Organoids, specifically, are an active area
of research, providing excellent models for human organs and their functions.
Automating the quantification of organoids in microscopy images would provide
an effective solution to overcome substantial manual quantification bottlenecks,
particularly in high-throughput image analysis. However, there is a notable lack of
open biomedical datasets, in contrast to other domains, such as autonomous driving,
and, notably, only few of them have attempted to quantify annotation uncertainty.
In this work, we present MultiOrg a comprehensive organoid dataset tailored for
object detection tasks with uncertainty quantification. This dataset comprises over
400 high-resolution 2d microscopy images and curated annotations of more than
60,000 organoids. Most importantly, it includes three label sets for the test data,
independently annotated by two experts at distinct time points. We additionally
provide a benchmark for organoid detection, and make the best model available
through an easily installable, interactive plugin for the popular image visualization
tool Napari, to perform organoid quantification.

1 Introduction

Accurate and efficient object detection methods in biomedical image analysis are crucial for research
and diagnostics. Designing such methods requires diverse, well-curated datasets of high-resolution
images reflecting real-world complexities. The annotation of biomedical datasets represents a labor-
intensive and subjective process relying on human experts. This work represents a multi-rater organoid
dataset designed for benchmarking object detection algorithms in a label-noise-aware setting that
embraces the subjectivity in labels.

Organoids are miniature three-dimensional (3d) models of organs grown in vitro from stem cells.
They mimic the complexity and functionality of real organs, making them extremely valuable for
medical research, disease modeling, and drug testing (Barkauskas et al., 2017} Kim et al., [2020;
Ingber;, [2022). Organoid cultures, deriving from healthy and diseased or genetically engineered cells
and undergoing different conditions and treatments, can be grown for several months (Youk et al.,
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2020; [Huch and Kool [2015). These high-throughput experiments are monitored via microscopic
imaging and, therefore, necessitate fast and objective detection, quantification, and tracking methods
(Rios and Clevers, 2018; Du et al.,2023)). Detection of organoids in real-world lab-culture images is
associated with many challenges (Kassis et al., 2019). Beyond the typical challenges associated with
microscopy (out-of-focus, lightning, padding, etc...), those 3d cultures are imaged in 2d, leading to
overlapping structures. Organoids can highly vary in size, shape, and appearance (Domenech-Moreno
et al.| [2023)), and be difficult to distinguish from dust and debris present in the culture (Matthews
et al.| [2022; |[Keles et al.| 2022)). Finally, the high number of objects to analyze per image poses a big
hurdle to a human prone to distraction and fatigue (Haja et al.,|2023). Manual annotation of this data,
which is still state-of-the-art (Costa et al.,|2021; |Wu et al.| 2022) is, therefore, error- and bias-prone,
which introduces noise in the labels. However, evaluating learning algorithms for organoid detection,
involves comparing predicted outcomes to those manual annotations or ’Ground Truth (GT)’ during
training and testing. As shown in our previous work, deep learning algorithms can outperform even
highly-trained human annotators (Kofler et al.,[2021). In complex real-life datasets, understanding
the shortcomings that label uncertainty creates in the *GT is, therefore, pivotal before training and
benchmarking Deep Learning (DL) models. Moreover, quantifying the label noise by assessing the
intra- and inter-rater reliability is crucial to interpret similarity metrics between model predictions
and reference annotations (Kofler et al.,[2023)).

In this work, see Figure[T} we release MultiOrg, a large multi-rater 2d microscopy imaging dataset of
lung organoids for benchmarking object detection methods. The dataset comprises more than 400
images of an entire microscopy plate well and more than 60,000 annotated organoids, deriving from
different biological study setups, with two types of organoids growing under varying conditions. Most
importantly, we introduce three unique label sets derived from the two annotators at different times,
allowing for the quantification of label noise (see Fig.[2). Such a dataset can enable the community to
explore biases in annotations, investigate the effect these have on model training, and promote the
active area of research for uncertainty quantification. To our knowledge, this is the second largest
organoid dataset to date to be made freely available to the community (Bremer et al.l 2022). It is also
the first organoid dataset and one of the very few biomedical object-detection datasets to introduce
multiple labels (Nguyen et al., [2022; |Amgad et al., 2022). We benchmarked this dataset by training
and testing four widely established DL models for object detection tasks using both one-stage and
two-stage architectures. Finally, along with the dataset and model, we release a tool for quantifying
lung organoids, enabling users to visualize and correct the detected organoids before extracting useful
features for downstream tasks. This tool solves the bottleneck of manual quantification of lung
organoids, enabling high-throughput image analysis for biological studies.

In summary, the contributions of this work are as follows:

* We release MultiOrg, an object detection bio-medical dataset of more than 400 microscopy
images comprising around 60,000 lung organoids annotated by two expert annotators.

* We provide quantification of label uncertainty through a Kaggle benchmark challenge|that
evaluates the submissions on the different test label sets.

* We benchmark our dataset on four standard object detection methods, show how performance
varies depending on the selected annotations, and release the models on zenodol

* We release the best model in a napari plugin, napari-organoid-counter (Bukas| [2022), which
allows users to curate predictions, thus enabling high-throughput analysis.

2 Related work

Kassis et al.| (2019) proposed OrganoQuant, a manually-annotated, human-intestinal-organoid dataset
of around 14,000 organoids, along with an object detection pipeline based on Faster R-CNN Ren
et al.| (2015), to locate and quantify human intestinal organoids in brightfield images. Though object
detection performance is satisfactory and the quantification process is robust, inference is performed
on cropped patches of a well. Similarly, Matthews et al.|(2022) released a dataset of brightfield and
phase-contrast microscopy images and proposed an image analysis platform, OrganolD, based on
U-Net Falk et al.| (2019), which segments and tracks different types of organoids. They trained their
model on images of pancreatic cancer organoids and validated it on pancreatic, lung, colon, and
adenoid cystic carcinoma organoids. This work introduces several types of organoids. However, the
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Figure 1: MultiOrg workflow. a) Dataset creation, b) Multi-rater annotation at time points t9 and ¢!,
¢) Model benchmark, and d) Release on Kaggle and napari plugin

dataset is small, including only 66 images featuring 5 to 50 organoids each. In (2023),
OrganelX platform was released to enable segmentation of murine liver organoids using Mask-RCNN
(2017). Furthermore, introduced a high-throughput image dataset of liver
organoids for detection and tracking. They also propose a novel deep neural network architecture
to track organoids dynamically and detect them quickly and accurately. However, here, too, the
dataset size is relatively small, with 75 images containing a total of 6,482 organoids. [Bremer et al |
(2022) used a multicentric dataset consisting of 729 images containing 90,210 annotated organoids,
including multiple organoid systems like liver, intestine, tumor, and lung, and proposes an organoid
annotation tool, GOAT, which uses Mask R-CNN 2017), for unbiased quantification. The
corresponding dataset contains six organoid types, generated in four centers and acquired with five
microscopes. More recently, Doménech-Moreno et al.| (2023)) proposed an object detection algorithm,
based on YOLO v5 [Ultralytics| (2021)), Tellu, to classify and detect intestinal organoids of different
types. The tool also enables automated analysis of intestinal organoid morphology and fast and
accurate classification of organoids.

MultiOrg is, therefore, the second largest organoid dataset (see Table [I). It is noisier than those
introduced above; it is not the densest but contains clumps of organoids and displays an extensive
range of sizes, presenting one of the most challenging settings for object detection. We introduce
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Figure 2: Multiple label sets in MultiOrg. Full test image (left) and crops of areas A, B, and C
overlaid with test?, test! and test} (right). The square crops are of sizes 1800, 1200, and 500 px.
test? in images 4 and 16 (respectively 24 and 43) originates from Annotator A (resp. B). "Macros’ are
typically noisier, as the cultures initially contain more cells (Appendix [A.T.T).We observe a reduction
in the number of annotations at time !, as the annotators do not consider some small organoids that
were annotated at tV. In image 24, Annotator B annotates clumps of organoids as one large object at
t!. The large structure in image 43 is an experimental matrigel artifact. The image-wise intra-rater
Recall scores are 0.776, 0.532, 0.667 and 0.503 for images 4, 16, 24, and 43, respectively (with test?
as GT).
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Table 1: Overview of the published organoid datasets. We report the organs from which the organoids
derive, the number of images, their resolution, the total number of annotated organoids, and the
presence of multiple label sets in the dataset. MultiOrg is the only one to provide multiple label sets.

Dataset Organ #Images Image Resolution # Organoids Multi-Label
OrgaQuant (Kassis et al.{[2019) Intestine 1750 300x300, 450x450 14,240 X
OrganolD (Matthews et al.|[2022) Pancreas, Lung, Colon, Adenoid 66 512x512 5-50/image X
Bian et al.|(2021) Liver 75 7227x7214 6,482 X
GOAT (Bremer et al.|[2022) Liver, Intestine, Tumor, Lung 729 512x512 90,210 X
Tellu (Domenech-Moreno et al.|[2023) Intestine 840 960x1280 23,066 X
MultiOrg (ours) Lung 411 6390x5724 63,042 v

several label sets on the test set to address this complexity. In the dataset, we focused on the detection
task only, since it suffices for most practical applications and it is the challenging part from a machine
learning point-of-view. Once the detection has been done, the segmentation can be obtained from
pre-trained segmentation models (e.g., SAM [Kirillov et al.|(2023))).

None of the above-mentioned datasets related to the study of organoids in computer vision offer
more than one set of labels. Nevertheless, comparing multiple annotations in DL is not new. Various
previous initiatives have publicly released multi-rater biomedical datasets for image segmentation
(Armato III et al., [201 1} [Styner et al., [2008}; [Almazroa et al.,| 2017} [Lesjak et al., 2018; Mehta et al.,
2022} [Bran et al., |2024) and classification (Orlando et al.l 2020; Sivaswamy et al.||2015; |Aung et al.|
2015). Fewer are available, though, for object detection. To our knowledge, two medical imaging
datasets are currently available (Nguyen et al.| 2022} |Amgad et al.,|2022). The VinDr-CXR dataset
consists of 18k chest X-ray images annotated with bounding boxes by three radiologists for the
presence of 28 lung diseases (Nguyen et al., [2022)). The NuCLS dataset provides 97,000 annotations
by 32 raters of nuclei from breast cancer pathology images (Amgad et al., [2022)). Since labeling
uncertainty in object detection is as common as in other image analysis tasks, we hope our dataset will
help mitigate the gap in multi-rater detection datasets and contribute to advancing models embracing
label variability.

3 Dataset

3.1 Dataset creation

MultiOrg consists of 411 bright-field microscopy images representing entire wells of lung organoids
derived from murine cells and collected from 26 different studies. Each study can belong to one of
two different types, either "Normal” or "Macros’ (Figure [I[(a) and Appendix [A.1.T). During image
acquisition, each 3d plate well was imaged in two-dimensional (2d) layers, each divided into smaller
tiles (Appendix[A.1.2). Individual tiles were then stitched together to form one stack of images. Since
organoids are spherical structures, we applied maximum projection to merge this stack into a single
plane, thereby reducing the annotation effort to one image per well, later estimating the organoid
volumes from their 2d projection.

For dataset annotation, all organoids present in the images should be fitted by a bounding box. The
annotation process was carried out as in|Kastlmeier et al.| (2023) by using the initial release, v.0.1.0, of
the napari-organoid-counter tool (Bukas, [2022) to generate pseudo labels as a starting point for both
annotators with a fixed set of parameters (see Appendix[A.1.3). The dataset was initially annotated
at time point t° by two annotators (see Figure|1{b)), namely Annotator A (53% of the images) and
Annotator B (47% of the images). The images were then split into train and test sets stratified by
annotators and study type. The training set then consists of 356 images derived from 25 studies,
and the evaluation was performed on the remaining 55 images from 7 studies as a held-out test set
(details in Table . At time point ¢!, Annotators A and B reannotated all test images, blinded
to their initial labels (Figure[2). Annotator A used the same setup, whereas Annotator B changed
their setup (computer mouse and monitor) between t° and ¢'. The number of organoids annotated by
each annotator, in each study type, for the train and test sets are provided in Table 2] and statistics on
bounding box sizes in Figure[A.5]and Table[A.3]

We, therefore, provide three label sets for the images of our test set. The annotations produced at
time point t° are denoted test” and can further be split into subsets testY and test% since images
1-22 were annotated by A and 23-55 by B (see Figure . Additionally, label sets test’, (respectively
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testl,) refer to the re annotation from annotators A (resp. B), at time point ¢! on all 55 images of the
test set.

Table 2: Overview of the label sets (train, test’, testl;, and testl;). Number of images and organoid
labels stratified by study type (for all) and annotator (only relevant for train and test”). All test label
sets refer to the same images. We see a reduction in the number of labels between t° and ¢'.

Study Type Normal Macros Combined
#Images #Organoids #Images # Organoids #Images # Organoids
Train set
train g 181 30,710 15 2,669 196 33,379
trainp 135 20,263 25 1,781 160 22,044
Total 316 50,973 40 4,450 356 55,423
Test set

test9 8 1,145 14 1,865 22 3,010
testy, 20 3,020 13 1,493 33 4,513
Total (Label set test®) 28 4,165 27 3,358 55 7,523
Label set test 28 2,748 27 1,981 55 4,729
Label set test}, 28 2,655 27 2,301 55 4,956

3.2 Object detection metrics

We compare the multiple label sets and assess the quality of model predictions using several evaluation
metrics. True Positives (TPs), False Positives (FPs), and False Negatives (FNs) are computed for each
image, for a given Intersection-over-Union (I0OU) threshold, using one of the label sets as the *GT".
Their total numbers are then aggregated on the entire test set. For comparing the three available label
sets, we compute Precision and Recall at an /OU of 0.5 and the F1-score. While Precision measures
the percentage of correct predictions against a considered true label, Recall (i.e., sensitivity) measures
the proportion of true positive predictions identified correctly. For evaluating model performance, we
use the Precision-Recall (P-R) curves as the primary tool. It consists of Precision and Recall values
at different model confidence thresholds, at a fixed IOU threshold (here we use 0.5 unless specified
otherwise). We also report Mean Average Precision (mAP), by integrating precision across Recall
levels from O to 1. We compute them using the standard library (Padilla et al., [2021)) which follows
the PASCAL VOC challenge technique for interpolating points on the curve (Everingham et al.).

3.3 Multi-rater analysis

We compute inter- and intra-rater uncertainties to quantify annotation variance and assess the consis-
tency of the two raters over time and against each other. Inter-rater scores assess the inconsistency
in the assessments made by different raters when evaluating the same image and can permit the
detection of biases and different expertise levels. The variability in assessments made by one rater
when evaluating the same image multiple times (intra-rater) can permit the detection of errors and
ambiguities associated with the complexity of the task.

Figure shows intra-rater scores, with label set test” used as the GT (note that switching the choice
of GT does not impact the F1-score and switchs Recall and Precision). For Annotator A, we compare
the annotations for test images 1-22, i.e., testf’4 with the corresponding subset of testk, while for
Annotator B we compare annotations of images 23-55, i.e., test}, with the corresponding subset of
testlB. We find that Annotator A is more consistent over time, especially for the ’Normal’ studies,
which is in line with the reported change of annotation setup of Annotator B. Additionally, annotation
of "Macros’ seems more challenging than ’Normal’ images. We also find a reduction in the number
of annotations at time point ¢!, already reported in Table[2} The qualitative inspection of Figure
suggests that some pseudo labels used as a starting point for all manual annotations were not removed
in test, probably indicating improvement of the annotations over time. Further comparison of the
pseudo labels to the label sets can be seen in Table We also observe that Annotator B, unlike
Annotator A, annotated overlapping clumps of organoids differently at ¢!, which could be the source
of the higher reported inconsistency.
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Inter-rater scores can be computed for the entire test set between testl, and testl, as shown in
Figure[3] We again observe that the annotation of "Macros’ is generally more challenging, and those
images consistently appear noisier in Figure 2] In Figure [AZ6(bottom), we also display the inter-rater
scores on the image subsets 1-22 and 23-55, as well as across t and t*. This corroborates the larger
evolution of Annotator B between ¢° and ¢! and indicates a convergence of the two annotation styles.
Table[A.6] Table[A7] and Table[A8] provide all statistics for these multi-rater scores.
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Figure 3: Multi-rater scores. Top: Intra-rater F1-score (left), Precision (middle), and Recall (right),
where test? is considered the GT, for both annotators and according to study type. Annotator A
appears more consistent on *"Normal® images (higher scores), and annotation of "Macros’ seems more
challenging (with lower scores). Both annotators show an overall higher Precision and lower Recall,
indicating that test® has many more annotations which are treated here as FNs. Bottom: Inter-rater
F1-score (left), Precision (middle), and Recall (right) on the test set between testk and testg, where
test!, is considered the GT, split according to study type. Raters agree more on *Normal® images,
indicating that the annotation of "Macros’ images is more challenging. Individual differences are
generally lower than in-between raters (lower inter-rater than intra-rater scores).

3.4 Dataset availability

We make MultiOrg available to the community. All images are public on Kaggle, together with
label sets train and test?, to ensure that the steps presented in Section M| can be reproduced. The
label sets test!, and test}, can be queried by participating in the MultiOrg challenge, where our
leaderboard returns the average of mAP on test!, and test};. We invite scientists to participate, to
promote research in the field of uncertainty estimation.

4 Model Benchmarking

We benchmark four standard object-detection DL models on MultiOrg:

* Faster R-CNN (Ren et al,[2013))
* Single Shot MultiBox Detector (SSD) 2016)
* You Only Look Once, Version 3 (YOLOv3) (Redmon and Farhadi, [2018))

* Real-Time Models for object Detection (RTMDet) (Lyu et al.,[2022).
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All trained models can be found on zenodo, and code and documentation to reproduce the training is
available on Kaggle [ﬂ

4.1 Training and Testing

For training, the images in the training set were split into patches of 512x512 px, resulting in a total
of 20,011 patches. Bounding boxes extending beyond the borders of the patches were omitted in the
GT since these organoids can be captured by a sliding window approach at inference, resulting in
44,418 bounding box labels for training. For training and validation, we used the mmdetection (Chen
et al.| 2019)) toolbox, with the original configuration for each model adapted such that the input and
parameters for all models is the same (details in Appendix [A.2).

During testing, sliding window inference was performed on the full images of the test set. We slide
over each image twice with different window sizes and down-sampling factors to detect both small
and large organoids. We empirically choose the following parameters: window size set to 512 and
2048 px, while the down-sampling factor is set to two and eight, respectively, with a window overlap
of 0.5 and Non max suppression (NMS) for post-processing with a threshold of 0.5. For each model,
we choose the checkpoint with the highest mAP on test?, thus using this label set for validation
during training. We report those, along with training and inference times in Table

4.2 Benchmark models evaluation

We evaluate the model performance on test’, testl, and test};. Figure | shows P-R curves for the
different models on label set test?, as well as the curves for all three label sets on the best performing
model, SSD. Notably, though the model was trained and validated on labels created at t°, the best
P-R curve is obtained for testk, indicating that the trained model is more in agreement with these
labels. This suggests that the higher label noise present in test’, as assumed in Section was
not picked up by the model during training, illustrating once more the resilience of DL to label
noise (Rolnick et al.l [2017). Table E] presents further evaluation metrics and confirms that SSD is
the best-performing model overall, while at the standard model confidence threshold of 0.5 YOLOv3
performs equally well if not better on some label sets. Interestingly, different models exhibit very
different Precision-Recall trade-offs at 0.5 model confidence.
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Figure 4: Model Benchmark. P-R curves using test" as the GT for all models (left) and using all
three label sets for SSD (right). We observe that overall the SSD model predictions are more in
agreement with the annotations and have a better trade-off between precision and recall. Although
the model was trained and validated with labels from #° it is more in agreement with annotations
from timepoint ¢.

'In addition to the tested methods, we initially implemented DETR with standard hyper-parameters for our
dataset, but the training was quite unstable, and the performance much worse than other models. We therefore
decided not to report the scores in the manuscript. Furthermore, MedSAM (Ma et al., [2024) and Cellpose
(Stringer et al.;[2021), segmentation-based approaches, did not work well out-of-the box. Since they would also
require segmentation labels for fine-tuning to be useful we did not include these methods for benchmarking.
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Table 3: Benchmark metrics on the three label sets. Precision, Recall, and F1-score are reported
at 0.5 IOU threshold and model confidence. mAP is reported at 0.5 and 0.75 IoU threshold. The
models exhibit different Precision-Recall tradeoffs. The performance of SSD is overall better when
considering mAP, while at the standard model confidence threshold of 0.5 YOLOv3 performs equally
well if not better on some label sets.

Metric Label set Faster R-CNN SSD YOLOv3 RTMDet
testO 0.23 061 073 0.64

Precision test, 0.16 044 058 0.54
‘ testl 0.18 050 067 0.56
mean 0.19 0.52 0.66 0.58

test? 0.84 067 048 0.51

Recall test, 0.92 078 062 0.69
testl 0.97 083 067 0.68

mean 0.91 076 0.59 0.63

test® 0.36 064 058 0.57

Floscore test), 027 057  0.60 0.61
testl; 0.30 062 067 0.62

mean 0.31 061  0.62 0.60

test® 56.56 6440  62.55 5771

test!, 57.09 6579 6111 63.87
mAP@OSIOU (%) ot 68.36 7388  70.25 63.23
mean 60.67 68.09  64.64 61.60

testO 17.48 2181 19.15 22.56

test!, 23.53 2342 19.13 30.13
mAP@O.7SI0U (%) gy 46.98 4648 3901 32.85
mean 29.33 30.57 2576 2851

4.3 Napari plugin

As described in Appendix [A.T.3] MultiOrg was created using the open-source image analysis tool
Napari (Ahlers et al.l 2019), together with the initial release, v.0.1.0, of the napari-organoid-counter
plugin (Bukas| [2022). In this work, we release a new version of the plugin, v.0.2.2, using the
model from our benchmark with the better trade-off between performance and inference time as the
backbone (see Table , i.e. YOLOv3, along with added functionalities. For example, the model
confidence threshold can now be adjusted at run time by the user, depending on whether for the task
at hand, a higher Recall or Precision is most practical. Plugin details can be found in Appendix
Code and tutorials for installation are distributed through the napari hub

5 Discussion

In this work, we release MultiOrg, a large multi-rater dataset for organoid detection in 2d microscopy
images. Our dataset consists of more than 60,000 annotated lung organoids, labeled by two expert
annotators. As even expert annotators can disagree on what constitutes an organoid in those images
while also being susceptible to human error and biases, we provide three label sets for the test data,
enabling quantification of label uncertainty on a multi- and single-annotator level. Additionally, we
have carefully included diversity in our dataset through several study setups and cell lines to ensure
good generalization. We performed preliminary tests of the selected model on different lung cell
types not present in the dataset, from both human and mouse organoids, and seen that it generalizes
quite well. We also tested it successfully on colon organoids and speculate that it can be used for
all organoids with similar shape and size. This dataset is, therefore, uniquely situated between the
fields of microscopy and uncertainty quantification. We invite researchers to use it, participate in
the MultiOrg challenge, and assist us in studying label noise in challenging real-life biomedical
settings, and we believe that future models should, as much as possible, refrain from being trained
without considering these aspects. We additionally publish a benchmark for organoid object detection,
provide all models in|zenodo| and the best one as aNapari plugin, thus enabling scientists potentially
use them on their own data.
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https://www.napari-hub.org/plugins/napari-organoid-counter
https://www.napari-hub.org/plugins/napari-organoid-counter
https://www.kaggle.com/datasets/christinabukas/mutliorg
https://www.kaggle.com/competitions/multi-org-challenge
https://zenodo.org/records/11258022?token=eyJhbGciOiJIUzUxMiJ9.eyJpZCI6ImQ5ZTAxYjQ1LTRiZGYtNDA5OC04N2MzLWM0ZThkYzhhZDE5MSIsImRhdGEiOnt9LCJyYW5kb20iOiJmNTU1Y2EzNjVkYzg1MDc0MjdiMDkyNjk2MzdkNmFhZSJ9.WFGdz7HYplboUWQPxu72CNNBIx3_CdgaIaix76ukIzqPq2eIsnAFrp0IdpbC-Q6EKGzpaajdnxX4iXzcqfSIyA
https://www.napari-hub.org/plugins/napari-organoid-counter

This work offers a valuable dataset that can be leveraged to advance both object detection methods and
uncertainty quantification techniques. The current setting does not, however, permit the incorporation
of several label sets in the training loop. Furthermore, it is important to note that although two
organoid types are present in the images, they have not been annotated as different classes. Treating
this task as a multi-class detection problem may boost the overall performance of the object detection
task (Zhang et al., 2022)) and would provide added value to the biologists. However, while providing
several label sets or multi-class labels on the training data could be beneficial, it represents substantial
manual work. It would also be interesting to observe how the label sets change by using DL models
as a baseline for annotation rather than the pseudo labels. Despite these limitations, we are confident
that the release of the MultiOrg dataset offers several invaluable contributions to the machine learning
community.
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A Appendix

A.1 Data Description
A.1.1 Biological study setup

Two different study setups were used to create our dataset. In the first, we used isolated murine distal
epithelial cells, enriched for alveolar epithelial type II cells (AEC2), which have the stem-cell function
of differentiating into other cell types, hence serving as progenitor cells in the lung (Barkauskas et al.|
2013)). In addition to the AEC2, we used a murine fibroblast cell line as mesenchymal support cells.
Images containing organoids deriving from these biological cultures, are henceforth mentioned as
belonging to the 'Normal’ setup.

As a second study setup, we added a cell type, namely macrophages, to the organoid culture, which
we henceforth refer to as the "Macros’ setup. Isolation of cells and culturing of organoids were
performed as previously described in|Lehmann et al.[(2020). Organoids were seeded as duplicates in
96-well imaging plates with a glass bottom (see Figure|I].

A.1.2 Image acquisition

The plates used for culturing and imaging were Falcon® 96-well Black/Clear Flat Bottom TC-treated
Imaging Microplates. The brightfield images were acquired with a Life Cell Imaging Microscope
(LifeCelllmagerObserver.Z1) at a 5x objective. During the acquisition of the images, each well was
divided into tiles and stacks to capture the 3d growth of organoids. Per well, 24 tiles and 10-15
stacks were acquired. Individual tiles were stitched together to form one single image per plate. We
observed that most object detection methods can successfully detect organoids on the borders of two
or more patches, even if the stitching mechanism is imperfect. Therefore, in our setup, we decided to
work with the stitched images rather than the individual patches.

Maximum projections were generated by the Zen 2 Blue software by Carl Zeiss Microscopy GmbH to
process the image stacks into one plain 2D image, such that each pixel in the final image derives from
the slice in the stack which is most in focus at that location. Since organoid structures are relatively
spherical, one can easily approximate their area using a 2D projection. Additionally, labeling images
in 2D greatly speeds up the annotation procedure. Images were exported in the CZI file format.

The resulting 2D images have varying sizes, between 5719 and 6240 pixels in the x and 5551 and
6940 pixels in the y axis, respectively. Each pixel in the image is equivalent to 1.29 pm in each axis.
At this point, the images were examined, and eight plates were dropped, either due to lower image
quality or because the organoid formation did not work well, resulting in noisy images. The latter was
mainly observed in the Macros study setup, which resulted in fewer data from this setup in our final
dataset. Finally, the imaged wells were randomly selected by plates and study setups to be annotated
using our annotation tool of choice (see Appendix[A.1.3).

A.1.3 Annotation Procedure

The annotation process was carried out by running the initial release, v.0.1.0, of the napari-organoid-
counter tool (Bukas|, 2022), a plugin developed for Napari (Ahlers et al.,[2019). The tool parameters
were set to a down-sampling of one, minimal diameter of 30 um and sigma of three. After running
the napari-organoid-counter with these parameters, all detected organoids were examined. All
spherical structures consisting of visibly more than one cell and measuring more than 30 um, were
recognized as organoids. The wrongfully created box was manually deleted if the counter detected a
False Positive (FP). If the counter detected the organoid size or exact location incorrectly, the box
was manually moved or adjusted according to the correct size and location. If the counter detected
accumulations of organoids as one single object, the box was deleted and correctly sized boxes for
the single organoids were created. If the counter did not detect an organoid, a box according to the
organoid’s size was manually created.

A.1.4 Data preparation for release

After all the data was collected and annotated, all images were converted from the proprietary CZI to
the open TIFF format. Additionally, all studies were renamed to ensure consistency and all images
and annotation information for each image were anonymized.
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Table A.4: A detailed overview of the dataset. The training set consists of 356 images derived from
25 studies, and the test set consists of 55 images from 7 studies.

Study Setup Plate Name Number of Wells Image IDs Data split Annotator

Normal Plate_11 13 1-13 train A
Normal Plate_13 1 14 train A
Macros Plate_13 6 15-20 train A
Normal Plate_19 6 21-26 train A
Normal Plate_20 20 27-46 train A
Normal Plate_26 34 47-80 train A
Normal Plate_29 26 81-106 train A
Normal Plate_3 5 107-111 train A
Normal Plate_32 19 112-130 train A
Normal Plate_33 16 131-146 train A
Normal Plate_34 16 147-162 train A
Macros Plate_6 9 163-171 train A
Normal Plate_8 10 172-181 train A
Normal Plate_9 15 182-196 train A
Normal Plate_16 17 197-213 train B
Macros Plate_16 9 214-222 train B
Normal Plate_17 18 223-240 train B
Macros Plate_17 4 241-244 train B
Normal Plate_18 34 245-278 train B
Macros Plate_18 6 279-284 train B
Normal Plate_24 10 285-294 train B
Macros Plate_25 6 295-300 train B
Normal Plate_36 15 301-315 train B
Normal Plate_39 17 316-332 train B
Normal Plate_40 24 333-356 train B
Normal Plate_37 6 1-6 test A
Normal Plate_4 2 7-8 test A
Macros Plate_4 14 9-22 test A
Normal Plate_15 12 23-34 test B
Normal Plate_31 8 35-42 test B
Macros Plate_15 7 43-49 test B
Macros Plate_23 6 50-55 test B
106 ¢ ¢ ¢ * ¢ ¢
10°
~
E_ 104
©
g
< 10°
102
I Normal
Il Macros
101
test? testy testd
Label Set

Figure A.5: Bounding box sizes. Box plots of the bounding box areas in test?, testl, and testl,
stratified by study type, on a logarithmic scale.
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Table A.5: Bounding box sizes. Mean and standard deviation of the bounding box areas (in um?) in
testY, test%, testl,, and testk, stratified by study type and combined.

Study Type
Label Subset Normal

Macros

Combined

4,891(+ 31,918)
9,654(+£ 25,272)
8,714(+ 36,128)
8,188( 35,042)

7,553(% 40,400)
14,612(+ 49,726)
14,931(+ 14,931)
15,220(% 56,215)

testl, 11,887(+ 51,000)
test, 17,064(+ 57,976)
testly 19,413(+ 64,855)
testl, 21,315(+ 68,956)
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A.1.5 Multi-rater analysis

Table A.6: Statistics of the multi-rater analysis. The intra-rater scores for Annotator A are calculated
for test, (considered as GT) and the corresponding subset of testl, for images 1-22. Similarly, for
Annotator B, the intra-rater score is computed between test% (considered as GT) and the correspond-
ing subset of testh for images 23-55. Inter-rater scores for images 1-22 are calculated between test
(considered as GT) and the corresponding subset of testl,, as well as subsets of test}4 (considered
as GT) and testy. Similarly, for images 23-55, the inter-rater scores are computed between test%
(considered as GT) and the corresponding subset of testh, as well as subsets of test}4 (considered as
GT) and testh.

Images 1-22

Intra-rater Annotator A Inter-rater test, vs. testh Inter-rater test, vs. testh

F1-Score Precision Recall FI-Score Precision Recall F1-Score Precision Recall

Median 0.624 0.806 0.516 0.586 0.813 0.469 0.610 0.689 0.604
Mean 0.635 0.787 0.551 0.577 0.782 0.473 0.605 0.677 0.595
Std 0.134 0.094 0.173 0.090 0.091 0.116 0.110 0.175 0.159
min 0.305 0.581 0.207 0.397 0.569 0.258 0.360 0.276 0.320
25% 0.545 0.726 0.439 0.523 0.731 0.414 0.547 0.593 0.481
50% 0.624 0.801 0.516 0.586 0.813 0.470 0.610 0.689 0.604
75% 0.766 0.848 0.740 0.649 0.854 0.547 0.690 0.822 0.734
max 0.826 0.809 0.939 0.754 0.889 0.692 0.767 0.922 0.848

Images 23-55

Intra-rater Annotator B Inter-rater test, vs. test) Inter-rater test!, vs. testh

F1-Score Precision Recall FI1-Score Precision Recall FI-Score Precision Recall

Median 0.643 0.800 0.546 0.561 0.725 0.426 0.710 0.667 0.761
Mean 0.632 0.778 0.551 0.522 0.752 0.414 0.655 0.608 0.761
Std 0.127 0.136 0.155 0.140 0.159 0.145 0.145 0.188 0.133
min 0.193 0.282 0.147 0.219 0.348 0.148 0.281 0.222 0.381
25% 0.568 0.729 0.461 0.434 0.650 0.324 0.559 0.480 0.704
50% 0.643 0.800 0.546 0.561 0.725 0.426 0.710 0.667 0.761
75% 0.703 0.885 0.667 0.611 0.909 0.503 0.760 0.750 0.835
max 0.844 0.940 0.878 0.807 1.000 0.732 0.828 0.831 0.988
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Table A.7: Statistics of the multi-rater analysis for ’Normal’ images. The intra-rater scores for
Annotator A are calculated for test’ (considered as GT) and the corresponding subset of test!; for
images 9-22. Similarly, for Annotator B, the intra-rater score is computed between test% (considered
as GT) and the corresponding subset of testk for images 43-55. Inter-rater scores for images 9-22
are calculated between testY (considered as GT) and the corresponding subset of testh, as well as
subsets of test}4 (considered as GT) and testIB. Similarly, for images 43-55, the inter-rater scores
are computed between test% (considered as GT) and the corresponding subset of testl, as well as
subsets of test); (considered as GT) and test};.

Images 1-8

Intra-rater Annotator A Inter-rater testy vs. testh Inter-rater test!, vs. testh

F1-Score Precision Recall FI1-Score Precision Recall FI-Score Precision Recall

Median 0.804 0.845 0.779 0.584 0.843 0.444 0.610 0.843 0.475
Mean 0.768 0.824 0.735 0.584 0.848 0.458 0.612 0.834 0.513
Std 0.081 0.090 0.117 0.100 0.028 0.127 0.096 0.082 0.171
min 0.617 0.629 0.459 0.454 0.814 0.308 0.475 0.651 0.320
25% 0.761 0.826 0.740 0.532 0.827 0.382 0.558 0.822 0.410
50% 0.804 0.845 0.779 0.584 0.843 0.444 0.610 0.843 0.475
75% 0.817 0.855 0.799 0.638 0.867 0.524 0.696 0.882 0.600

max 0.826 0.939 0.809 0.754 0.889 0.692 0.737 0.922 0.848
Images 23-42
Intra-rater Annotator B Inter-rater test% vs. test) Inter-rater test!, vs. testh

F1-Score Precision Recall FI1-Score Precision Recall FI-Score Precision Recall

Median 0.657 0.794 0.564 0.578 0.833 0.444 0.738 0.707 0.823
Mean 0.645 0.784 0.564 0.559 0.819 0.435 0.696 0.632 0.823
Std 0.155 0.150 0.179 0.139 0.161 0.134 0.117 0.166 0.104

min 0.193 0.282 0.147 0.219 0.348 0.160 0.404 0.268 0.595
25% 0.593 0.753 0.469 0.486 0.744 0.356 0.639 0.532 0.758
50% 0.657 0.794 0.564 0.578 0.833 0.444 0.738 0.707 0.823
75% 0.719 0.891 0.679 0.636 0.932 0.504 0.779 0.750 0.891
max 0.844 0.940 0.878 0.807 1.000 0.684 0.828 0.822 0.988

Table A.8: Statistics of the multi-rater analysis for "Macros’ images. The intra-rater scores for
Annotator A are calculated for test’ (considered as GT) and the corresponding subset of testl for
images 9-22. Similarly, for Annotator B, the intra-rater score is computed between test% (considered
as GT) and the corresponding subset of testk for images 43-55. Inter-rater scores for images 9-22
are calculated between testY (considered as GT) and the corresponding subset of test};, as well as
subsets of testl (considered as GT) and testk. Similarly, for images 43-55, the inter-rater scores
are computed between test% (considered as GT) and the corresponding subset of testl, as well as
subsets of testl (considered as GT) and testk.

Images 9-22

Intra-rater Annotator A Inter-rater test vs. test} Inter-rater test), vs. testh

F1-Score Precision Recall FI1-Score Precision Recall FI-Score Precision Recall

Median 0.556 0.769 0.449 0.586 0.744 0.486 0.621 0.615 0.682
Mean 0.560 0.766 0.446 0.573 0.744 0.482 0.600 0.587 0.643
Std 0.091 0.092 0.090 0.087 0.093 0.113 0.120 0.148 0.136
min 0.305 0.581 0.207 0.397 0.569 0.258 0.360 0.276 0.370

25% 0.539 0.712 0.411 0.522 0.667 0.439 0.546 0.512 0.517
50% 0.556 0.769 0.449 0.586 0.744 0.486 0.621 0.615 0.682
75% 0.620 0.832 0.524 0.646 0.812 0.557 0.688 0.698 0.748
max 0.683 0.935 0.542 0.684 0.871 0.640 0.767 0.771 0.804

Images 43-55

Intra-rater Annotator B Inter-rater test? vs. test Inter-rater test), vs. testh

F1-Score Precision Recall FI1-Score Precision Recall FI-Score Precision Recall

Median 0.626 0.806 0.503 0.491 0.659 0.373 0.648 0.655 0.704
Mean 0.613 0.768 0.529 0.464 0.650 0.381 0.592 0.569 0.665
Std 0.063 0.117 0.111 0.127 0.087 0.160 0.164 0.219 0.116
min 0.515 0.590 0.368 0.226 0.476 0.148 0.281 0.222 0.116

25% 0.560 0.647 0.461 0.405 0.586 0.296 0.523 0.433 0.636
50% 0.626 0.806 0.503 0.491 0.659 0.373 0.648 0.655 0.704
75% 0.662 0.862 0.606 0.561 0.705 0.435 0.727 0.700 0.752
max 0.723 0.905 0.738 0.651 0.790 0.732 0.776 0.831 0.778
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Figure A.6: Inter-rater scores for the two subsets of the test set. Top: Fl-score (left), Precision
(middle), and Recall (right) shown for Intra- and Inter-rater scores for both annotators. Scores are
split for the two test subsets and according to study type. test’ is always considered the GT for
computing these scores. Bottom: F1-score on images 1-22 (left), where test is used as the GT and
scores are computed against test) and test%\, and on images 23-55 (right), where test!; is used as
the GT and scores are computed against test'y and testk. On the left, we see that when compared to
a third independent label set corresponding to a different annotator, annotator A has slightly changed
their style of annotation at timepoint ¢!, slightly converging annotator B. On the right, we see an even
bigger shift in annotation style. These results suggest that annotators exchanged best practices in
annotation styles between timepoints ¥ and ¢'.

Table A.9: Comparison of the label sets to pseudo labels. Precision, Recall, and F1-score computed
between the pseudo labels and test®, testl, testl (considered as GT in this computation). The
pseudo labels are used as a starting point by each annotator to annotate the data. The F1-score shows
that testlB was curated the least, while the higher Recall values at time point t!' confirm that more of
the pseudo labels were removed than at ¢°.

Metric  test® testl, testh

Precision  0.51 0.40 0.48
Recall 0.23 0.28 0.33
Fl-score 0.32 0.33 0.39
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A.2 Model benchmark

A.2.1 Training details

For the training and validation pipeline of our benchmark the mmdetection (Chen et al.|[2019)) toolbox
was used, a well-established open-source toolbox for object detection. To make our dataset compatible
with the toolbox, the bounding boxes were converted to the COCO format (Lin et al.| 2015). We
adapted the original configuration for each model to set a number of fixed parameters for all models.
AdamW was used as the optimizer with a base learning rate of le-05, along with a linear learning rate
scheduler. The batch size was set to 16 and the training setup included standard image augmentations:
Gaussian Blur, Random Flip, Random Shift, Random Affine, and Photometric Distortion with a
probability of 0.5. For all models, the pretrained COCO weights were used as initialization and the
final layer was adapted to accommodate our single class. All models were trained for 400 epochs and
validated using the COCO metrics on test’. Training and validation were performed on an internal
cluster that uses an NVIDIA A100 GPU with four cores and 40 GB VRAM. The training time varied
slightly depending on the model, but all were trained in less than 21 hours (Table [A.T0).

Table A.10: Training and testing of benchmark models. Train time is the duration of training the
model once on the entire train set for 400 epochs. The best epoch is the epoch with the highest mAP
on the test set test’. GPU utilization indicates the approximate range of GPU utilization during
training. Inference time is the average time per image inference using a single core.

Model Faster R-CNN SSD  YOLOv3 RTMDet
Train time (hours) 15 16 10 20
Best epoch 68 86 27 323
Model size (MB) 172 99 249 454
GPU utilization (%) 60-70 30-90 55-65 40-80
Inference time (seconds) 18 59 13 114

A.2.2 Additional results
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Figure A.7: Model benchmark. P-R curves across all models of the benchmark for all three label sets.
It is interesting to observe that though the model checkpoints were selected based on test?, they are
consistently more in agreement with labels of test}.
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Figure A.8: Model benchmark. P-R curves across all models of the benchmark for subsets of the
label sets: testY., o, and testy . -, along with the corresponding subsets for test) and testh,

ie. testl.,_ o, and testh o5 - such that a direct comparison of the same subsets of the test set can
be made. We see that all models are more in agreement with Annotator B at timepoint ¢! compared

to timepoint t° for images 23-55 of the test set.

95830 https://doi.org/10.52202/079017-3036



5 pred 0
ge ID age ID: 4
0.89 .8
, g5 W 8>
9'76 0/62 . 8.74
1.0 - A =3

£ 2|
O WA 54 0.93|

0.89 i
7]
g71 » 0.56
~ 3 D
3 4
age ID 8
PT S 1 «
098 . o Q0 ‘
. LY y@} .:Vt\ & W
2 ok o g - [ﬁ ]
3 % 4 e T3
S 1 ¢ ( \Z .
. Lt S O RO A
% 0.98 o A 4
p = 96, ‘ y
- ; @5 iy ik #
0 /2978 | | | 4

Figure A.9: Example Predictions. Predicted Bounding boxes and model confidence from the SSD
model for various image crops of size 1000x1000 pixels of the "Normal’ (top) and ’"Macros’ (bottom)
study types. The three label sets are also displayed for comparison. The "Macros’ images are noisier
and, therefore, more challenging for the model and the annotators alike.
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A.3 Extensions of napari-organoid- counter v.0.2.

The main extensions of the latest version of the napari-organoid-counter plugin are as follows:

* Back-end: Use of the trained YOLOv3 model presented in Section [4.T|for object detection.
This model was chosen as it gives the best trade-off between performance and inference
time for real-time applications.

* Back-end: Inference with a sliding window and adjustable parameters for multiple window
sizes and window down-sampling rates.

* Back-end: Adjustable model confidence threshold.

* Front-end: Organoid ID and model confidence displayed in the viewer - the individual
exported features can now be traced back to the organoids in the viewer.

* Front-end: Possibility to work interactively with different layers simultaneously by adjusting
parameters and switching between shape layers.

A.4 Ethics Statement

We have thoroughly reviewed this work for any potential ethical implications and believe that the
societal benefits outweigh the potential issues related to this work.

The dataset we are submitting consists of lung organoids derived from murine cells. The data we
provide is original, and any supplementary data included adheres to the Creative Commons licensing
terms. We have verified that all datasets used in our submission are current and have not been
deprecated by their original creators. Privacy-related concerns are minimal, as our dataset does not
involve human subjects and, therefore, does not entail sensitive personal data, or sensitive information
of humans, thereby mitigating common ethical concerns related to privacy and consent.

The dataset is intended for research within the scope of lung organoids derived from murine cells,
and its applicability is limited to this specific area. Users of the dataset are encouraged to consider
this limitation and ensure their research appropriately reflects the dataset’s scope and intended use
when taking up our work and using it beyond the specific biological domain for which we created the
dataset. Prior to using this dataset the intended use of the model should be considered against the
scope and, if the dataset is used outside the scope we refer to, it should be thoroughly tested regarding
the new context to avoid biases and ensure the reliability of the resulting models.

No matter the context the dataset is used in, we would like to emphasize the importance of maintaining
a human in the loop for final decision-making processes to avoid over-reliance on automated systems.

However, we nevertheless emphasize the importance of responsible use of this dataset. Researchers
utilizing this dataset should ensure that all analyses and applications are conducted within ethical
guidelines and that any machine learning models or automated tools developed using this data are
implemented with care.
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B MultiOrg Datasheet

This data sheet serves as supplementary documentation aimed at improving reproducibility. It is
based on the guidelines outlined in Datasheets for Dataset a working paper developed for the
machine learning community.

* For what purpose was the dataset created? This dataset was created with two goals in
mind: a. to facilitate research in uncertainty quantification methods in machine learning and
b. to enable the development of object detection models for the automated detection of lung
organoids, which can accelerate the annotation process for similar data in future studies.

* Who created the dataset (e.g., which team, research group) and on behalf of which
entity (e.g., company, institution, organization)? The dataset was created as a collaborative
effort by the authors of this work, i.e. biologists of the Institute of Lung Health and Immunity
(LHI) of the Helmholtz Zentrum Miinchen and the Philipp University of Marburg, as well
as computer scientists Helmholtz AT at the Helmholtz Zentrum Miinchen.

* Who funded the creation of the dataset? This work was partly funded by the German
Center for Lung Research (DZL) and from the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation— 512453064) as well as from the Stiftung Atemweg. Addi-
tionally, it was developed as part of the daily work of the creators and was indirectly funded
via their salaries.

B.1 Composition

* What do the instances that comprise the dataset represent? Our dataset consists of
2D images of microscopy plate wells, consisting of lung organoids derived from murine
cells. Along with the imaging data, annotations for each image are provided, in the form of
bounding boxes fit around the organoids, and metadata information on the annotator and
time point of annotation.

* How many instances are there in total (of each type, if appropriate)? In total 411 fully
annotated images are released as part of this dataset, annotated by two annotators at two
different timepoints and consisting of 26 different experiments across two biological study
setups. Please see Section [3]and Table [A.4]for more details and stratification between study
types, annotators, train and test splits.

* Does the dataset contain all possible instances or is it a sample of instances from a
larger set? The dataset is a subset of a larger set of biological experiments. During the first
curation of the data, the 26 experiments were selected to have the best representation of
our data, with the least noise stemming from the image acquisition and with an acceptable
number of organoids in the well, neither too many, which would make it hard to distinguish
them from one another, nor too few, with little information present in the image.

* What data does each instance consist of? Each instance is an image of size between 5719
and 6240 pixels in the x and 5551 and 6940 pixels in the y axis respectively. Each pixel in
the image is equivalent to 1.29 pum in each axis.

* Is there a label or target associated with each instance? Yes, specifically for the training
set one target per image is available, while for the images of the test set, we release three sets
of labels. The first, which in this work is named test9, is directly available, while the other
two can be indirectly accessed by participating in our Kaggle competition/ and submitting
results to our leaderboard.

* Is any information missing from individual instances? No, to the best of our knowledge,
all available information has been provided.

* Are relationships between individual instances made explicit? Yes, Table and the
structure of the available data make relationships explicit. Relationships become apparent
with the data structure provided in the metadata file. For example, all image wells belonging
to the experiment "Plate_1" can be found in a folder named "Plate_1".

*https://arxiv.org/abs/1803.09010
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* Are there recommended data splits (e.g., training, development/validation, testing)?
Yes, we provided the data already split into train and test sets. As discussed in the main
manuscript, for validation we use the test data with one of the three label sets.

* Are there any errors, sources of noise, or redundancies in the dataset? Noise is always
present in microscopy data, and is one of the reasons for which machine learning tasks in the
biomedical domain are much harder compared to natural images. This noise can derive from
the microscope itself, the imaging parameters, or the biological specimen. Nevertheless, we
tried to eliminate these as much as possible when curating the dataset, by, as mentioned
above, selecting our experiments out of a larger pool and Another source of noise in our
case is the stitching of the imaging tiles to form the 2D image well, which we discuss in
Section 3] No redundancies are present in the dataset.

« Is the dataset self-contained, or does it link to or otherwise rely on external resources
(e.g., websites, tweets, other datasets)? The provided dataset is self-contained.

* Does the dataset contain data that might be considered confidential (e.g., data that is
protected by legal privilege or by doctor-patient confidentiality, data that includes the
content of individuals’ non-public communications)? No.

* Does the dataset contain data that, if viewed directly, might be offensive, insulting,
threatening, or might otherwise cause anxiety? No.

* Does the dataset relate to people? No.

B.2 Collection process

* How was the data associated with each instance acquired? The data was acquired by
cell culture and imaging in a Life Cell Imaging Microscope.

* What mechanisms or procedures were used to collect the data? The biological experi-
ments consisted of isolating and culturing murine cells, which received various treatments
and formed variable organoids in the process. Subsequently, images were taken to document
and analyze the effects of different treatments.

« If the dataset is a sample from a larger set, what was the sampling strategy? The dataset
is a subset of a larger set of biological experiments. During the first curation of the data, the
26 experiments were selected to have the best representation of our data, with the least noise
stemming from the image acquisition and with an acceptable number of organoids in the
well, neither too many, which would make it hard to distinguish them from one another, nor
too few, with little information present in the image.

¢ Who was involved in the data collection process (e.g., students, crowdworkers, con-
tractors) and how were they compensated (e.g., how much were crowdworkers paid)?
The data was collected by university students with guest contracts and employees of the
Helmholtz Zentrum Munich.

* Over what timeframe was the data collected? The data was collected at specific timepoints
over a period of two weeks. All experiments took place over a timeframe of two years.

* Were any ethical review processes conducted (e.g., by an institutional review board)?
No

* Does the dataset relate to people? No, it is a murine dataset.

B.3 Preprocessing/cleaning/labeling

* Was any preprocessing/cleaning/labeling of the data done ? The data was indeed
preprocessed, cleaned, and labeled. In the Appendix, we describe these processes under

Appendix [A.T.3]and Appendix [A.T.2]

¢ Was the ’raw’ data saved in addition to the preprocessed/cleaned/labeled data (e.g., to
support unanticipated future uses)? Yes, the raw data was saved and stored.

¢ Is the software used to preprocess/clean/label the instances available? The software
used for preprocessing the data, Zen 2 Blue software by Carl Zeiss Microscopy GmbH, is
proprietary. The software used for annotating the data of the napari-organoid-counter tool
(Bukas|, 2022), a plugin developed for Napari, is open-source and freely available.
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B.4 Uses

» Has the dataset been used for any tasks already? The dataset was used as part of this
work to create the benchmark presented in Section[d] The trained models are also made
publicly available through this work and can be accessed on|zenodo. Moreover, the latest
version of the napari-organoid-counter tool described in Section 4.3|also uses one of the
models from this benchmark, trained with the current dataset.

¢ Is there a repository that links to any or all papers or systems that use the dataset? If
so, please provide a link or other access point.

No, please refer to Appendix [C|instead.

* What (other) tasks could the dataset be used for? We discussed previously how the
intended usage of our dataset is two-fold, a. to facilitate research in uncertainty quantification
methods in machine learning and b. to enable the development of object detection models for
the automated detection of lung organoids, which can accelerate the annotation process for
similar data in future studies. Aside from these tasks, one could use this dataset to benchmark
new model architectures for object detection, or to develop unsupervised learning methods
for organoid classification (using the bounding boxes to extract single organoid images),
since we mention that our dataset consists of two different types of organoids.

* Is there anything about the composition of the dataset or the way it was collected and
preprocessed/cleaned/labeled that might impact future uses? No.

¢ Are there tasks for which the dataset should not be used? Not to the best of our
knowledge.

B.5 Distribution

* Will the dataset be distributed to third parties outside of the entity (e.g., company,
institution, organization) on behalf of which the dataset was created? Yes, the dataset is
hereby made publicly available under the CC BY-NC-SA 4.0 License, and can therefore be
used by third parties.

* How will the dataset will be distributed (e.g., tarball on the website, API, GitHub)?
The dataset is hereby made available via the Kaggle platform and can be accessed through
the link: https://www.kaggle.com/datasets/christinabukas/mutliorg/ and DOI: 10.34740/kag-
gle/ds/5097172

* When will the dataset be distributed? The dataset is made available along with the
submission of the current manuscript.

* Will the dataset be distributed under a copyright or other intellectual property (IP)
license, and/or under applicable terms of use (ToU)? Our dataset is open source and made
available under the CC BY-NC-SA 4.0 License.

* Have any third parties imposed IP-based or other restrictions on the data associated
with the instances? No.

* Do any export controls or other regulatory restrictions apply to the dataset or to
individual instances? No.

B.6 Maintenance

* Who is supporting/hosting/maintaining the dataset? The dataset is maintained by the
authors of this work. The dataset is currently hosted on the KaggleE] platform.

* How can the owner/curator/manager of the dataset be contacted (e.g., email address)?
Kaggle offers a discussion tab under the dataset repository. This can be used for any
data-related discussions, while there is also a discussion tab available on the website of
our competition. Naturally, the corresponding authors of this work may also be contacted
directly with any questions via email.

¢ Is there an erratum? There is currently no erratum for this dataset.

*https://wuw.kaggle.com
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Will the dataset be updated (e.g., to correct labeling errors, add new instances, delete
instances)? There are currently no immediate plans for updating the dataset. We are eager
to first see how it will be accepted by the community and which needs will arise for future
versions/extensions. We, of course, plan to maintain the dataset, e.g. if errors are found in
the data, we will update the dataset and release a newer version.

If the dataset relates to people, are there applicable limits on the retention of the data
associated with the instances? The dataset does not relate to people.

Will older versions of the dataset continue to be supported/hosted/maintained? If and
when newer versions of the dataset are released we expect these to be an improvement upon
the original version, and will therefore concentrate our efforts on maintaining the latest
version of the dataset.

If others want to extend/augment/build on/contribute to the dataset, is there a mech-
anism for them to do so? Researchers are more than welcome to extend our dataset. In
the discussion section of our manuscript, Section E} we mention how future versions of our
dataset could include even more label sets both for the train and test sets. Such versions
would surely increase its value and the development of uncertainty quantification techniques.
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C Availability: data, benchmark, and software tool

Below we list all assets made publicly available with the release of this work:

Trained model weights from our benchmark can be found on zenodo with a DOI:
10.5281/zenodo.11258022

The MultiOrg dataset can be found on Kaggle with a DOI: 10.34740/kaggle/ds/5097172

The notebooks for reproducing our benchmark can be found under the same repository on
the Kaggle MultiOrg dataset page

The Croissant metadata record documenting the dataset can also be found on the Kaggle
MultiOrg dataset page here

The napari plugin can be found on the napari-hub
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D Author Statement

As the authors of this dataset, we hereby declare that we bear full responsibility for any and all
consequences arising from the use, distribution, and publication of the dataset. This includes but is
not limited to, any violations of privacy, intellectual property rights, or any other legal rights.

We confirm that all data included in this dataset has been collected, processed, and shared in
compliance with applicable laws and regulations. We have obtained all necessary permissions and
consents from individuals or entities involved, and we affirm that the data does not infringe upon the
rights of any third parties.

Furthermore, we confirm that the dataset is being released under the following license: CC BY-NC-SA
4.0. his license allows others to use, share, and adapt the dataset, provided that appropriate credit is
given, a link to the license is provided, and any changes are indicated.

By submitting this dataset to the NeurIPS 2024 dataset track, we agree to adhere to the terms and
conditions set forth by the NeurIPS conference organizers and acknowledge that we are solely
responsible for any issues related to the dataset’s legal and ethical use.
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E Hosting, licensing, and maintenance plan.

As described in the Maintenance section of Appendix [B] the dataset is open source and available
to researchers via the Kaggleﬂ platform, under the CC BY-NC-SA 4.0 license. Additionally, on
kaggle we offer notebooks to reproduce the model benchmark performed in this work, and links to
our zenodo repository which stores our pretrained models. All notebooks are under the Apache 2.0
license and model weights are available under the Creative Commons Attribution 4.0 International
license. All the above, will be maintained actively by the authors of this work. If errors are found by
users in the code or data, this can be communicated via the discussion tab available on the dataset
webpage, and a newer version will be uploaded.

*https://www.kaggle.com
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