
LucidAction: A Hierarchical and Multi-model Dataset for Comprehensive Action Quality Assessment

Linfeng Dong^{1,2}, Wei Wang², Yu Qiao², and Xiao Sun²

¹Zhejiang University

²Shanghai Artificial Intelligence Laboratory

{donglinfeng, wangwei, sunxiao}@pjlab.org.cn, yu.qiao@siat.ac.cn

Abstract

1 Action Quality Assessment (AQA) research confronts formidable obstacles due to
2 limited, mono-modal datasets sourced from one-shot competitions, which hinder
3 the generalizability and comprehensiveness of AQA models. To address these
4 limitations, we present LucidAction, the first systematically collected multi-view
5 AQA dataset structured on curriculum learning principles. LucidAction features
6 a three-tier hierarchical structure, encompassing eight diverse sports events with
7 four curriculum levels, facilitating sequential skill mastery and supporting a wide
8 range of athletic abilities. The dataset encompasses multi-modal data, including
9 multi-view RGB video, 2D and 3D pose sequences, enhancing the richness of
10 information available for analysis. Leveraging a high-precision multi-view Motion
11 Capture (MoCap) system ensures precise capture of complex movements. Meticu-
12 lously annotated data, incorporating detailed penalties from professional gymnasts,
13 ensures the establishment of robust and comprehensive ground truth annotations.
14 Experimental evaluations employing diverse contrastive regression baselines on
15 LucidAction elucidate the dataset's complexities. Through ablation studies, we
16 investigate the advantages conferred by multi-modal data and fine-grained annota-
17 tions, offering insights into improving AQA performance. The data and code will
18 be openly released to support advancements in the AI sports field.

19

1 Introduction

20 The comprehensive evaluation of human actions, capturing both their strengths and weaknesses as well
21 as the quality of their execution, finds extensive applicability in various fields. This is exemplified by
22 AI-powered fitness applications that deliver customized workout regimes [7, 39, 12, 22, 38]. Notably,
23 the 2020 Tokyo Olympics pioneered the use of AI in gymnastics scoring, enhancing both fairness and
24 precision in evaluations [1]. Additionally, motion gaming systems employ sophisticated assessments
25 of user actions to create immersive and interactive experiences [18, 21, 27]. The influence of this
26 task spans diverse industries, including education, sports, and entertainment. As technological
27 advancements continue, the impact of such evaluations is expected to grow significantly.

28 Prior research [35, 32, 31, 33, 37] has raised the task of Action Quality Assessment (AQA) in tackling
29 the issue of human action evaluation, aiming to regress a definitive quality score for the performed
30 action directly. Unlike action recognition [17], which assumes consistency within the same action
31 type, AQA is inherently more challenging as it must discern subtle variations in action execution

32 quality, including swiftness, intensity, and timing, among performers. Additionally, AQA lacks clearly
 33 defined quality metrics and requires expertise for evaluation. Given these formidable challenges, the
 34 quantity, professionalism, and diversity of high-quality AQA datasets significantly lag behind those
 35 of action recognition datasets, severely impeding the advancement of AQA research.

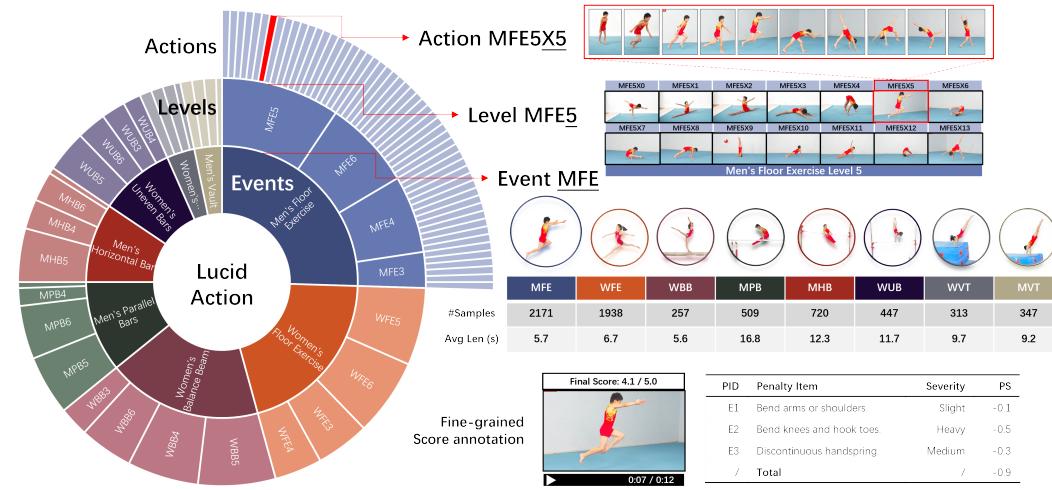


Figure 1: An overview of the LucidAction dataset. LucidAction adopts a three-tier hierarchical structure of Sport Events, a first-introduced concept "Curriculum Levels" and Actions. It provides a diverse range of actions and detailed penalty-based score annotation to seek better comprehensibility in action quality assessment.

36 To facilitate this research, a few datasets [35, 31, 33, 45, 47] – gathered primarily from web sources –
 37 have been introduced. These datasets predominantly consist of video footage of individual sports
 38 competitions like diving or skating, sourced from various sports television broadcasting, such as
 39 the Olympic Games, and paired with the corresponding judges' scores. Unfortunately, due to the
 40 nature of the data sources, the AQA models trained on these datasets are limited to application in a
 41 'one-shot examination' that represents the highest level of a sport. As a result, they cannot be widely
 42 utilized by general enthusiasts and learners, significantly narrowing their scope and frequency of
 43 use. Moreover, mono-modal input of video captured by a single moving camera [31, 33, 47] and the
 44 absence of a detailed scoring process for the final score severely curtail the model's adaptability and
 45 comprehensibility in diverse data settings.

46 *Humans and animals learn much better when the examples are not randomly presented but organized
 47 in a meaningful order which illustrates gradually more concepts, and gradually more complex ones.*

48 *– Curriculum Learning, Yoshua Bengio et.al.*

49 To surmount the limitations of current action assessment research, we introduce LucidAction, the first
 50 AQA dataset structured according to the principles of curriculum learning. LucidAction introduces a
 51 curriculum-based approach to organize data, aligning with the natural learning progressions observed
 52 in sports training. It comprises a three-tier hierarchical structure, including eight diverse sports
 53 events and four difficulty levels for each event. This hierarchical structure facilitates sequential
 54 skill acquisition and accommodates a wide spectrum of athletic abilities. Additionally, the dataset
 55 harnesses a high-precision multi-view Motion Capture (MoCap) system to capture complex move-
 56 ments accurately. It integrates 2D pose estimation and multi-view triangulation to acquire precise 3D
 57 pose annotations. Furthermore, the dataset includes annotations by professional gymnasts, ensuring
 58 the provision of robust and comprehensive ground truth data for AQA models. Through rigorous
 59 experimentation, we investigate the effectiveness of multi-modal inputs and fine-grained hierar-
 60 chical annotations in enhancing AQA performance, thereby offering insights into methodological
 61 advancements for the field.

62 **2 Related Work**

63 In this section, we provide a concise overview of previous AQA datasets and methodologies.

Table 1: Comparison of LucidAction and existing action quality assessment datasets. #Sport is number of the sport event in dataset, e.g. diving, figure skating, etc. In Anno.Type, S indicates coarse-grained action score, PS indicates progress-aware penalty-based score annotation. In Modality, V, T, A, P indicate video, text, audio, pose.

Dataset	Year	#Sport	Source	Anno.Type	Modality	#Sample	#Level	#Action	#View
MIT Dive&Skate [35]	2014	2	web	S	V	309	1	-	1
UNLV Dive&Valut [32]	2017	2	web	S	V	546	1	-	1
AQA-7 [31]	2019	7	web	S	V	1189	1	-	1
MTL-AQA [33]	2019	1	web	S	V, T	1412	1	58	1
FisV [45]	2019	1	web	S	V	500	1	-	1
FSD-10 [24]	2020	1	web	S	V	1484	1	-	1
Rhythmic Gymnastics [51]	2020	4	web	S	V	1000	1	-	1
FR-FS [41]	2021	1	web	S	V	417	1	-	1
FS1000 [42]	2022	1	web	S	V, A	1604	1	-	1
FineDiving [47]	2022	1	web	S	V	3000	1	52	1
OlympicFS [11]	2023	1	web	S	V, T	200	1	-	1
RFSJ [25]	2023	1	web	S	V	1304	1	-	1
LucidAction (Ours)	2024	8	mocap	S, PS	V, P	6702	4	259	8

64 **Action Quality Assessment Datasets.** Existing AQA datasets cover various domains like diving [35, 65 32, 31, 33, 47], figure skating [32, 45, 41, 25, 24, 42, 11], gymnastic [32, 51] and other general 66 sports [4, 34, 53]. As shown in Table 1, previous datasets typically provide RGB videos with video- 67 level scores from multiple judges. Despite the human-centric nature of AQA, none incorporate pose 68 data. Only a few AQA approaches [35, 30, 29] consider extracting 2D pose feature from mono-view 69 video. It is likely due to the difficulty of reliable pose estimation from fast motions in mono-view 70 video captured by moving camera. Another key attribute of AQA datasets is the annotation of 71 action score given by experts under guideline of sport-specific scoring rules. Earlier datasets such 72 as AQA-7 [31] contained only overall scores and sport classes, while MTL-AQA [33] provide 73 fine-grained action type and transcribed video commentary as language modality. FineDiving [47] 74 introduced a two-level annotation with action classes and fine-grained subclasses to capture action 75 procedures, but without procedure-aware scores. FS1000 [42] expanded annotations along five quality 76 aspects. A key challenge has been the laborious collection and annotation of such fine-grained data, 77 requiring collaboration of players, coaches, and referees. Thus, existing datasets focus on top athletes 78 in competitions from web sources, neglecting the skill development processes from practice. In 79 summary, current AQA datasets are limited by: (1) lacking pose modality, (2) coarse annotations 80 without step-wise scores, (3) a focus on elite rather than progressive skill acquisition. Our proposed 81 LucidAction dataset is the first to provide both RGB and 3D pose, with richer annotations and 82 technical skills than previous datasets.

83 **Action Quality Assessment.** Currently, AQA approaches mainly follow three formulations: **1) Direct** 84 **regression** formulation supervised by score is widely used in sports AQA approach [35, 32, 43, 30, 31, 85 51, 29, 33, 34, 45, 37, 41, 44]. Some approaches perform segmentation [52, 26] or localization [15, 86 13] to generate subaction sequence and predict subscore for each subaction. Recent works incorporate 87 auxiliary input, including music [42], language commentary [11], group formation[53] to improve 88 their ability in AQA. **2) Pairwise ranking** is adopted in daily-life AQA [9, 10, 20] or specific sport 89 scenario [4] where precise executing score of action is not available. These approaches mainly focus 90 on overall ranking, limiting their application when requiring quantitative action analysis. **3) Pairwise** 91 **regression** formulation [19, 25] is first proposed by Siamese Network [14] and CoRe [50] to learn 92 the relative score by pair-wise comparison. TPT [3] adopt learnable queries as positional encoding 93 to decode action sequences into a fixed number of temporal-aware part representations. TSA [47] 94 explicitly segment action sequence into consecutive steps and apply procedure-aware cross-attention 95 between target and exemplar corresponding steps.

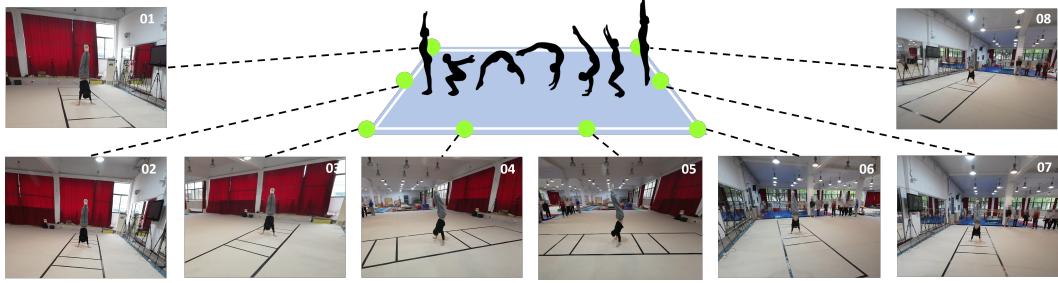


Figure 2: Camera layout and corresponding frames for event MFE, please refer to the supplementary materials for camera layouts of other events.

96 3 The LucidAction Dataset

97 The acquisition and refinement of specific sporting skills by individuals constitute a multifaceted
 98 process. Typically, it entails initial engagement in specialized exercises aimed at fostering fundamental
 99 abilities, which are systematically deconstructed into simpler components. Building upon this
 100 foundational framework, further progress is achieved through the adept and strategic amalgamation
 101 of these movements to accomplish more intricate objectives in sports competitions.

102 In order to closely mirror this natural progression of skill acquisition observed in curriculum learning,
 103 we have structured our dataset based on the official teaching curriculum outlined in the *Regulations*
 104 on the Movement and Scoring Standards of Chinese Gymnastics Sports Levels (Standards for brevity),
 105 as promulgated by the Chinese Gymnastics Association. The adoption of the *Standards* is particularly
 106 advantageous due to its widespread utilization in local sports instruction and grading examinations,
 107 facilitating the organization of proficient athletes and instructors and the subsequent collection of
 108 corresponding sports and assessment data.

109 As depicted in Figure 1, we introduce a three-tier hierarchical structure. Notably, for the first time, we
 110 incorporate the concept of sports "Curriculum Levels" into our dataset. (1) **Sports Event**. We offer the
 111 most diverse range of sports events to date - 8 in total, namely men's/women's floor exercise (MFE),
 112 vault (MVT, WVT), men's parallel bars (MPB), horizontal bars (MHB), women's uneven
 113 bar (WUB), balance beam (WBB). (2) **Curriculum Level**. Each sports event within our dataset
 114 encompasses four distinct levels of difficulty, ranging from easy to challenging. This pioneering
 115 inclusion of difficulty levels within an AQA dataset establishes the cornerstone of our proposed
 116 LucidAction benchmark. In educational contexts, learners typically progress through these levels
 117 sequentially, demonstrating mastery and passing assessments at each stage before advancing. This
 118 methodology not only furnishes a rich, multi-tiered dataset conducive to AQA model training but
 119 also accommodates a diverse spectrum of athletic abilities. (3) **Actions**. Within each curriculum level,
 120 a collection of representative actions is delineated, with each action type constituting a movement
 121 routine lasting an average of 8.6 seconds, serving as the finest-grained unit of analysis. On average,
 122 each curriculum level comprises 65 representative actions, culminating in a total of 259 actions across
 123 all levels and events.

124 3.1 Multi-View Motion Capture and Multimodality

125 We deploy a high-precision Motion Capture (MoCap) system. The cameras used in this system are
 126 DJI Osmo Action 3 and work in the mode of 4096×4096 (4K) resolution and 60fps. Temporal and
 127 spatial calibrations between multiple cameras are performed using standard tools [28, 2].

128 **Multi-View and High Spatiotemporal Resolution.** For gymnastics events, a variety of poses
 129 including lying, crouching, rolling up, and rapid jumping are performed, involving significant self-
 130 occlusion and swift movements. These complex scenarios bring considerable challenges in accurately
 131 inferring 3D poses from conventional single-view RGB or depth sensors, greatly impacting AQA
 132 performance. To tackle this issue, we established the first multi-view (8 views in total) MoCap system

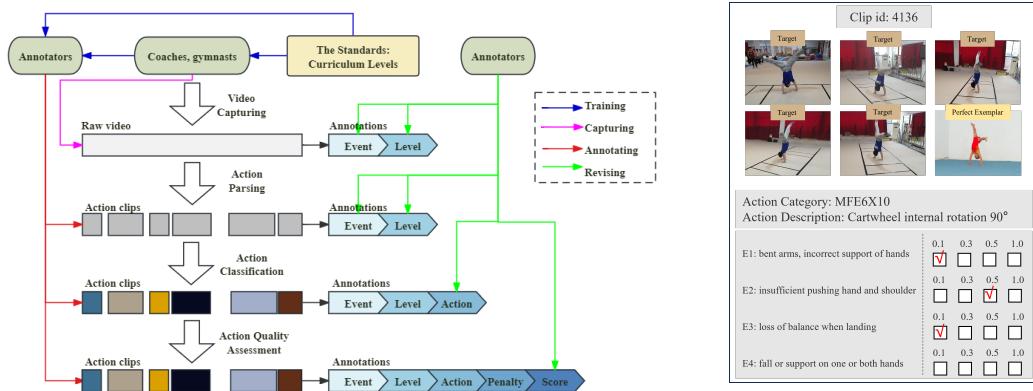


Figure 3: Illustration of annotation pipeline and system layout.

133 with high-quality (4K, 60fps) video output tailored for the AQA task. Our experiments confirm
134 the significant performance enhancement brought by leveraging multi-view video information for
135 the AQA task. Figure 2 illustrates the camera layout and corresponding multi-view frames of
136 Men’s/Women’s Floor Exercise in our LucidAction Dataset. Illustrations of other sport events can
137 be found in supplementary materials. The release of the dataset obtained consent from all athletes
138 appearing in the videos. We employ facial anonymization algorithm deface [48] to protect the
139 sensitive identity information of the athletes.

140 **Multi-Modality for Diverse Applications.** We attain high-precision 3D pose annotations by multi-
 141 view 2D pose estimation and 3D pose reconstruction. We used a hybrid 2D pose estimation approach
 142 involving both algorithms and human review in three stages: (1) We employed RTMpose [16]
 143 pretrained on 7 public datasets to estimate 2D poses from single-view videos followed by human
 144 quality checks. In this stage, estimated 2D on some action categories may fail human review due to
 145 their rare appearance in the pretraining datasets; (2) We manually annotated 2D poses of these failed
 146 actions, fine-tuned the RTMpose model, and re-estimated the 2D poses, which were then reviewed
 147 again; (3) Any 2D poses that still failed the review were manually annotated. This approach balances
 148 automated efficiency with human validation to ensure accurate 2D pose groundtruth. For 3D pose
 149 estimation, we reconstructed 3D poses using multi-view 2D poses as groundtruth, a common method
 150 in creating 3D pose datasets [36, 23, 5, 8]. Reconstructed 3D pose from multi-view 2D are accepted
 151 as groundtruth in tasks like human action recognition [40] and motion prediction [46]. Follow these
 152 works, we assess that the accuracy of our 3D poses reconstruction pipeline is sufficient for the AQA
 153 task. To gauge the accuracy of the automatic pose annotation pipeline, we manually annotate a subset
 154 of data. In the experiments, we thoroughly compare the performance of AQA models across different
 155 modalities.

156 3.2 Data Annotation

157 We provide professional, comprehensive and reliable ground truth annotations in the LucidAction
158 dataset for the action quality assessment task.

159 Hierarchical Actions Construction We employ a multi-stage strategy to gather extensive hierarchical
160 action labels based on inherent levels (Sports Event, Curriculum Level, and Action). The annotation
161 process is depicted in Figure 3a. Raw videos are systematically captured according to predefined
162 standards, with planned recording sessions for sports events and curriculum levels. As a result, each
163 raw video inherently includes annotations for the first two hierarchies at the time of recording. When

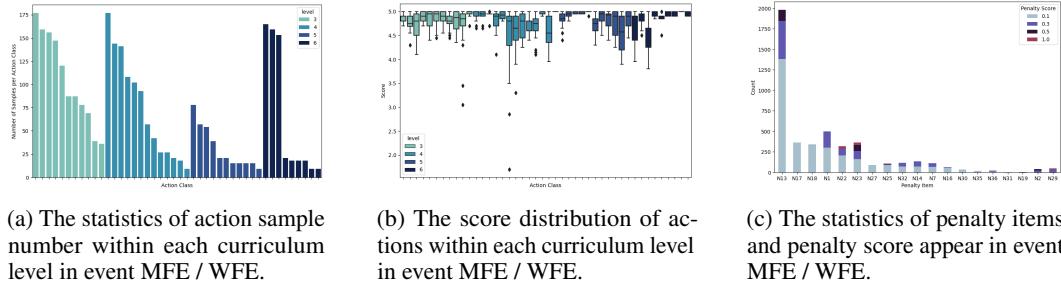


Figure 4: The statistics of action samples, scores and penalties.

164 dealing with raw videos containing multiple actions, ten annotators first segment them into slices
 165 containing only one action. Subsequently, they assign the action category of each slice based on the
 166 corresponding sports event and curriculum level.

167 **Professionalism and Robustness** We enlist the expertise of professional gymnasts, referees, and
 168 coaches to aid us in action sequences collection and score annotation. We conducted a five-month
 169 data capturing during professional gymnastics training courses organized according to *the Standards*
 170 at a sports university. To ensure the annotation quality and reduce potential subjective bias, all
 171 annotators have taken classes from referees on how to score action according to *the Standards*. To
 172 further mitigate bias, each action segment is assessed by at least five annotators repeatedly. To avoid
 173 neglecting errors due to view occlusion, action footage from all views are provided to the annotators.

174 **Detailed Penalty Items Annotation.** Previous efforts solely yielded a final scoring outcome without
 175 disclosing the intricacies of the scoring process, thus deviating from the authentic assessment proce-
 176 dure and compromising result comprehensibility. In a pioneering move, we provide comprehensive
 177 annotations detailing the scoring process. For each action, the execution quality is evaluated, accord-
 178 ing to *the Standards*, by identifying up to 5 specific penalty items, each indicates a possible execution
 179 error. For each penalty item, we assess whether the corresponding error occurs in the action, and
 180 based on the severity of the error from light to heavy, assign a penalty score from {0.1, 0.3, 0.5, 1.0}.
 181 The statistics of score and penalty items are shown in Figure 4.

182 4 Experiment

183 In this section, we will demonstrate how LucidAction will substantiate the objectives of comprehen-
 184 sive AQA through three key dimensions: contrastive regression workflow, multi-model input and
 185 fine-grained hierarchical annotations.

186 4.1 Contrastive Regression Workflow

187 Fundamentally, the assessment of an action must consider the context of a particular sports scenario,
 188 as it requires attention to sports-specific goals and metrics. For example, although both activities
 189 entail running, the technical standards for a 100-meter sprint and a football match can diverge
 190 significantly. Therefore, AQA inherently demands an in-context mechanism employing exemplars
 191 for the contextual calibration of assessments, eschewing an absolute valuation of the action.

192 We embrace the recently established pair-wise contrastive regression approaches Siamese Net-
 193 work [14], CoRe [50], TSA [47] and TPT [3] as main baseline architecture, concisely encapsulated
 194 within the framework illustrated in Figure 5. This architecture consists of four interconnected mod-
 195 ules, (1) a **backbone** \mathcal{B} to encode input signals into deep network features; (2) an **action decoder** \mathcal{A} to
 196 extract key motion features across temporal dimension; (3) a **pair encoder** \mathcal{P} to facilitate interactions
 197 between targets and exemplars for contrastive purposes; (4) a **score regressor** \mathcal{S} to map interaction
 198 features into relative scores. Given a pairwise target X and exemplar Z , the the contrastive regression

199 problem can be represented as:

$$\hat{y}_X = \mathcal{S}(\mathcal{P}(\mathcal{A}(\mathcal{B}(X)) \oplus \mathcal{A}(\mathcal{B}(Z))) \mid \Theta) + y_Z \quad (1)$$

200 where Θ indicates the learnable parameters, \hat{y}_X is the predicted score of target X , y_Z is the ground-
201 truth score of exemplar Z , \oplus denotes the operation to fuse the target and exemplar's representations
202 after the action decoder. In experiments we use concatenation following previous work TPT [3].

203 We compare the results of contrastive regression baselines and a direct regression approach USDL[37]
204 on our newly proposed benchmark LucidAction. We also list the baseline performance on three
205 publicly available datasets AQA-7 [31], MTL-AQA [33], FineDiving [47] as reference (see the
206 supplement for more details on these datasets).

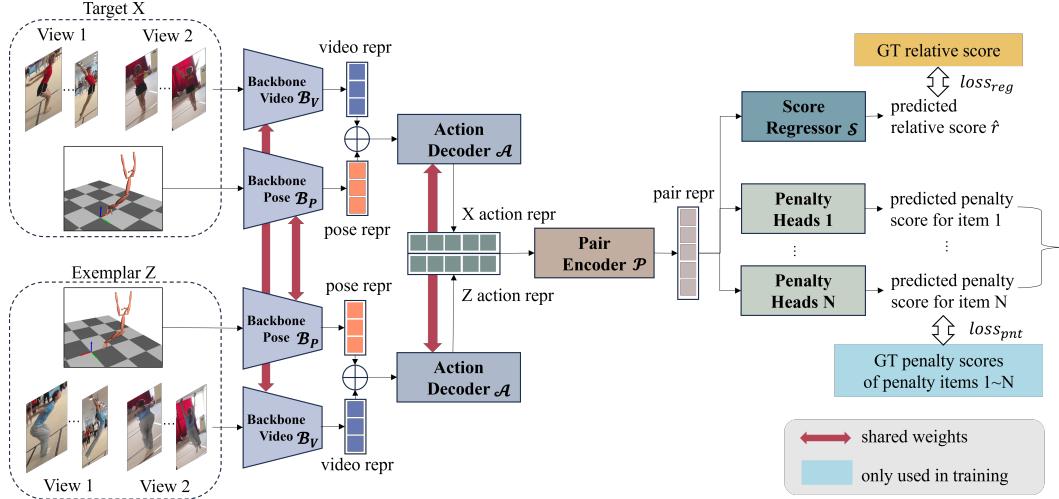


Figure 5: An overview of contrastive regressive workflow with additional penalty heads.

207 **Implementation Details.** We adopt I3D pretrained on Kinetics [6] as video backbone for all
208 baselines. TPT [3] uses a 2-layer transformer block as action decoder, a 2-layer MLP as pair encoder
209 and another 2-layer MLP as score regressor. We extract 103 frames for each video or pose sequence
210 and stack them with interval 5 as 20 clips, each contains 8 frames. For More implementation details
211 on other baselines, data augmentation, learning rate, training epoch, optimization, inference, and so
212 on, please refer to the supplementary materials.

213 **Evaluation Metrics.** To facilitate comparison with previous work in AQA [35, 31, 37, 41, 47],
214 we employ two metrics in our experiments: Spearman's rank correlation (ρ) and relative L2
215 distance($R-\ell_2$). Spearman's rank correlation assesses the rank correlation between predictions and
216 ground-truth scores, The relative L2 distance focuses on the numerical scoring difference between
217 predictions and ground-truth scores.

Table 2: Baseline performance comparison on LucidAction and former AQA datasets.

Method	AQA-7		MTL-AQA		FineDiving		LucidAction	
	$\rho \uparrow$	$R-\ell_2(\times 100) \downarrow$						
USDL[37]	0.810	2.57	0.923	0.468	0.891	0.382	0.540	0.708
CoRe [50]	0.840	2.12	0.951	0.260	0.906	0.362	0.625	0.685
TSA [47]	0.848	2.07	0.947	0.284	0.920	0.342	0.643	0.690
TPT [3]	0.872	1.68	0.960	0.238	0.945	0.218	0.701	0.624

218 **Baseline Model Results.** The baseline performance on LucidAction and the established dataset,
219 namely AQA-7, MTL-AQA and FineDiving, is summarized in Table 2. Contrastive regression
220 methods significantly outperforms direct regression across all four datasets. On LucidAction, the best-
221 performing TPT model improves ρ that evaluates model's relative scoring ability by 30% and $R-\ell_2$ that

222 evaluates the absolute scoring ability by 12% compared to USDL. Contrastive regression approaches
 223 empower models to focus on visual disparities that frequently encapsulate crucial scoring information
 224 between target and exemplar, thereby effectively filtering out extraneous noise such as background
 225 interference and attire variation. Furthermore, the contrastive regression approach enhances data
 226 utilization by furnishing multiple exemplars for a single target action, thereby generating diverse
 227 paired inputs. This diversification enriches the evaluation process, augmenting the robustness of
 228 the assessment results. Given the superior performance achieved by TPT across all four datasets as
 229 delineated in Table Table 2, we adopt TPT variants for subsequent ablation studies.

230 **4.2 Multi-model Input**

231 We employ unified network architectures, loss functions, and training methods across different data
 232 modalities to ensure a fair comparison. The only difference lies in using ST-GCN [49] pre-trained on
 233 NTU RGB+D[36] as backbone for pose sequence input, as illustrated in Figure 5.

234 **Multi-view RGB Video Data.** To investigate the potential benefits of incorporating multi-view RGB
 235 videos, we conduct two multi-view strategies. Batch strategy puts different views in batch dimension
 236 as separate samples, while the channel strategy places different views on channel dimension within
 237 one sample. We also investigate the effects of channel fuse position (Pos) and operation (Opt), namely
 238 concatenation (*Cat*) and averaging (*Avg*). For experimental settings, multi-view test setting (Mv.Test)
 239 utilizes multi-view inputs during both training and testing phases, while the single-view test setting
 240 (*Sv.Test*) employs multi-view input only during training and duplicates single-view input during
 241 testing to simulate real-world scenarios where multi-view data may not be available. For further
 242 model details, please refer to the supplementary materials.

Table 3: Ablation studies of multi-model inputs.

(a) Multi-view ablation.

Strategy	Pos	Opt	Mv.Test	Sv.Test
<i>Base</i>	-	-	-	0.701
<i>Batch</i>	-	-	-	0.730
<i>Channel</i>	<i>BB</i>	<i>Cat</i>	0.736	0.729
		<i>Avg</i>	0.724	0.712
	<i>AD</i>	<i>Cat</i>	0.742	0.726
		<i>Avg</i>	0.737	0.728
	<i>PE</i>	<i>Cat</i>	0.759	0.747
		<i>Avg</i>	0.713	0.703
	<i>SR</i>	<i>Avg</i>	0.732	0.730

(b) Pose modality ablation. When using dual-stream, the feature extracted by I3D and ST-GCN are concatenated before action decoder.

Data Modality	$\rho \uparrow$	$R-\ell_2 (\times 100) \downarrow$
<i>RGB</i>	0.701	0.624
<i>Pose2d</i>	0.605	0.898
<i>Pose3d</i>	0.689	0.593
<i>RGB+Pose3d</i>	0.746	0.560

243 As depicted in Table 3a, introducing multi-view on batch to increase training data results in a 4.1%
 244 improvement from 0.701 to 0.730. Multi-view input on channel yields a slightly higher performance
 245 than batch in Mv.Test and comparable performance in Sv.Test, except for concatenation after the *Pair*
 246 *Encoder* that gains a 6.6% improvement from 0.701 to 0.747. This enhancement can be attributed to
 247 the capability of capturing errors obscured in a single view and leveraging implicit 3D knowledge,
 248 including depth information and shared objects across two synchronized views. Concatenation
 249 outperforms averaging in most positions since averaging causes information loss.

250 **Human Pose Data** We explore the impact of using different input modalities—2D human body
 251 pose, 3D human body pose, and RGB-pose dual-stream—on the AQA task. We observe in Table 3b
 252 that using only 2D poses reduces the model’s performance on correlation ρ from 0.701 to 0.605,
 253 using only 3D poses yields a correlation performance of 0.689, slightly lower than RGB input, but
 254 with an improved $R-\ell_2$ from 0.624 to 0.593. The decrease may stem from the abstract nature of
 255 keypoint data, leading to a loss of crucial information for action assessment. Conversely, combining
 256 dual-stream inputs with RGB and 3D poses results in a 6.4% improvement on ρ from 0.701 to 0.746.
 257 One potential explanation is that human pose data is more conducive to the model in comparing key
 258 kinematic properties of the target and exemplar, such as keypoint movement velocity, displacement
 259 distance, angles, etc.

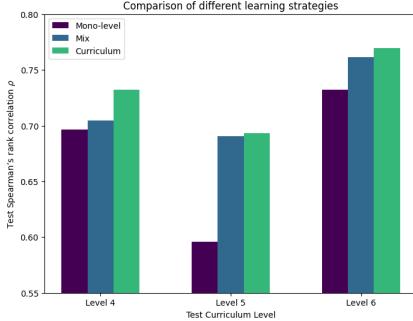


Figure 6: Comparison of different learning strategies.

#Penalty Head	$\rho \uparrow$	$R-\ell_2(\times 100) \downarrow$
0	0.701	0.624
1	0.733	0.539
2	0.741	0.514
3	0.735	0.501

Table 4: Ablation study of the number of penalty items used as additional supervision only during training.

260 4.3 Fine-grained Hierarchical Annotations

261 LucidAction is presented with a curriculum hierarchy and fine-grained penalty labels for scoring. In
 262 this section, we study whether these annotations help model’s understanding of action quality.

263 **Curriculum Level.** We investigate the impact of curriculum level on the AQA task through two
 264 training methods: 1) *Mixed learning*, which trains on a shuffled LucidAction dataset with all levels;
 265 and 2) *Curriculum learning*, which organizes training data by level order, gradually introducing
 266 more difficult actions and complex quality concepts. Additionally, we compare models trained on
 267 individual levels. Analysis presented in Figure 6 demonstrates that models trained with mixed levels
 268 outperform those trained on a single level for any test level. This is particularly evident for level 5
 269 actions, where fewer samples are available, indicating the model’s ability to learn universal action
 270 quality concepts across different levels. Moreover, when utilizing the same volume of training data,
 271 curriculum learning surpasses mixed learning across all levels. This validates our hypothesis that the
 272 gradual progression of curriculum learning facilitates the development of complex quality concepts
 273 upon simpler ones learned earlier.

274 **Detailed Penalty Items.** The inclusion of unique penalty item annotations in LucidAction enhances
 275 the comprehensiveness and reliability of score annotations. In our experiments, we assess the benefits
 276 of incorporating this supervision. As illustrated in Figure 5, we introduce a plug-and-play multi-head
 277 network, each head corresponds to a binary classification auxiliary tasks, identifying whether the
 278 execution errors specified by a penalty item occur (penalty value > 0). Specifically, we focus on
 279 the three most frequent penalties N12, N17 and N18 in Figure 4c. Results in Table 4 indicate that
 280 models augmented with penalty heads achieve notable improvements, with correlation (ρ) increasing
 281 up to 0.741 (+5.7%) and $R-\ell_2$ up to 0.501 (+20%). This suggests that fine-grained penalty labels
 282 enhance the model’s understanding of action quality. Additionally, the adoption of penalty-based
 283 annotation enables intentional collection of penalty-free samples for each action category, ensuring
 284 the availability of perfect exemplars. If no perfect action is captured during regular training sessions,
 285 specialized gymnasts will perform additional recordings to ensure each action category includes a
 286 perfect sample. Perfect exemplars are challenging to obtain in previous datasets [31, 33, 47] collected
 287 from one-shot public competitions. However, in our work, if no perfect action is captured during
 288 regular training sessions, specialized gymnasts will perform additional recordings to ensure each
 289 action category includes a perfect sample. Further ablation experiments regarding exemplar quality
 290 and quantity are presented in the supplementary materials.

291 5 Limitations and Other Applications

292 **Limitations.** LucidAction is gathered within controlled environments utilizing a high-precision multi-
 293 view Motion Capture (MoCap) system. However, it may not fully replicate real-world conditions
 294 where variables such as lighting, background, and other environmental factors can significantly vary.

295 Despite annotations being provided by professional gymnasts, subjective biases during scoring may
296 still exist. Ensuring consistent and objective annotations remains a challenge.

297 **Applications.** LucidAction offers distinct advantages for motion generation, particularly due to
298 the structured and standardized nature of gymnastics movements, which reduces ambiguities often
299 encountered in daily actions. LucidAction can be utilized to develop educational tools and simulations
300 that teach gymnastics techniques, providing proper form and execution, aiding in skill development.

301 **6 Conclusion**

302 In this paper, we introduce LucidAction, a novel dataset designed for Action Quality Assess-
303 ment (AQA) featuring a hierarchical structure with eight diverse sports events and four curriculum
304 levels. Leveraging a high-precision multi-view Motion Capture (MoCap) system, LucidAction
305 offers rich and comprehensive data including multi-view RGB video, 2D and 3D pose for action
306 assessment. Through experimentation with contrastive regression baselines on LucidAction, we
307 have demonstrated the efficacy of multi-modal input and fine-grained annotations in enhancing AQA
308 tasks. We anticipate that the LucidAction dataset, alongside our experimental findings, will serve as
309 valuable resources for researchers and practitioners within the field of action quality assessment.

310 **Acknowledgements.** The work is supported by the National Key R&D Program of China (No.
311 2022ZD0160104).

312 **References**

313 [1] Fujitsu and the International Gymnastics Federation launch AI-powered Fu-
314 jitsu Judging Support System for use in competition for all 10 apparatuses.
315 <https://www.fujitsu.com/global/about/resources/news/press-releases/2023/1005-02.html>.

316 [2] Easymocap - make human motion capture easier. Github, 2021. URL <https://github.com/zju3dv/EasyMocap>.

317 [3] Yang Bai, Desen Zhou, Songyang Zhang, Jian Wang, Errui Ding, Yu Guan, Yang Long, and
318 Jingdong Wang. Action Quality Assessment with Temporal Parsing Transformer. In *Computer
319 Vision – ECCV 2022*, volume 13664, pages 422–438. Springer Nature Switzerland, 2022. doi:
320 10.1007/978-3-031-19772-7_25.

321 [4] Gedas Bertasius, Hyun Soo Park, Stella X. Yu, and Jianbo Shi. Am I a Baller? Basketball
322 Performance Assessment from First-Person Videos. In *2017 IEEE International Conference on
323 Computer Vision (ICCV)*, pages 2196–2204. IEEE, 2017. doi: 10.1109/ICCV.2017.239.

324 [5] Zhongang Cai, Daxuan Ren, Ailing Zeng, Zhengyu Lin, Tao Yu, Wenjia Wang, Xiangyu Fan,
325 Yang Gao, Yifan Yu, Liang Pan, Fangzhou Hong, Mingyuan Zhang, Chen Change Loy, Lei
326 Yang, and Ziwei Liu. HuMMAN: Multi-modal 4d human dataset for versatile sensing and
327 modeling. In *17th European Conference on Computer Vision, Tel Aviv, Israel, October 23–27,
328 2022, Proceedings, Part VII*, pages 557–577. Springer, 2022.

329 [6] Joao Carreira and Andrew Zisserman. Quo Vadis, Action Recognition? A New Model and
330 the Kinetics Dataset. In *2017 IEEE Conference on Computer Vision and Pattern Recognition
331 (CVPR)*, pages 4724–4733. IEEE, 2017. doi: 10.1109/CVPR.2017.502.

332 [7] Hua-Tsung Chen, Yu-Zhen He, and Chun-Chieh Hsu. Computer-assisted yoga training system.
333 *Multimedia Tools and Applications*, 77:23969–23991, 2018.

334 [8] Junting Dong, Qi Fang, Wen Jiang, Yurou Yang, Hujun Bao, and Xiaowei Zhou. Fast and robust
335 multi-person 3d pose estimation and tracking from multiple views. 2021.

336 [9] Hazel Doughty, Dima Damen, and Walterio Mayol-Cuevas. Who’s Better? Who’s Best?
337 Pairwise Deep Ranking for Skill Determination. In *2018 IEEE/CVF Conference on Computer
338 Vision and Pattern Recognition*, pages 6057–6066. IEEE, 2018. doi: 10.1109/CVPR.2018.
339 00634.

340 [10] Hazel Doughty, Walterio Mayol-Cuevas, and Dima Damen. The Pros and Cons: Rank-Aware
341 Temporal Attention for Skill Determination in Long Videos. In *2019 IEEE/CVF Conference
342 on Computer Vision and Pattern Recognition (CVPR)*, pages 7854–7863. IEEE, 2019. doi:
343 10.1109/CVPR.2019.00805.

344 [11] Zexing Du, Di He, Xue Wang, and Qing Wang. Learning Semantics-Guided Representations for
345 Scoring Figure Skating. *IEEE Transactions on Multimedia*, pages 1–11, 2023. ISSN 1520-9210,
346 1941-0077. doi: 10.1109/TMM.2023.3328180.

347 [12] Mihai Fieraru, Mihai Zanfir, Silviu Cristian Pirlea, Vlad Olaru, and Cristian Sminchisescu. Aifit:
348 Automatic 3d human-interpretable feedback models for fitness training. In *Proceedings of the
349 IEEE/CVF conference on computer vision and pattern recognition*, pages 9919–9928, 2021.

350 [13] Kumie Gedamu, Yanli Ji, Yang Yang, Jie Shao, and Heng Tao Shen. Fine-Grained Spatio-
351 Temporal Parsing Network for Action Quality Assessment. *IEEE Transactions on Image
352 Processing*, 32:6386–6400, 2023. ISSN 1057-7149, 1941-0042. doi: 10.1109/TIP.2023.
353 3331212.

354 [14] Hiteshi Jain, Gaurav Harit, and Avinash Sharma. Action quality assessment using siamese
355 network-based deep metric learning. *IEEE Transactions on Circuits and Systems for Video
356 Technology*, 31(6):2260–2273, 2021. doi: 10.1109/TCSVT.2020.3017727.

357 [15] Yanli Ji, Lingfeng Ye, Huili Huang, Lijing Mao, Yang Zhou, and Lingling Gao. Localization-
358 assisted Uncertainty Score Disentanglement Network for Action Quality Assessment. In
359 *Proceedings of the 31st ACM International Conference on Multimedia, MM ’23*, pages 8590–
360 8597. Association for Computing Machinery, 2023. doi: 10.1145/3581783.3613795.

361

362 [16] Tao Jiang, Peng Lu, Li Zhang, Ningsheng Ma, Rui Han, Chengqi Lyu, Yining Li, and Kai
363 Chen. Rtmpose: Real-time multi-person pose estimation based on mmpose, 2023. URL
364 <https://arxiv.org/abs/2303.07399>.

365 [17] Yu Kong and Yun Fu. Human action recognition and prediction: A survey. *International
366 Journal of Computer Vision*, 130(5):1366–1401, 2022.

367 [18] Karol Kurach, Anton Raichuk, Piotr Stańczyk, Michał Zając, Olivier Bachem, Lasse Espeholt,
368 Carlos Riquelme, Damien Vincent, Marcin Michalski, Olivier Bousquet, et al. Google research
369 football: A novel reinforcement learning environment. In *Proceedings of the AAAI conference
370 on artificial intelligence*, volume 34, pages 4501–4510, 2020.

371 [19] Mingzhe Li, Hong-Bo Zhang, Qing Lei, Zongwen Fan, Jinghua Liu, and Ji-Xiang Du. Pairwise
372 Contrastive Learning Network for Action Quality Assessment. In *Computer Vision – ECCV
373 2022*, volume 13664, pages 457–473. Springer Nature Switzerland, 2022. doi: 10.1007/
374 978-3-031-19772-7_27.

375 [20] Zhenqiang Li, Yifei Huang, Minjie Cai, and Yoichi Sato. Manipulation-Skill Assessment
376 from Videos with Spatial Attention Network. In *2019 IEEE/CVF International Conference on
377 Computer Vision Workshop (ICCVW)*, pages 4385–4395. IEEE, 2019. doi: 10.1109/ICCVW.
378 2019.00539.

379 [21] Fanqi Lin, Shiyu Huang, Tim Pearce, Wenze Chen, and Wei-Wei Tu. Tizero: Mastering
380 multi-agent football with curriculum learning and self-play. *arXiv preprint arXiv:2302.07515*,
381 2023.

382 [22] Jingyuan Liu, Nazmus Saquib, Zhutian Chen, Rubaiat Habib Kazi, Li-Yi Wei, Hongbo Fu, and
383 Chiew-Lan Tai. PoseCoach: A Customizable Analysis and Visualization System for Video-
384 based Running Coaching. *IEEE Transactions on Visualization and Computer Graphics*, pages
385 1–14, 2022. ISSN 1077-2626, 1941-0506, 2160-9306. doi: 10.1109/TVCG.2022.3230855.

386 [23] Jun Liu, Amir Shahroudy, Mauricio Perez, Gang Wang, Ling-Yu Duan, and Alex C Kot. Ntu
387 rgb+d 120: A large-scale benchmark for 3d human activity understanding. *IEEE Transactions
388 on Pattern Analysis and Machine Intelligence*, 42(10):2684–2701, 2020.

389 [24] Shenlan Liu, Xiang Liu, Gao Huang, Lin Feng, Lianyu Hu, Dong Jiang, Aibin Zhang, Yang
390 Liu, and Hong Qiao. FSD-10: A Dataset for Competitive Sports Content Analysis, 2020.

391 [25] Yanchao Liu, Xina Cheng, and Takeshi Ikenaga. A Figure Skating Jumping Dataset for Replay-
392 Guided Action Quality Assessment. In *Proceedings of the 31st ACM International Conference
393 on Multimedia, MM '23*, pages 2437–2445. Association for Computing Machinery, 2023. doi:
394 10.1145/3581783.3613774.

395 [26] Hitoshi Matsuyama, Nobuo Kawaguchi, and Brian Y. Lim. IRIS: Interpretable Rubric-Informed
396 Segmentation for Action Quality Assessment, 2023.

397 [27] Willi Menapace, Aliaksandr Siarohin, Stéphane Lathuilière, Panos Achlioptas, Vladislav
398 Golyanik, Sergey Tulyakov, and Elisa Ricci. Plotting Behind the Scenes: Towards Learn-
399 able Game Engines. *ACM Transactions on Graphics*, page 3635705, 2023. ISSN 0730-0301,
400 1557-7368. doi: 10.1145/3635705.

401 [28] Lendasalwa Muda, Mumtaj Begam, and I. Elamvazuthi. Voice recognition algorithms using mel
402 frequency cepstral coefficient (mfcc) and dynamic time warping (dtw) techniques, 2010.

403 [29] Mahdiar Nekoui, Fidel Omar Tito Cruz, and Li Cheng. EAGLE-Eye: Extreme-pose Action
404 Grader using detail bird’s-Eye view. In *2021 IEEE Winter Conference on Applications of
405 Computer Vision (WACV)*, pages 394–402. IEEE, 2021. doi: 10.1109/WACV48630.2021.00044.

406 [30] Jia-Hui Pan, Jibin Gao, and Wei-Shi Zheng. Action Assessment by Joint Relation Graphs.
407 *ICCV*, 2019.

408 [31] Paritosh Parmar and Brendan Morris. Action Quality Assessment Across Multiple Actions. In
409 *2019 IEEE Winter Conference on Applications of Computer Vision (WACV)*, pages 1468–1476,
410 2019. doi: 10.1109/WACV.2019.00161.

411 [32] Paritosh Parmar and Brendan Tran Morris. Learning to Score Olympic Events. In *2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)*, 2017.

412 [33] Paritosh Parmar and Brendan Tran Morris. What and How Well You Performed? A Multitask Learning Approach to Action Quality Assessment. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 304–313, 2019.

413 [34] Paritosh Parmar, Amol Gharat, and Helge Rhodin. Domain Knowledge-Informed Self-supervised Representations for Workout Form Assessment. In *Computer Vision – ECCV 2022*, volume 13698, pages 105–123. Springer Nature Switzerland, 2022. doi: 10.1007/978-3-031-19839-7_7.

414 [35] Hamed Pirsiavash, Carl Vondrick, and Antonio Torralba. Assessing the Quality of Actions. In *Computer Vision – ECCV 2014*, Lecture Notes in Computer Science, pages 556–571. Springer International Publishing, 2014. doi: 10.1007/978-3-319-10599-4_36.

415 [36] Amir Shahroudy, Jun Liu, Tian-Tsong Ng, and Gang Wang. Ntu rgb+d: A large scale dataset for 3d human activity analysis. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 1010–1019, 2016.

416 [37] Yansong Tang, Zanlin Ni, Jiahuan Zhou, Danyang Zhang, Jiwen Lu, Ying Wu, and Jie Zhou. Uncertainty-Aware Score Distribution Learning for Action Quality Assessment. In *2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 9836–9845. IEEE, 2020. doi: 10.1109/CVPR42600.2020.00986.

417 [38] Yansong Tang, Jinpeng Liu, Aoyang Liu, Bin Yang, Wenxun Dai, Yongming Rao, Jiwen Lu, Jie Zhou, and Xiu Li. FLAG3D: A 3D Fitness Activity Dataset with Language Instruction, 2023.

418 [39] Jianbo Wang, Kai Qiu, Houwen Peng, Jianlong Fu, and Jianke Zhu. Ai coach: Deep human pose estimation and analysis for personalized athletic training assistance. In *Proceedings of the 27th ACM international conference on multimedia*, pages 374–382, 2019.

419 [40] Lei Wang and Piotr Koniusz. 3mformer: Multi-order multi-mode transformer for skeletal action recognition. In *2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 5620–5631, 2023. doi: 10.1109/CVPR52729.2023.00544.

420 [41] Shunli Wang, Dingkang Yang, Peng Zhai, Chixiao Chen, and Lihua Zhang. TSA-Net: Tube Self-Attention Network for Action Quality Assessment. In *Proceedings of the 29th ACM International Conference on Multimedia*, pages 4902–4910, 2021. doi: 10.1145/3474085.3475438.

421 [42] Jingfei Xia, Mingchen Zhuge, Tiantian Geng, Shun Fan, Yuantai Wei, Zhenyu He, and Feng Zheng. Skating-mixer: Long-term sport audio-visual modeling with MLPs. In *Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence and Thirty-Fifth Conference on Innovative Applications of Artificial Intelligence and Thirteenth Symposium on Educational Advances in Artificial Intelligence*, volume 37 of *AAAI'23/IAAI'23/EAAI'23*, pages 2901–2909. AAAI Press, 2023. doi: 10.1609/aaai.v37i3.25392.

422 [43] Xiang Xiang, Ye Tian, Austin Reiter, Gregory D. Hager, and Trac D. Tran. S3D: Stacking Segmental P3D for Action Quality Assessment. In *2018 25th IEEE International Conference on Image Processing (ICIP)*, pages 928–932, 2018. doi: 10.1109/ICIP.2018.8451364.

423 [44] Angchi Xu, Ling-An Zeng, and Wei-Shi Zheng. Likert Scoring With Grade Decoupling for Long-Term Action Assessment. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 3232–3241, 2022.

424 [45] Chengming Xu, Yanwei Fu, Zitian Chen, Bing Zhang, Yu-Gang Jiang, and Xiangyang Xue. Learning to Score Figure Skating Sport Videos. *IEEE Transactions on Circuits and Systems for Video Technology*, 2019.

425 [46] Chenxin Xu, Robby T Tan, Yuhong Tan, Siheng Chen, Xinchao Wang, and Yanfeng Wang. Auxiliary tasks benefit 3d skeleton-based human motion prediction. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pages 9509–9520, 2023.

460 [47] Jinglin Xu, Yongming Rao, Xumin Yu, Guangyi Chen, Jie Zhou, and Jiwen Lu. FineDiving:
461 A Fine-grained Dataset for Procedure-aware Action Quality Assessment. In *2022 IEEE/CVF*
462 *Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 2939–2948. IEEE,
463 2022. doi: 10.1109/CVPR52688.2022.00296.

464 [48] Yuanyuan Xu, Wan Yan, Haixin Sun, Genke Yang, and Jiliang Luo. Centerface: Joint face
465 detection and alignment using face as point. In *arXiv:1911.03599*, 2019.

466 [49] Sijie Yan, Yuanjun Xiong, and Dahua Lin. Spatial temporal graph convolutional networks for
467 skeleton-based action recognition. In *AAAI*, 2018.

468 [50] Xumin Yu, Yongming Rao, Wenliang Zhao, Jiwen Lu, and Jie Zhou. Group-aware Contrastive
469 Regression for Action Quality Assessment. In *2021 IEEE/CVF International Conference on*
470 *Computer Vision (ICCV)*, pages 7899–7908. IEEE, 2021. doi: 10.1109/ICCV48922.2021.00782.

471 [51] Ling-An Zeng, Fa-Ting Hong, Wei-Shi Zheng, Qi-Zhi Yu, Wei Zeng, Yao-Wei Wang, and Jian-
472 Huang Lai. Hybrid Dynamic-static Context-aware Attention Network for Action Assessment in
473 Long Videos. In *Proceedings of the 28th ACM International Conference on Multimedia*. arXiv,
474 2020. doi: 10.48550/arXiv.2008.05977.

475 [52] Hong-Bo Zhang, Li-Jia Dong, Qing Lei, Li-Jie Yang, and Ji-Xiang Du. Label-reconstruction-
476 based pseudo-subscore learning for action quality assessment in sporting events. *Applied*
477 *Intelligence (Dordrecht, Netherlands)*, 53(9):10053–10067, 2023. ISSN 0924-669X. doi:
478 10.1007/s10489-022-03984-5.

479 [53] Shiyi Zhang, Wenzun Dai, Sujia Wang, Xiangwei Shen, Jiwen Lu, Jie Zhou, and Yansong Tang.
480 LOGO: A Long-Form Video Dataset for Group Action Quality Assessment. In *2023 IEEE/CVF*
481 *Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 2405–2414. IEEE,
482 2023. doi: 10.1109/CVPR52729.2023.00238.

483 **Checklist**

484 1. For all authors...

485 (a) Do the main claims made in the abstract and introduction accurately reflect the paper's
486 contributions and scope? **[Yes]** Please refer to section 3 and section 4

487 (b) Did you describe the limitations of your work? **[Yes]** Please refer to section 5

488 (c) Did you discuss any potential negative societal impacts of your work? **[No]**

489 (d) Have you read the ethics review guidelines and ensured that your paper conforms to
490 them? **[Yes]**

491 2. If you are including theoretical results...

492 (a) Did you state the full set of assumptions of all theoretical results? **[N/A]**

493 (b) Did you include complete proofs of all theoretical results? **[N/A]**

494 3. If you ran experiments (e.g. for benchmarks)...

495 (a) Did you include the code, data, and instructions needed to reproduce the main experi-
496 mental results (either in the supplemental material or as a URL)? **[Yes]** Please refer to
497 supplemental material

498 (b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
499 were chosen)? **[Yes]** Please refer to section 4.1 and supplemental material

500 (c) Did you report error bars (e.g., with respect to the random seed after running experi-
501 ments multiple times)? **[Yes]** Please refer to supplemental material

502 (d) Did you include the total amount of compute and the type of resources used (e.g.,
503 type of GPUs, internal cluster, or cloud provider)? **[Yes]** Please refer to supplemental
504 material

505 4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

506 (a) If your work uses existing assets, did you cite the creators? **[Yes]**

507 (b) Did you mention the license of the assets? **[Yes]**

508 (c) Did you include any new assets either in the supplemental material or as a URL? **[No]**

509 (d) Did you discuss whether and how consent was obtained from people whose data you're
510 using/curating? **[Yes]** Please refer to section 3.2

511 (e) Did you discuss whether the data you are using/curating contains personally identifiable
512 information or offensive content? **[Yes]** Please refer to section 3.2

513 5. If you used crowdsourcing or conducted research with human subjects...

514 (a) Did you include the full text of instructions given to participants and screenshots, if
515 applicable? **[N/A]**

516 (b) Did you describe any potential participant risks, with links to Institutional Review
517 Board (IRB) approvals, if applicable? **[N/A]**

518 (c) Did you include the estimated hourly wage paid to participants and the total amount
519 spent on participant compensation? **[N/A]**