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Abstract

Action Quality Assessment (AQA) research confronts formidable obstacles due to1

limited, mono-modal datasets sourced from one-shot competitions, which hinder2

the generalizability and comprehensiveness of AQA models. To address these3

limitations, we present LucidAction, the first systematically collected multi-view4

AQA dataset structured on curriculum learning principles. LucidAction features5

a three-tier hierarchical structure, encompassing eight diverse sports events with6

four curriculum levels, facilitating sequential skill mastery and supporting a wide7

range of athletic abilities. The dataset encompasses multi-modal data, including8

multi-view RGB video, 2D and 3D pose sequences, enhancing the richness of9

information available for analysis. Leveraging a high-precision multi-view Motion10

Capture (MoCap) system ensures precise capture of complex movements. Meticu-11

lously annotated data, incorporating detailed penalties from professional gymnasts,12

ensures the establishment of robust and comprehensive ground truth annotations.13

Experimental evaluations employing diverse contrastive regression baselines on14

LucidAction elucidate the dataset’s complexities. Through ablation studies, we15

investigate the advantages conferred by multi-modal data and fine-grained annota-16

tions, offering insights into improving AQA performance. The data and code will17

be openly released to support advancements in the AI sports field.18

1 Introduction19

The comprehensive evaluation of human actions, capturing both their strengths and weaknesses as well20

as the quality of their execution, finds extensive applicability in various fields. This is exemplified by21

AI-powered fitness applications that deliver customized workout regimes [7, 39, 12, 22, 38]. Notably,22

the 2020 Tokyo Olympics pioneered the use of AI in gymnastics scoring, enhancing both fairness and23

precision in evaluations [1]. Additionally, motion gaming systems employ sophisticated assessments24

of user actions to create immersive and interactive experiences [18, 21, 27]. The influence of this25

task spans diverse industries, including education, sports, and entertainment. As technological26

advancements continue, the impact of such evaluations is expected to grow significantly.27

Prior research [35, 32, 31, 33, 37] has raised the task of Action Quality Assessment (AQA) in tackling28

the issue of human action evaluation, aiming to regress a definitive quality score for the performed29

action directly. Unlike action recognition [17], which assumes consistency within the same action30

type, AQA is inherently more challenging as it must discern subtle variations in action execution31

Submitted to the 38th Conference on Neural Information Processing Systems (NeurIPS 2024) Track on Datasets
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quality, including swiftness, intensity, and timing, among performers. Additionally, AQA lacks clearly32

defined quality metrics and requires expertise for evaluation. Given these formidable challenges, the33

quantity, professionalism, and diversity of high-quality AQA datasets significantly lag behind those34

of action recognition datasets, severely impeding the advancement of AQA research.35

Figure 1: An overview of the LucidAction dataset. LucidAction adopts a three-tier hierarchical
structure of Sport Events, a first-introduced concept "Curriculum Levels" and Actions. It provides a
diverse range of actions and detailed penalty-based score annotation to seek better comprehensibility
in action quality assessment.

To facilitate this research, a few datasets [35, 31, 33, 45, 47] – gathered primarily from web sources –36

have been introduced. These datasets predominantly consist of video footage of individual sports37

competitions like diving or skating, sourced from various sports television broadcasting, such as38

the Olympic Games, and paired with the corresponding judges’ scores. Unfortunately, due to the39

nature of the data sources, the AQA models trained on these datasets are limited to application in a40

’one-shot examination’ that represents the highest level of a sport. As a result, they cannot be widely41

utilized by general enthusiasts and learners, significantly narrowing their scope and frequency of42

use. Moreover, mono-modal input of video captured by a single moving camera [31, 33, 47] and the43

absence of a detailed scoring process for the final score severely curtail the model’s adaptability and44

comprehensibility in diverse data settings.45

Humans and animals learn much better when the examples are not randomly presented but organized46

in a meaningful order which illustrates gradually more concepts, and gradually more complex ones.47

– Curriculum Learning, Yoshua Bengio et.al.48

To surmount the limitations of current action assessment research, we introduce LucidAction, the first49

AQA dataset structured according to the principles of curriculum learning. LucidAction introduces a50

curriculum-based approach to organize data, aligning with the natural learning progressions observed51

in sports training. It comprises a three-tier hierarchical structure, including eight diverse sports52

events and four difficulty levels for each event. This hierarchical structure facilitates sequential53

skill acquisition and accommodates a wide spectrum of athletic abilities. Additionally, the dataset54

harnesses a high-precision multi-view Motion Capture (MoCap) system to capture complex move-55

ments accurately. It integrates 2D pose estimation and multi-view triangulation to acquire precise 3D56

pose annotations. Furthermore, the dataset includes annotations by professional gymnasts, ensuring57

the provision of robust and comprehensive ground truth data for AQA models. Through rigorous58

experimentation, we investigate the effectiveness of multi-modal inputs and fine-grained hierar-59

chical annotations in enhancing AQA performance, thereby offering insights into methodological60

advancements for the field.61

2
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2 Related Work62

In this section, we provide a concise overview of previous AQA datasets and methodologies.63

Table 1: Comparison of LucidAction and existing action quality assessment datasets. #Sport is
number of the sport event in dataset, e.g. diving, figure skating, etc. In Anno.Type, S indicates
coarse-grained action score, PS indicates progress-aware penalty-based score annotation. In Modality,
V, T, A, P indicate video, text, audio, pose.

Dataset Year #Sport Source Anno.Type Modality #Sample #Level #Action #View
MIT Dive&Skate [35] 2014 2 web S V 309 1 - 1
UNLV Dive&Valut [32] 2017 2 web S V 546 1 - 1
AQA-7 [31] 2019 7 web S V 1189 1 - 1
MTL-AQA [33] 2019 1 web S V, T 1412 1 58 1
FisV [45] 2019 1 web S V 500 1 - 1
FSD-10 [24] 2020 1 web S V 1484 1 - 1
Rhythmic Gymnastics [51] 2020 4 web S V 1000 1 - 1
FR-FS [41] 2021 1 web S V 417 1 - 1
FS1000 [42] 2022 1 web S V, A 1604 1 - 1
FineDiving [47] 2022 1 web S V 3000 1 52 1
OlympicFS [11] 2023 1 web S V, T 200 1 - 1
RFSJ [25] 2023 1 web S V 1304 1 - 1
LucidAction (Ours) 2024 8 mocap S, PS V, P 6702 4 259 8

Action Quality Assessment Datasets. Existing AQA datasets cover various domains like diving [35,64

32, 31, 33, 47], figure skating [32, 45, 41, 25, 24, 42, 11], gymnastic [32, 51] and other general65

sports [4, 34, 53]. As shown in Table 1, previous datasets typically provide RGB videos with video-66

level scores from multiple judges. Despite the human-centric nature of AQA, none incorporate pose67

data. Only a few AQA approaches [35, 30, 29] consider extracting 2D pose feature from mono-view68

video. It is likely due to the difficulty of reliable pose estimation from fast motions in mono-view69

video captured by moving camera. Another key attribute of AQA datasets is the annotation of70

action score given by experts under guideline of sport-specific scoring rules. Earlier datasets such71

as AQA-7 [31] contained only overall scores and sport classes, while MTL-AQA [33] provide72

fine-grained action type and transcribed video commentary as language modality. FineDiving [47]73

introduced a two-level annotation with action classes and fine-grained subclasses to capture action74

procedures, but without procedure-aware scores. FS1000 [42] expanded annotations along five quality75

aspects. A key challenge has been the laborious collection and annotation of such fine-grained data,76

requiring collaboration of players, coaches, and referees. Thus, existing datasets focus on top athletes77

in competitions from web sources, neglecting the skill development processes from practice. In78

summary, current AQA datasets are limited by: (1) lacking pose modality, (2) coarse annotations79

without step-wise scores, (3) a focus on elite rather than progressive skill acquisition. Our proposed80

LucidAction dataset is the first to provide both RGB and 3D pose, with richer annotations and81

technical skills than previous datasets.82

Action Quality Assessment. Currently, AQA approaches mainly follow three formulations: 1) Direct83

regression formulation supervised by score is widely used in sports AQA approach [35, 32, 43, 30, 31,84

51, 29, 33, 34, 45, 37, 41, 44]. Some approaches perform segmentation [52, 26] or localization [15,85

13] to generate subaction sequence and predict subscore for each subaction. Recent works incorporate86

auxiliary input, including music [42], language commentary [11], group formation[53] to improve87

their ability in AQA. 2) Pairwise ranking is adopted in daily-life AQA [9, 10, 20] or specific sport88

scenario [4] where precise executing score of action is not available. These approaches mainly focus89

on overall ranking, limiting their application when requiring quantitative action analysis. 3) Pairwise90

regression formulation [19, 25] is first proposed by Siamese Network [14] and CoRe [50] to learn91

the relative score by pair-wise comparison. TPT [3] adopt learnable queries as positional encoding92

to decode action sequences into a fixed number of temporal-aware part representations. TSA [47]93

explicitly segment action sequence into consecutive steps and apply procedure-aware cross-attention94

between target and exemplar corresponding steps.95

3
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Figure 2: Camera layout and corresponding frames for event MFE, please refer to the supplementary
materials for camera layouts of other events.

3 The LucidAction Dataset96

The acquisition and refinement of specific sporting skills by individuals constitute a multifaceted97

process. Typically, it entails initial engagement in specialized exercises aimed at fostering fundamental98

abilities, which are systematically deconstructed into simpler components. Building upon this99

foundational framework, further progress is achieved through the adept and strategic amalgamation100

of these movements to accomplish more intricate objectives in sports competitions.101

In order to closely mirror this natural progression of skill acquisition observed in curriculum learning,102

we have structured our dataset based on the official teaching curriculum outlined in the Regulations103

on the Movement and Scoring Standards of Chinese Gymnastics Sports Levels (Standards for brevity),104

as promulgated by the Chinese Gymnastics Association. The adoption of the Standards is particularly105

advantageous due to its widespread utilization in local sports instruction and grading examinations,106

facilitating the organization of proficient athletes and instructors and the subsequent collection of107

corresponding sports and assessment data.108

As depicted in Figure 1, we introduce a three-tier hierarchical structure. Notably, for the first time, we109

incorporate the concept of sports "Curriculum Levels" into our dataset. (1) Sports Event. We offer the110

most diverse range of sports events to date - 8 in total, namely men’s/women’s floor exercise (MFE,111

WFE), vault (MVT, WVT), men’s parallel bars (MPB), horizontal bars (MHB), women’s uneven112

bar (WUB), balance beam (WBB). (2) Curriculum Level. Each sports event within our dataset113

encompasses four distinct levels of difficulty, ranging from easy to challenging. This pioneering114

inclusion of difficulty levels within an AQA dataset establishes the cornerstone of our proposed115

LucidAction benchmark. In educational contexts, learners typically progress through these levels116

sequentially, demonstrating mastery and passing assessments at each stage before advancing. This117

methodology not only furnishes a rich, multi-tiered dataset conducive to AQA model training but118

also accommodates a diverse spectrum of athletic abilities. (3) Actions. Within each curriculum level,119

a collection of representative actions is delineated, with each action type constituting a movement120

routine lasting an average of 8.6 seconds, serving as the finest-grained unit of analysis. On average,121

each curriculum level comprises 65 representative actions, culminating in a total of 259 actions across122

all levels and events.123

3.1 Multi-View Motion Capture and Multimodality124

We deploy a high-precision Motion Capture (MoCap) system. The cameras used in this system are125

DJI Osmo Action 3 and work in the mode of 4096×4096 (4K) resolution and 60fps. Temporal and126

spatial calibrations between multiple cameras are performed using standard tools [28, 2].127

Multi-View and High Spatiotemporal Resolution. For gymnastics events, a variety of poses128

including lying, crouching, rolling up, and rapid jumping are performed, involving significant self-129

occlusion and swift movements. These complex scenarios bring considerable challenges in accurately130

inferring 3D poses from conventional single-view RGB or depth sensors, greatly impacting AQA131

performance. To tackle this issue, we established the first multi-view (8 views in total) MoCap system132

4
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(a) Annotation Pipeline. The video capturing process is scheduled by The
standards. Left shows the action clips, right shows the corresponding
hierarchical labels. All annotators are trained by professional coaches
and gymnastics with code of points in The standards before annotation.

(b) Annotation tool assessment
system layout, annotators can
compare the target action clip
with perfect exemplar from all
eight camera views.

Figure 3: Illustration of annotation pipeline and system layout.

with high-quality (4K, 60fps) video output tailored for the AQA task. Our experiments confirm133

the significant performance enhancement brought by leveraging multi-view video information for134

the AQA task. Figure 2 illustrates the camera layout and corresponding multi-view frames of135

Men’s/Women’s Floor Exercise in our LucidAction Dataset. Illustrations of other sport events can136

be found in supplementary materials. The release of the dataset obtained consent from all athletes137

appearing in the videos. We employ facial anonymization algorithm deface [48] to protect the138

sensitive identity information of the athletes.139

Multi-Modality for Diverse Applications. We attain high-precision 3D pose annotations by multi-140

view 2D pose estimation and 3D pose reconstruction. We used a hybrid 2D pose estimation approach141

involving both algorithms and human review in three stages: (1) We employed RTMpose [16]142

pretrained on 7 public datasets to estimate 2D poses from single-view videos followed by human143

quality checks. In this stage, estimated 2D on some action categories may fail human review due to144

their rare appearance in the pretraining datasets; (2) We manually annotated 2D poses of these failed145

actions, fine-tuned the RTMpose model, and re-estimated the 2D poses, which were then reviewed146

again; (3) Any 2D poses that still failed the review were manually annotated. This approach balances147

automated efficiency with human validation to ensure accurate 2D pose groundtruth. For 3D pose148

estimation, we reconstructed 3D poses using multi-view 2D poses as groundtruth, a common method149

in creating 3D pose datasets [36, 23, 5, 8]. Reconstructed 3D pose from multi-view 2D are accepted150

as groundtruth in tasks like human action recognition [40] and motion prediction [46]. Follow these151

works, we assess that the accuracy of our 3D poses reconstruction pipeline is sufficient for the AQA152

task. To gauge the accuracy of the automatic pose annotation pipeline, we manually annotate a subset153

of data. In the experiments, we thoroughly compare the performance of AQA models across different154

modalities.155

3.2 Data Annotation156

We provide professional, comprehensive and reliable ground truth annotations in the LucidAction157

dataset for the action quality assessment task.158

Hierarchical Actions Construction We employ a multi-stage strategy to gather extensive hierarchical159

action labels based on inherent levels (Sports Event, Curriculum Level, and Action). The annotation160

process is depicted in Figure 3a. Raw videos are systematically captured according to predefined161

standards, with planned recording sessions for sports events and curriculum levels. As a result, each162

raw video inherently includes annotations for the first two hierarchies at the time of recording. When163

5
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(a) The statistics of action sample
number within each curriculum
level in event MFE / WFE.

(b) The score distribution of ac-
tions within each curriculum level
in event MFE / WFE.

(c) The statistics of penalty items
and penalty score appear in event
MFE / WFE.

Figure 4: The statistics of action samples, scores and penalties.

dealing with raw videos containing multiple actions, ten annotators first segment them into slices164

containing only one action. Subsequently, they assign the action category of each slice based on the165

corresponding sports event and curriculum level.166

Professionalism and Robustness We enlist the expertise of professional gymnasts, referees, and167

coaches to aid us in action sequences collection and score annotation. We conducted a five-month168

data capturing during professional gymnastics training courses organized according to the Standards169

at a sports university. To ensure the annotation quality and reduce potential subjective bias, all170

annotators have taken classes from referees on how to score action according to the Standards. To171

further mitigate bias, each action segment is assessed by at least five annotators repeatedly. To avoid172

neglecting errors due to view occlusion, action footage from all views are provided to the annotators.173

Detailed Penalty Items Annotation. Previous efforts solely yielded a final scoring outcome without174

disclosing the intricacies of the scoring process, thus deviating from the authentic assessment proce-175

dure and compromising result comprehensibility. In a pioneering move, we provide comprehensive176

annotations detailing the scoring process. For each action, the execution quality is evaluated, accord-177

ing to the Standards, by identifying up to 5 specific penalty items, each indicates a possible execution178

error. For each penalty item, we assess whether the corresponding error occurs in the action, and179

based on the severity of the error from light to heavy, assign a penalty score from {0.1, 0.3, 0.5, 1.0}.180

The statistics of score and penalty items are shown in Figure 4.181

4 Experiment182

In this section, we will demonstrate how LucidAction will substantiate the objectives of comprehen-183

sive AQA through three key dimensions: contrastive regression workflow, multi-model input and184

fine-grained hierarchical annotations.185

4.1 Contrastive Regression Workflow186

Fundamentally, the assessment of an action must considers the context of a particular sports scenario,187

as it requires attention to sports-specific goals and metrics. For example, although both activities188

entail running, the technical standards for a 100-meter sprint and a football match can diverge189

significantly. Therefore, AQA inherently demands an in-context mechanism employing exemplars190

for the contextual calibration of assessments, eschewing an absolute valuation of the action.191

We embrace the recently established pair-wise contrastive regression approaches Siamese Net-192

work [14], CoRe [50], TSA [47] and TPT [3] as main baseline architecture, concisely encapsulated193

within the framework illustrated in Figure 5. This architecture consists of four interconnected mod-194

ules, (1) a backbone B to encode input signals into deep network features; (2) an action decoder A to195

extract key motion features across temporal dimension; (3) a pair encoder P to facilitate interactions196

between targets and exemplars for contrastive purposes; (4) a score regressor S to map interaction197

features into relative scores. Given a pairwise target X and exemplar Z, the the contrastive regression198

6
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problem can be represented as:199

  \hat {y}_X=\mathcal {S}(\mathcal {P}(\mathcal {A}(\mathcal {B}(X)) \oplus \mathcal {A}(\mathcal {B}(Z)))\mid \Theta )+y_Z        (1)

where Θ indicates the learnable parameters, ŷX is the predicted score of target X , yZ is the ground-200

truth score of exemplar Z, ⊕ denotes the operation to fuse the target and exemplar’s representations201

after the action decoder. In experiments we use concatenation following previous work TPT [3].202

We compare the results of contrastive regression baselines and a direct regression approach USDL[37]203

on our newly proposed benchmark LucidAction. We also list the baseline performance on three204

publicly available datasets AQA-7 [31], MTL-AQA [33], FineDiving [47] as reference (see the205

supplement for more details on these datasets).206

Figure 5: An overview of contrastive regressive workflow with additional penalty heads.

Implementation Details. We adopt I3D pretrained on Kinetics [6] as video backbone for all207

baselines. TPT [3] uses a 2-layer transformer block as action decoder, a 2-layer MLP as pair encoder208

and another 2-layer MLP as score regressor. We extract 103 frames for each video or pose sequence209

and stack them with interval 5 as 20 clips, each contains 8 frames. For More implementation details210

on other baselines, data augmentation, learning rate, training epoch, optimization, inference, and so211

on, please refer to the supplementary materials.212

Evaluation Metrics. To facilitate comparison with previous work in AQA [35, 31, 37, 41, 47],213

we employ two metrics in our experiments: Spearman’s rank correlation (ρ) and relative L2214

distance(R-ℓ2). Spearman’s rank correlation assesses the rank correlation between predictions and215

ground-truth scores, The relative L2 distance focuses on the numerical scoring difference between216

predictions and ground-truth scores.217

Table 2: Baseline performance comparison on LucidAction and former AQA datasets.

Method AQA-7 MTL-AQA FineDiving LucidAction
ρ ↑ R-ℓ2(×100) ↓ ρ ↑ R-ℓ2(×100) ↓ ρ ↑ R-ℓ2(×100) ↓ ρ ↑ R-ℓ2(×100) ↓

USDL[37] 0.810 2.57 0.923 0.468 0.891 0.382 0.540 0.708
CoRe [50] 0.840 2.12 0.951 0.260 0.906 0.362 0.625 0.685
TSA [47] 0.848 2.07 0.947 0.284 0.920 0.342 0.643 0.690
TPT [3] 0.872 1.68 0.960 0.238 0.945 0.218 0.701 0.624

Baseline Model Results. The baseline performance on LucidAction and the established dataset,218

namely AQA-7, MTL-AQA and FineDiving, is summarized in Table 2. Contrastive regression219

methods significantly outperforms direct regression across all four datasets. On LucidAction, the best-220

performing TPT model improves ρ that evaluates model’s relative scoring ability by 30% and R-ℓ2 that221

7
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evaluates the absolute scoring ability by 12% compared to USDL. Contrastive regression approaches222

empower models to focus on visual disparities that frequently encapsulate crucial scoring information223

between target and exemplar, thereby effectively filtering out extraneous noise such as background224

interference and attire variation. Furthermore, the contrastive regression approach enhances data225

utilization by furnishing multiple exemplars for a single target action, thereby generating diverse226

paired inputs. This diversification enriches the evaluation process, augmenting the robustness of227

the assessment results. Given the superior performance achieved by TPT across all four datasets as228

delineated in Table Table 2, we adopt TPT variants for subsequent ablation studies.229

4.2 Multi-model Input230

We employ unified network architectures, loss functions, and training methods across different data231

modalities to ensure a fair comparison. The only difference lies in using ST-GCN [49] pre-trained on232

NTU RGB+D[36] as backbone for pose sequence input, as illustrated in Figure 5.233

Multi-view RGB Video Data. To investigate the potential benefits of incorporating multi-view RGB234

videos, we conduct two multi-view stategies. Batch strategy puts different views in batch dimension235

as separate samples, while the channel strategy places different views on channel dimension within236

one sample. We also investigate the effects of channel fuse position (Pos) and operation (Opt), namely237

concatenation (Cat) and averaging (Avg). For experimental settings, multi-view test setting (Mv.Test)238

utilizes multi-view inputs during both training and testing phases, while the single-view test setting239

(Sv.Test) employs multi-view input only during training and duplicates single-view input during240

testing to simulate real-world scenarios where multi-view data may not be available. For further241

model details, please refer to the supplementary materials.242

Table 3: Ablation studies of multi-model inputs.

(a) Multi-view ablation.

Strategy Pos Opt Mv.Test Sv.Test
Base - - - 0.701
Batch - - - 0.730

Channel

BB Cat 0.736 0.729
Avg 0.724 0.712

AD Cat 0.742 0.726
Avg 0.737 0.728

PE Cat 0.759 0.747
Avg 0.713 0.703

SR Avg 0.732 0.730

(b) Pose modality ablation. When using dual-
stream, the feature extracted by I3D and ST-GCN
are concatenated before action decoder.

Data Modality ρ ↑ R-ℓ2(×100) ↓
RGB 0.701 0.624
Pose2d 0.605 0.898
Pose3d 0.689 0.593
RGB+Pose3d 0.746 0.560

As depicted in Table 3a, introducing multi-view on batch to increase training data results in a 4.1%243

improvement from 0.701 to 0.730. Multi-view input on channel yields a slightly higher performance244

than batch in Mv.Test and comparable performance in Sv.Test, except for concatenation after the Pair245

Encoder that gains a 6.6% improvement from 0.701 to 0.747. This enhancement can be attributed to246

the capability of capturing errors obscured in a single view and leveraging implicit 3D knowledge,247

including depth information and shared objects across two synchronized views. Concatenation248

outperforms averaging in most positions since averaging causes information loss.249

Human Pose Data We explore the impact of using different input modalities—2D human body250

pose, 3D human body pose, and RGB-pose dual-stream—on the AQA task. We observe in Table 3b251

that using only 2D poses reduces the model’s performance on correlation ρ from 0.701 to 0.605,252

using only 3D poses yields a correlation performance of 0.689, slightly lower than RGB input, but253

with an improved R-ℓ2 from 0.624 to 0.593. The decrease may stem from the abstract nature of254

keypoint data, leading to a loss of crucial information for action assessment. Conversely, combining255

dual-stream inputs with RGB and 3D poses results in a 6.4% improvement on ρ from 0.701 to 0.746.256

One potential explanation is that human pose data is more conducive to the model in comparing key257

kinematic properties of the target and exemplar, such as keypoint movement velocity, displacement258

distance, angles, etc.259

8

96475https://doi.org/10.52202/079017-3058



Figure 6: Comparison of different learn-
ing strategies.

#Penalty Head ρ ↑ R-ℓ2(×100) ↓
0 0.701 0.624
1 0.733 0.539
2 0.741 0.514
3 0.735 0.501

Table 4: Ablation study of the number of penalty
items used as additional supervision only during
training.

4.3 Fine-grained Hierarchical Annotations260

LucidAction is presented with a curriculum hierarchy and fine-grained penalty labels for scoring. In261

this section, we study whether these annotations help model’s understanding of action quality.262

Curriculum Level. We investigate the impact of curriculum level on the AQA task through two263

training methods: 1) Mixed learning, which trains on a shuffled LucidAction dataset with all levels;264

and 2) Curriculum learning, which organizes training data by level order, gradually introducing265

more difficult actions and complex quality concepts. Additionally, we compare models trained on266

individual levels. Analysis presented in Figure 6 demonstrates that models trained with mixed levels267

outperform those trained on a single level for any test level. This is particularly evident for level 5268

actions, where fewer samples are available, indicating the model’s ability to learn universal action269

quality concepts across different levels. Moreover, when utilizing the same volume of training data,270

curriculum learning surpasses mixed learning across all levels. This validates our hypothesis that the271

gradual progression of curriculum learning facilitates the development of complex quality concepts272

upon simpler ones learned earlier.273

Detailed Penalty Items. The inclusion of unique penalty item annotations in LucidAction enhances274

the comprehensiveness and reliability of score annotations. In our experiments, we assess the benefits275

of incorporating this supervision. As illustrated in Figure 5, we introduce a plug-and-play multi-head276

network, each head corresponds to a binary classification auxiliary tasks, identifying whether the277

execution errors specified by a penalty item occur (penalty value > 0). Specifically, we focus on278

the three most frequent penalties N12, N17 and N18 in Figure 4c. Results in Table 4 indicate that279

models augmented with penalty heads achieve notable improvements, with correlation (ρ) increasing280

up to 0.741 (+5.7%) and R-ℓ2 up to 0.501 (+20%). This suggests that fine-grained penalty labels281

enhance the model’s understanding of action quality. Additionally, the adoption of penalty-based282

annotation enables intentional collection of penalty-free samples for each action category, ensuring283

the availability of perfect exemplars. If no perfect action is captured during regular training sessions,284

specialized gymnasts will perform additional recordings to ensure each action category includes a285

perfect sample. Perfect exemplars are challenging to obtain in previous datasets [31, 33, 47] collected286

from one-shot public competitions. However, in our work, if no perfect action is captured during287

regular training sessions, specialized gymnasts will perform additional recordings to ensure each288

action category includes a perfect sample. Further ablation experiments regarding exemplar quality289

and quantity are presented in the supplementary materials.290

5 Limitations and Other Applications291

Limitations. LucidAction is gathered within controlled environments utilizing a high-precision multi-292

view Motion Capture (MoCap) system. However, it may not fully replicate real-world conditions293

where variables such as lighting, background, and other environmental factors can significantly vary.294
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Despite annotations being provided by professional gymnasts, subjective biases during scoring may295

still exist. Ensuring consistent and objective annotations remains a challenge.296

Applications. LucidAction offers distinct advantages for motion generation, particularly due to297

the structured and standardized nature of gymnastics movements, which reduces ambiguities often298

encountered in daily actions. LucidAction can be utilized to develop educational tools and simulations299

that teach gymnastics techniques, providing proper form and execution, aiding in skill development.300

6 Conclusion301

In this paper, we introduce LucidAction, a novel dataset designed for Action Quality Assess-302

ment (AQA) featuring a hierarchical structure with eight diverse sports events and four curriculum303

levels. Leveraging a high-precision multi-view Motion Capture (MoCap) system, LucidAction304

offers rich and comprehensive data including multi-view RGB video, 2D and 3D pose for action305

assessment. Through experimentation with contrastive regression baselines on LucidAction, we306

have demonstrated the efficacy of multi-modal input and fine-grained annotations in enhancing AQA307

tasks. We anticipate that the LucidAction dataset, alongside our experimental findings, will serve as308

valuable resources for researchers and practitioners within the field of action quality assessment.309
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