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Abstract

The discovery of dynamical systems is crucial across a range of fields, including
pharmacology, epidemiology, and physical sciences. Accurate and interpretable
modeling of these systems is essential for understanding complex temporal pro-
cesses, optimizing interventions, and minimizing adverse effects. In pharmacology,
for example, precise modeling of drug dynamics is vital to maximize therapeutic
efficacy while minimizing patient harm, as in chemotherapy. However, current
models, often developed by human experts, are limited by high cost, lack of scal-
ability, and restriction to existing human knowledge. In this paper, we present
the Data-Driven Discovery (D3) framework, a novel approach leveraging Large
Language Models (LLMs) to iteratively discover and refine interpretable models of
dynamical systems, demonstrated here with pharmacological applications. Unlike
traditional methods, D3 enables the LLM to propose, acquire, and integrate new
features, validate, and compare dynamical systems models, uncovering new in-
sights into pharmacokinetics. Experiments on a pharmacokinetic Warfarin dataset
reveal that D3 identifies a new plausible model that is well-fitting, highlighting its
potential for precision dosing in clinical applications.

1 Introduction

The discovery of dynamical systems models plays a fundamental role across various domains, in-
cluding pharmacology, epidemiology, and physical systems. In pharmacology, pharmacokinetic (PK)
models are essential for understanding and predicting the time course of drug absorption, distribution,
metabolism, and excretion in the body, which is crucial for optimizing therapeutic efficacy, minimiz-
ing toxicity, and personalized treatment regimens in diseases such as cancer, cardiovascular disorders,
and infectious diseases [Gabrielsson and Weiner, 2001, Hedaya, 2012]. For example, cardiovascular
disorders requiring Warfarin therapy affect tens of millions of individuals globally [Lee and Klein,
2013], highlighting the critical need for superior models to understand the dynamic impact of drugs
and precision dosing, thereby assisting both doctors and patients.

The goal of PK modeling is to discover an underlying closed-form ordinary differential equation
(ODE) f from a dataset of observed patient trajectories. This problem is of significant interest to
the machine learning (ML) community, as evidenced by previous non-interpretable ML modeling
approaches aimed at developing better PK models [Chan and van der Schaar, 2022]. Such datasets are
collected from expensive human clinical trials, necessitating the careful selection of which features
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to acquire and analyze during these trials [Guidance, 2010]. Pharmacometricians then leverage
this data, using their existing knowledge to select appropriate pharmacokinetic models and employ
standard statistical tools to infer the parameters of these models. For instance, they often fit a single
compartmental PK model, a closed-form ODE model with 3-5 parameters, to the data [Chen and
Abuassba, 2021]. This process is iterative, refining the models until the most accurate one that
generalizes well to new patient trajectories is identified. However, this traditional model discovery
approach is often ad-hoc and fundamentally limited by the human expert’s time, experience, and
implicit assumptions about the underlying pharmacokinetic processes.

Discovering interpretable pharmacokinetic models is traditionally performed by human experts
through a scientific process of proposing, collecting, and validating models. Recently, there has been
a growing call for artificial intelligence-driven methods to enhance pharmacological modeling [Ryan
et al., 2024, Singh et al., 2023, Cheng et al., 2022]. This established process involves iterative steps,
each presenting distinct challenges in constructing accurate pharmacokinetic dynamics models.

Selecting appropriate temporal models involves complex decisions on model class, state and feature
variables, parameters, and their relationships, far exceeding the simplicity of standard pharmacomet-
rics models like single, double, or triple compartmental models [Chen and Abuassba, 2021]. This
complexity demands aligning model intricacy with data availability, where simple models suit small
datasets and complex models fit larger ones. Acquiring the right features is crucial, as it must be done
with limited prior information, unlike feature selection, which evaluates pre-existing features [Li et al.,
2017]. The evaluation must identify inadequate models and explain why, requiring diverse and time-
intensive tools beyond a single metric like validation MSE. These challenges are interrelated: strategic
data acquisition and thorough evaluation are essential for effective modeling. Despite advancements
in tackling these challenges independently, temporal modeling remains manual, limiting speed and
scalability, underscoring the need for integrated and automated systems to enhance efficiency.

To address these challenges, we develop the Data-Driven Discovery (D3) framework, leveraging
Large Language Models (LLMs) to iteratively discover and refine interpretable dynamics models,
directly relevant to pharmacology, epidemiology and ecology applications. D3 features three agents:
Modeling, Feature Acquisition, and Evaluation, which collaborate iteratively. The Modeling Agent
uses LLMs’ code generation and natural language understanding to explore the model space by
generating hypothetical models. The Data Acquisition Agent utilizes LLMs’ zero-shot and few-shot
learning to optimize data acquisition based on summary statistics, text descriptions, and prior knowl-
edge. The Evaluation Agent conducts comprehensive evaluations by computing refined validation
MSE metrics, and alignment with prior process understanding, providing precise feedback to improve
the other agents’ performance.

Contributions: (O We propose the Data-Driven Discovery (D3) framework, a novel approach
leveraging Large Language Models (LLMs) to iteratively discover and refine interpretable dynamics
models, advancing pharmacokinetic modeling (Section 3). (@) D3 overcomes the challenges of
uncovering interpretable dynamical systems by using LLMs to explore vast model spaces and integrate
unstructured data, producing models with few parameters that rival black box neural networks. D3
accurately discovers dynamics models across pharmacology, epidemiology, and ecology, matching the
accuracy of existing methods while enhancing interpretability. It discovers a new, more accurate PK
model for Warfarin, validated by expert pharmacometricians. We also gain insight into D3’s ability to
iteratively improve its models, selectively acquire features, and discover precise dynamics models.

2 The vast model space for temporal modeling

In this section, we introduce the model space that D3 searches through, which contains a diverse
range of temporal models with varying degrees of refinement. Our focus is on Ordinary Differential
Equation (ODE) models, which is one of the most widely used methods for modeling temporal
dynamics, which include pharmacokinetic, physiological and epidemiological dynamics [Auger
et al., 2008]. We are interested in modeling the evolution of a set of state variables x,,(t) € RY
for individuals n = 1,..., N over the time horizon ¢t € [0,T]. The state variables represent the
target variables that the human experts are interested in modeling; and there may exist other feature
variables that can help predict the evolution of state variables. We assume we are provided with a
dataset of individuals trajectories such that D = {(x,,(¢),a,(t)) | n=1,..., N, t € [0,T]}, where
a,(t) € R¥ denotes the observed individual-level features for individual. We can categorize ODE
models into three levels (R1 - R3) based on their capacity for refinement.
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R1: Refinement through initial conditions x,,(0). This level involves the simplest form of ODEs,
commonly referenced in scientific literature [Schiesser, 2014]. These equations are defined over state
variables x(¢) € RP, incorporate global parameters ¢, and involve a function f : RP*1 — RP. The
time ¢ spans the interval [0, T']:

Xn(t) = f(xn(t),t,e),Vn € [N] (h

Considering N individuals, each represented by the trajectory x,,(t) forn = 1,..., N, all follow the
equation above. According to the uniqueness theorem for initial value problems in ODEs [Lindelof,
1894], any differences among individuals’ trajectories can be attributed solely to variations in the
initial conditions x,,(0), under common regularity conditions on f.

R2: Refinement through observed features a,,. Suppose we have access to a set of individual-level
feature variables a,,. We can enhance the model’s refinement by incorporating these features into the
ODE to enable unique dynamics for different individuals:

Xn (t) = f(xn (t)» t,a, (t)v 9) 2

R3: Refinement through acquired features h,. Often, not all relevant variables are initially
measured and available for analysis. In such cases, one may consider acquiring additional features
h,,(t) € R’ to be integrated into the ODE. Here h,, (#) is a collection of .J features from the set of all
acquirable features H, where J < |H|. This third level of refinement reflects one data acquisition
challenge, i.e., identifying and collecting informative features h,, (¢):

X, (t) = f(xn(t),t,a,(t),h,(t),0) 3)

After selecting the level of refinement (R1-R3), it is necessary to determine the functional form
of the ODE f, which defines the interactions among various variables and parameters that govern
the dynamics. There are two dominant approaches to parameterize f: using a concise closed-form
white-box equation f € M or employing a neural network f € My. The former approach is
prevalent in the field of symbolic regression [Billard and Diday, 2002], while the latter is utilized in
Neural ODEs [Chen et al., 2018]. Additionally, f can incorporate both a closed-form component
and a neural component, resulting in a hybrid ODE model. Nevertheless, all three approaches
involve searching within large combinatorial spaces—closed-form equations, neural architectures,
and both—presenting significant computational challenges.

3 Data-Driven Discovery (D3)

We aim to uncover the true underlying pharmacokinetic dynamical system, denoted as f*. Our goal
is to continually approximate f* as accurately as possible using proposed models fy, with parameters
6. For simplicity, we will refer to these models as f in all subsequent references, omitting the 8 term.
To appropriately identify the refinement model level needed from the vast model space discussed
above, we now introduce the Data-Driven Discovery (D3) framework, as depicted in Figure 1. This
consists of three LLM agents: the Modeling Agent G, the Feature Acquisition Agent A, and the
Evaluation Agent . These three agents work together to form the model improvement loop and the
data acquisition loop. The implementation details of the Agents are provided in Appendix F.

3.1 Inputs to Data-Driven Discovery (D3)

To begin the process, D3 requires a clearly defined description of the system in natural language,
that details the modeling task, of creating a well-fitting model of either a white-box model or a
hybrid model; that is a white-box model with a black-box neural network fitted to the residuals of the
white-box model. D3 supports both discovering only white-box models and hybrid models, and we
leave this choice up to the end user to decide for their application. Specifically, a user must provide a
dataset of individual’s trajectories D, and a system description and the names and descriptions of any
features that exist within the dataset, which can include the ranges of those features. Prior information
can be added here by the practitioner into the system description if it is available. We now discuss
how the three agents of Modeling, Feature Acquisition and Evaluation interact to discover iteratively
better-fitting f models. We provide full implementation details for the framework in Appendix F.

3.2 Modeling Agent G

D3’s Modeling Agent (¢ is tasked to iteratively propose and refine the temporal model f;, where
1 =1,..., I indicates the iteration. We design G following the three principles below.
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Figure 1: Data-Driven Discovery (D3) Overview. Given a dataset of trajectories of individuals D,
D3 can discover a well-fitting model f, that is either a white-box model or a hybrid model, combining
a white-box model with a neural network component fit to the residuals. First, a user provides a
system description ¢ for the model, which includes the feature names, their units and ranges. The
Modeling agent uses the textual description and generates a model, represented as code. Next, the
Evaluator agent evaluates the generated model on a held-out validation dataset and provides a loss
metric. Next, the Feature Acquisition agent decides if it wants to acquire a new feature, that could aid
in generating better models. This iterative process repeats, when there exists one or more previously
generated models, the Evaluator agent provides a verbal reflection on how the model can be improved,
which is used by the Modeling agent at subsequent iterations. This process repeats, discovering better
fitting models, and after a set number of iterations, the best fitting model is returned, as code with its
parameters optimized to the given training subset of the given dataset D.

Representing the model f; as code. As we discussed in Section 1, one key challenge in evidence-
based refinement is the vast space of possible ODE models, ranging from closed-form ODEs to
complex neural Neural ODEs and hybrid models. As a prerequisite to finding the most suitable
model, we need a consistent and flexible way to represent these diverse models such that they can
be trained and validated on data. As such, D3 represents the model f; as code in Python language.
Specifically, each model is defined as a class derived from ‘nn.Module’ in PyTorch [Paszke et al.,
2017] that specifies the free parameters and the computation logic. The Modeling Agent GG leverages
an LLM to generate the model code f; in each step.

Informing generation with context c. Effectively searching through the vast model space presents
another challenge. Thankfully, in many applications there exists rich context c about prior works and
domain knowledge. However, this rich source of information was previously locked in unstructured
documents and texts, making it hard for automated algorithms to make use of it. By leveraging the
LLM’s capability to understand unstructured documents, the Modeling Agent G can now access
and leverage this information, therefore proposing more informed models and searching more
effectively. In this work, we consider the provision of the following categories of problem context of
{system description} and {feature description} (Appendix F).

Iterative model improvements based on rich verbal feedback r;_; and memory s;_;. To enhance
the quality of the generated model f;, we have designed the agent G to iteratively improve the
model based on the presence of any evaluation verbal feedback and its knowledge of the previously
generated models and how they performed on a validation subset of given dataset D of trajectories.
At each iteration i, the Evaluation Agent F evaluates the previous model f;_; using the validation
data subset of D; and provides rich verbal feedback r;_; (c.f. Figure 1), which forms the foundation
for the next generated model f;. The Modelling Agent G utilizes memory s;_; to track the top-k
best-performing models so far, along with their associated evaluation feedback, here their respective
losses. Further details on evaluation and data acquisition are discussed in the following section. This
iterative process allows for continuous refinement and optimization of models based on their past
performance and targeted feedback.
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In summary, the Modeling Agent G encapsulates a comprehensive range of model structures through
computer code f; and efficiently explores the vast model space by integrating unstructured prior
knowledge c, and utilizing data-informed feedback r;_; along with memory s;_;. The operation of
G can be mathematically represented as follows:

fi=G(c, fi—1,Di, i1, Si—1) 4

3.3 Feature Acquisition Agent A

D3’s Feature Acquisition Agent A is tasked with iteratively proposing new features for acquisition.
These features are selected based on their potential to improve the next model’s performance in
modeling the target state x,, (t).

h; = A(C, fivIDiyriflasifl) (5)

Where h; is the next feature to acquire. Specifically, when a feature is acquired we make the
assumption, that it is acquired for all individuals, therefore at the next iteration the dimension of
the individual-level features a,,(t) € R¥,n = 1,..., N increases by one, to a, (t) € RE+!l n =
1,..., N. It is possible to do this in clinical trials, where pharmacokinetic datasets of patients are
collected [Dziura et al., 2013], for example acquiring the individual’s ages, or other lab biomarker
measurements or tests [Derraik et al., 2021].

Estimating the value of the feature. We leverage the value of information [Feltham, 1968] frame-
work to provide a principled way to determine which feature, if any to acquire next. This follows
as:

V(hi) = E[L(f, hi; Di—1)] — E[L(fi, Di—1)] — I(hi), (6)
where the first two terms capture the improvements in validation loss L when model f; is trained
on the new dataset that includes the new feature, that is D = {(x,(¢), a,(t), h,(¢))|Vn € [N]} and
I(h;) represents the cost for acquiring h;. Estimating V'(h;) presents a statistical challenge and a
computational challenge. Firstly, in practice, we often do not have access to h; to begin with (as
the goal is to acquire new features)—hence we need a way to estimate E[L(f;, h;, D;_1)] without
fully accessing h;. Secondly, even when h; is available, computing the two loss terms involves fitting
models twice which can be computationally challenging.

To address these challenges, the Feature Acquisition Agent A predicts the value of feature V' (h;)
from the available information about h;, as follows:

where ¢y, represents the unstructured prior information about the feature h; (e.g. data descriptions
and metadata), T'(h;) represents the available summary statistics (e.g. range and type of values from
a small subset of data h;), D;_; represents the existing data, and g is the prediction function.

The prediction challenge above corresponds to zero-shot or few-shot learning in ML. In the zero-shot
case, we need to predict V (h;) without having access to any “label” V (h), for some feature h. In the
few-shot case, we have access to a small number of feature-label pairs, {cp,, T'(h;), hi—1, V (h;—1)}
to learn the prediction function g. The Feature Acquisition Agent A leverages LLM’s capability in
zero-shot and few-shot learning to address this estimation challenge. Specifically, we inform the
LLM by providing high-level statistics 7'(h;) and a description of the feature ¢y, in the form of the
feature name to warm-start the zero-shot learning. When the h; has been included in the data, we
inform the LLM about the validation loss associated with those data v(h;) and add it to the few-shot
examples to guide the estimation.

Context, feedback and memory. Similar to G, A is also able to leverage unstructured problem
context ¢, evaluation feedback r;_1, and memory s;_; to guide the data acquisition proposal.

3.4 The Evaluation Agent I/

The Evaluation Agent £ is vital for iteratively improving the Modeling Agent G and Feature
Acquisition Agent A. It provides feedback r;:

T :E(Ca vaD1) (8)

Feedback r; can be numeric, such as validation loss or mean squared error (MSE) of the model f; on
the validation subset D;, or more refined metrics like validation loss per target dimension in D. It can
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also be textual, offering detailed suggestions for model improvements, including clinically plausible
modifications generated by an LLM [Shinn et al., 2024].

Evaluating dynamical systems is complex due to intricate interactions and temporal dependencies.
The Evaluation Agent dynamically assesses both model performance and plausibility, ensuring
models are both accurate and interpretable. This comprehensive evaluation is crucial for developing
sophisticated, clinically relevant pharmacokinetic models that address real-world complexities.

4 Related Works

Table 1: Comparison with related works in addressing the Modeling and Data Acquisition Challenges.
An empty field means not applicable. Refinement Level: the level of refinement (R1 - R3) the method
can capture. Class of f: the class of ODE model f (closed-form M, neural networks M ). Context
c: whether the method leverages unstructured contextual information to guide search. Sample N:
whether the method is able to acquire new samples. Feature h: whether the method can acquire new
feature variables. Goal: whether the goal of data acquisition is to improve training, evaluation, or both.

Modeling Challenge Data Acquisition Challenge

Method Refinement Level  Classof f  Contextc Zeroshot Feature h  Goal

Symbolic Reg. RI1,R2 Mec X

Neural ODE R1,R2 My X

Al Feynman R1 Me v

Eureka R1,R2 Me v

AFA X v Train

Active Learning X X Train

Active Testing X X Eval

D3 R1-R3 Mc UMy v v v Both

Our work focuses on autonomously learning temporal models while acquiring data, with several
relevant research strands, as summarized in Table 1, which is expanded in Appendix A.

ODE learning methods. Symbolic regression methods like SINDy and D-CODE [Koza, 1994,
Brunton et al., 2016, Qian et al., 2022] can discover closed-form ODEs f € M using genetic
algorithms. They can incorporate features a,, (R2 refinement) but struggle with many variables
(e.g., >20) due to computational complexity. Neural ODEs use neural networks f € My to handle
many variables [Chen et al., 2018, Dupont et al., 2019, Zaytar and El Amrani, 2016, Devlin et al.,
2018, Sehovac and Grolinger, 2020], but have numerous free parameters, risking overfitting with
insufficient data. D3 captures f € M U My and supports R1 - R3 refinement, adapting based on
data availability. Both Symbolic regression and Neural ODEs require manual context incorporation ¢
via hyperparameters and do not address Data Acquisition Challenges.

Al for automated modeling. AI Feynman [Udrescu and Tegmark, 2020] enhances symbolic regres-
sion by using the physical units of variables, which provide additional constraints to narrow the search
space. However, its utility outside physics is limited, as units in other fields carry less information.
Eureqa [Ma et al., 2023] applies LLMs to model the reward function in reinforcement learning,
integrating unstructured context and representing models as code. Unlike D3, Eureqa cannot auto-
matically refine models, acquire new data, or easily apply to learning temporal dynamics like ODE:s.

Data Acquisition. Methods like Active Feature Acquisition (AFA) [Ma et al., 2018, Gong et al.,
2019] measure additional features on existing samples to improve performance. Active Learning
[Sebastiani and Wynn, 2000, Settles, 2009, Sener and Savarese, 2017, Imberg et al., 2020] and
Active Testing [Lowell et al., 2018, Kossen et al., 2021] acquire new samples to increase training or
evaluation data size while keeping features constant. These methods do not address the zero-shot
setting, where data acquisition decisions must be made before observing any target data (Equation 7).
Additionally, most Active Learning methods focus on acquiring labels for supervised learning, which
is not directly applicable to temporal modeling tasks.

5 Experiments and Evaluation

In this section, we demonstrate that D3 can discover well-fitting pharmacokinetic dynamical system
models for a range of diverse PK datasets, including an epidemiological and ecological dataset.

Benchmark Datasets. Our evaluation encompasses six real-world datasets with clinical relevance,
each originating from either real-world data or highly accurate simulators developed by human experts.
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Three datasets are based on a state-of-the-art biomedical Pharmacokinetic-Pharmacodynamic (PKPD)
model of lung cancer tumor growth, which simulates the combined effects of chemotherapy and
radiotherapy in lung cancer [Geng et al., 2017] (Equation (11)). This model has been widely utilized
in previous research [Bica et al., 2020, Seedat et al., 2022, Melnychuk et al., 2022]. Specifically,
we employ this bio-mathematical model to generate three variations: lung cancer without treatment
(Lung Cancer), lung cancer treated with chemotherapy (Lung Cancer (with Chemo.)), and lung
cancer treated with both chemotherapy and radiotherapy (Lung Cancer (with Chemo. & Radio.)).
Additionally, we utilize an intricate COVID-19 epidemic agent-based simulator (COVID-19) [Kerr
et al., 2021], to provide an epidemiological dataset. Another dataset comes from an ecological
model simulating a microcosm of algae, flagellate, and rotifer populations (Plankton Microcosm),
replicating a three-species prey-predator experimental system [Hiltunen et al., 2013]. Finally, we
include a real Pharmacokinetic (PK) dataset of Warfarin patients (Warfarin) [Janssen et al., 2022].
Detailed information about all benchmark datasets is provided in Appendix B.

Benchmark Methods. To evaluate the performance of D3 and establish its competitive performance,
we conduct comparisons with leading modeling methods for ODEs. Specifically, we benchmark
against advanced black-box models that have many parameters, such as neural ODEs with action
inputs, known as DyNODE [Chen et al., 2018, Alvarez et al., 2020]. Also in this class are recurrent
neural networks (RNN) and a state-of-the-art transformer model (Transformer). In addition, we
include white-box transparent dynamical systems models identified through equation discovery
techniques, such as Sparse Identification of Nonlinear Dynamics (SINDy) [Brunton et al., 2016].
Moreover, D3 supports two discovery modes, of which we compare against both, discovering only
white-box models (D3-white-box) and discovering hybrid models (D3-hybrid)?. We also perform
ablations of D3, of zero-shot generated model from D3 as (ZeroShot) and the same model with
optimized parameters (ZeroOptim). Detailed descriptions of the implementations, hyperparameters,
and experimental procedures for these benchmarks can be found in Appendix E.

Evaluation Metrics. To assess the performance of our benchmark methods, we use the mean squared
error (MSE) on a held-out test dataset of state-action trajectories. This evaluation is conducted over
ten runs, each initialized with different random seeds. We report the average MSE from these runs
along with their 95% confidence intervals. Further details can be found in Appendix C.

6 Main Results

We conducted a comprehensive evaluation of our benchmark methods across all datasets, as tabulated
in Table 2. We observe that D3 can discover well-fitting dynamical system models, achieving
low mean squared error in test predictions on the held-out test dataset of individual trajectories.
Crucially, it can discover concise closed-form equation white-box models, of 5-15 parameters that
can outperform some of the standard white-box and black-box modeling methods, indicating it is
discovering well-fitting underlying equations for the respective systems of interest.

Table 2: Evaluating Method Performance. We report the test prediction mean squared error (MSE)
on held-out datasets across benchmarks. D3 consistently has the lowest error. Results are averaged
over ten random seeds with 95% confidence intervals.

Lung Cancer Lung Cancer (with Chemo.) | Lung Cancer (with Chemo. & Radio.) | Plankton Microcosm COVID-19 Warfarin PK
Method MSE | MSE | MSE | MSE | MSE | MSE |
DyNODE 326+5.96 55.7+52.8 16.246.35 0.000397+0.000883 74+2.69 0.726+0.17
SINDy 325+5.95 11.8+0.442 13.7+0.635 0.00135+0 93.54+0.509 6.84+1.76
ZeroShot 5.78e+03+7.6e+03 304+86.1 6.44e+03+4.27e+03 0.333+0.274 2.47e+03+2.52e+03 1.81+£8.53
ZeroOptim 2254204 33.84+50.8 6.38+8.97 0.0133+0.0013 7.88+0.0468 398+5.05e+03
RNN 1.16e+06+3.21e+04 719+94.3 137+5.88 0.0306+0.0459 1.39e+04+2.47e+03 | 0.0495+0.0406
Transformer 7.07£0.558 0.346+0.0701 0.207£0.0318 3.42e-05+1.97e-05 0.261:0.0915 1.33+£0.941
D3-white-box 59.4+101 48+11.8 2.42+42.02 0.000245+0.00022 5.92+1.17 19.6+£40.3
D3-hybrid 4.72+9.16 0.0978+0.0463 0.135+0.225 1.86e-06-1.87¢-06 1.88+2.57 0.647+0.167

6.1 Case Study: Discovering Novel PK Models for Warfarin

PK models of warfarin, a widely used anticoagulant, are crucial due to its extensive use in treating
deep vein thrombosis, pulmonary embolism, and stroke prevention in atrial fibrillation and patients
with mechanical heart valves, with millions of prescriptions globally [Lee and Klein, 2013]. We
applied D3 to a public dataset of 33 patient trajectories [Janssen et al., 2022], discovering a novel PK
model for warfarin that outperforms existing literature (Table 3). We compare the test MSE of the

3Code is available at https://github. com/samholt/DataDrivenDiscovery and we provide a broader
research group code base at https://github.com/vanderschaarlab/DataDrivenDiscovery.
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discovered model against existing models and provide pharmacologist feedback. Full model details
and results from running D3-hybrid on the same dataset are in Appendix G.

Existing Wafarin PK Model. The standard Table 3: Warfarin Modeling Comparison
pharmacokinetic (PK) warfarin model from the

. . Method Warfarin Best Model Test MSE
literature [Lv et al., 2017, Hamberg, 2013] is the e O - ararh Best Yoce
followin g Existing Warfarin PK 0.646
D3-white-box 0.39
@< _ e p_k . D3-hybrid 0.271
dt a e ) (9)

ke = ke,base + ke,age -A + ke,sex -S

where C'is the concentration of warfarin, D is the dosage administered, A represents the age of the
patient, S’ denotes the sex of the patient (1 for male, 0 for female), k,, is the absorption rate, ke pase 1S
the base elimination rate, k. o represents the decrease in elimination rate per year increase in age,
and k. sex is the difference in elimination rate between sexes. This standard model achieves a test loss
of 0.646. Whereas D3 can discover both a white-box model with a test loss of 0.39 and a hybrid model
with a test loss of 0.271, which both outperform the standard model. Of particular relevance is the
white-box model as it is fully interpretable by pharmacometricians, whilst still being a precise model.

New Discovered PK Warfarin Model. D3-white-box discovered a new warfarin PK white-box
model with a test loss of 0.39, of the following:

dc C
ar VPR S
ket = ke pase + ke,age (A - Z) + ke sex * (S - g) (10)

+kdecay'0+kds'D'(5—§)
Fhgs (A—A)-(S—8) +kag-D-(A—A)

where the additional parameters kgecay represent the natural decay rate of warfarin concentration and
K, is the Michaelis constant indicating the warfarin concentration at which the metabolism rate is
half its maximum. The parameters kg, ka5, and kg, are the interaction terms for dosage-sex, age-sex,
and dosage-age, respectively, and A and S’ are the sample population means for the covariates of age
and sex. This new PK model includes the original parameters along with additional interaction terms
and transformations, enhancing the model’s complexity and accuracy.

The model discovered by D3 introduces key innovations in warfarin pharmacokinetics. Square Root
Transformation for Dosage Effect: This non-linear transformation moderates high doses, enhancing
sensitivity to dosage variations, unlike standard models. Natural Decay Term: Proportional to
the current warfarin concentration, it better reflects elimination kinetics and improves time-based
predictions. Michaelis-Menten Saturation Kinetics: Addresses metabolic pathway saturation at higher
concentrations, crucial for warfarin. Interaction Terms (dosage-sex, age-sex, dosage-age): Capture
complex interactions between patient-specific factors, providing a nuanced understanding of drug
dynamics. These advancements make D3 a powerful tool for enhancing pharmacokinetic predictions
in clinical settings. The discovered hybrid model is detailed in Appendix G.

Expert Clinical Commentary. We sought feedback from expert pharmacologists on the discovered
model*: Prof. Eoin McKinney, Clinician. “This model is significant, as consortiums are dedicated
to improving Warfarin modeling [Consortium, 2009]. The model adds novel components, such
as the Michaelis component for time-varying changes and novel interaction terms like age-sex.
Jean-Baptiste Woillard, Pharmacologist. “The model is promising and pharmacokinetically plausible.
The next step is to apply D3 to other clinically relevant PK drug datasets.” Richard Peck, Clinical
Pharmacologist. “This model is reasonable and potentially superior. It represents a significant
advance in clinical pharmacology by automatically identifying robust PK models.”

s

6.2 Insight Experiments
This section provides an in-depth analysis of D3’s effectiveness related to its benchmark counterparts.

Can D3 perform feature acquisition and leverage the LLM prior information to perform this
better? To explore the feature acquisition performance of D3, we showcase this component working

*We provide full commentary in Appendix D.
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Figure 2: Feature Acquisition. D3 performing adaptive feature acquisition in the Lung Cancer (with
Chemo. & Radio.) dataset. We observe that D3 still achieves the lowest test prediction error.

.. .
1 01 S~ -=*-= Top-1 D3 Model
e S e
p] \ Deseription: Hybrid model: white box Description: Hybrid model: white box
— \\ with Gompertzian growth, chemo with Gompertzian growth, chemo
=] \ decay, radiotherapy, and genetic decay, radiotherapy, chemo dosage,
\
— Description: White box model: "\ markers; black box MLP for complex genetic markers; black box MLP for
= 1 \ i i and residuals. complex interactions and residuals.
— G ith. Pl
growth, ¥

S 10 Description: Initial white box decay, radiotherapy effects; N Features selected: 5 (tumor_volume, Parameters optimized for growth rate,
o lineat odel parameters: growth rate, drug and AN chemotherapy_drug_concentration, drug and radiotherapy efficacy, and

< Features selected: 2 Tadiotherapy efficacy, \ radiotherapy_dosage, genetic_markers, genetic effects.
=] (tumor_volume, Features selected: 3 (tumor_volume, A, Chemotherapy dosage)
=  drug i drug i .

< -3 radiotherapy_dosage) \
- ) ’

- --

Number of Generations

Figure 3: D3 iteratively discovers better models f;. Validation MSE of the model generated in each
iteration, showing the best-generated model (Top-1 model)—additionally with a few of the models
labeled with their model descriptions, and features acquired at the generation. D3 can effectively
acquire and integrate new features, validate, and compare models to achieve a better-fitting model.

in full, by comparing it against the baseline of a random feature acquirer policy, a null policy that
just uses the existing features and our approach of D3 that leverages the LLM to quantify the value
of information for features, where no training data exists for them in the dataset. We observe, as in
Figure 2, that D3 converges the fastest, and achieves the overall highest performance, whereas the
other feature acquisition methods fall short. Experimental details are in Appendix G.2.

Can D3 evolve its modular model to fit the system best? We analyze this from an empirical point of
view to determine if D3 can correctly evolve the generated model and reduce its prediction error over
subsequent generations. We observe that D3 can indeed understand, reason, and iterate the generated
code representation of the model to incorporate a better fitting model, as observed in Figure 3.

7 Conclusion

Summary. In this paper, we proposed Data-Driven Discovery (D3) framework, to iteratively discover
and refine interpretable models of pharmacological dynamics, where it has the ability to acquire and
integrate new features, validate, and compare pharmacological dynamical systems models, thereby
uncovering new insights into pharmacokinetic and physiological processes. Specifically, applied to
a real Warfarin PK dataset we were able to discover a better performing Warfarin PK model and
provide new insights into what an optimal PK model for Warfarin may need to possess, such as
additional Michaelis components.

Limitations & Future work. There exist limitations to the current approach. First, the LLM
discovery framework is an initial framework, and the utility of the LLM to generate better models
could be enhanced, tree-based generation strategies such as the tree of thought [Yao et al., 2024],
or graph of thought [Besta et al., 2024]. Specifically, it relies on a capable enough LLM, that
can use tools, where we specifically used GPT4 as the underlying LLM. Moreover, we make the
assumption that when D3 acquires a new feature it acquires that feature for all the individuals within
the existing dataset, we leave for future work to consider applications where this assumption may not
always be true. Furthermore, we provide to the LLM a system description from a user, future works
could explore avoiding the user to provide this, and instead leveraging a form of automatic retrieval
augmented generation [Lewis et al., 2020].

Broader Impact and Ethical Considerations. Principally D3 aims to discover interpretable models
of pharmacological dynamics. However, the final discovered models should always be checked
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by appropriate human experts and validated in additional held-out datasets before any clinical use.
Furthermore, D3 is a tool, which could be misused by a malicious user with unethical system
descriptions as input to discover a potentially biased model. Moreover, D3 leverages LLMs and their
feedback as an integral component, however, LLMs are prone to hallucinations, thereby motivating
any LLM-generated outputs that are shown to the user should have a content filter applied to them.
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A Additional Related Work

We expand on the related work contained within the main paper.

ODE learning methods. Symbolic regression methods [Koza, 1994, Kacprzyk et al., 2024, Holt
et al., 2023b] such as SINDy and D-CODE [Brunton et al., 2016, Qian et al., 2022] can automatically
discover closed form ODEs f € M through genetic algorithms. In principle, they can incorporate
features a,,, achieving refinement R2, but they struggle with many variables (e.g., more than 20)
due to computational complexity. On the other hand, Neural ODE leverages neural networks
f € My to capture a large number of variables [Chen et al., 2018, Dupont et al., 2019, Zaytar
and El Amrani, 2016, Devlin et al., 2018, Sehovac and Grolinger, 2020, Holt et al., 2022, 2023a,
2024a]. However, Neural ODEs involve many free parameters and cannot automatically reduce the
level of refinement when there is insufficient training data, leading to overfitting. In comparison,
D3 can capture f € Mo U My and R1 - R3 levels of refinement; it can further adapt the level of
refinement based on data availability. Furthermore, in both Symbolic regression and Neural ODE,
human experts need to manually incorporate the problem context ¢ through the specification of many
hyperparameters. Finally, neither of these methods assumes fixed training data and does not address
the Data Acquisition Challenges.

Al for automated modeling. Al Feynman [Udrescu and Tegmark, 2020] improves upon the symbolic
regression methods by leveraging a specific type of information c, i.e. the physical unit of each
variable (e.g., meter). In applications in physics, knowing the units provides additional constraints
on the variable’s relationship, thus helping narrow down the search space. However, its utility
outside physical sciences has been limited. More recently, Eureqa [Ma et al., 2023] applies LLMs
to modeling the reward function of reinforcement learning algorithms. Eureqa is similar to D3 in
its ability to integrate unstructured context ¢ and represent the model as code. However, Eureqa
cannot automatically adjust the level of refinement or acquire new data and it does not easily apply
to learning temporal dynamics, e.g. ODEs. Furthermore, other LLM code generation [Holt et al.,
2024b,c] approaches cannot acquire new data.

Data Acquisition. Methods have been developed to address specific data acquisition challenges.
Active Feature Acquisition (AFA) attempts to measure additional feature variables h on existing
training samples to improve predictive performance [Ma et al., 2018, Gong et al., 2019]. On the
other hand, Active Learning [Sebastiani and Wynn, 2000, Settles, 2009, Sener and Savarese, 2017,
Imberg et al., 2020] and Active Testing [Lowell et al., 2018, Kossen et al., 2021] attempt to acquire
new samples to increase the size of training or evaluation data /N while keeping the features constant.
Neither field has proposed a method to address the zero-shot setting, where the data acquisition
decision must be made before observing any target data (Equation 7). Moreover, most existing
methods in Active Learning focus on acquiring labels for supervised learning given unlabelled
samples, which is not immediately applicable to temporal modeling tasks.

B Benchmark Dataset Environment Details

In the following, we present six clinically relevant datasets, each of which is either sourced from
real-world data or generated from a high-fidelity simulator developed by domain experts.

B.1 Cancer PKPD

Three of our environments are derived from a state-of-the-art biomedical Pharmacokinetic-
Pharmacodynamic (PKPD) model of lung cancer tumor growth, used to simulate the combined
effects of chemotherapy and radiotherapy in lung cancer [Geng et al., 2017]. This model has been
extensively used in other works [Seedat et al., 2022, Bica et al., 2020, Melnychuk et al., 2022]. We
use this bio-mathematical lung cancer model to create three variations: no treatments (Lung Cancer),
chemotherapy only (Lung Cancer (with Chemo.)), and both chemotherapy and radiotherapy (Lung
Cancer (with Chemo. & Radio.)). For each model, we sample a respective dataset. Below, we
detail the general case of Lung Cancer (with Chemo. & Radio.), which originates from the general
Cancer PKPD Model, and then describe the variations.

Cancer PKPD Model. This model simulates the combined effects of chemotherapy and radiotherapy
on lung cancer tumor growth [Geng et al., 2017], as shown in Equation (11). The model predicts
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tumor volume x(t) over time ¢ in days post-diagnosis. The model includes two binary treatments: (1)
radiotherapy u; and (2) chemotherapy ug.

= vos ()~ BCE —(ond) + ) )at0 (1)
N——— Chemotherapy Radiotherapy

Tumor growth

The parameters K, p, B., a.., B, for each simulated patient are specified in Geng et al. [2017] and sum-
marized in Table 4. Additionally, the chemotherapy drug concentration C(t) follows an exponential

Table 4: Cancer PKPD parameter values.

Model Variable Parameter Parameter Value
Growth parameter P 7.00 x 1075
Tumor growth Carrying capacity K 30
Radiothera Radio cell kill (o) o 0.0398
PY " Radio cell kill (3) B, Set such that a/3 = 10
Chemotherapy ~ Chemo cell kill Be 0.028

decay with a half-life of one day:
dC(t)
dt
The chemotherapy binary action represents increasing the C(t) concentration by 5.0mg/m? of
Vinblastine given at time ¢. The radiotherapy concentration d(t) represents 2.0 Gy fractions of
radiotherapy given at timestep ¢, where Gy is the Gray ionizing radiation dose.

=—0.5C(t) (12)

Time-dependent confounding. We introduce time-varying confounding by modeling chemotherapy
and radiotherapy assignment as Bernoulli random variables. The probabilities p. and p, depend on
tumor diameter as follows:

pet)=a (D0 - 0) pi)=o (p 00 -6)). a3

Dmax max

where Dy,ax = 13cm is the maximum tumor diameter, §, = 6, = Dyyay/2, and D(t) is the average
tumor diameter. The parameters v, and -, control the extent of time-varying confounding, with
Ye =T = 2.

Sampling datasets. Using the Cancer PKPD model, we sample N = 1,000 trajectories, corre-
sponding to N = 10, 000 patients. Initial tumor volumes are sampled from a uniform distribution
x(0) ~ U(0,1149), and patient trajectories are forward simulated for 60 days using the Cancer
PKPD Equation (11) and the action policy of Equation (13), employing a Euler stepwise solver.
This process generates one dataset sample. We repeat this with independent random seeds to create
Ditains Dval, Diest- For each benchmark method run with a random seed, we re-sample the datasets.
Each variation includes either chemotherapy, both chemotherapy and radiotherapy, or neither. We
provide further details of this dataset’s system description and variable descriptions in Appendix E.5.

B.2 COVID-19

We utilize the sophisticated epidemic agent-based simulator COVASIM [Kerr et al., 2021] to model
COVID-19 epidemics. This advanced simulator is capable of simulating both non-pharmaceutical
interventions (such as lockdowns, social distancing, and school closures) and pharmaceutical interven-
tions (such as vaccinations). In this agent-based simulator, each agent represents an individual within
the population, and can be in one of several states: susceptible to COVID-19, exposed, infectious, or
recovered (including deaths).

We use COVASIM with its default parameter settings provided by the open-source implementation °.
COVASIM simulates a population of individuals, and to ensure accuracy, we simulate 24 countries,

SCOVASIM is an open-source simulator, available at  https://github.com/
InstituteforDiseaseModeling/covasim.
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collecting trajectories for each. For each simulation, we use a population size of 1,000, 000 individu-
als, simulating each individual separately (disabling simulation rescaling). The simulation begins
with a random number of individuals initially infected with COVID-19, I(0) = Z{(10, 000, 100, 000),
and proceeds for 60 days.

We repeat this process with independent random seeds to generate Digin, Dyals Diest.  FOr each
benchmark method run with a different random seed, we re-sample the datasets. Detailed descriptions
of this dataset’s system and variables are provided in the prompt template outlined in Appendix F.5.

B.3 Plankton Microcosm

This subsection describes an ecological model of a microcosm consisting of algae, flagellate, and
rotifer populations, replicating an experimental three-species prey-predator system [Hiltunen et al.,
2013]. We use the dataset provided by [Bonnaffé and Coulson, 2023]°. The dataset contains a single
trajectory of 102 time steps. We split the data into training, validation, and test sets with proportions
of 70%, 15%, and 15%, respectively, ensuring that the splits maintain the chronological order to
preserve temporal causality.

Detailed descriptions of this dataset’s system and variables are provided in the prompt template
outlined in Appendix E.5.

B.4 PK Wafarin Dataset

Here we describe the real PK Wafarin dataset from a clinical trial that is publicly available
[Janssen et al., 2022]. We use the NOMEN dataset available at https://github.com/Janssena/
SI-AIEP-paper. This publicly available dataset consists of 32 patients who received warfarin in a
clinical trial, which was originally designed to determine how to predict drug concentrations in pa-
tients. The dataset includes a total of 251 warfarin concentration measurements, with a median of six
measurements per patient. Each patient received a single dose of warfarin at ¢ = 0, and measurements
were taken at ¢ € {0.25,0.5,1.0,2.0,4.0,6.0, 12.0,24.0, 48.0, 72.0,96.0, 120.0}. The available co-
variates in the dataset are patient weight, age, and sex. We follow the dataset’s original pre-processing
code, which is provided at https://github.com/Janssena/SI-AIEP-paper. We split the data
into training, validation, and test sets with proportions of 70%, 15%, and 15%, respectively, ensuring
that the splits maintain the chronological order to preserve temporal causality. This dataset is released
under a GPL-3.0 license.

Detailed descriptions of this dataset’s system and variables are provided in the prompt template
outlined in Appendix E.5.

C Evaluation Metrics

We utilize mean squared error (MSE) to assess the benchmark methods on a separate test dataset
comprising individual trajectories, denoted as Dig. This assessment is based on the loss defined in
Equation (14) and reported as MSE. The metrics are averaged over ten runs with different random
seeds, and we provide these averages along with their 95% confidence intervals. Specifically we
provide the mean confidence interval’. For each random seed, we independently generate new
training, validation, and test datasets when a simulator is available. Specifically, for each simulation,
we ensure that the validation and test datasets contain the same number of trajectories as the training
set. Each baseline model is trained on the training dataset, with early stopping applied using the
validation dataset when supported by the method. Subsequently, we evaluate the performance of each
baseline on the test dataset. This entire procedure is repeated for each random seed. All experiments
and training were conducted using a single Intel Core 19-12900K CPU @ 3.20GHz, 64GB RAM, and
an Nvidia RTX3090 GPU with 24GB of memory.

5The Plankton Microcosm and Hare-Lynx datasets are both open source and available at https://github.
com/WillemBonnaffe/NODEBNGM.

"We use the  following code  https://stackoverflow.com/questions/15033511/
compute-a-confidence-interval-from-sample-data.
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C.1 Model Optimization Losses
We evaluate the optimization loss using mean squared error (MSE) on a dataset D, and also consider
a component-wise MSE loss for more detailed analysis.

MSE Loss. Specifically, we optimize the following mean squared error objective:

N T

L:(@ D T Z Z ||f0 Xn 1 an( z) )At - yn( 1)”2 (14)

n=1t;,=0

where N x T represents the total number of state-action pairs in the dataset. The goal is to find the
parameters 0* that minimize this loss, i.e., 8* = arg ming £(6, Dyin ). We optimize 6 using stochastic
gradient descent with the Adam optimizer [Kingma and Ba, 2014], although other optimization
algorithms, such as black box optimizers, could also be employed.

MSE Loss per component. To gather detailed quantitative statistics on the performance of the trained
system model, we collect the validation loss per component. Using () to denote the predictions for
the j*"* component, we define:

Nua Ty
wi(0", D) = 57— D D (folxn(t) an(ti), t) At =y (1) (15)
Noa n=11t,=0
We aggregate these scalar validation losses per component into a vector w = [wq, W, . . . , Wy, ], and

compute the mean validation loss as v = L E;"Zl w; (0", Dyar).

D Pharmacologists Feedback Statements

We sought feedback from three expert pharmacologists on the discovered model. They have validated
and commented on the discovered model and the impact of such a tool as D3.

Prof. Eoin Mckinney, Clinician. “This model is significant, as consortiums are dedicated to improving
Warfarin modeling [Consortium, 2009]. The updated PK model (Equation (10)) adds complexity with
interaction terms and introduces two new variables: the Michaelis constant and the natural decay rate
of warfarin concentration. The Michaelis constant, which varies between individuals or over time due
to factors like temperature and pH, is presumably estimated from observed data. The natural decay
rate is likely derived from prior reports but also varies between individuals. The model has proposed
minimal-cost new features (a constant and interaction terms), but it’s worth noting the genotype of
certain warfarin-metabolizing enzymes (CYP2C9 and VKORCY1) dictates clearance rates and levels,
though the model did not recommend measuring these, possibly due to the associated costs. The
principal clinical relevance of the improved model is better prediction of individual warfarin doses.
Numerous algorithms attempt this, supported by a consortium focused on dose-prediction models.
The data used, including public datasets, supports demonstrating the clinical utility of the improved
PK model, highlighting the relevance of this problem despite newer alternatives to warfarin.”

Jean-Baptiste Woillard, Pharmacologist. “The model is promising and pharmacokinetically plausible.
I have data for mycophenolic acid, which has a challenging, complex absorption profile that would
be interesting to test. The challenge extends to PK/PD, linking exposure and effect (e.g., tumor
growth). Monolix, based on the SAEM algorithm, includes relevant datasets such as the PK/PD
Warfarin dataset and a PK dataset for tacrolimus in heart transplants, which could serve as valuable
benchmarks for comparison. Additionally, TMDD models, where clearance changes with tumor size,
are of particular interest. It would be beneficial to see performance comparisons with these datasets
using your approach.”

Richard Peck, Clinical Pharmacologist. “This model is reasonable and potentially superior. It
represents a significant advance in clinical pharmacology by automatically identifying robust PK
models. While I am not a modeler or an expert in warfarin modeling, the discovered model appears
suitable for your purpose. The most interesting aspect of this work is that D3 identified an alternative
model that could be superior. While improving PK models for warfarin might not have much clinical
use since warfarin dosing is monitored by INR rather than concentration, the ability to automatically
identify robust PK models is a tremendous advance. Publishing about DI3 in clinical pharmacology
literature would be significant. I haven’t seen anything like this before. However, to show superiority,

https://doi.org/10.52202/079017-3053 96342



consider studying a drug with a more challenging PK. For such a publication, involving an expert
pharmacometrician would be beneficial.”

E Benchmark Method Implementation Details

To evaluate the performance of D3 and establish its competitive performance, we conduct com-
parisons with leading modeling methods for ODEs. Specifically, we benchmark against advanced
black-box models that have many parameters, such as neural ODEs with action inputs, known as
DyNODE [Chen et al., 2018, Alvarez et al., 2020]. Also in this class are recurrent neural networks
(RNN) and a state-of-the-art transformer model (Transformer). In addition, we include white-box
transparent dynamical systems models identified through equation discovery techniques, such as
Sparse Identification of Nonlinear Dynamics (SINDy) [Brunton et al., 2016]. Moreover, D3 sup-
ports two discovery modes, of which we compare against both, discovering only white-box models
(D3-white-box) and discovering hybrid models (D3-hybrid). We also perform ablations of D3, of
zero-shot generated model from D3 as (ZeroSheot) and the same model with optimized parameters
(ZeroOptim).

DyNODE DyNODE is a neural network-based model that integrates control inputs into the neural
ordinary differential equation (ODE) framework [Chen et al., 2018], as outlined by Alvarez et al.
[2020]. Our implementation of DyNODE features a 3-layer Multilayer Perceptron (MLP) with hidden
layers consisting of 128 units each, utilizing tanh activation functions. We initialize weights using the
Xavier method [Kumar, 2017]. For consistency and competitiveness, we apply the same objective,
optimizer, and hyperparameters as used in D3. Specifically, we utilize the Adam optimizer [Kingma
and Ba, 2014] with a learning rate of 0.01, a batch size of 1,000, and early stopping with a patience
of 20. The model is trained for 2,000 epochs to ensure convergence.

RNN Recurrent Neural Networks (RNNs) [Graves et al., 2007] serve as a standard benchmark for
autoregressive time series next-step prediction. In our implementation, the input dataset is normalized
according to the training dataset. The model consists of a Gated Recurrent Unit (GRU) RNN that maps
the state-action dimension to a hidden dimension of 250 across two layers. This hidden representation
is then passed through a linear layer to convert it back to the state dimension, enabling next-step
prediction. For a fair comparison, we employ the same objective, optimizer, and hyperparameters
used in D3. Specifically, we utilize the Adam optimizer [Kingma and Ba, 2014] with a learning rate
of 0.01, a batch size of 1,000, and early stopping with patience of 20 epochs. The model is trained for
2,000 epochs to ensure convergence.

Causal Transformer The Causal Transformer represents a cutting-edge model designed for estimat-
ing counterfactual outcomes, as detailed by [Melnychuk et al., 2022]. Given its intricate structure,
which includes three distinct transformer networks for processing covariates, past treatments, and
past outcomes, we opted for a streamlined approach more suitable for our datasets and task domains.
Specifically, we employed a single transformer to model past outcomes. This implementation utilizes
a standard transformer encoder, where the input data is normalized to the training dataset. The
state-action input dimensions are encoded into a 250-dimensional embedding vector via a linear layer,
followed by the application of a standard positional encoder [Melnychuk et al., 2022]. This data is
then processed through a transformer encoder layer with a head size of 10 and a dropout rate of 0.1.
The output from this layer is passed through a linear layer to reconstruct the next state, matching the
state dimension size. Training this model involves the AdamW optimizer [Kingma and Ba, 2014]
with a learning rate of 0.00005, complemented by a step learning rate scheduler with a step size of
1.0 and gamma of 0.95. Gradient clipping is applied at 0.7, and the model is trained with a batch size
of 1,000. Early stopping is used with patience of 20 epochs, and training is conducted for up to 2,000
epochs to ensure convergence.

SINDy Sparse Identification of Nonlinear Dynamics (SINDy) [Brunton et al., 2016] is a data-driven
methodology designed to uncover the governing equations of a dynamical system directly from
time-series data, resulting in a transparent, closed-form mathematical model. The SINDy algorithm
operates by performing sparse regression iteratively on a library of candidate functions to find the
most parsimonious and accurate representation of the system’s dynamics.

In our approach, we employ a second-order polynomial library, £ = {1, 2, 21, zox1 }, as the feature
library. To calculate the time derivatives from the input time-series data, we use finite difference
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approximations of first order. We maintain the alpha parameter at 0.5 for all experiments, with a
sparsity threshold of 0.02, except for the COVID-19 dataset where it is set to 1 x 1075,

Data-Driven Discovery (D3) We defer to Appendix F for implementation-specific details. Specifi-
cally, ZeroShot and ZeroOptim are ablations of D3, where these use the exact same setup, hyperpa-
rameters, and prompts. First, ZeroShot generates one model without optimizing it’s parameters 6 to
the training dataset split, thereby assessing the model’s output loss directly from the LLM. Second,
ZeroOptim re-uses the same setup as ZeroShot, however now optimizes the parameters to the data,
using the training setup described in Appendix F.2.

F D3 Implementation Details

The data-driven discovery method follows the framework as outlined in Section 3. We present
pseudocode in Appendix F.1, how the code-generated models fy are trained in Appendix F.2, prompt
templates in Appendix F.4, system description prompts in Appendix E.5 for each dataset. Specifically,
we find a top-K, where K = 16 is sufficient. Additionally, we use the LLM of GPT4-1106-Preview,
with a temperature of 0.7.

F.1 D3 Pseudocode

Algorithm 1 Pseudocode for D3 Framework

1: Input: Context ¢ = { {system description} and {feature description} }; training
dataset Dy, validation dataset D,,;, maximum generations G, top K models to consider

2: Output: Best fitting model fy

350,10 > Initlize top-k model memory s, and feedback r
4: fori =1to G do

5: fi=G(e, fic1,Di, i1, 8i-1) > Modeling Agent G generates model f;
6: 0 = argming L(fi(9), D; tain) > Fit the model f;
7: Compute validation loss £(f;(6), D; va)

8: si + 8 U{(f:,0,L(f:(0), Dya))} > Add model to top-K models
9: r~ Elc, fi,D;) > Generate self-reflection and feedback from Evaluation Agent I/
10: if 3 features possible to acquire then
11: h; < Alc, fi, Di,ri, 8i) > Optionally Acquire feature h;, decided by the Feature

Acquisition Agent A

12: Update dataset: D; irain, D vat < include h;
13: Return: Best model from s with the lowest validation loss

F.2 Training Models

Upon generation by the Modelling LLM Agent, the model f is output as code, specifically a PyTorch
[Paszke et al., 2017] neural network module. This code is then executed and the module is trained on
the provided training dataset. The Modelling LLM Agent observes a code skeleton within the system
description context ¢, examples of which are given in Appendix F.5. The code skeleton must be a
‘torch.nn.Module‘ named ‘StateDifferential‘, with initialized parameters and a forward function that
computes the state differential using the state and action as input variables. The LLM completes, but
does not alter, the skeleton, simplifying text processing, module execution, and model training.

The model is trained using the standard MSE loss function Equation (14), optimized with the Adam
optimizer [Kingma and Ba, 2014], using a learning rate of 0.01, a batch size of 1,000, and early
stopping with a patience of 20 epochs. Training proceeds for up to 2,000 epochs to ensure convergence
and fair comparison.

After training, the validation MSE and per-component MSE (validation loss per state output di-
mension) are computed Equation (15). The trained model is appended back into s; with a string
representation including initialized parameter values. Providing these optimized parameters aids the
LLM in suggesting effective initial values in subsequent generations, which are then refined through
further optimization.
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Computational Efficiency. The computational efficiency of D3 overall arises from two sources:
Using a Large Language Model (LLM) to generate the completions of the respective agents, and
fitting the model, we now discuss each of these separately. First, using a capable enough LLM
such as GPT4, for performing the completions for the agents can be computationally demanding,
however, this computer costs with the computational cost per token of the underlying LLM that is
used, and scales in the aspect of data with the number of tokens required to process, which we could
envisage arises from having the LLM utilize a dataset with many features, each with their own textual
description scaling the number of tokens in the input that the LLM has to process. One mitigation for
this is to use LLMs that can handle larger context window sizes, and or be more selective about the
input tokens fed into the LLM, such as restricting the number of in-context examples in the top-k
examples, by reducing k, a hyperparameter. Second, we represent the models with parameters as a
PyTorch module and use Pytorch to optimize the parameters, using a standard ML pipeline to train
neural networks using stochastic gradient descent. Such approaches should scale with the number of
input features, and parameters, however as with training any large eventual parameter model will
scale as well as any other neural network-based approach in the same data pipeline. We note that
more complicated distributed neural network training paradigms exist, however emphasize the focus
of this work was on an initial framework, and leave the specific implementation for scale for future
work.

F.3 System Description

Our method is initiated by an expert who provides a structured prompt that provides the system
{system description} and {feature description}.

* The system description provides a holistic description of the system, specifying the state variables
z(t) and actions a(t) that are used to model the system. The variables are described semantically.
* The feature description define features, names, units, and their ranges.

In addition to these components, the structured prompt includes a skeleton code program
{skeleton program} to instruct the LLM to synthesize executable code in a pre-determined format.
We refer to this prompt as the context c.

F.4 D3 Prompt Templates

For all prompt templates used, please see the code https://github.com/samholt/
DataDrivenDiscovery.

F.5 D3 System Description Prompts

By following our proposed system requirements format Appendix F.3 we constructed prompts for
each of the datasets that we evaluated against, which are provided in the code, https://github.
com/samholt/DataDrivenDiscovery.

G Additional Experiments

G.1 Warfarin Case Study Additional Results

Hybrid PKPD Warfarin Model with Neural Network Integration. This model incorporates a simplified
pharmacokinetic-pharmacodynamic (PKPD) structure with additional neural network complexity,
achieving a validation loss of 0.276. The model is defined as:
% . # ke C (14 Ba- (A—40)) - (14 B, - (S — 0.5)) + MLP(C, D, A, ) — R,
R =X (k] + |F| + V)

(16)
where F represents the bioavailability of the drug, V' denotes the volume of distribution, k. is the
clearance rate of warfarin, 3, is the slope of the age effect on drug clearance, S is the offset for
the sex effect on drug clearance, MLP(C, D, A, S) is a multi-layer perceptron output, representing
complex relationships in the data captured by the neural network, and R is a regularization term
to prevent overfitting, with A\ being the regularization weight. The addition of a neural network
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allows the model to learn nonlinear relationships directly from data, providing improved predictive
performance.

Existing Wafarin PK Model. Test MSE Loss: 0.6461.

class StateDifferential (nn.Module):
def __init__(self):
super(StateDifferential , self).__init__()
# Parameters for absorption and elimination rates
self.k_a = nn.Parameter(torch.tensor(0.1)) # Absorption rate
self .k_e_base = nn.Parameter(torch.tensor(0.1)) # Base elimination rate

# Modifiers for age and sex on elimination rate
self .age_modifier = nn.Parameter(torch.tensor(-0.001)) # Decrease in elimination rate per year increase in age
self .sex_modifier = nn.Parameter(torch.tensor(0.02)) # Difference in elimination rate between sexes

def forward(self, warfarin_concentration, warfarin_dosage, patient_age , patient_sex):
# Calculate the elimination rate adjusted for age and sex
k_e = self.k_e_base + self.age_modifier * patient_age + self.sex_modifier # patient_sex

# Differential equation for warfarin concentration
d_warfarin_concentration_dt = self.k_a % warfarin_dosage - k_e % warfarin_concentration
return (d_warfarin_concentration_dt ,)

D3-white-box. Test MSE Loss: 0.39

class StateDifferential (nn.Module):
def __init__(self):

super(StateDifferential , self).__init__()
# Define the parameters for the PKPD model
self.clearance_rate = nn.Parameter(torch.tensor(0.33197110891342163))
self.age_effect_base = nn.Parameter(torch.tensor(0.011119960807263851))
self.sex_effect_base = nn.Parameter(torch.tensor(0.781970202922821))
self.dosage_power = nn.Parameter(torch.tensor(0.5)) # Adjusted to a square root transformation
self . natural_decay = nn.Parameter(torch.tensor(0.12728933990001678))
self . michaelis_constant = nn.Parameter(torch.tensor(10.865914344787598))
self.dosage_sex_interaction = nn.Parameter(torch.tensor (0.05))
self.age_sex_interaction = nn.Parameter(torch.tensor(-0.09479257464408875))
self.dosage_age_interaction = nn.Parameter(torch.tensor(0.0010000000474974513))

a
a
i

forward (self , warfarin_concentration: torch.Tensor, warfarin_dosage: torch.Tensor, patient_age: torch.Tensor, patient_sex:
torch.Tensor) —> Tuple[torch.Tensor]:

# Calculate the change in warfarin concentration over time

age_effect = self.age_effect_base * (patient_age — 42)

sex_effect = self.sex_effect_base * (patient_sex - 0.5)

dosage_effect = torch.sqrt(warfarin_dosage) # Using square root based on dosage_power

decay_term = self.natural_decay * warfarin_concentration

dosage_sex_interaction = self.dosage_sex_interaction = warfarin_dosage * (patient_sex — 0.5)
age_sex_interaction = self.age_sex_interaction * (patient_age — 42) = (patient_sex — 0.5)
dosage_age_interaction = self.dosage_age_interaction = warfarin_dosage % (patient_age - 42)
michaelis_menten_term = warfarin_concentration / (self.michaelis_constant + warfarin_concentration)
d_warfarin_concentration__dt = dosage_effect — (self.clearance_rate + age_effect + sex_effect + decay_term +

dosage_sex_interaction + age_sex_interaction + dosage_age_interaction) % michaelis_menten_term
return (d_warfarin_concentration__dt ,)

optimized_parameters = {’clearance_rate *: 1.1111963987350464, 'age_effect_base : 0.012109620496630669, *sex_effect_base ":
1.5611952543258667, 'dosage_power ’: 0.5, ’natural_decay ': 0.14641410112380981, ’michaelis_constant ": 10.195984840393066, ~
dosage_sex_interaction *: 0.05000000074505806, ’age_sex_interaction *: -0.09380292147397995, ’dosage_age_interaction ’
0.0010000000474974513}

White box model with reintroduced interaction terms, square root transformation for dosage effect, natural decay term, and Michaelis
—Menten saturation kinetics

D3-hybrid. Test MSE Loss: 0.271

class StateDifferential (nn.Module) :
def __init__(self):
super(StateDifferential , self).__init__()
# Define the parameters for the PKPD model with reasonable initial values
self.clearance_rate = nn.Parameter(torch.tensor(0.2))
self.bioavailability = nn.Parameter(torch.tensor(3.0))
self.volume_of_distribution = nn.Parameter(torch.tensor(37.0))
# Simplified linear age and sex effects
self.age_effect_slope = nn.Parameter(torch.tensor(0.01))
self.sex_effect_offset = nn.Parameter(torch.tensor(0.1))
# Simplified MLP architecture
self.mlp = nn.Sequential (
nn. Linear (4, 10),
nn . LeakyReLU () ,
nn. Linear (10, 1)

)
# L1 Regularization
self .regularization_weight = nn.Parameter(torch.tensor(0.01).abs())

a
o
iy

forward (self , warfarin_concentration: torch.Tensor, warfarin_dosage: torch.Tensor, patient_age: torch.Tensor, patient_sex:
torch.Tensor) —> Tuple[torch.Tensor]:
# Calculate the change in warfarin concentration over time

absorption = self.bioavailability = warfarin_dosage / self.volume_of_distribution
elimination = self.clearance_rate * warfarin_concentration

# Linear effect of age and sex

age_effect = self.age_effect_slope * (patient_age — 40)

sex_effect = self.sex_effect_offset * (patient_sex - 0.5)

adjusted_clearance = elimination % (1 + age_effect) % (I + sex_effect)

# MLP for capturing complex relationships

mlp_input = torch.stack ((warfarin_concentration, warfarin_dosage , patient_age , patient_sex), dim=1)
mlp_output = self.mlp(mlp_input).squeeze ()

# Regularization term

regularization = self.regularization_weight = (self.clearance_rate.abs() + self.bioavailability.abs() + self.
volume_of_distribution.abs())
d_warfarin_concentration__dt = absorption - adjusted_clearance + mlp_output — regularization

return (d_warfarin_concentration__dt ,)
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optimized_parameters = { clearance_rate ': 0.08016539365053177, ’bioavailability ": 3.1701481342315674, ’volume_of_distribution ":

34.74932861328125, ‘age_effect_slope *: —0.07791952043771744, *sex_effect_offset *: —0.16809043288230896, °
regularization_weight *: —-0.060754090547561646}
white and black box model with simplified linear age and sex effects, a simplified MLP architecture for capturing complex

relationships , and L1 regularization to prevent overfitting.

G.2 Insight Experiment: Feature Acquisition Setup

For this experiment, we adapted the Lung Cancer (with Chemo. & Radio.) dataset simulator, to
form a new variation of this dataset, where D3 starts with two features, which are the main state x(¢)
features that it intends to model, and can optionally acquire new features a(t¢) from a set of possible 22
features, which are listed below. Of importance, two features directly affect the underlying behaviour
of this dynamical system, these being radiotherapy_dosage and chemotherapy_dosage, and
the rest of the features we model as random white noise features, hence have no effect on the underling
system, however D3 is unaware of this, and must use the feature description, from the features name
to determine relative value of improved performance that it can attain by acquiring that feature, and
propose new features to acquire along with their expected improvement.

Specifically, in this setup, we allow the feature acquistion agent to select from the following set of
features at each iteration:

[blood_type, smoking_status , patient_age , patient_weight, patient_height, sex, radiotherapy_dosage , alcohol_consumption ,
previous_cancer_treatments , comorbidities , genetic_markers , chemotherapy_dosage, family_history_of_cancer, performance_status
, dietary_habits , physical_activity_level , environmental_exposure , medication_adherence , psychological_stress_levels ,
socioeconomic_status , residential_location , support_network].

We also make the assumption that each feature that can be acquired has equal cost [ of acquisition,
and that the agent has an unlimited feature acquisition budget, however these settings can be readily
changed depending on the specific application.

To provide comparable baselines, we compare D3 against ablations of itself, which is a random
feature acquirer Feature Acquisition Agent, that selects a feature randomly for acquisition, and a null,
or no Feature Acquisition Agent, that only observes at all iterations the target states x(¢) to model.
We observe experimentally that D3 that can leverage the LLM to quantify the value of information
for features, where no training data exists for them in the dataset. We observe, as in Figure 2, that
D3 converges the fastest, and achieves the overall highest performance, whereas the other feature
acquisition methods fall short.

We provide part of the logs from one of the random seed runs, including part of it due to the logs
being extensive.

MainProcess | 2024-05-20 07:26:22,146,146 multiprocessing INFO Running Cancer-random-features D3-feature -select 12

MainProcess | 2024-05-20 07:26:22,184,184 multiprocessing INFO [Running generation 0] D3-feature-select | Cancer—-random-features | 12
| Sampling n=1 keep_top_samples

MainProcess | 2024-05-20 07:26:22,185,185 multiprocessing INFO [System]

Objective: Write code to create an effective differential equation simulator for a given task.

Please note that the code should be fully functional. No placeholders.

You must act autonomously and you will receive no human input at any stage. You have to return as output the complete code for
completing this task, and correctly improve the code to create the most accurate and realistic simulator possible.

You always write out the code contents. You always indent code with tabs.

You cannot visualize any graphical output. You exist within a machine. The code can include black box multi-layer perceptions where
required .

Use the functions provided. When calling functions only provide a RFC8259 compliant JSON request following this format without
deviation .

MainProcess| 2024-05-20 07:26:22,185,185 multiprocessing INFO [User]
You will get a system description to code a differential equation simulator for.

System Description:* "

Prediction of Treatment Response for Combined Chemo and Radiation Therapy for Non-Small Cell Lung Cancer Patients Using a Bio-
Mathematical Model

Here you must model the state differential of tumor_volume, and chemotherapy_drug_concentration; with the input actions of .

Description of the variables:

# Volume of the tumor with units cm”3

% Concentration of the chemotherapy drug vinblastine with units mg/m*3

The time units is in days.

Additionally these variables have the ranges of:

# tumor_volume: [0.01433, 1170.861]
# chemotherapy_drug_concentration: [0, 9.9975]

The training dataset consists of 1000 patients , where each patient is observed for 60 days.

Modelling goals: ‘"
# The parameters of the model will be optimized to an observed training dataset with the given simulator.
% The observed training dataset has very few samples, and the model must be able to generalize to unseen data.
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Requirement Specification:
# The code generated should achieve the lowest possible validation loss, of le-10 or less.
# The code generated should be interpretable , and fit the dataset as accurately as possible.

Skeleton code to fill in:**
class StateDifferential (nn.Module):
def __init__(self):
super(StateDifferential , self).__init__()
# TODO: Fill in the code here

def forward(self, tumor_volume: torch.Tensor, chemotherapy_drug_concentration: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor

1:
# TODO: Fill in the code here
return (d_tumor_volume__dt, d_chemotherapy_drug_concentration__dt)

Useful to know: ‘"
# You are a code evolving machine, and you will be called 20 times to generate code, and improve the code to achieve the lowest
possible validation loss.

# The model defines the state differential and will be used with an ODE solver to fit the observed training dataset.

# You can use any parameters you want and any black box neural network components (multi-layer perceptrons); however, you have to
define these.

# It is preferable to decompose the system into differential equations (compartments) if possible.

% You can use any unary functions, for example log, exp. power etc.

# Under no circumstance can you change the skeleton code function definitions , only fill in the code.

# The input tensors are vectors of shape (batch_size).

# Use initially white box models first and then switch to hybrid white and black box models for the residuals , only after no further

best program iteration improvement with white box models.
# Make sure your code follows the exact code skeleton specification.
# Use PyTorch.

Think step-by-step, and then give the complete full working code. You are generating code for iteration 0 out of 20.

MainProcess | 2024-05-20 07:26:22,185,185 multiprocessing INFO [Progress: Step 1/0 | Retries: 0/30 | Token Capacity Used: 0.80% |
Tokens remaining 126980]

MainProcess | 2024-05-20 07:27:26,602,602 multiprocessing INFO [LLM RESPONSE MESSAGE]

MainProcess | 2024-05-20 07:27:26,602,602 multiprocessing INFO [Function Call] [complete_StateDifferential_code] {

"StateDifferential _code": "import torch\nimport torch.nn as nn\nfrom typing import Tuple\n\nclass StateDifferential (nn.Module) :\
n def __init__(self):\n super( StateDifferential , self).__init__()\n # Define the parameters for the
tumor growth model\n self.alpha = nn.Parameter(torch.tensor(0.1)) # Tumor growth rate\n self.beta = nn.
Parameter (torch.tensor(0.01)) # Drug efficacy\n\n def forward(self, tumor_volume: torch.Tensor,
chemotherapy_drug_concentration: torch.Tensor) —> Tuple[torch.Tensor, torch.Tensor]:\n # Tumor growth model based
on Gompertzian growth\n d_tumor_volume__dt = self.alpha % torch.log(1170.861 / tumor_volume) #* tumor_volume\n

# Drug effect on tumor volume\n d_tumor_volume__dt -= self.beta % chemotherapy_drug_concentration #
tumor_volume \n\n # Assuming constant drug concentration decay\n drug_decay_rate = 0.1\n
d_chemotherapy_drug_concentration__dt = —drug_decay_rate * chemotherapy_drug_concentration\n\n return (
d_tumor_volume__dt, d_chemotherapy_drug_concentration__dt)",

"code_description": "This is a white box model that uses a Gompertzian growth model for the tumor volume and a simple decay

model for the chemotherapy drug concentration. The model includes parameters for the tumor growth rate and drug efficacy .
which can be optimized based on the observed training dataset.",
"model_input_variables": ["tumor_volume", "chemotherapy_drug_concentration"]
)
MainProcess | 2024-05-20 07: 3,445,445 multiprocessing INFO Early stopping triggered at epoch 1090
MainProcess | 2024-05-20 07: 3,454,454 multiprocessing INFO [D3-feature-select | Cancer-random—-features | 12][Generation 0] | Top
Fitne 43.21586608886719 | Num Programs: 1 | Mean Fitne 43.21586608886719 | Fitnesses: [43.21586608886719] | Current Gen
Val Loss: 43.21586608886719
MainProcess| 2024-05-20 07:

:33.454.454 multiprocessing INFO [D3-feature —select | Cancer-random-features | 12][GEN RESULT] {’method

'D3-feature —select ’, ‘env_name ’: ’Cancer—random-features ’, ’seed ': 12, ’generation ’: 0, “top_fitness ': 43.21586608886719.,
num_programs *: 1, ’mean_fitness *: 43.21586608886719, ’fitnesses *: [43.21586608886719], ’current_gen_val_loss ":
43.21586608886719}

MainProcess | 2024-05-20 07:27:33,455,455 multiprocessing INFO [System]

Objective: Write code to create an effective differential equation simulator for a given task.

Please note that the code should be fully functional. No placeholders.

You must act autonomously and you will receive no human input at any stage. You have to return as output the complete code for
completing this task, and correctly improve the code to create the most accurate and realistic simulator possible.

You always write out the code contents. You always indent code with tabs.

You cannot visualize any graphical output. You exist within a machine. The code can include black box multi-layer perceptions where
required .

Use the functions provided. When calling functions only provide a RFC8259 compliant JSON request following this format without
deviation .

MainProcess | 2024-05-20 07:27:33,455,455 multiprocessing INFO [User]

You will get a system description to code a differential equation simulator for.

System Description:*

Prediction of Treatment Response for Combined Chemo and Radiation Therapy for Non-Small Cell Lung Cancer Patients Using a Bio-
Mathematical Model

Here you must model the state differential of tumor_volume, and chemotherapy_drug_concentration: with the input actions of

Description of the variables:
# Volume of the tumor with units cm”3
# Concentration of the chemotherapy drug vinblastine with units mg/mA3

The time units is in days.

Additionally these variables have the ranges of:
# tumor_volume: [0.01433, 1170.861]
% chemotherapy_drug_concentration: [0, 9.9975]

The training dataset consists of 1000 patients , where each patient is observed for 60 days.

Modelling goals: *
# The parameters of the model will be optimized to an observed training dataset with the given simulator.
# The observed training dataset has very few samples, and the model must be able to generalize to unseen data.

Requirement Specification:®**
# The code generated should achieve the lowest possible validation loss, of le-10 or less.
# The code generated should be interpretable , and fit the dataset as accurately as possible.
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Skeleton code to fill in:*
class StateDifferential (nn.Module):
def __init__(self):
super(StateDifferential , self).__init__()
# TODO: Fill in the code here

o
o

forward (self , tumor_volume: torch.Tensor, chemotherapy_drug_concentration: torch.Tensor) —> Tuple[torch.Tensor, torch.Tensor
1:

# TODO: Fill in the code here

return (d_tumor_volume__dt, d_chemotherapy_drug_concentration__dt)

Useful to know:

% You are a code evolving machine, and you will be called 20 times to generate code, and improve the code to achieve the lowest
possible validation loss.

# The model defines the state differential and will be used with an ODE solver to fit the observed training dataset.

You can use any parameters you want and any black box neural network components (multi-layer perceptrons):; however, you have to

*
define these.

# It is preferable to decompose the system into differential equations (compartments) if possible.

# You can use any unary functions, for example log, exp, power etc.

# Under no circumstance can you change the skeleton code function definitions , only fill in the code.

# The input tensors are vectors of shape (batch_size).

# Use initially white box models first and then switch to hybrid white and black box models for the residuals, only after no further

best program iteration improvement with white box models.
Make sure your code follows the exact code skeleton specification.
# Use PyTorch.

*

Think step-by-step, and then give the complete full working code. You are generating code for iteration 0 out of 20.

MainProcess | 2024-05-20 07:27:33,455,455 multiprocessing INFO [User]
You generated the following code completions, which then had their parameters optimized to the training dataset. Please reflect
on how you can improve the code to minimize the validation loss to le—6 or less. The code examples are delineated by ###.

Here are your previous iterations the best programs generated. Use it to see if you have exhausted white box models, i.e. when a
white box model repeats with the same val loss and then only add black box models to the white box models: "

Iteration 0. Best Val Loss: 43.21586608886719. Selected Features: tumor_volume, chemotherapy_drug_concentration. Model
description: This is a white box model that uses a Gompertzian growth model for the tumor volume and a simple decay model
for the chemotherapy drug concentration. The model includes parameters for the tumor growth rate and drug efficacy .
which can be optimized based on the observed training dataset.

Please list in order of ranked importance (with the first feature to be acquired first) and the percentage of expected
improvement of potential features to acquire next, such that the validation loss is minimized to le—=6 or less. The
possible additional features to select are: blood_type, smoking_status, patient_age , patient_weight, patient_height, sex,
radiotherapy_dosage , alcohol_consumption, previous_cancer_treatments , comorbidities , genetic_markers ,
chemotherapy_dosage , family_history_of_cancer, performance_status , dietary_habits , physical_activity_level ,
environmental_exposure , medication_adherence , psychological_stress_levels ., socioeconomic_status , residential_location ,
support_network .

MainProcess| 2024-05-20 07:27:33,455,455 multiprocessing INFO [Progress: Step 1/0 | Retries: 0/30 | Token Capacity Used: 1.06% |
Tokens remaining 126639]

MainProcess| 2024-05-20 07:28:04,902,902 multiprocessing INFO [LLM RESPONSE MESSAGE]

MainProcess | 2024-05-20 07:28:04,903,903 multiprocessing INFO [Function Call] [feature_acquisition] {

"features": [

{
"name": "radiotherapy_dosage",
"importance_score": 0.25

B

{
"name": "chemotherapy_dosage",
"importance_score": 0.20

B

{
"name": "genetic_markers",
"importance_score": 0.15

B

{
"name": "patient_age",
"importance_score": 0.10

I8

{
"name": "smoking_status",
"importance_score": 0.10

B

{
"name": "comorbidities",
"importance_score": 0.05

B

{
"name": "performance_status",
"importance_score": 0.05

I

{
"name": "medication_adherence",
"importance_score": 0.05

B

{
"name": "psychological_stress_levels"
"importance_score": 0.05

}

1

)
MainProcess| 2024-05-20 07:28:04,903,903 multiprocessing INFO [Selected new feature] SELECTED : radiotherapy_dosage Now using: [’

tumor_volume ', “chemotherapy_drug_concentration ’, ’radiotherapy_dosage ']

MainProcess| 2024-05-20 07:28:04,905,905 multiprocessing INFO [System]
Objective: Write code to create an effective differential equation simulator for a given task.
Please note that the code should be fully functional. No placeholders.

You must act autonomously and you will receive no human input at any stage. You have to return as output the complete code for
completing this task, and correctly improve the code to create the most accurate and realistic simulator possible.

You always write out the code contents. You always indent code with tabs.

You cannot visualize any graphical output. You exist within a machine. The code can include black box multi—-layer perceptions where
required .
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Use the functions provided. When calling functions only provide a RFC8259 compliant JSON request following this format without
deviation .

MainProcess| 2024-05-20 07:28:04,905,905 multiprocessing INFO [User]
You will get a system description to code a differential cquation simulator for.

System Description: " *
Prediction of Treatment Response for Combined Chemo and Radiation Therapy for Non-Small Cell Lung Cancer Patients Using a Bio-—
Mathematical Model

Here you must model the state differential of tumor_volume, and chemotherapy_drug_concentration; with the input actions of
radiotherapy_dosage .

Description of the variables:

# Volume of the tumor with units cm”3

% Concentration of the chemotherapy drug vinblastine with units mg/m*3
% Dosage of the radiotherapy with units Gy

The time units is in days.

Additionally these variables have the ranges of:
# tumor_volume: [0.01433, 1170.861]

# chemotherapy_drug_concentration: [0, 9.9975]
# radiotherapy_dosage: [0, 2.0]

The training dataset consists of 1000 patients , where each patient is observed for 60 days.

Modelling goals:***
# The parameters of the model will be optimized to an observed training dataset with the given simulator.
# The observed training dataset has very few samples, and the model must be able to generalize to unseen data.

Requirement Specification:
# The code generated should achieve the lowest possible validation loss, of le-10 or
+ The code generated should be interpretable , and fit the dataset as accurately as poss

Skeleton code to fill in:**
class StateDifferential (nn.Module):
def __init__(self):
super(StateDifferential , self).__init__()
# TODO: Fill in the code here

a
o
i

forward (self , tumor_volume: torch.Tensor, chemotherapy_drug_concentration: torch.Tensor, radiotherapy_dosage: torch.Tensor)
—> Tuple[torch.Tensor, torch.Tensor]:

# TODO: Fill in the code here

return (d_tumor_volume__dt, d_chemotherapy_drug_concentration__dt)

Useful to know: ‘"

# You are a code evolving machine, and you will be called 20 times to generate code, and improve the code to achieve the lowest
possible validation loss.

# The model defines the state differential and will be used with an ODE solver to fit the observed training dataset.

You can use any parameters you want and any black box neural network components (multi-layer perceptrons); however, you have to
define these.

It is preferable to decompose the system into differential equations (compartments) if possible.

You can use any unary functions, for example log, exp, power etc.

Under no circumstance can you change the skeleton code function definitions , only fill in the code.

The input tensors are vectors of shape (batch_size).

Use initially white box models first and then switch to hybrid white and black box models for the residuals , only after no further
best program iteration improvement with white box models.

Make sure your code follows the exact code skeleton specification.

Use PyTorch.

% % % % %

* %

Think step-by-step, and then give the complete full working code. You are generating code for iteration 1 out of 20.

MainProcess| 2024-05-20 07:28:04.,905.,905 multiprocessing INFO [User]
You generated the following code completions , which then had their parameters optimized to the training dataset. Please reflect on
how you can improve the code to minimize the validation loss to le—6 or less. The code examples are delineated by ###.

Here are your previous iterations the best programs generated. Use it to see if you have exhausted white box models, i.e. when a
white box model repeats with the same val loss and then only add black box models to the white box models:**°

Iteration 0. Best Val Loss: 43.21586608886719. Selected Features: tumor_volume, chemotherapy_drug_concentration. Model description:
This is a white box model that uses a Gompertzian growth model for the tumor volume and a simple decay model for the
chemotherapy drug concentration. The model includes parameters for the tumor growth rate and drug efficacy , which can be
optimized based on the observed training dataset.

Here are the top code completions so far that you have generated., sorted for the lowest validation loss last:®**

Val Loss: 43.2 (Where the val loss per dimension is tumor_volume val loss: 79, chemotherapy_drug_concentration val loss: 7.42)
Iteration: 0

#i#H#

import torch

import torch.nn as nn

from typing import Tuple

class StateDifferential (nn.Module):
def __init__(self):
super(StateDifferential , self).__init__ ()
# Define the parameters for the tumor growth model
self.alpha = nn.Parameter(torch.tensor(0.1)) # Tumor growth rate
self.beta = nn.Parameter(torch.tensor(0.01)) # Drug efficacy

def forward(self, tumor_volume: torch.Tensor, chemotherapy_drug_concentration: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor

1
# Tumor growth model based on Gompertzian growth
d_tumor_volume__dt = self.alpha % torch.log(1170.861 / tumor_volume) # tumor_volume
# Drug effect on tumor volume
d_tumor_volume__dt —= self.beta * chemotherapy_drug_concentration * tumor_volume

# Assuming constant drug concentration decay
drug_decay_rate = 0.1
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d_chemotherapy_drug_concentration__dt = —drug_decay_rate # chemotherapy_drug_concentration

return (d_tumor_volume__dt, d_chemotherapy_drug_concentration__dt)

optimized_parameters = {’alpha’: 0.00944874994456768, ’beta’: 0.031064828857779503}
###

Code Skeleton: ‘"
class StateDifferential (nn.Module) :
def __init__(self):
super (StateDifferential , self).__init__()
# TODO: Fill in the code here

def forward(self ., tumor_volume: torch.Tensor, chemotherapy_drug_concentration: torch.Tensor, radiotherapy_dosage: torch.Tensor)
—> Tuple[torch.Tensor, torch.Tensor]:
# TODO: Fill in the code here
return (d_tumor_volume__dt, d_chemotherapy_drug_concentration__dt)

Please reflect on how you can improve the code to fit the dataset as accurately as possible, and be interpretable. Use the code
skeleton above to provide the code. Please also specify only the input parameters that you want to include in the model in
from the skeleton code. Think step-by-step. Where applicable use the values of the optimized parameters to reason how the
code can be improved to fit the dataset as accurately as possible. This is for generating new code for the next iteration 1
out of 20.

MainProcess | 2024-05-20 07:28:04,905.,905 multiprocessing INFO [Progress: Step 1/0 | Retries: 0/30 | Token Capacity Used: 1.42% |
Tokens remaining 126184]

MainProcess| 2024-05-20 07:29:41,577,577 multiprocessing INFO [LLM RESPONSE MESSAGE]

MainProcess| 2024-05-20 07:29:41,577,577 multiprocessing INFO [Function Call] [complete_StateDifferential_code] {

"StateDifferential_code": "import torch\nimport torch.nn as nn\nfrom typing import Tuple\n\nclass StateDifferential (nn.Module) :\
n def __init__(self):\n super(StateDifferential , self).__init__()\n # Define the parameters for the
tumor growth model\n self.alpha = nn.Parameter(torch.tensor(0.00944874994456768)) # Optimized tumor growth rate\n

self.beta = nn.Parameter(torch.tensor(0.031064828857779503)) # Optimized drug efficacy\n # Define the

parameter for the radiotherapy effect\n self.gamma = nn.Parameter(torch.tensor (0.1)) # Radiotherapy efficacy\n\n

def forward(self , tumor_volume: torch.Tensor, chemotherapy_drug_concentration: torch.Tensor, radiotherapy_dosage:
torch.Tensor) —> Tuple[torch.Tensor, torch.Tensor]:\n # Tumor growth model based on Gompertzian growth\n
d_tumor_volume__dt = self.alpha % torch.log(1170.861 / tumor_volume) # tumor_volume\n # Drug effect on tumor
volume\n d_tumor_volume__dt -= self.beta * chemotherapy_drug_concentration * tumor_volume\n # Radiotherapy
effect on tumor volume\n d_tumor_volume__dt —= self.gamma % radiotherapy_dosage * tumor_volume\n\n
Assuming constant drug concentration decay\n drug_decay_rate = 0.1\n d_chemotherapy_drug_concentration__dt
= —drug_decay_rate * chemotherapy_drug_concentration\n\n return (d_tumor_volume__dt,
d_chemotherapy_drug_concentration__dt)",

"code_description": "This is a white box model that uses a Gompertzian growth model for the tumor volume, a simple decay model
for the chemotherapy drug concentration, and includes the effect of radiotherapy dosage. The model includes parameters
for the tumor growth rate, drug efficacy , and radiotherapy cfficacy , which can be optimized based on the observed
training dataset.",

"model_input_variables": ["tumor_volume", "chemotherapy_drug_concentration", "radiotherapy_dosage"]

)

MainProcess | 2024-05-20 07:29:50,478,478 multiprocessing INFO Early stopping triggered at epoch 1110

MainProcess| 2024-05-20 07:29:50,489,489 multiprocessing INFO [D3-feature —select | Cancer—-random—features | 12][Generation 1] | Top
Fitness: 7.463240623474121 | Num Programs: 2 | Mean Fitness: 25.339553356170654 | Fitnesses: [7.463240623474121,
43.21586608886719] | Current Gen Val Loss: 7.463240623474121

MainProcess | 2024-05-20 07:29:50,489,489 multiprocessing INFO [D3-feature-select | Cancer—random-features | 12][GEN RESULT] {’method
*: ’D3-feature —select ’, ‘env_name’: 'Cancer-random-features ', ’seed ’: 12, ’generation ’: 1, ’top_fitness : 7.463240623474121,

’num_programs 2, “mean_fitness ’: 25.339553356170654, ’fitnesses ': [7.463240623474121, 43.21586608886719],
current_gen_val_loss *: 7.463240623474121})

MainProcess| 2024-05-20 07:29:50,490.,490 multiprocessing INFO [System]

Objective: Write code to create an effective differential equation simulator for a given task.

Please note that the code should be fully functional. No placeholders.

You must act autonomously and you will receive no human input at any stage. You have to return as output the complete code for
completing this task, and correctly improve the code to create the most accurate and realistic simulator possible.

You always write out the code contents. You always indent code with tabs.

You cannot visualize any graphical output. You exist within a machine. The code can include black box multi—layer perceptions where
required .

Use the functions provided. When calling functions only provide a RFC8259 compliant JSON request following this format without
deviation.

MainProcess | 2024-05-20 07:29:50,490.,490 multiprocessing INFO [User]
You will get a system description to code a differential equation simulator for.

System Description:**
Prediction of Treatment Response for Combined Chemo and Radiation Therapy for Non-Small Cell Lung Cancer Patients Using a Bio-
Mathematical Model

Here you must model the state differential of tumor_volume, and chemotherapy_drug_concentration; with the input actions of

Description of the variables:
# Volume of the tumor with units cm"3
# Concentration of the chemotherapy drug vinblastine with units mg/m"3

The time units is in days.

Additionally these variables have the ranges of:
# tumor_volume: [0.01433, 1170.861]
# chemotherapy_drug_concentration: [0, 9.9975]

The training dataset consists of 1000 patients , where each patient is observed for 60 days.

Modelling goals:‘*“*
# The parameters of the model will be optimized to an observed training dataset with the given simulator.
# The observed training dataset has very few samples, and the model must be able to generalize to unseen data.

Requirement Specification:***
# The code generated should achieve the lowest possible validation loss ., of le-10 or less.
# The code generated should be interpretable ., and fit the dataset as accurately as possible.

Skeleton code to fill in:®**
class StateDifferential (nn.Module):

96351 https://doi.org/10.52202/079017-3053



def __init__(self):

super(StateDifferential , self).__init__()

# TODO: Fill in the code here
def forward(self, tumor_volume: torch.Tensor, chemotherapy_drug_concentration: torch.Tensor
1:
# TODO: Fill in the code here
return (d_tumor_volume__dt, d_chemotherapy_drug_concentration__dt)
Useful to know:‘**

% You are a code evolving machine, and you will be called 20 times to generate code, and improv

possible validation loss.

# The model defines the state differential and will be used with an ODE solver to fit the obser

# You can use any parameters you want and any black box neural network components (multi-layer
define these.

# It is preferable to decompose the system into differential equations (compartments) if possib

# You can use any unary functions ., for example log, exp. power etc.

# Under no circumstance can you change the skeleton code function definitions , only fill in the

# The input tensors are vectors of shape (batch_size).

# Use initially white box models first and then switch to hybrid white and black box models for
best program iteration improvement with white box models.

# Make sure your code follows the exact code skeleton specification.

% Use PyTorch.

Think step-by-step, and then give the complete full working code. You are generating code for i

MainProcess | 2024-05-20 07:29:50,490.490 multiprocessing INFO [User]
You generated the following code completions, which then had their parameters
on how you can improve the code to minimize the validation loss to le-6 or

optimized to
less. The
Here are your previous iterations the best programs generated. Use it to see
white box model repeats with the same val
Iteration 0. Best Val Loss: 43.21586608886719. Selected Features: tumor_volume,
description: This is a white box model that uses a Gompertzian growth model for the
for the chemotherapy drug concentration. The model includes parameters for the tumo

which can be optimized based on the observed training dataset.

if you have exhausted white box models,
loss and then only add black box models to the white box models:
chemotherapy_drug_concentration .

) => Tuple[torch.Tensor, torch.Tensor

e the code to achieve the lowest
ved training dataset.
perceptrons); however, you have to
le.

code .

the residuals , only after no further

teration 0 out of 20.

the training dataset. Please reflect
code examples are delineated by ###.
i.e. when a
Model

tumor volume and a simple decay model
r growth rate and drug efficacy ,

Tteration 1. Best Val Loss: 7.463240623474121. Selected Features: tumor_volume, chemotherapy_drug_concentration, radiotherapy_dosage
Model description: This is a white box model that uses a Gompertzian growth model for the tumor volume, a simple decay
model for the chemotherapy drug concentration, and includes the effect of radiotherapy dosage. The model includes parameters
for the tumor growth rate, drug efficacy, and radiotherapy efficacy , which can be optimized based on the observed training
dataset .

Please list in order of ranked importance (with the first feature to be acquired first) and the percentage of expected
improvement of potential features to acquire next, such that the validation loss is minimized to le-6 or less. The
possible additional features to select are: blood_type, smoking_status, patient_age, patient_weight, patient_height, sex,
alcohol_consumption, previous_cancer_treatments , comorbidities , genetic_markers, chemotherapy_dosage ,
family_history_of_cancer, performance_status , dietary_habits , physical_activity_level , environmental_exposure ,
medication_adherence , psychological_stress_levels , socioeconomic_status, residential_location , support_network.

MainProcess| 2024-05-20 07:29:50,490,490 multiprocessing INFO [Progress: Step 1/0 | Retries: 0/30 | Token Capacity Used: 1.14% |
Tokens remaining 126539]
MainProcess| 2024-05-20 07:30:23,219,219 multiprocessing INFO [LLM RESPONSE MESSAGE]
MainProcess | 2024-05-20 07:30:23,219,219 multiprocessing INFO [Function Call] [feature_acquisition] {
"features": [
{"name": "chemotherapy_dosage", "importance_score": 0.25},
{"name": "genetic_markers", "importance_score": 0.20},
"name": "patient_age", "importance_score": 0.15},
"name": _cancer_treatments", "importance_score": 0.10},
{"name": "comorbidities", "importance_score": 0.10},
"name": "smoking_status", "importance_score": 0.05},
"name": "performance_status”, "importance_score": 0.05},
"name": "medication_adherence", "importance_score": 0.05},
"name": "psychological_stress_levels", "importance_score": 0.05}
]
)
MainProcess | 2024-05-20 07:30:23,219,219 multiprocessing INFO [Selected new feature] SELECTED chemotherapy_dosage Now using: [’
tumor_volume ’, ’chemotherapy_drug_concentration ’, ’radiotherapy_dosage’, ’chemotherapy_dosage ']
MainProcess| 2024-05-20 07:30:23,222,222 multiprocessing INFO [System]
Objective: Write code to create an effective differential equation simulator for a given task.
Please note that the code should be fully functional. No placeholders.
You must act autonomously and you will receive no human input at any stage. You have to return as output the complete code for
completing this task, and correctly improve the code to create the most accurate and realistic simulator possible.
You always write out the code contents. You always indent code with tabs.
You cannot visualize any graphical output. You exist within a machine. The code can include black box multi-layer perceptions where
required .
Use the functions provided. When calling functions only provide a RFC8259 compliant JSON request following this format without
deviation.
MainProcess | 2024-05-20 07:30:23,225,225 multiprocessing INFO [User]
You will get a system description to code a differential equation simulator for.

System Description:**
Prediction of Treatment Response for Combined Chemo and Radiation Therapy for Non-Small
Mathematical Model

Cell

differential of tumor_volume,
chemotherapy_dosage .

Here you must model the state
radiotherapy_dosage ,

Description of the variables:

Volume of the tumor with units cm"3

Concentration of the chemotherapy drug vinblastine with units mg/m*3
Dosage of the radiotherapy with units Gy

*
*
*
# Dosage of the chemotherapy drug vinblastine with units mg/m"3

The time units is in days.

Additionally these variables have the ranges of:
# tumor_volume: [0.01433, 1170.861]

# chemotherapy_drug_concentration: [0, 9.9975]
+ radiotherapy_dosage: [0, 2.0]

+ chemotherapy_dosage: [0, 5.0]
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with the input actions of



The training dataset consists of 1000 patients , where each patient is observed for 60 days.

Modelling goals:
# The parameters of the model will be optimized to an observed training dataset with the given simulator.
# The observed training dataset has very few samples, and the model must be able to generalize to unseen data.

Requirement Specification: ‘"
# The code generated should achieve the lowest possible validation loss, of le-10 or less.
# The code generated should be interpretable , and fit the dataset as accurately as possible.

Skeleton code to fill in:
class StateDifferential (nn.Module):
def __init__(self):
super(StateDifferential , self).__init__ ()
# TODO: Fill in the code here

a
o
iy

forward (self , tumor_volume: torch.Tensor, chemotherapy_drug_concentration: torch.Tensor, radiotherapy_dosage: torch.Tensor,
chemotherapy_dosage: torch.Tensor) —> Tuple[torch.Tensor, torch.Tensor]:

# TODO: Fill in the code here

return (d_tumor_volume__dt, d_chemotherapy_drug_concentration__dt)

Useful to know:
# You are a code evolving machine, and you will be called 20 times to generate code, and improve the code to achieve the lowest
possible validation loss.

# The model defines the state differential and will be used with an ODE solver to fit the observed training dataset.

# You can use any parameters you want and any black box neural network components (multi-layer perceptrons); however, you have to
define these.

# It is preferable to decompose the system into differential equations (compartments) if possible.

% You can use any unary functions, for example log, exp, power etc.

# Under no circumstance can you change the skeleton code function definitions , only fill in the code.

# The input tensors are vectors of shape (batch_size).

# Use initially white box models first and then switch to hybrid white and black box models for the residuals , only after no further
best program iteration improvement with white box models.

# Make sure your code follows the exact code skeleton specification.

# Use PyTorch.

Think step-by-step, and then give the complete full working code. You are generating code for iteration 2 out of 20.

MainProcess | 2024-05-20 07:30:23,225,225 multiprocessing INFO [User]
You generated the following code completions, which then had their parameters optimized to the training dataset. Please reflect on
how you can improve the code to minimize the validation loss to le-6 or less. The code examples are delineated by ###.

Here are your previous iterations the best programs generated. Use it to see if you have exhausted white box models, i.e. when a
white box model repeats with the same val loss and then only add black box models to the white box models: ‘"

Iteration 0. Best Val Loss: 43.21586608886719. Selected Features: tumor_volume, chemotherapy_drug_concentration. Model description:
This is a white box model that uses a Gompertzian growth model for the tumor volume and a simple decay model for the
chemotherapy drug concentration. The model includes parameters for the tumor growth rate and drug efficacy , which can be
optimized based on the observed training dataset.

Iteration 1. Best Val Loss: 7.463240623474121. Selected Features: tumor_volume, chemotherapy_drug_concentration, radiotherapy_dosage

Model description: This is a white box model that uses a Gompertzian growth model for the tumor volume, a simple decay
model for the chemotherapy drug concentration, and includes the effect of radiotherapy dosage. The model includes parameters
for the tumor growth rate , drug efficacy , and radiotherapy efficacy , which can be optimized based on the observed training
dataset .

Here are the top code completions so far that you have generated, sorted for the lowest validation loss last:®**

Val Loss: 43.2 (Where the val loss per dimension is tumor_volume val loss: 79, chemotherapy_drug_concentration val loss: 7.42)
Iteration: 0

#iHH

import torch

import torch.nn as nn

from typing import Tuple

class StateDifferential (nn.Module):
def __init__(self):
super(StateDifferential , self).__init__()
# Define the parameters for the tumor growth model
self.alpha = nn.Parameter(torch.tensor(0.1)) # Tumor growth rate
self.beta = nn.Parameter(torch.tensor(0.01)) # Drug efficacy

def forward(self, tumor_volume: torch.Tensor, chemotherapy_drug_concentration: torch.Tensor) —> Tuple[torch.Tensor, torch.Tensor

1:
# Tumor growth model based on Gompertzian growth
d_tumor_volume__dt = self.alpha % torch.log(1170.861 / tumor_volume) # tumor_volume
# Drug effect on tumor volume
d_tumor_volume__dt —= self.beta * chemotherapy_drug_concentration * tumor_volume

# Assuming constant drug concentration decay
drug_decay_rate = 0.1
d_chemotherapy_drug_concentration__dt = —drug_decay_rate * chemotherapy_drug_concentration

return (d_tumor_volume__dt, d_chemotherapy_drug_concentration__dt)
optimized_parameters = {’alpha’: 0.00944874994456768, ’beta’: 0.031064828857779503}
#i#HH

Val Loss: 7.46 (Where the val loss per dimension is tumor_volume val loss: 7.51, chemotherapy_drug_concentration val loss: 7.42)
Iteration: 1

H##H#

import torch

import torch.nn as nn

from typing import Tuple

class StateDifferential (nn.Module):

def __init__(self):
super(StateDifferential , self).__init__()
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# Define the parameters for the tumor growth model

self.alpha = nn.Parameter(torch.tensor(0.00944874994456768)) # Optimized tumor growth rate
self.beta = nn.Parameter(torch.tensor(0.031064828857779503)) # Optimized drug efficacy

# Define the parameter for the radiotherapy effect

self .gamma = nn.Parameter(torch.tensor(0.1)) # Radiotherapy efficacy

def forward(self ., tumor_volume: torch.Tensor, chemotherapy_drug_concentration: torch.Tensor, radiotherapy_dosage: torch.Tensor)
—> Tuple[torch.Tensor, torch.Tensor]:
# Tumor growth model based on Gompertzian growth
d_tumor_volume__dt = self.alpha % torch.log(1170.861 / tumor_volume) % tumor_volume
# Drug effect on tumor volume
d_tumor_volume__dt —= self.beta * chemotherapy_drug_concentration * tumor_volume
# Radiotherapy effect on tumor volume
d_tumor_volume__dt —= self.gamma % radiotherapy_dosage * tumor_volume

# Assuming constant drug concentration decay
drug_decay_rate = 0.1
d_chemotherapy_drug_concentration__dt = —drug_decay_rate # chemotherapy_drug_concentration

return (d_tumor_volume__dt, d_chemotherapy_drug_concentration__dt)
optimized_parameters = { alpha’: 0.025857042521238327, 'beta ': 0.025862518697977066, ’gamma’: 0.03730243816971779}
#i#H#

Code Skeleton: ‘"
class StateDifferential (nn.Module):
def __init__(self):
super(StateDifferential , self).__init__()
# TODO: Fill in the code here

def forward(self, tumor_volume: torch.Tensor, chemotherapy_drug_concentration: torch.Tensor, radiotherapy_dosage: torch.Tensor,
chemotherapy_dosage: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
# TODO: Fill in the code here
return (d_tumor_volume__dt, d_chemotherapy_drug_concentration__dt)

Please reflect on how you can improve the code to fit the dataset as accurately as possible, and be interpretable. Use the code
skeleton above to provide the code. Please also specify only the input parameters that you want to include in the model in
from the skeleton code. Think step-by-step. Where applicable use the values of the optimized parameters to reason how the
code can be improved to fit the dataset as accurately as possible. This is for generating new code for the next iteration 2
out of 20.

MainProcess| 2024-05-20 07:30:23,225,225 multiprocessing INFO [Progress: Step 1/0 | Retries: 0/30 | Token Capacity Used: 1.87% |
Tokens remaining 125608]

MainProcess | 2024-05-20 07:33:55,671,671 multiprocessing INFO [LLM RESPONSE MESSAGE]

MainProcess| 2024-05-20 07:33:55.671.,671 multiprocessing INFO [Function Call] [complete_StateDifferential_code] {

"StateDifferential_code": "import torch\nimport torch.nn as nn\nfrom typing import Tuple\n\nclass StateDifferential (nn.Module) :\
n def __init__(self):\n super(StateDifferential , self).__init__()\n # Define the parameters for the
tumor growth model\n self.alpha = nn.Parameter(torch.tensor(0.025857042521238327)) # Optimized tumor growth rate\
n self.beta = nn.Parameter(torch.tensor(0.025862518697977066)) # Optimized drug efficacy\n # Define the
parameter for the radiotherapy effect\n self.gamma = nn.Parameter(torch.tensor(0.03730243816971779)) # Optimized
radiotherapy efficacy\n # Define the parameter for the chemotherapy effect\n self.delta = nn.Parameter(
torch.tensor (0.1)) # Chemotherapy dosage efficacy\n\n def forward(self, tumor_volume: torch.Tensor,
chemotherapy_drug_concentration: torch.Tensor, radiotherapy_dosag torch. Tensor, chemotherapy_dosage: torch.Tensor) —>
Tuple[torch . Tensor, torch.Tensor]:\n # Tumor growth model based on Gompertzian growth\n d_tumor_volume__dt
= self.alpha = torch.log(1170.861 / tumor_volume) * tumor_volume\n # Drug effect on tumor volume\n
d_tumor_volume__dt -= self.beta % chemotherapy_drug_concentration * tumor_volume\n # Radiotherapy effect on tumor
volume\n d_tumor_volume__dt -= self.gamma * radiotherapy_dosage * tumor_volume\n # Chemotherapy dosage
effect on tumor volume\n d_tumor_volume__dt -= self.delta * chemotherapy_dosage * tumor_volume\n\n #
Assuming constant drug concentration decay\n drug_decay_rate = 0.1\n d_chemotherapy_drug_concentration__dt
= —drug_decay_rate x chemotherapy_drug_concentration\n\n return (d_tumor_volume__dt,
d_chemotherapy_drug_concentration__dt)",

"code_description": "This is a white box model that uses a Gompertzian growth model for the tumor volume, a simple decay model

for the chemotherapy drug concentration, and includes the effects of both radiotherapy and chemotherapy dosages. The
model includes parameters for the tumor growth rate, drug efficacy , radiotherapy efficacy , and chemotherapy dosage
efficacy , which can be optimized based on the observed training dataset.",
"model_input_variables": ["tumor_volume", "chemotherapy_drug_concentration", "radiotherapy_dosage", "chemotherapy_dosage"]
)
MainProcess| 2024-05-20 07: 06,547,547 multiprocessing INFO Early stopping triggered at epoch 1120
MainProcess | 2024-05-20 07:34:06,560,560 multiprocessing INFO [D3-feature —select | Cancer—random—-features | 12][ Generation 2] | Top
Fitness: 6.335662364959717 | Num Programs: 3 | Mean Fitness: 19.00492302576701 | Fitnesses: [6.335662364959717,
7.463240623474121, 43.21586608886719] | Current Gen Val Loss: 6.335662364959717
MainProcess | 2024-05-20 07:34:06,560,560 multiprocessing INFO [D3-feature-select | Cancer-random-features | 12][GEN RESULT] { method
': 'D3-feature —select ', “env_name’: 'Cancer-random-features ', ’seed ’: 12, ’generation ': 2, 'top_fitness ': 6.335662364959717,
"num_programs 3, 'mean_fitness ': 19.00492302576701, "fitnesses ": [6.335662364959717, 7.463240623474121, 43.21586608886719],
‘current_gen_val_loss 6.335662364959717)
MainProcess | 2024-05-20 07:34:06,561,561 multiprocessing INFO [System]
Objective: Write code to create an effective differential equation simulator for a given task.
Please note that the code should be fully functional. No placeholders.

You must act autonomously and you will receive no human input at any stage. You have to return as output the complete code for
completing this task, and correctly improve the code to create the most accurate and realistic simulator possible.

You always write out the code contents. You always indent code with tabs.

You cannot visualize any graphical output. You exist within a machine. The code can include black box multi-layer perceptions where
required .

Use the functions provided. When calling functions only provide a RFC8259 compliant JSON request following this format without
deviation.

MainProcess| 2024-05-20 07:34:06.,561.561 multiprocessing INFO [User]
You will get a system description to code a differential equation simulator for.

System Description: ©**

Prediction of Treatment Response for Combined Chemo and Radiation Therapy for Non-Small Cell Lung Cancer Patients Using a Bio-
Mathematical Model

Here you must model the state differential of tumor_volume, and chemotherapy_drug_concentration; with the input actions of

Description of the variables:

# Volume of the tumor with units cm"3

# Concentration of the chemotherapy drug vinblastine with units mg/m"3

The time units is in days.
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Additionally these variables have the ranges of:
# tumor_volume: [0.01433, 1170.861]
# chemotherapy_drug_concentration: [0, 9.9975]

The training dataset consists of 1000 patients , where each patient is observed for 60 days.

Modelling goals:***

*
*

The parameters of the model will be optimized to an observed
The observed training dataset has very few samples,

Requirement

*

*

Skeleton code to

Specification:*
The code generated should achieve
The code generated should be

the lowest possible validation lo

interpretable , and fit the dataset

as

fill in:*®*

training dataset
and the model must be able

of
accurately as

with the given simulator.
to generalize to unseen data.

le=10 or

poss

class StateDifferential (nn.Module):
def __init__(self):
super(StateDifferential , self).__init__()
# TODO: Fill in the code here
def forward(self, tumor_volume: torch.Tensor, chemotherapy_drug_concentration: torch.Tensor) —> Tuple[torch.Tensor, torch.Tensor
# TODO: Fill in the code here
return (d_tumor_volume__dt, d_chemotherapy_drug_concentration__dt)
Useful to know:***
# You are a code evolving machine, and you will be called 20 times to generate code, and improve the code to achieve the lowest
possible validation loss.
# The model defines the state differential and will be used with an ODE solver to fit the observed training dataset.
# You can use any parameters you want and any black box neural network components (multi-layer perceptrons); however, you have to
define these.
+ It is preferable to decompose the system into differential equations (compartments) if possible.
# You can use any unary functions, for example log, exp, power etc.
# Under no circumstance can you change the skeleton code function definitions , only fill in the code.
# The input tensors are vectors of shape (batch_size).
# Use initially white box models first and then switch to hybrid white and black box models for the residuals, only after no further
best program iteration improvement with white box models.
# Make sure your code follows the exact code skeleton specification.
#« Use PyTorch.

Think step-by-step ,

MainProcess |

Tt

It

M

M
M

and then give the complete full

2024-05-20 07:34:06,561.561 multiprocessing INFO [User]
You generated the following code completions , which then had
on how you can improve the code to minimize the validation loss

Here are your previous iterations the best programs generated. Use it

working code. You are genmerating code for

their parameters
to le-6 or

to

iteration 0 out of 20.

optimized
less .

to the training dataset. Please reflect
The code examples are delineated by ###.

see if you have exhausted white box models, i.e. when a

white box model
Iteration 0. Best Val Loss:
description: This is

repeats

with the same val loss and then only add black box models to the white box models:
43.21586608886719. Selected Features: tumor_volume, chemotherapy_drug_concentration. Model
a white box model that uses a Gompertzian growth model for the tumor volume and a simple decay model

for the chemotherapy drug concentration. The model includes
which can be optimized based on the observed training dataset.
eration 1. Best Val Loss: 7.463240623474121. Selected Features:

parameters

tumor_volume ,

for the tumor growth rate and drug efficacy ,

chemotherapy_drug_concentration, radiotherapy_dosage

Model description: This is a white box model that uses a Gompertzian growth model for the tumor volume. a simple decay
model for the chemotherapy drug concentration, and includes the effect of radiotherapy dosage. The model includes parameters
for the tumor growth rate, drug efficacy , and radiotherapy efficacy , which can be optimized based on the observed training

dataset .
eration 2. Best Val Loss: 6.335662364959717. Selected Features:
chemotherapy_dosage. Model description: This is a white box model
a simple decay model for the chemotherapy drug concentration , and

tumor_volume ,

chemotherapy_drug_concentration , radiotherapy_dosage
uses a Gompertzian growth model for the tumor volume
the effects of both radiotherapy and

that
includes

chemotherapy dosages. The model includes parameters for the tumor growth rate, drug efficacy, radiotherapy efficacy, and
chemotherapy dosage efficacy , which can be optimized based on the observed training dataset.

Please list in order of ranked importance (with the first feature to be acquired first) and the percentage of expected
improvement of potential features to acquire next, such that the validation loss is minimized to le-6 or less. The
possible additional features to select are: blood_type, smoking_status, patient_age , patient_weight, patient_height, sex,
alcohol_consumption , previous_cancer_treatments , comorbidities , genetic_markers, family_history_of_cancer ,

performance_status , dietary_habits , physical_activity_level ,
psychological_stress_levels , socioeconomic_status ,

ainProcess| 2024-05-20 07:34:06,561,561
Tokens remaining 126425]
2024-05-20 07:34:55,703,703 multiproce

multiprocessing INFO [Progress:

ainProcess |

ainProcess| 2024-05-20 07:34:55.,704,704 multiprocessing INFO [Function Call]

"features": [

{
"name": "genetic_markers",
"importance_score": 0.25

B

{
"name": "previous_cancer_treatments",
"importance_score": 0.2

B

{
"name": "comorbidities",
"importance_score": 0.15

B

{
"name": "patient_age",
"importance_score": 0.1

B

{
"name": "smoking_status",
"importance_score": 0.1

B

{
"name": "performance_status",
"importance_score": 0.05

I

{

96355

environmental_exposure ,
residential _location ,

Step

medication_adherence ,
support_network .

1/0 | Retries: 0/30 | Token Capacity Used: 1.23% |

sing INFO [LLM RESPONSE MESSAGE]

[feature_acquisition] {
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"name": "medication_adherence",
"importance_score": 0.05

}.

{
"name": "psychological_stress_levels",
"importance_score ":
}
{
"name": "environmental_exposure",
"importance_score": 0.05
}
1
)
MainProcess | 2024-05-20 07:34:55,704,704 multiprocessing INFO [Selected new feature] SELECTED : genetic_markers Now using: [’
tumor_volume *, ’chemotherapy_drug_concentration ’, ’radiotherapy_dosage ’, ’chemotherapy_dosage ', ’genetic_markers ’]

G.3 Other Datasets Discovered White-Box Models

In the main paper we presented the best Warfarin discovered white-box model, however after running
D3-white-box across all the other datasets, we include a few of the white-box models that it discovered
and generated for each other respective dataset used that we compared against. Of particular interest,
is that these white-box models fit the dataset well, and can even outperform some of the other neural
network based baselines—we highlight that with the right functional form of the white-box model,
we can achieve better performance than a largely over-parameterized neural network model, that has
signficiantly more parameters (such as an RNN with 18,000 parameters), than a white-box model
with 5-15 parameters.

Lung Cancer

Val Loss: 0.352 (Where the val loss per dimension is tumor_volume val loss: 0.352) Iteration: 7
#i#H#
class StateDifferential (nn.Module):
def __init__(self):
super(StateDifferential , self).__init__()
# Define the parameters for the tumor growth model
# Initialize parameters with values closer to the optimized values from iteration 6
self.alpha = nn.Parameter(torch.tensor(0.0028))
self .beta = nn.Parameter(torch.tensor(1000.33))
# Initialize gamma as a small positive value
self.gamma = nn.Parameter(torch.tensor(0.001))
# Initialize delta with a value closer to the optimized value from iteration 6
self.delta = nn.Parameter(torch.tensor(0.705))
# Introduce epsilon to represent a new biological term, e.g., immune response
self .epsilon = nn.Parameter(torch.tensor(0.001))

de

2

forward (self , tumor_volume: torch.Tensor) —> Tuple[torch.Tensor]:

# Ensure tumor_volume is non-negative

tumor_volume = torch.clamp(tumor_volume, min=0)

# Calculate the growth term, necrosis term, angiogenesis term, and new biological term

growth_term = self.alpha # tumor_volume % (1 — tumor_volume / self.beta)

necrosis_term = —self.gamma # tumor_volume

angiogenesis_term = self.delta % torch.sqrt(tumor_volume)

immune_response_term = —self.epsilon * tumor_volume

# Rate of change of tumor volume

d_tumor_volume__dt = growth_term + necrosis_term + angiogenesis_term + immune_response_term

return (d_tumor_volume__dt,)

optimized_parameters = {’alpha’: 0.0026573685463517904, ’beta’: 1000.9459838867188, ’gamma’: -0.007219356019049883, *delta ’
0.7442551851272583, ’epsilon ’: -0.007219356019049883}

##H#

Lung Cancer (with Chemo.)

Val Loss: 2.45 (Where the val loss per dimension is tumor_volume val loss: 4.91, chemotherapy_drug_concentration val loss: 2.68e-06)
Iteration: 0
H##HH#

class StateDifferential (nn.Module):
def __init__(self):
super(StateDifferential , self).__init__()
# Define the parameters for the model
self .k_growth = nn.Parameter(torch.tensor (0.1))
self.k_decay = nn.Parameter(torch.tensor(0.1))
self .k_chemo_effect = nn.Parameter(torch.tensor (0.1))

def forward(self, tumor_volume: torch.Tensor, chemotherapy_drug_concentration: torch.Tensor, chemotherapy_dosage: torch.Tensor)
—> Tuple[torch.Tensor, torch.Tensor]:
# Calculate the rate of change of tumor volume
d_tumor_volume__dt = self.k_growth # tumor_volume - self.k_chemo_effect * chemotherapy_drug_concentration # tumor_volume

# Calculate the rate of change of chemotherapy drug concentration
d_chemotherapy_drug_concentration__dt = chemotherapy_dosage — self.k_decay = chemotherapy_drug_concentration

return (d_tumor_volume__dt, d_chemotherapy_drug_concentration__dt)

optimized_parameters = {’k_growth’: 0.04456980526447296, ’k_decay ’: 0.4996906816959381, 'k_chemo_effect ': 0.027509577572345734}
H##HH

Lung Cancer (with Chemo. & Radio.)

Val Loss: 1.42 (Where the val loss per dimension is tumor_volume val loss: 2.85, chemotherapy_drug_concentration val loss: 1.96e-11)
Iteration: 0
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H##H#

import torch
import torch.nn as nn
from typing import Tuple

class StateDifferential (nn.Module):
def __init__(self):

super (StateDifferential , self).__init__ ()
# Define the parameters for the model
self .k_growth = nn.Parameter(torch.tensor(0.1))
self.k_decay = nn.Parameter(torch.tensor(0.1))
self . k_chemo_effect = nn.Parameter(torch.tensor(-0.05))
self.k_radio_sensitivity = nn.Parameter(torch.tensor(=0.02))

o
o

forward (self , tumor_volume: torch.Tensor, chemotherapy_drug_concentration: torch.Tensor, chemotherapy_dosage: torch.Tensor,
radiotherapy_dosage: torch.Tensor) —> Tuple[torch.Tensor, torch.Tensor]:
# Calculate the differential of tumor volume
d_tumor_volume__dt = self.k_growth * tumor_volume — self.k_chemo_effect % chemotherapy_drug_concentration # tumor_volume —
self . k_radio_sensitivity = radiotherapy_dosage * tumor_volume

# Calculate the differential of chemotherapy drug concentration
d_chemotherapy_drug_concentration__dt = chemotherapy_dosage - self.k_decay % chemotherapy_drug_concentration

return (d_tumor_volume__dt, d_chemotherapy_drug_concentration__dt)

optimized_parameters { k_growth ’: 0.04546591639518738, 'k_decay ’: 0.49999910593032837, 'k_chemo_effect *: 0.027269458398222923,
k_radio_sensitivity ": 0.04899420961737633}

#i##

Plankton Microcosm

Val Loss: 5.76e-06 (Where the val loss per dimension is prey_population val loss: 1.18¢—05, intermediate_population val loss: 1.37e
—-06, top_predators_population val loss: 4.07e¢-06) Iteration: 13
#i#HH
class StateDifferential (nn.Module):
def __init__(self):
super(StateDifferential , self).__init__()
# Define the parameters for the model with initial values close to optimized parameters
self.alpha = nn.Parameter(torch.tensor(0.04)) # Prey growth rate
self.beta nn.Parameter (torch.tensor (0.23)) # Prey death rate due to predation
self .gamma = nn.Parameter(torch.tensor(0.23)) # Intermediate predator growth rate
self.delta = nn.Parameter(torch.tensor(0.13)) # Intermediate predator death rate
self.eta = nn.Parameter(torch.tensor (0.06)) # Top predator growth rate
self.theta = nn.Parameter(torch.tensor(-0.12)) # Top predator death rate
self .kappa = nn.Parameter(torch.tensor(2.2)) # Prey carrying capacity
self .sigma = nn.Parameter(torch.tensor(1.4)) # Intermediate predator carrying capacity
self.rho = nn.Parameter(torch.tensor (0.7)) # Top predator carrying capacity
self.omega = nn.Parameter(torch.tensor(0.02)) # Effect of top predators on intermediate predator mortality
self.psi nn.Parameter(torch.tensor(0.12)) # Effect of prey abundance on intermediate predator growth
self . phi nn. Parameter (torch.tensor(0.03))  # Nonlinear interaction term for prey and intermediate predators
self.xi = nn.Parameter(torch.tensor (0.03)) # Nonlinear interaction term for intermediate predators and top predators

def forward(self, prey_population: torch.Tensor, intermediate_population: torch.Tensor, top_predators_population: torch.Tensor)
—> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
# Prey growth limited by carrying capacity
d_prey_population__dt = self.alpha = prey_population * (I — prey_population / self.kappa) — self.beta * prey_population =
intermediate_population
# Intermediate predator growth with nonlinear interaction term

d_intermediate_population__dt = self.gamma * intermediate_population % (I - intermediate_population / self.sigma) * (self.
psi # prey_population) — self.delta # intermediate_population # top_predators_population — self.phi # prey_population
##2 % intermediate_population

# Top predator growth with effect of intermediate predators and nonlinear interaction term

d_top_predators_population__dt = self.eta % top_predators_population % (1 - top_predators_population / self.rho) - self.
theta * top_predators_population * intermediate_population — self.xi * intermediate_population=+2 =

top_predators_population
return (d_prey_population__dt, d_intermediate_population__dt, d_top_predators_population__dt)

optimized_parameters = { alpha ’: 0.04999999329447746, ’beta’: 0.23999999463558197, ‘gamma’: 0.239999920129776, delta ":
0.13999998569488525, “eta ’: 0.05000030994415283, ’theta ': -0.1299992799758911, ’kappa’': 2.2099997997283936, ’'sigma’:
1.3900007009506226, “rho’: 0.6900002956390381, ‘omega’': 0.019999999552965164, 'psi’: 0.12999995052814484, ’phi :
0.020000003278255463, "xi': 0.020000090822577477}

H Future Work

The Data-Driven Discovery (D3) framework demonstrates initial success in generating interpretable
pharmacokinetic (PK) models using an LLM-based iterative process. However, future work can
expand and deepen the D3 approach in multiple directions:

1. Tree-Based and Graph-Based Generation Strategies: Extending D3 with tree-based
generation strategies, such as Tree of Thought [Yao et al., 2024] or Graph of Thought [Besta
et al., 2024], could provide a more structured exploration of model space. Such approaches
could enhance D3’s capacity to generate increasingly complex models over time, aligning
with a growing need for adaptive modeling frameworks that account for intricate biological
dynamics and drug interactions.

2. Robustness Through Retrieval-Augmented Generation: Incorporating Retrieval-
Augmented Generation (RAG) techniques could bolster D3’s robustness by enabling on-
demand access to external domain knowledge. RAG techniques [Lewis et al., 2020] can
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serve as a mechanism to manage LLM hallucinations and ensure that model suggestions re-
flect state-of-the-art pharmacological principles. This capability would minimize reliance on
the initial system descriptions and provide more flexible, context-driven model adjustments.

3. Adaptive Feature Acquisition: The current D3 implementation assumes that newly ac-
quired features apply uniformly to all individuals in a dataset, which may not be feasible
in practice due to data variability and differing acquisition costs across individuals. Future
iterations could focus on more nuanced feature acquisition strategies that adapt to individual
data constraints, potentially exploring patient-specific feature prioritization algorithms to
reduce acquisition costs in clinical settings.

4. Enhanced Tool Use by LLM: While D3 utilizes GPT-4 for model discovery, integrating
more advanced tool usage capabilities could further enhance its performance. Developing
mechanisms for LLMs to independently call and evaluate external computational tools
could extend D3’s evaluation capacity, leading to richer and more rigorous model feedback,
particularly for complex, multi-stage PK processes.

5. Extending Applications to Multi-Phase PK/PD Studies: Expanding D3’s applicability
to multi-phase PK/PD studies, such as those involving dynamic drug interaction effects or
multi-compartmental absorption models, could broaden the impact of the framework. These
applications would push D3 toward modeling scenarios with temporal and interventional
complexity, where capturing delayed and interactive effects becomes paramount.

These advancements would not only strengthen D3’s theoretical underpinnings but also enhance its
practical applicability in clinical pharmacology, potentially contributing to improved drug efficacy
and safety.

I Additional Sections

I.1 Cost Function Considerations

In our feature acquisition process, the cost function [(h;) plays a central role in determining the
feasibility of acquiring new features. This function captures the computational, logistical, and
practical costs associated with acquiring additional data for model refinement, thereby guiding the
D3 framework to make efficient, data-driven decisions.

While our primary focus has been on computational costs and feature utility, it is important to
recognize that feature acquisition often involves tradeoffs, particularly when biomarkers or other data
types are costly, time-consuming, or invasive to obtain. We outline several key considerations and
potential tradeoffs below:

1. Cost-Benefit Analysis of Biomarker Acquisition: In pharmacokinetic (PK) modeling,
biomarkers can provide high-impact data that significantly improve model accuracy. How-
ever, some biomarkers (e.g., genetic markers, certain plasma proteins) are costly or require
invasive procedures. Thus, the acquisition cost [(h;) should reflect not only monetary or
computational expenses but also potential patient discomfort and clinical feasibility. This
factor can be critical when evaluating the value of acquiring such features in real-world
applications.

2. Marginal Utility and Redundancy Avoidance: Including a cost function allows D3 to
weigh the marginal utility of new features against their acquisition cost, thereby avoiding
redundancy. For instance, if a biomarker’s expected contribution to model improvement
is low, D3 can prioritize less costly or more readily available features, optimizing overall
efficiency. This approach minimizes unnecessary data collection, thus reducing the risk of
overfitting and keeping model complexity manageable.

3. Scalability of Feature Acquisition: In large-scale clinical studies, acquiring high-cost
features across a population sample may be prohibitive. D3’s cost function can be adjusted
to prioritize scalable data collection strategies by favoring features with lower per-patient
costs or those that require fewer resources to standardize across study participants. This
balance enables broader, real-world applicability while still allowing D3 to leverage high-
value data where feasible.

https://doi.org/10.52202/079017-3053 96358



4. Dynamic Cost Function Adaptation: As D3 iterates and learns from acquired features,
the cost function [(h;) can dynamically adapt based on the observed impact of previous
acquisitions. For example, if certain features consistently yield low model improvement
relative to cost, the function can adjust to deprioritize similar features. Such dynamic
adaptation helps D3 achieve a more nuanced balance between cost and utility as it iteratively
refines the model.

These cost function considerations are integral to D3’s feature acquisition approach, supporting a
more balanced model refinement process that aligns predictive accuracy with practical feasibility.
Future iterations of D3 could further incorporate adaptive mechanisms to fine-tune these tradeoffs,
potentially optimizing feature acquisition across varying clinical and resource settings.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Yes, in this paper we introduce the data-driven discovery (D3) framework,
verify it experimentally against existing modeling ML methods, and verify the new novel
discovered PK model on Wafarin with pharmacometrician experts. We detail the framework
in Section 3, provide full implementation details in Appendix F, provide the experimental
results to verify our core claims of discovering well-fitting models in Section 6, and our
discovered Wafarin PK model as a case study in Section 6.1. We further discuss key
assumptions of the method in Section 3 and outline important limitations in Section 7, with
the “limitations & future work section”.

Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We have a dedicated limitations section in Section 7, titled “limitations &
future work section”. We also discuss the key assumptions of the method when we introduce
it, such as in Section 3, for example in Section 3.3 we state the assumptions made, and how
relevant they are in clinical practice, where D3 is designed to work. We also discuss the
computational efficiency of D3 in Appendix F.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

https://doi.org/10.52202/079017-3053 96360



* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper does not include any theoretical results, therefore this question is
not applicable.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: To ensure thorough reproducibility, in addition to D3’s description within
the main paper (Section 3), we include full implementation details of D3 in Appendix F.
To fully reproduce the experiments we detail the exact datasets, and how they were pre-
processed or generated in Appendix B, how the respective evaluation metrics were computed
in Appendix C, along with the corresponding full implementation details of the implemented
benchmark baseline methods in Appendix E.

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
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(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Code is available at  https://github.com/samholt/
DataDrivenDiscovery. Regarding each dataset, we provide full implementation
details to either re-recreate the dataset or links to exactly where the dataset comes from,
this is all detailed in the extensive Appendix B. To reproduce the experimental results
we provide detailed implementations of D3 in Appendix F, the evaluation metrics in
Appendix C and the baseline implementation details in Appendix E.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide this full information within the dataset implementation section in
Appendix B, evaluation section Appendix C, and the training details for each method in the
respective implementation section of Appendices E and F.

Guidelines:

* The answer NA means that the paper does not include experiments.
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* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We accompany results with error bars in the main results, as shown in Section 6.
We explain how these are computed, and that they performed over random seed runs, which is
provided in the main experimental results section, Section 6, and expanded in the evaluation
metrics section, Appendix C.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

e For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide full details of the compute used in Appendix C, and further detail
the LLM used in Appendix F and for the respective baselines in Appendix E.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
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Answer: [Yes]

Justification: Yes, and we provide an explicit ethical consideration discussion section in
Section 7.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

« If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Yes, and we provide an explicit broader impact discussion section in Section 7.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: It is not applicable, however, we attempt to cover such discussions in the
“Broader Impact and Ethical Considerations” section in Section 7.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.
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* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: Yes we provide full creditiation to the original creators of the synthetic datasets,

and or provide the links directly alongside licenses for the public datasets used within the
paper, and detail all of this in Appendix B.

Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
13. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: We do not release any new assets, therefore this is not applicable.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: We do not perform any crowdsourcing, or research directly with human
subjects, therefore this is not applicable.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This is not applicable.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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