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Abstract

A frequent problem in vision-based reasoning tasks such as object detection and
optical character recognition (OCR) is the persistence of specular highlights. Spec-
ular highlights appear as bright spots of glare that occur due to the concentrated
reflection of light; these spots manifest as image artifacts which occlude computer
vision models and are challenging to reconstruct. Despite this, specular highlight
removal receives relatively little attention due to the difficulty of acquiring high-
quality, real-world data. We introduce a method to generate specular highlight data
with near-perfect alignment and present SHDocs—a dataset of specular highlights
on document images created using our method. Through our benchmark, we
demonstrate that our dataset enables us to surpass the performance of state-of-the-
art specular highlight removal models and downstream OCR tasks. We release
our dataset, code, and methods publicly to motivate further exploration of image
enhancement for practical computer vision challenges.1

1 Introduction

Specular highlights are bright, localized reflections of light that appear as white spots or glare on
reflective surfaces. These highlights naturally occur when the angle of reflection of light on a surface
equals the angle of incidence, resulting in organized reflections of light that manifest as bright visual
artifacts. These specular highlight artifacts result in image occlusion and are persistent problems in
real-world computer vision tasks.

This occlusion is especially problematic in vision-based reasoning tasks such as optical character
recognition (OCR) [29, 3, 22], object detection and recognition [32, 21], and unmanned vision-based
systems [1, 39, 14] which necessitate a high degree of accuracy yet involve environments with high
light intensity. As such, efforts have been made to develop image enhancement approaches to remove
specular highlights before these images are used in downstream computer vision tasks [25, 13, 16, 3].

Existing works have highlighted the difficulty in developing specular highlight removal image
enhancement models owing to the limited datasets available [20, 38, 22]. Due to the physical
processes underlying specular highlights, it is challenging to generate aligned counterfactual images
without complex experimental setups that allow researchers to vary the source and intensity of light.
Meanwhile, the use of synthetic data has been explored to address this data scarcity with some success

1https://github.com/JovinLeong/SHDocs
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[16, 9, 3, 22, 18]. However, the synthetic data approach has been observed to exhibit generalizability
limitations when evaluated in real-world applications of computer vision [38, 20].

Table 1: Leading public specular highlight datasets
Dataset No. samples Size Real data? Type

WHU-Specular
Dataset [10]

4310 image-
mask pairs 2.2 GB Yes Image masks

SHIQ [11] 10825 scenes,
43300 images 925.9 MB Yes Images in

the wild

PSD [38] 2210 scenes,
13380 images 7.8 GB Yes Objects

SD1, SD2, RD [16] 30000 images 23.7 GB 92% Synthetic Text in the wild

SSHR [9] 135000 images 5.3 GB Synthetic Objects

SHDocs (Ours) 3184 scenes,
19104 images 13.5 GB Yes Documents

Figure 1: Sample document images from the SHDocs dataset
with target images exhibiting specular highlights on the left,
and deglared counterfactuals on the right

This challenge motivated us to explore
approaches to generate specular high-
light data with neither the constraints
of synthetic data nor the expensive,
effort-intensive experimental setups
prohibitive to many researchers. We
developed a process leveraging po-
larized sensors and a polarized light
setup to generate high-quality spec-
ular highlight data with near-perfect
counterfactual alignment cheaply. We
use our method to produce a dataset
of real-world specular highlights on
document images—a computer vision
domain in which specular highlights
are pertinent but lacking data. Sample
images from our dataset, SHDocs, are
shown in Figure 1.

Our dataset is the only openly avail-
able real-world specular highlight dataset for document images; other leading datasets are shown in
Table 1. Our dataset forms a benchmark which we use to assess leading specular highlight models
and perform a generalizability study to evaluate how well our dataset generalizes across specular
highlight tasks.

The salient contributions of our work are as follows:

1. The SHDocs dataset: A dataset of real specular highlights on document images based on the
FUNSD document dataset [19] with ground truth annotations.

2. The source code and pipeline for generating aligned specular highlight image data with a
Sony IMX250MZR, CMOS, 2/3" sensor.

3. A publicly released benchmark to evaluate specular highlight removal models in terms of
image quality and OCR performance.
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2 Related work

2.1 Specular highlight removal

Early works such as Guo et al. [13] and Gang et al. [12] leverage conventional computer vision
methods for removing specular highlights. Fu et al. [11] introduce the SHIQ dataset and develop a
model to detect and extract specular highlight masks from the Murmann et al. [27] multi-illumination
images in the wild dataset. Fu et al. [10], Esfahani and Wang [7], Anwer et al. [2] focus on developing
models to perform specular highlight detection by learning from specular highlight image masks.

Subsequent works focus on deep learning approaches to develop image enhancement models. Wu
et al. [38] introduce a large specular highlight dataset by capturing images in fixed and random
polarization angles which they use to train a Generative Adversarial Network (GAN) to remove
specular highlights. Hou et al. [16] and Huang et al. [18] develop multi-stage models that detect
and subsequently remove specular highlights. Fu et al. [9] propose a three-stage specular highlight
removal network for highlight removal and subsequent enhancement. Finally, Hu et al. [17] introduce
an adaptive highlight-aware module to develop a network that adaptively removes specular highlights.

A common pain point emerges from the specular highlight detection and removal literature: the
scarcity of real-world specular highlight datasets. Dataset development efforts by Wu et al. [38], Fu
et al. [11], and Hou et al. [16] have been significant but are high-effort and face limited scalability.
Meanwhile, attempts to use synthetic data in modeling by Hou et al. [16], Chen et al. [3], Fu et al.
[9] have demonstrated generalizability limitations when applied to real-world applications which
manifest as hallucinations and poor real-world image enhancement outcomes.

2.2 Specular highlights in textual data

Existing works have sought to detect and remove specular highlights in textual image data through
deep-learning image enhancement models. Rodin et al. [30] apply a lightweight convolutional neural
network approach to detecting specular highlights on documents. Lahiri et al. [22] present a deep
classification model to determine if document images have glare. Hou et al. [16] developed a text-
aware two-stage network to detect and remove specular highlights in documents. Meanwhile, Chen
et al. [3] develop a deep trident decomposition network for glare removal in license plates. Notably,
the models developed by Hou et al. [16], Lahiri et al. [22], and Chen et al. [3] rely on synthetic data.

2.3 Polarization-based data collection methods

Polarization sensors are image sensors with integrated polarizers which we use in our study to collect
aligned specular highlight data as detailed in Section 3.1. Several existing works in the literature
sought to similarly use polarization methods to collect reflection and specular highlight data. Yang
et al. [40] uses a Sony DFW-X70 camera and varies the polarization angles on polarization filters both
on the camera and their light source to accumulate data which they use in their experimentation. Lei
et al. [23] use a PHX050S-P polarization camera and panes of glass to create polarized reflection data
which they use to develop a reflection removal image enhancement model. Wen et al. [37] generate
specular highlight data by passing light through polarization filters which are rotated until there is no
specular reflection captured by a separate polarization sensor.

Our method extends these works by devising an enclosed setup that minimizes unpolarized light with
illumination through polarization filters at fixed angles and an algorithmic process to more readily
generate specular highlight data with a focus on text recovery.

3
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3 The SHDocs dataset

3.1 Overview of the setup

The dataset was collected using a FLIR Blackfly S camera equipped with a Sony IMX250MZR,
CMOS, 2/3" polarization sensor (BFS-U3-51S5P) which captures 75 frames per second at 5.0
megapixels for a total image resolution of 2448× 2048. The camera effectively captures greyscale
1224 × 1024 images at four polarization angles with a pixel size of 3.45µm for every single shot.
The four angles are i0, i45, i90, and i135; they can be observed in Figures 3e to 3h respectively. We
combine this capability with our polarized light setup to generate near-perfect counterfactual specular
highlight images that form our SHDocs dataset.

(a) Physical setup (b) Setup diagram (c) GUI

Figure 2: SHDocs data collection setup and GUI

We built an enclosure illuminated by light-emitting diode (LED) arrays attached to polarizing filters
at fixed polarization angles as shown in Figure 2a. We fix the polarization angles because specular
highlights generated by the polarized light from our setup are removed only if the polarization angle
is perpendicular to any of the polarization directions of the polarization sensor. Figure 2b illustrates
how the polarization filters are placed orthogonal to the polarization sensor.

An implication of this is that our method cannot filter out specular highlights from unpolarized light
or polarized light at angles that are not orthogonal to our polarized sensor. This can be observed in
Figures 1 and 3d where the deglared images still exhibit some specularity; this is a limitation of
polarization filter methods. Thus, the enclosed setup was designed to limit the amount of unpolarized
light entering the enclosure such that most of the light that generates the specular highlights would be
polarized light that the polarization sensor can subsequently filter out.

3.2 Building the SHDocs dataset

We use the FUNSD dataset by Jaume et al. [19] as our base set of document data. The documents
were printed and inserted into transparent filing pockets of differing quality and textures to generate
specular highlights through their reflective surfaces. The FUNSD dataset comprises 199 fully
annotated real document forms, 31485 words, 9707 semantic entities, and 5304 relations. We chose
the FUNSD dataset as it was closely aligned with our experimental objective of creating realistic
document data and is a widely used dataset for document analysis models and benchmarks [26, 8].
The transparent filing pockets simulate lamination and filing methods commonly used to waterproof
documents and logistic labels. The texture and shape of these pockets refract the light at various
angles and generate specular highlights under the polarized lights of our setup. We use a custom
application with a graphical user interface (GUI) as shown in Figure 2c to facilitate image capture.
The source code for the application is included in our publicly accessible GitHub repository.

For each of the 199 documents in the FUNSD, we took 15 images with different transparency
layers and 1 unfiltered image without any transparency layers to create different specular highlight
conditions for each document. For each image capture, our polarization sensor obtains 4 images
corresponding to different polarization angles captured by the polarization sensor.

We further obtain 2 images by reconstructing the normalized Stokes parameter S0 which is equivalent
to a "normal" image that we might expect from a standard camera; and the "deglared" image through
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(a) FUNSD (b) Unfiltered image (c) S0 reconstruction (d) Deglared

(e) i0 (f) i45 (g) i90 (h) i135

Figure 3: Image captures and reconstructions

a glare removal process. The S0 Stokes parameter is obtained by adding the intensities of the
vertically and horizontally polarized pixels i.e. S0 = i0 + i90. [34]. Meanwhile, the deglared image
is obtained by taking the pixels with the lowest intensity across all 4 polarization angles i.e. we
apply minimum pooling for each 2× 2 matrix the polarization sensor returns for each pixel. These
images represent the normal image with specular highlights and the counterfactual without specular
highlights respectively. A diagram illustrating our complete data collection and process pipeline is
included in the documentation available on the dataset’s public code repository.

4 Experiments

Our experiments seek to benchmark leading specular highlight removal models on the SHDocs
dataset to quantitatively assess how these models fare in terms of image enhancement and OCR
performance. Through this, we seek a more complete understanding of the specular highlight removal
space and hope to gauge the impact of our dataset and benchmark on image enhancement research.

4.1 Experimental procedure

Our benchmark consists of two phases. The first phase is a quantitative image quality assessment,
where we pass the S0 images from the SHDocs evaluation set through specular highlight models
and evaluate the enhanced images with conventional quantitative image enhancement metrics using
the deglared image, as described in Section 3.2, as the ground truth counterfactual. The second
phase involves OCR evaluation of the enhanced image outputs, where we pass the enhanced images
to OCR models for inference and then evaluate how the specular highlight removal models have
impacted OCR text recovery outcomes. We also use Cho et al. [5]’s MIMO-UNetPlus model in our
experiments. The MIMO-UNetPlus model employs a generic U-Net [31] architecture designed for
image deblurring tasks and is not trained on specular highlight data. In conducting our experiments,
we used Amazon Web Services’ g4dn.4xlarge Nvidia T4 GPU-enabled virtual machines running on
Deep Learning OSS Nvidia Driver Amazon Linux 2 Amazon Machine Image for PyTorch 1.13.1.2

2https://aws.amazon.com/ec2/instance-types/g4/
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4.2 Quantitative image quality assessment

4.2.1 Metrics

To quantitatively assess the image enhancement outcomes of specular highlight models, we adopt
peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM) as in Fu et al.
[11], Wu et al. [38], Wen et al. [37]. We include universal image quality index (UIQI) as a further
measure of image quality [35]. Our assessment compares S0 images enhanced by the models to the
deglared ground truth images. Higher PSNR, SSIM, and UIQI scores imply better image enhancement
outcomes. We use Lightning AI’s [6] implementations of the above metrics and report the average
PSNR, SSIM, and UIQI of the enhanced images generated by models on the evaluation set.

4.2.2 Results

Table 2: SHDocs evaluation dataset

Model PSNR SSIM UIQI

No enhancement 32.18 0.9589 0.8241

Fu et al. [11] 30.48 0.8599 0.5153
M2-Net [18] 32.72 0.9426 0.7201
TSHRNet [9] 30.66 0.9565 0.7693
Hu et al. [17] 30.96 0.9335 0.6874

MIMO-UNetPlus [5] 31.66 0.9492 0.7996

The quantitative image quality assess-
ment results comparing the enhanced
S0 images to the deglared ground
truth images are shown in Table 2.
Our findings indicate that the perfor-
mance of specular highlight removal
models on SHDocs is mixed. Except
for M2-Net which had the best PSNR
performance, all other specular high-
light removal models fared worse than
the baseline where no image enhance-
ment had been applied. This result
suggests that the image enhancements have tended to worsen image quality in terms of PSNR, SSIM,
and UIQI relative to the deglared counterfactuals.

From Figure 4, visual observation of the S0 target and the deglared ground truth reveal that the
deglared image is an imperfect counterfactual for image quality assessment. Although the deglared
image has less specularity than the S0 image, it still contains specular highlights from unpolarized
light sources that were not filtered out; this is discussed in Section 5.1. Consequently, certain specular
highlight enhancements by Hu et al. [17] and M2-Net are erroneously marked down, negatively
affecting the experimental results’ metric performance and reliability. Additionally, the diffuse effects
and downsampling performed by Fu et al. [11], Hu et al. [17] and TSHRNet have also diminished
metric performance.

However, the literature has widely acknowledged the limitation of such quantitative image quality
metrics [36] [41]. Even as the outputs of the above models score worse than the baseline without
enhancement, their enhanced images may have greater qualitative visual appeal or usefulness. This
motivates us to quantitatively assess how the enhanced images generated by these models impact the
performance of OCR models in detecting and recognizing text within said images.

4.3 OCR performance

In evaluating the performance of OCR models on the enhanced image outputs of specular highlight
models, our objective is not to directly assess how well OCR models perform in document processing
as existing works have extensively explored [15, 4, 8]. Instead, we aim to use OCR performance to
gauge the impact of specular highlight models in enhancing images for use in OCR. We restricted
our models to Amazon Textract3, EasyOCR4, and Tesseract [33] as a representative sample of
enterprise and open-source OCR models for document processing. We first determine how each OCR
model performs with the original documents from the FUNSD evaluation set. Next, we assess OCR
performance on the unenhanced SHDocs evaluation set without transparency filters followed by the
performance on the unenhanced SHDocs evaluation set with transparency filters to serve as baselines.
Finally, we pass the SHDocs evaluation set through specular highlight removal models and evaluate
how the OCR models perform on the enhanced images.

3https://aws.amazon.com/textract/
4https://github.com/JaidedAI/EasyOCR
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(a) S0 target (b) Deglared ground truth (c) Fu et al. [11]

(d) M2-Net (e) TSHRNet (f) Hu et al. [17] (g) MIMO-UNetPlus

Figure 4: Enhanced image quality assessment

4.3.1 Metrics

In our OCR performance assessment, we use three OCR evaluation metrics: Word Error Rate (WER),
Character Error Rate (CER), and Levenshtein Edit Distance (LED) [24, 15] as implemented by
Lightning AI’s Torchmetrics library [6]. Lower WER, CER, and LED imply better OCR performance.

4.3.2 Results

The OCR evaluation results are shown in Table 3. The baseline results comparing the images with
no filter and those with no enhancement suggest that the presence of specularity worsens OCR
performance as per our hypothesis. Comparing the performance of specular highlight models, our
results decisively indicate that MIMO-UNetPlus is the best model in terms of OCR performance on
its enhanced images even though it has been untrained on specular highlight data. TSHRNet performs
comparably across all OCR models—however, this only constitutes a marginal improvement over the
baseline performance with no enhancement. Meanwhile, Huang et al. [18], Fu et al. [11], Hu et al.
[17]’s models all performed worse than the baseline.

Table 3: OCR performance on SHDocs evaluation dataset
Textract EasyOCR Tesseract

Baseline WER CER LED WER CER LED WER CER LED

Original FUNSD 0.343 0.096 2.12 0.656 0.260 5.65 0.470 0.270 5.99
No filter 0.415 0.134 3.06 0.907 0.583 12.7 0.7314 0.586 12.9

No enhancement 0.593 0.358 7.89 0.950 0.723 15.8 0.846 0.686 15.1

Model

Fu et al. [11] 0.960 0.865 18.8 1.00 0.998 21.6 1.00 0.960 20.8
M2-Net [18] 0.698 0.468 10.3 0.995 0.906 19.7 0.933 0.794 17.3
TSHRNet [9] 0.591 0.353 7.77 0.958 0.744 16.2 0.847 0.683 15.0
Hu et al. [17] 0.708 0.484 10.6 0.996 0.914 19.8 0.941 0.817 17.8

MIMO-UNetPlus [5] 0.582 0.342 7.53 0.942 0.686 15.0 0.824 0.653 14.3
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Inspecting the image enhancement outputs from Fu et al. [11]’s model and M2-Net, we observe that
the enhanced images tend to be blurry and low-resolution which likely impaired OCR performance.
Additionally, the diffuse effects employed by Hu et al. [17]’s highlight removal network to reduce
harsh specularity result in blurriness across affected areas which worsened the ability of OCR models
to recognize textual character details. Meanwhile, the deblurring effect of MIMO-UNetPlus likely
improved the ability of OCR models to recognize minute characters; despite the impactful specular
highlight removal of models such as TSHRNet, the deblurring effect enabled MIMO-UNetPlus to
achieve a better overall result. These results suggest that leading specular highlight removal models
exhibit clear limitations in image enhancement domains such as textual data.

The SHDocs benchmark has enabled us to effectively discern between specular highlight removal
models in terms of their ability to enhance images that OCR models subsequently consume. This
has enabled us to identify gaps within the specular highlight removal space for textual images and
illustrate limitations of image enhancement metrics such as UIQI, PSNR, and SSIM.

Altogether, our results in 4.2 and 4.3 demonstrate how performance in these image enhancement
metrics did not translate to downstream image performance for OCR tasks. It is worth restating
that the objective of this evaluation is not to provide a benchmark of the OCR models but to assess
how image enhancement efforts affect OCR performance. We have not extensively verified that
the FUNSD dataset was not used in the training of the above models—hence these results are not
indicative of OCR model performance.

4.4 SHDocs generalizability study

To further evaluate the impact of SHDocs, we sought to study how SHDocs generalizes across
specular highlight removal tasks through a two-part generalizability study. In the first part of our
study, we selected two prominent specular highlight datasets: SHIQ [11] and PSD [38] and evaluated
how leading specular highlight removal models, TSHRNet and Hu et al. [17], perform on these
datasets using image enhancement metrics PSNR and SSIM. We retrain the generic U-Net model,
MIMO-UNetPlus, on SHDocs and similarly evaluate how this model trained on SHDocs performs.
Finally, as a baseline, we evaluate how a MIMO-UNetPlus deblurring model that has not been
retrained on specular highlight data performs on these datasets.

In retraining MIMO-UNetPlus, we retained the original architecture and randomly initialized our
model weights. We trained the model on the SHDocs training dataset with the MIMO-UNetPlus
default hyperparameters: a batch size of 4, a learning rate of 0.0001, and a gamma of 0.5 for 3000
epochs with early stopping based on the validation PSNR.

Table 4: Generalizability of model trained on SHDocs across specular highlight datasets
SHIQ [11] PSD [38]

Model Dataset trained on PSNR SSIM PSNR SSIM

TSHRNet [9] SSHR, SHIQ, PSD [9, 11, 38] 25.6 0.933 22.8 0.903
Hu et al. [17] SHIQ [11] 33.9 0.980 27.5 0.970

MIMO-UNetPlus [5] SHDocs 22.4 0.915 28.0 0.956
MIMO-UNetPlus [5] GoPro[28] 23.1 0.903 18.1 0.705

The results in Table 4 indicate that although the MIMO-UNetPlus model retrained on SHDocs fares
worse than other specular highlight removal models on the SHIQ dataset, it performs very comparably
on PSD—with the highest PSNR on PSD’s evaluation set. This is despite MIMO-UNetPlus having a
model size of 64.6 MB compared to 468 MB and 412 MB in TSHRNet and Hu et al. [17] respectively.
A detailed comparison of the model size is included in the public code repository.5

Additionally, comparing the performance of the base MIMO-UNetPlus and the MIMO-UNetPlus
retrained on SHDocs, we observe that the retrained MIMO-UNetPlus largely outperforms the un-
trained MIMO-UNetPlus model, particularly on the PSD evaluation set. These results imply that
the SHDocs dataset has been impactful in improving MIMO-UNetPlus’ performance on specular
highlight removal tasks and that it has enabled the retrained MIMO-UNetPlus model to perform
competitively with other specular highlight removal models in leading specular highlight datasets.

5https://github.com/JovinLeong/SHDocs
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In the second part of our study, we retrained the generic U-Net model architecture on various specular
highlight datasets across different domains and hardware and evaluated the performance of each
retrained model. This study sought to enable an apples-to-apples comparison to help assess the
generalizability of SHDocs across specular highlight removal domains.

On top of SHDocs, we included the SHIQ [11] and RD [16] datasets as they contain specular
highlight images in different domains and were captured with different hardware: SHIQ involves
specular highlights on objects-in-the-wild while RD contains specularity on documents with Chinese
characters. We used the MIMO-UNetPlus [5] architecture with the same training settings as before
on all the datasets. As before, we include the original MIMO-UNetPlus [5] model trained on the
GoPro dataset [28] in our evaluation as a baseline to compare against—since this dataset has been
designed for image deblurring tasks and does not include any specular highlight data.

Table 5: MIMO-UNetPlus [5] model trained on specular highlight datasets
SHIQ [11] RD [16] SHDocs

Dataset trained on PSNR SSIM PSNR SSIM PSNR SSIM

SHIQ [11] 31.81 0.9569 16.10 0.7681 33.76 0.9258
RD [16] 17.79 0.8362 21.39 0.8407 20.85 0.8924
SHDocs 23.97 0.9104 16.12 0.7575 42.45 0.9692

GoPro [28] 22.52 0.8877 15.27 0.7381 31.61 0.9288

No enhancement 23.52 0.9240 15.37 0.7704 32.55 0.9445

The results in Table 5 show that, as expected, the MIMO-UNetPlus model performs best when it
is evaluated on the same dataset on which it was trained. Notably, the results for the model trained
on SHDocs in this study differ from our earlier generalizability study when evaluated on the SHIQ
evaluation set. This difference is attributed to the random initialization of weights and the different
early-stopping outcomes during training. The models in both generalizability studies are available for
download on our public GitHub repository.6

We observe that the model trained on SHDocs is competitive with SHIQ and RD in all of the
evaluation sets (discounting instances where the MIMO-UNetPlus model is evaluated on the dataset
it is trained on). This is indicative that SHDocs exhibits a degree of generalizability to other specular
highlight domains. Crucially, we find that the model trained on SHDocs outperforms the baseline
model trained on the GoPro dataset in every evaluation set. This finding further suggests that SHDocs
is impactful in generalizing across specular highlight domains.

Taken together, our findings from the above studies support the hypothesis that the SHDocs dataset is
useful for image enhancement and exhibits generalizability across hardware and specular highlight
removal tasks.

5 Discussion

In this paper, we have proposed an efficient method to generate high-quality specular highlight
data, a specular highlight dataset comprising over 3000 document scenes with 19000 images, and a
benchmark for evaluating image enhancement models through downstream OCR performance. Our
experiments demonstrate limitations in existing methods of specular highlight removal for textual data
and we provide the means to advance research in this domain. We believe that low-level innovations
in the computer vision space as we have achieved shape how we approach vision-based reasoning and
bolster more complex developments. We hope attention is paid to accessible methods of generating
quality data to enable the broader community to advance research in machine learning and computer
vision. We release our dataset and our code publicly to further efforts in this vein.

6https://github.com/JovinLeong/SHDocs/tree/main/model
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5.1 Limitations

1. Our process, GUI, and pipelines have been designed for FLIR Blackfly S and Sony
IMX250MZR. Although our work can be adapted to other sensors, this will be an ob-
stacle for researchers with hardware access. Regardless, we view that our setup is reasonably
specified as the components are commercially available and relatively inexpensive compared
to conventional experimental setups required to capture specular highlight data.

2. Our method to generate and process specular highlights relies on specular highlights formed
from polarized light. As such, our method cannot create alignment for specular highlights
from unpolarized light or polarized light at angles that are not orthogonal to our polarized
sensor. Failure cases can be observed in Figures 1 and 3d where the images deglared
using our method still exhibit specularity. Although this effect can be mitigated by reducing
unpolarized light (as we have done through our enclosed setup), this limitation of our method
will inhibit the creation of datasets in conditions where light is largely unpolarized and limit
the applicability of our method across contexts.

3. Our dataset and OCR evaluation only involve documents from FUNSD which exhibits
a degree of style and context homogeneity in that the documents are from the United
States of America and cover only the English language. This might result in generalization
limitations when applied to documents with different contexts and languages. A future
research direction could be to extend the dataset to cover a wider variety of contexts and
languages through datasets such as HuggingFace’s recently released pixparse PDF dataset.7

5.2 Social impact and ethical considerations

Our work extends the capabilities of researchers in the image enhancement and document analysis
space. Such research will have applications in logistics, data processing, and administrative industries
and may create obsoletion risks to occupations involving manual data entry. We view that these
are consequences inherent to machine learning and automation that organizations and users must
appropriately manage. Additionally, the hardware requirements highlighted in Section 5.1 can result
in accessibility barriers for researchers seeking to replicate or extend our work. However, we have
determined that our approach remains significantly more economical than the larger, controlled
experimental setups employed in previous works and constitutes an overall increase in accessibility.

5.3 Usefulness of dataset and method

Through our work, we demonstrated that the SHDocs dataset is an insightful benchmark that highlights
limitations in the specular highlight removal space—particularly for textual image data. We believe
our benchmark constitutes a more complete assessment of image enhancement outcomes in this
domain than quantitative image enhancement metrics as the inclusion of OCR metrics provides a
more purposeful proxy for real-world image quality. Our benchmark enables the development of
more impactful and practical image enhancement models that are better suited to textual images.

We are confident that SHDocs will benefit researchers tackling specularity in real-world images and
documents and supports the development of text-aware image enhancement models. By including
all unprocessed frames from 4 polarization angles, SHDocs also can be used in domains such as
light modeling and simulation. Similarly, vision-foundation models can leverage our dataset to
recognize and handle specularity. Finally, our method constitutes an efficient and low-effort method
of generating and handling specular highlights. Our method can be used to form image datasets or in
logistic applications that require illumination without specular highlights.

7https://huggingface.co/collections/pixparse/pdf-document-ocr-datasets-660701430b0346f97c4bc628
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The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets? [Yes] This is specified in the public
GitHub repository linked in the abstract and included in the supplemental material.

• Did you include the license to the code and datasets? [No] The code and the data are
proprietary.

• Did you include the license to the code and datasets? [N/A]
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Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] See Section 1 for a detailed breakdown of our contri-
butions and scope. See Section 3.2 for our proposed process; see Section 3 for our
dataset; see Section 4 for our benchmark.

(b) Did you describe the limitations of your work? [Yes] See Section 5.1.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] See

Section 5.2.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments (e.g. for benchmarks)...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] The link to the
code, data, and instructions has been provided as a footnote in the abstract. Detailed
instructions to access source code, dataset, pipelines, and processes are detailed in the
supplemental material and will be incorporated into the public GitHub repository.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were
chosen)? [Yes] Training details are included in Section 4.4. However, the submission
did not include several training details such as the data splits were not specified due
to space limitations. These training details will be included in the public GitHub
repository along with the code required to replicate the model training

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [N/A] Our experiments involved the evaluation of enhanced
images on the evaluation set of the SHDocs dataset which is a nonrandom set of
document images created from the FUNSD dataset—hence, experiment outcomes are
nonstochastic. See Section 4.1 for details on the experimental procedure.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Section 4.1 for details on the
infrastructure used in evaluation and model training.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] The FUNSD dataset

used to create SHDocs has been thoroughly cited and acknowledged in the paper; the
specular highlight removal models used in our benchmark and experiments have been
thoroughly cited and acknowledged in the paper. Further references to the original
authors are made in the public GitHub repository linked in the abstract.

(b) Did you mention the license of the assets? [Yes] License of all assets used are specified
in the public GitHub repository linked in the abstract and detailed in the supplemental
material.

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
New assets are specified in the public GitHub repository linked in the abstract and
detailed in the supplemental material.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A] No usage of data from individuals that have not already been
covered by the existing licenses

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A] Personally identifiable information within the
forms have already been authorized in the original dataset and covered by the existing
licenses.
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5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]
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