© ® N o g » 0w N =

20
21
22
23
24
25
26
27

28
29
30
31

LucidAction: A Hierarchical and Multi-model Dataset
for Comprehensive Action Quality Assessment

Linfeng Dong'?, Wei Wang?, Yu Qiao?, and Xiao Sun?

!Zhejiang University
2Shanghai Artificial Intelligence Laboratory
{donglinfeng, wangwei, sunxiao}@pjlab.org.cn, yu.giao@siat.ac.cn

Abstract

Action Quality Assessment (AQA) research confronts formidable obstacles due to
limited, mono-modal datasets sourced from one-shot competitions, which hinder
the generalizability and comprehensiveness of AQA models. To address these
limitations, we present LucidAction, the first systematically collected multi-view
AQA dataset structured on curriculum learning principles. LucidAction features
a three-tier hierarchical structure, encompassing eight diverse sports events with
four curriculum levels, facilitating sequential skill mastery and supporting a wide
range of athletic abilities. The dataset encompasses multi-modal data, including
multi-view RGB video, 2D and 3D pose sequences, enhancing the richness of
information available for analysis. Leveraging a high-precision multi-view Motion
Capture (MoCap) system ensures precise capture of complex movements. Meticu-
lously annotated data, incorporating detailed penalties from professional gymnasts,
ensures the establishment of robust and comprehensive ground truth annotations.
Experimental evaluations employing diverse contrastive regression baselines on
LucidAction elucidate the dataset’s complexities. Through ablation studies, we
investigate the advantages conferred by multi-modal data and fine-grained annota-
tions, offering insights into improving AQA performance. The data and code will
be openly released to support advancements in the Al sports field.

1 Introduction

The comprehensive evaluation of human actions, capturing both their strengths and weaknesses as well
as the quality of their execution, finds extensive applicability in various fields. This is exemplified by
Al-powered fitness applications that deliver customized workout regimes [[7, 139} [12} 22} 138]]. Notably,
the 2020 Tokyo Olympics pioneered the use of Al in gymnastics scoring, enhancing both fairness and
precision in evaluations [[1]. Additionally, motion gaming systems employ sophisticated assessments
of user actions to create immersive and interactive experiences [18, 21, 27]. The influence of this
task spans diverse industries, including education, sports, and entertainment. As technological
advancements continue, the impact of such evaluations is expected to grow significantly.

Prior research [35132,1311|33}137] has raised the task of Action Quality Assessment (AQA) in tackling
the issue of human action evaluation, aiming to regress a definitive quality score for the performed
action directly. Unlike action recognition [17], which assumes consistency within the same action
type, AQA is inherently more challenging as it must discern subtle variations in action execution
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quality, including swiftness, intensity, and timing, among performers. Additionally, AQA lacks clearly
defined quality metrics and requires expertise for evaluation. Given these formidable challenges, the
quantity, professionalism, and diversity of high-quality AQA datasets significantly lag behind those
of action recognition datasets, severely impeding the advancement of AQA research.
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Figure 1: An overview of the LucidAction dataset. LucidAction adopts a three-tier hierarchical
structure of Sport Events, a first-introduced concept "Curriculum Levels" and Actions. It provides a
diverse range of actions and detailed penalty-based score annotation to seek better comprehensibility
in action quality assessment.

To facilitate this research, a few datasets [33 31} [33] — gathered primarily from web sources —
have been introduced. These datasets predominantly consist of video footage of individual sports
competitions like diving or skating, sourced from various sports television broadcasting, such as
the Olympic Games, and paired with the corresponding judges’ scores. Unfortunately, due to the
nature of the data sources, the AQA models trained on these datasets are limited to application in a
’one-shot examination’ that represents the highest level of a sport. As a result, they cannot be widely
utilized by general enthusiasts and learners, significantly narrowing their scope and frequency of
use. Moreover, mono-modal input of video captured by a single moving camera and the
absence of a detailed scoring process for the final score severely curtail the model’s adaptability and
comprehensibility in diverse data settings.

Humans and animals learn much better when the examples are not randomly presented but organized
in a meaningful order which illustrates gradually more concepts, and gradually more complex ones.
— Curriculum Learning, Yoshua Bengio et.al.

To surmount the limitations of current action assessment research, we introduce LucidAction, the first
AQA dataset structured according to the principles of curriculum learning. LucidAction introduces a
curriculum-based approach to organize data, aligning with the natural learning progressions observed
in sports training. It comprises a three-tier hierarchical structure, including eight diverse sports
events and four difficulty levels for each event. This hierarchical structure facilitates sequential
skill acquisition and accommodates a wide spectrum of athletic abilities. Additionally, the dataset
harnesses a high-precision multi-view Motion Capture (MoCap) system to capture complex move-
ments accurately. It integrates 2D pose estimation and multi-view triangulation to acquire precise 3D
pose annotations. Furthermore, the dataset includes annotations by professional gymnasts, ensuring
the provision of robust and comprehensive ground truth data for AQA models. Through rigorous
experimentation, we investigate the effectiveness of multi-modal inputs and fine-grained hierar-
chical annotations in enhancing AQA performance, thereby offering insights into methodological
advancements for the field.

https://doi.org/10.52202/079017-3058 96469



2 2 Related Work

63 In this section, we provide a concise overview of previous AQA datasets and methodologies.

Table 1: Comparison of LucidAction and existing action quality assessment datasets. #Sport is
number of the sport event in dataset, e.g. diving, figure skating, etc. In Anno.Type, S indicates
coarse-grained action score, PS indicates progress-aware penalty-based score annotation. In Modality,
V, T, A, P indicate video, text, audio, pose.

Dataset Year | #Sport Source Anno.Type Modality | #Sample #Level #Action #View
MIT Dive&Skate [35] 2014 2 web S \Y 309 1 - 1
UNLV Dive& Valut [32] 2017 2 web S \Y 546 1 - 1
AQA-7 [31] 2019 7 web S \Y 1189 1 - 1
MTL-AQA [33] 2019 1 web S VvV, T 1412 1 58 1
FisV [45] 2019 1 web S \% 500 1 - 1
FSD-10 [24] 2020 1 web S \% 1484 1 - 1
Rhythmic Gymnastics [S1] | 2020 4 web S v 1000 1 - 1
FR-FS [41] 2021 1 web S \% 417 1 - 1
FS1000 [42] 2022 1 web S V, A 1604 1 - 1
FineDiving [47] 2022 1 web S \% 3000 1 52 1
OlympicFS [11] 2023 1 web S VvV, T 200 1 - 1
RFSJ [23] 2023 1 web S \Y 1304 1 - 1
LucidAction (Ours) 2024 8 mocap S, PS V,P 6702 4 259 8

64 Action Quality Assessment Datasets. Existing AQA datasets cover various domains like diving [35}
65 32,1311 1331 147]], figure skating [32, 45 411 [25] 24} |42| [11]], gymnastic [32} |51]] and other general
e6  sports [4][34,53]. As shown in Table[I] previous datasets typically provide RGB videos with video-
67 level scores from multiple judges. Despite the human-centric nature of AQA, none incorporate pose
68 data. Only a few AQA approaches [35, 30, 29] consider extracting 2D pose feature from mono-view
69 video. It is likely due to the difficulty of reliable pose estimation from fast motions in mono-view
70 video captured by moving camera. Another key attribute of AQA datasets is the annotation of
71 action score given by experts under guideline of sport-specific scoring rules. Earlier datasets such
72 as AQA-7 [31]] contained only overall scores and sport classes, while MTL-AQA [33]] provide
73 fine-grained action type and transcribed video commentary as language modality. FineDiving [47]]
74 introduced a two-level annotation with action classes and fine-grained subclasses to capture action
75 procedures, but without procedure-aware scores. FS1000 [42] expanded annotations along five quality
76 aspects. A key challenge has been the laborious collection and annotation of such fine-grained data,
77 requiring collaboration of players, coaches, and referees. Thus, existing datasets focus on top athletes
78 in competitions from web sources, neglecting the skill development processes from practice. In
79 summary, current AQA datasets are limited by: (1) lacking pose modality, (2) coarse annotations
go without step-wise scores, (3) a focus on elite rather than progressive skill acquisition. Our proposed
g1 LucidAction dataset is the first to provide both RGB and 3D pose, with richer annotations and
g2 technical skills than previous datasets.

83 Action Quality Assessment. Currently, AQA approaches mainly follow three formulations: 1) Direct
84 regression formulation supervised by score is widely used in sports AQA approach [35(132,143} 30,31}
85 15112911331 (34} 145,137,141} 44]. Some approaches perform segmentation [52} 26] or localization [[L5}
s [13]] to generate subaction sequence and predict subscore for each subaction. Recent works incorporate
g7 auxiliary input, including music [42], language commentary [11]], group formation[353] to improve
ss their ability in AQA. 2) Pairwise ranking is adopted in daily-life AQA [9, (10} [20]] or specific sport
g9 scenario [4] where precise executing score of action is not available. These approaches mainly focus
90 on overall ranking, limiting their application when requiring quantitative action analysis. 3) Pairwise
91 regression formulation [19] 25] is first proposed by Siamese Network [[14] and CoRe [50] to learn
92 the relative score by pair-wise comparison. TPT [3]] adopt learnable queries as positional encoding
93 to decode action sequences into a fixed number of temporal-aware part representations. TSA [47]]
94 explicitly segment action sequence into consecutive steps and apply procedure-aware cross-attention
95 between target and exemplar corresponding steps.
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Figure 2: Camera layout and corresponding frames for event MFE, please refer to the supplementary
materials for camera layouts of other events.

3 The LucidAction Dataset

The acquisition and refinement of specific sporting skills by individuals constitute a multifaceted
process. Typically, it entails initial engagement in specialized exercises aimed at fostering fundamental
abilities, which are systematically deconstructed into simpler components. Building upon this
foundational framework, further progress is achieved through the adept and strategic amalgamation
of these movements to accomplish more intricate objectives in sports competitions.

In order to closely mirror this natural progression of skill acquisition observed in curriculum learning,
we have structured our dataset based on the official teaching curriculum outlined in the Regulations
on the Movement and Scoring Standards of Chinese Gymnastics Sports Levels (Standards for brevity),
as promulgated by the Chinese Gymnastics Association. The adoption of the Standards is particularly
advantageous due to its widespread utilization in local sports instruction and grading examinations,
facilitating the organization of proficient athletes and instructors and the subsequent collection of
corresponding sports and assessment data.

As depicted in Figure[T] we introduce a three-tier hierarchical structure. Notably, for the first time, we
incorporate the concept of sports "Curriculum Levels" into our dataset. (1) Sports Event. We offer the
most diverse range of sports events to date - 8 in total, namely men’s/women’s floor exercise (MFE,
WEE), vault MVT, WVT), men’s parallel bars (MPB), horizontal bars (MHB), women’s uneven
bar (WUB), balance beam (WBB). (2) Curriculum Level. Each sports event within our dataset
encompasses four distinct levels of difficulty, ranging from easy to challenging. This pioneering
inclusion of difficulty levels within an AQA dataset establishes the cornerstone of our proposed
LucidAction benchmark. In educational contexts, learners typically progress through these levels
sequentially, demonstrating mastery and passing assessments at each stage before advancing. This
methodology not only furnishes a rich, multi-tiered dataset conducive to AQA model training but
also accommodates a diverse spectrum of athletic abilities. (3) Actions. Within each curriculum level,
a collection of representative actions is delineated, with each action type constituting a movement
routine lasting an average of 8.6 seconds, serving as the finest-grained unit of analysis. On average,
each curriculum level comprises 65 representative actions, culminating in a total of 259 actions across
all levels and events.

3.1 Multi-View Motion Capture and Multimodality

We deploy a high-precision Motion Capture (MoCap) system. The cameras used in this system are
DIJI Osmo Action 3 and work in the mode of 4096 x4096 (4K) resolution and 60fps. Temporal and
spatial calibrations between multiple cameras are performed using standard tools 28], 2]].

Multi-View and High Spatiotemporal Resolution. For gymnastics events, a variety of poses
including lying, crouching, rolling up, and rapid jumping are performed, involving significant self-
occlusion and swift movements. These complex scenarios bring considerable challenges in accurately
inferring 3D poses from conventional single-view RGB or depth sensors, greatly impacting AQA
performance. To tackle this issue, we established the first multi-view (8 views in total) MoCap system
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Figure 3: Illustration of annotation pipeline and system layout.

133 with high-quality (4K, 60fps) video output tailored for the AQA task. Our experiments confirm
134 the significant performance enhancement brought by leveraging multi-view video information for
135 the AQA task. Figure [2] illustrates the camera layout and corresponding multi-view frames of
136 Men’s/Women'’s Floor Exercise in our LucidAction Dataset. Illustrations of other sport events can
137 be found in supplementary materials. The release of the dataset obtained consent from all athletes
138 appearing in the videos. We employ facial anonymization algorithm deface [48] to protect the
139 sensitive identity information of the athletes.

140  Multi-Modality for Diverse Applications. We attain high-precision 3D pose annotations by multi-
141 view 2D pose estimation and 3D pose reconstruction. We used a hybrid 2D pose estimation approach
142 involving both algorithms and human review in three stages: (1) We employed RTMpose [16]]
143 pretrained on 7 public datasets to estimate 2D poses from single-view videos followed by human
144 quality checks. In this stage, estimated 2D on some action categories may fail human review due to
145  their rare appearance in the pretraining datasets; (2) We manually annotated 2D poses of these failed
146 actions, fine-tuned the RTMpose model, and re-estimated the 2D poses, which were then reviewed
147 again; (3) Any 2D poses that still failed the review were manually annotated. This approach balances
148 automated efficiency with human validation to ensure accurate 2D pose groundtruth. For 3D pose
149 estimation, we reconstructed 3D poses using multi-view 2D poses as groundtruth, a common method
150 in creating 3D pose datasets [36} 23] 15, 18]]. Reconstructed 3D pose from multi-view 2D are accepted
151 as groundtruth in tasks like human action recognition [40]] and motion prediction [46]. Follow these
152 works, we assess that the accuracy of our 3D poses reconstruction pipeline is sufficient for the AQA
153 task. To gauge the accuracy of the automatic pose annotation pipeline, we manually annotate a subset
154 of data. In the experiments, we thoroughly compare the performance of AQA models across different
155 modalities.

156 3.2 Data Annotation

157 We provide professional, comprehensive and reliable ground truth annotations in the LucidAction
158 dataset for the action quality assessment task.

159 Hierarchical Actions Construction We employ a multi-stage strategy to gather extensive hierarchical
160 action labels based on inherent levels (Sports Event, Curriculum Level, and Action). The annotation
161 process is depicted in Figure[3a] Raw videos are systematically captured according to predefined
162 standards, with planned recording sessions for sports events and curriculum levels. As a result, each
163 raw video inherently includes annotations for the first two hierarchies at the time of recording. When
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Figure 4: The statistics of action samples, scores and penalties.

dealing with raw videos containing multiple actions, ten annotators first segment them into slices
containing only one action. Subsequently, they assign the action category of each slice based on the
corresponding sports event and curriculum level.

Professionalism and Robustness We enlist the expertise of professional gymnasts, referees, and
coaches to aid us in action sequences collection and score annotation. We conducted a five-month
data capturing during professional gymnastics training courses organized according to the Standards
at a sports university. To ensure the annotation quality and reduce potential subjective bias, all
annotators have taken classes from referees on how to score action according to the Standards. To
further mitigate bias, each action segment is assessed by at least five annotators repeatedly. To avoid
neglecting errors due to view occlusion, action footage from all views are provided to the annotators.

Detailed Penalty Items Annotation. Previous efforts solely yielded a final scoring outcome without
disclosing the intricacies of the scoring process, thus deviating from the authentic assessment proce-
dure and compromising result comprehensibility. In a pioneering move, we provide comprehensive
annotations detailing the scoring process. For each action, the execution quality is evaluated, accord-
ing to the Standards, by identifying up to 5 specific penalty items, each indicates a possible execution
error. For each penalty item, we assess whether the corresponding error occurs in the action, and
based on the severity of the error from light to heavy, assign a penalty score from {0.1, 0.3, 0.5, 1.0}.
The statistics of score and penalty items are shown in Figure 4]

4 Experiment

In this section, we will demonstrate how LucidAction will substantiate the objectives of comprehen-
sive AQA through three key dimensions: contrastive regression workflow, multi-model input and
fine-grained hierarchical annotations.

4.1 Contrastive Regression Workflow

Fundamentally, the assessment of an action must considers the context of a particular sports scenario,
as it requires attention to sports-specific goals and metrics. For example, although both activities
entail running, the technical standards for a 100-meter sprint and a football match can diverge
significantly. Therefore, AQA inherently demands an in-context mechanism employing exemplars
for the contextual calibration of assessments, eschewing an absolute valuation of the action.

We embrace the recently established pair-wise contrastive regression approaches Siamese Net-
work [[14]], CoRe [50], TSA [47] and TPT [3]] as main baseline architecture, concisely encapsulated
within the framework illustrated in Figure[5] This architecture consists of four interconnected mod-
ules, (1) a backbone B to encode input signals into deep network features; (2) an action decoder A to
extract key motion features across temporal dimension; (3) a pair encoder P to facilitate interactions
between targets and exemplars for contrastive purposes; (4) a score regressor S to map interaction
features into relative scores. Given a pairwise target X and exemplar Z, the the contrastive regression
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199 problem can be represented as:
Jx = S(P(A(B(X)) & A(B(2))) | ©) +yz M

200 where O indicates the learnable parameters, 3y is the predicted score of target X, y~ is the ground-
201 truth score of exemplar Z, & denotes the operation to fuse the target and exemplar’s representations
202 after the action decoder. In experiments we use concatenation following previous work TPT [3]].

203 We compare the results of contrastive regression baselines and a direct regression approach USDL[37]
204 on our newly proposed benchmark LucidAction. We also list the baseline performance on three
205 publicly available datasets AQA-7 [31], MTL-AQA [33]], FineDiving [47] as reference (see the
206 supplement for more details on these datasets).
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Figure 5: An overview of contrastive regressive workflow with additional penalty heads.

207 Implementation Details. We adopt I3D pretrained on Kinetics [6] as video backbone for all
208 baselines. TPT [3] uses a 2-layer transformer block as action decoder, a 2-layer MLP as pair encoder
209 and another 2-layer MLP as score regressor. We extract 103 frames for each video or pose sequence
210 and stack them with interval 5 as 20 clips, each contains 8 frames. For More implementation details
211 on other baselines, data augmentation, learning rate, training epoch, optimization, inference, and so
212 on, please refer to the supplementary materials.

213 Evaluation Metrics. To facilitate comparison with previous work in AQA [35} 31} 137, 1411 i47],
214 we employ two metrics in our experiments: Spearman’s rank correlation (p) and relative L2
215 distance(R-¢2). Spearman’s rank correlation assesses the rank correlation between predictions and
216 ground-truth scores, The relative L2 distance focuses on the numerical scoring difference between
217 predictions and ground-truth scores.

Table 2: Baseline performance comparison on LucidAction and former AQA datasets.

Method AQA-7 MTL-AQA FineDiving LucidAction

pT RGI00)T | pT  RGXI00) 1| pT  RG(x10001 | pT  RE(x100) 7
USDLJ[37] | 0.810 2.57 0.923 0.468 0.891 0.382 0.540 0.708
CoRe [50] | 0.840 2.12 0.951 0.260 0.906 0.362 0.625 0.685
TSA [47] | 0.848 2.07 0.947 0.284 0.920 0.342 0.643 0.690
TPT [3] 0.872 1.68 0.960 0.238 0.945 0.218 0.701 0.624

21e Baseline Model Results. The baseline performance on LucidAction and the established dataset,
219 namely AQA-7, MTL-AQA and FineDiving, is summarized in Table [2] Contrastive regression
220 methods significantly outperforms direct regression across all four datasets. On LucidAction, the best-
221 performing TPT model improves p that evaluates model’s relative scoring ability by 30% and R-¢ that
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evaluates the absolute scoring ability by 12% compared to USDL. Contrastive regression approaches
empower models to focus on visual disparities that frequently encapsulate crucial scoring information
between target and exemplar, thereby effectively filtering out extraneous noise such as background
interference and attire variation. Furthermore, the contrastive regression approach enhances data
utilization by furnishing multiple exemplars for a single target action, thereby generating diverse
paired inputs. This diversification enriches the evaluation process, augmenting the robustness of
the assessment results. Given the superior performance achieved by TPT across all four datasets as
delineated in Table Table|2} we adopt TPT variants for subsequent ablation studies.

4.2 Multi-model Input

We employ unified network architectures, loss functions, and training methods across different data
modalities to ensure a fair comparison. The only difference lies in using ST-GCN [49] pre-trained on
NTU RGB+DI[36]] as backbone for pose sequence input, as illustrated in Figure 3]

Multi-view RGB Video Data. To investigate the potential benefits of incorporating multi-view RGB
videos, we conduct two multi-view stategies. Batch strategy puts different views in batch dimension
as separate samples, while the channel strategy places different views on channel dimension within
one sample. We also investigate the effects of channel fuse position (Pos) and operation (Opt), namely
concatenation (Cat) and averaging (Avg). For experimental settings, multi-view test setting (Mv.Test)
utilizes multi-view inputs during both training and testing phases, while the single-view test setting
(Sv.Test) employs multi-view input only during training and duplicates single-view input during
testing to simulate real-world scenarios where multi-view data may not be available. For further
model details, please refer to the supplementary materials.

Table 3: Ablation studies of multi-model inputs.

(a) Multi-view ablation. (b) Pose modality ablation. When using dual-
stream, the feature extracted by I3D and ST-GCN

Strategy | Pos | Opt | Mv.Test | Sv.Test are concatenated before action decoder.
Base - - - 0.701
Batch - - - 0.730 Data Modality | p 1 | R-{3(x100) |
g | ¢4t 0.736 0.729 RGB 0.701 0.624
/évg 8% 8% Pose2d 0.605 0.898
at . .
Channel | AP | avg | 0737 | 0728 ;‘223 ‘fD y 8‘?32 8'22(3)
pp | Cat | 0759 [ 0.747 +rose : :
Avg | 0713 | 0703
SR [ Avg | 0732 | 0.730

As depicted in Table [3al introducing multi-view on batch to increase training data results in a 4.1%
improvement from 0.701 to 0.730. Multi-view input on channel yields a slightly higher performance
than batch in Mv.Test and comparable performance in Sv.Test, except for concatenation after the Pair
Encoder that gains a 6.6% improvement from 0.701 to 0.747. This enhancement can be attributed to
the capability of capturing errors obscured in a single view and leveraging implicit 3D knowledge,
including depth information and shared objects across two synchronized views. Concatenation
outperforms averaging in most positions since averaging causes information loss.

Human Pose Data We explore the impact of using different input modalities—2D human body
pose, 3D human body pose, and RGB-pose dual-stream—on the AQA task. We observe in Table [3b|
that using only 2D poses reduces the model’s performance on correlation p from 0.701 to 0.605,
using only 3D poses yields a correlation performance of 0.689, slightly lower than RGB input, but
with an improved R-{5 from 0.624 to 0.593. The decrease may stem from the abstract nature of
keypoint data, leading to a loss of crucial information for action assessment. Conversely, combining
dual-stream inputs with RGB and 3D poses results in a 6.4% improvement on p from 0.701 to 0.746.
One potential explanation is that human pose data is more conducive to the model in comparing key
kinematic properties of the target and exemplar, such as keypoint movement velocity, displacement
distance, angles, etc.
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Comparison of different learning strategies

fono-level

i
0zs

rriculum

#Penalty Head | pT | R-(2(x100) ]
0 0.701 0.624
1 0.733 0.539
2 0.741 0.514
3 0.735 0.501

evel 4 Level 5 evel 6
Test Curriculum Level

Table 4: Ablation study of the number of penalty
Figure 6: Comparison of different learn- items used as additional supervision only during
ing strategies. training.

260 4.3 Fine-grained Hierarchical Annotations

261 LucidAction is presented with a curriculum hierarchy and fine-grained penalty labels for scoring. In
262 this section, we study whether these annotations help model’s understanding of action quality.

263 Curriculum Level. We investigate the impact of curriculum level on the AQA task through two
264 training methods: 1) Mixed learning, which trains on a shuffled LucidAction dataset with all levels;
265 and 2) Curriculum learning, which organizes training data by level order, gradually introducing
266 more difficult actions and complex quality concepts. Additionally, we compare models trained on
267 individual levels. Analysis presented in Figure[6demonstrates that models trained with mixed levels
268 outperform those trained on a single level for any test level. This is particularly evident for level 5
269 actions, where fewer samples are available, indicating the model’s ability to learn universal action
270 quality concepts across different levels. Moreover, when utilizing the same volume of training data,
271 curriculum learning surpasses mixed learning across all levels. This validates our hypothesis that the
272 gradual progression of curriculum learning facilitates the development of complex quality concepts
273 upon simpler ones learned earlier.

274 Detailed Penalty Items. The inclusion of unique penalty item annotations in LucidAction enhances
275 the comprehensiveness and reliability of score annotations. In our experiments, we assess the benefits
276 of incorporating this supervision. As illustrated in Figure[5] we introduce a plug-and-play multi-head
277 network, each head corresponds to a binary classification auxiliary tasks, identifying whether the
278 execution errors specified by a penalty item occur (penalty value > 0). Specifically, we focus on
279 the three most frequent penalties N12, N17 and N18 in Figure Results in Table [d]indicate that
280 models augmented with penalty heads achieve notable improvements, with correlation (p) increasing
281 up to 0.741 (+5.7%) and R-¢5 up to 0.501 (+20%). This suggests that fine-grained penalty labels
282 enhance the model’s understanding of action quality. Additionally, the adoption of penalty-based
283 annotation enables intentional collection of penalty-free samples for each action category, ensuring
284 the availability of perfect exemplars. If no perfect action is captured during regular training sessions,
285 specialized gymnasts will perform additional recordings to ensure each action category includes a
286 perfect sample. Perfect exemplars are challenging to obtain in previous datasets [31}[33,/47] collected
287 from one-shot public competitions. However, in our work, if no perfect action is captured during
288 regular training sessions, specialized gymnasts will perform additional recordings to ensure each
289 action category includes a perfect sample. Further ablation experiments regarding exemplar quality
290 and quantity are presented in the supplementary materials.

201 5 Limitations and Other Applications

292 Limitations. LucidAction is gathered within controlled environments utilizing a high-precision multi-
293 view Motion Capture (MoCap) system. However, it may not fully replicate real-world conditions
294 where variables such as lighting, background, and other environmental factors can significantly vary.
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Despite annotations being provided by professional gymnasts, subjective biases during scoring may
still exist. Ensuring consistent and objective annotations remains a challenge.

Applications. LucidAction offers distinct advantages for motion generation, particularly due to
the structured and standardized nature of gymnastics movements, which reduces ambiguities often
encountered in daily actions. LucidAction can be utilized to develop educational tools and simulations
that teach gymnastics techniques, providing proper form and execution, aiding in skill development.

6 Conclusion

In this paper, we introduce LucidAction, a novel dataset designed for Action Quality Assess-
ment (AQA) featuring a hierarchical structure with eight diverse sports events and four curriculum
levels. Leveraging a high-precision multi-view Motion Capture (MoCap) system, LucidAction
offers rich and comprehensive data including multi-view RGB video, 2D and 3D pose for action
assessment. Through experimentation with contrastive regression baselines on LucidAction, we
have demonstrated the efficacy of multi-modal input and fine-grained annotations in enhancing AQA
tasks. We anticipate that the LucidAction dataset, alongside our experimental findings, will serve as
valuable resources for researchers and practitioners within the field of action quality assessment.
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