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Abstract

Iterative algorithms solve problems by taking steps until a solution is reached.
Models in the form of Deep Thinking (DT) networks have been demonstrated to
learn iterative algorithms in a way that can scale to different sized problems at
inference time using recurrent computation and convolutions. However, they are
often unstable during training, and have no guarantees of convergence/termination
at the solution. This paper addresses the problem of instability by analyzing the
growth in intermediate representations, allowing us to build models (referred to as
Deep Thinking with Lipschitz Constraints (DT-L)) with many fewer parameters
and providing more reliable solutions. Additionally our DT-L formulation provides
guarantees of convergence of the learned iterative procedure to a unique solution at
inference time. We demonstrate DT-L is capable of robustly learning algorithms
which extrapolate to harder problems than in the training set. We benchmark on the
traveling salesperson problem to evaluate the capabilities of the modified system in
an NP-hard problem where DT fails to learn.

1 Introduction

Iteration is a key ingredient in a vast number of important algorithms. Incremental progress towards
a solution is demonstrated in many of these. Well-known examples include insertion sort, gradient
descent, and the simplex method. This paper explores models that learn iterative algorithms. We
ask questions including: Can deep learning models be used to learn the complex steps of algorithms
similar to these? Is there a way to guarantee a solution or approximation is reached? Can we
learn algorithms that extrapolate to larger or harder instances than we train on? In addressing these
questions we propose a model called Deep Thinking with Lipschitz Constraints (DT-L).
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Figure 1: Recurrent-based model architectures for learning algorithms with input x and output y.
F , G and H are convolutional networks that work on any size input. A scratchpad ϕ serves as the
working memory during computation. As described in Section 2 the original DT model didn’t include
recall, denoted by the dotted line. The improved DT-R and our DT-L model include this connection.

Some work towards answering the above questions has occurred in recent years. A key approach
has been to utilize various forms of a learned recurrent function to implement a ‘step’ in an iterative
algorithm that computes a solution to a problem. Typically these recurrent functions are combined
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with learned functions that pre-process the initial input, and post-process the output of the last iteration
into the final solution form. Examples of such approaches are the Deep Thinking (DT) networks [18]
and Deep Thinking with Recall (DT-R) networks [2] that we build upon in this work (see Figure 1).

There are two key features to these models: firstly the use of an iteratively updated scratchpad, ϕ
serving as a working memory; and secondly, the construction of the model from convolutional layers
to enable it to scale to arbitrary sized problems. The latter is important because in principle it allows
training on smaller problems, and then extrapolation at inference time to larger problems [2, 18].

Many challenges still remain with the existing DT and DT-R approaches however, and we aim to
address these in this work. Firstly, DT-style networks are quite difficult to train and can be very
unstable both during training and inference. The DT-style networks previously demonstrated in the
literature are massively overparameterized — we show in Section 3 that model width is inversely
related to training stability in existing models, and later demonstrate how this can be addressed (see
Section 4). Secondly, existing approaches have no guarantees on the convergence of the learned
algorithm; this is important because if a solution to a problem exists, one would hope that an algorithm
to solve it would terminate or reach a stable state once the solution has been reached. Section 4
details a design approach to guarantee convergence within the limits of floating point precision by
considering the network in terms of a discrete dynamical system. Our contributions are:

• We systematically analyze DT networks and explore why they can be unstable;

• we introduce techniques grounded in theory into the DT framework which improve the
stability of learning and guarantee convergence at run time. This allows the use of much
smaller models to tackle the same problems, and improves extrapolation performance;

• we propose our Deep Thinking with Lipschitz Constraints (DT-L) model and perform a
comprehensive evaluation and ablation study; and,

• we show that the approach can be applied to learn to find low-cost tours for a range of TSPs,
including non-Euclidean and asymmetric instances.

2 Related work

Deep Thinking (DT) networks [18] were designed to learn algorithms by using recurrence to induce
iterative behavior in such a way they could be trained on smaller and simpler examples before
extrapolating to larger tests. The networks were used to solve ‘Easy-to-Hard’ problems (consisting of
prefix sums, mazes, and chess puzzles [17]) and they could be trained with few iterations on easy
problems in such a way that they can solve harder problems by increasing the number of iterations.

DT networks were further improved by Bansal et al. [2] by means of adding ‘recall’ (which we refer
to as DT-R networks) — a mechanism for the recurrent component to have continuous access to
the original input. Recall successfully allowed DT-R networks to solve much larger tests than DT
networks without recall, while also mitigating overthinking, where if after too many iterations at
inference time the predicted solution becomes progressively worse. In addition to recall, Bansal et al.
introduced incremental progress training (IPT), a training method which disables gradient tracking
for a random number of initial iterations. This prevents the model from learning behaviors based
strictly on the number of iterations and instead promotes incremental modification to the internal
states.

There exist alternative approaches to producing machines which can learn algorithms. One set of
models are Neural Turing Machines (NTMs), which use attention in a recurrent system for reading to,
and writing from, some external memory [6]. NTMs showed success in learning cell-based copying
and repeating tasks which could be applied to unseen inputs. Differentiable Neural Computers
(DNCs) operate similarly to NTMs, differing primarily in their method of external memory access
[7]. In the NTM, like most RNNs, the amount of compute is directly tied to the input sequence length.
Graves [5] proposed a method to adaptively select the compute budget in RNNs. The models studied
here are different in the sense that the objective is to extrapolate beyond the training data to harder
problem instances as the compute budget is increased, and the input and output is not a sequence.

A second class of models exist where a specific base iterative algorithm is defined, and the parameters
of the algorithm, or the problem, are learned. Examples include the reverse diffusion process learned
in diffusion models [9], and models which involve optimization using gradient descent iterations
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within the forward pass to generate an output with certain properties that are difficult to produce
directly with a neural network, such as permutation equivariance [21]. Our work does not constrain
the class of algorithm used directly, other than enforcing that we learn an iterative one.

3 Analysis of Deep Thinking Networks

The main architecture used in pre-existing Deep Thinking networks [2, 18], and our own network,
is shown in Figure 1. It takes an input problem instance x and generates a solution y. The model
consists of three convolutional networks F , G and H. The function F is responsible for initially
pre-processing the input x into the initial state ϕ(0); function G is the recurrent function that takes
the current state, ϕ(m) (plus the original input x in the case of DT-R and our models), to produce the
next state, ϕ(m+1). The final state produced by G, after M iterations, is denoted ϕ(M). The function
H takes ϕ(M) and produces the predicted output y. Formally

ϕ(0) = F(x) , (1)

ϕ(m+1) = G
Ä
ϕ(m),x

ä
∀m ∈ {0, . . . ,M − 1} , (2)

y = H
Ä
ϕ(M)

ä
. (3)

Architecturally these networks are recurrent neural networks. Unlike more commonly used recurrent
networks such as LSTMs they are not used to tackle problems with sequential data, but rather the
recurrent part is used to find a solution through an iterative process. The algorithm that the recurrent
network uses, as well as the pre- and post- processing functions are learned through supervised
training on example input-solution pairs for a particular problem.

As the networks F , G and H are convolutional neural networks they can work with an arbitrary size
input. The solution y is typically the same size as the input x. The feature of DT and DT-R that
excited interest was that, not only could they solve unseen problem instances of the same size as
they were trained on (which we call interpolation), but when trained on small problem instances
(with relatively small M ), they were able to find low cost solutions on much larger problem instances
(which we refer to as extrapolation) by increasing M at inference time. Both DT and DT-R suffer
from poor stability both in training but particularly at inference time when extrapolating to larger
problems. This often lead to overflow errors. This was particularly seen if the number of channels in
network G is reduced, then DT and DT-R are hard to train with many runs failing to find a solution. We
show the reason for this is that there is no mechanism to control the change in size of the scratchpad
representation, ∥ϕ(m)∥/∥ϕ(m−1)∥, leading to this either overflowing or vanishing during learning.

3.1 Training Stability

In this section we focus on DT-R as this is more stable than the original DT network. We use the
spectral norm of the reshaped weights of a convolution1 to capture the expansion or shrinkage in
magnitude of the output relative to the input of a sub-network, with a value of 1 meaning that the
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Figure 2: Distribution of spectral norms of reshaped weight matrices for the different convolutional
layers in the recurrent part of DT-R. 30 prefix-sum-solving models with width w = 32 were sampled.

1Given a convolutional layer with weights shaped (Cout, Cin, n), where n is the number of elements
(e.g. the kernel height times width in a 2D convolution) we can flatten the weights into a matrix of shape
Cout × Cin · n; the spectral norm is the largest singular value of this matrix.
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Figure 3: Mean training (cross-entropy) loss at each epoch for prefix-sums-solving models of varying
width w. For small w training is stable, but not all models converge; larger w has a higher chance of
models reaching a small loss, but the training process has very large spikes in the loss which causes
some models to explode. Each curve is measured from a different random initialization of the model
throughout training, for 10 models of each width

magnitude is constant. In Figure 2, we use violin plots to show the distribution of spectral norms for
the four convolutional layers that arise after training DT-R on the prefix-sum problem (see Section 5
for a description of the problem). We observe that the spectral norms are typically greater than one,
which can lead to the norm of ϕ(m) growing with each iteration. In turn this can cause the model to
overflow when applying the model to a larger input (the extrapolation scenario), where we increase
the iteration number M in order to solve the larger instance size. The DT models as described and
implemented by Bansal et al. [2] have training behavior which becomes increasingly unpredictable
as the width w (number of channels in the scratchpad) is reduced. This can be seen in Figure 3,
where the variation in training loss at the end of training over different runs is larger in models of
smaller width. It is also worth noting that increasing the width can result in explosive behavior in
loss, including not-a-number (NaN) results, which can be seen in Figure D4.

3.2 Extrapolation Performance

The property of the DT networks that excited our interest was their ability to solve large instances
than they were trained (that is, their extrapolative ability). This generalization to out-of-distribution
examples is a key challenge for many machine learning algorithms. However, although DT-R can
find models that extrapolate, very often the models that are trained extrapolate poorly. We observe
models trained on few recurrences may have explosive behavior which only becomes a problem with
extrapolative tasks requiring more recurrences.

Both DT and DT-R network used no bias terms in their model [2, 18]. In experimenting with these
networks, we found that adding bias made these models very unstable. Unfortunately, having no
biases exacerbates the ‘dead cell problem’, where some of the convolutional filters would have a zero
response to all training inputs.

4 Refinement of the Architecture: Deep Thinking with Lipschitz Constraints

In the previous section we have identified a problem faced by DT-R, namely that there is instability
in reaching a solution through the iteration in Equation (2). To overcome this difficulty we use a well
known property of contraction maps. If c : V → V is a mapping of objects, v and w, in a normed
vector space V , that is contractive in the sense that

∥c(v)− c(w)∥ < ∥v −w∥ , (4)

implying c(·) is a Lipschitz function with Lipschitz constant K < 1, then the iterations

v(m) = c(v(m−1)) (5)

will converge to a unique solution as a consequence of the Banach fixed-point theorem [1, 3]. We can
use this to refine DT-R by engineering the network G(·,x) to be a contraction mapping. Noting that
in Equation (2) the input x is held constant throughout the iteration, we construct G(·,x) so that it
has an approximate Lipschitz constant K less than 1.
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Although any Lipschitz constant less than 1 would guarantee convergence, the nature of the problem
solving mechanism we seek to learn intuitively means that we do not want fast convergence. This is
because the network G performs local convolutions with a limited receptive field. However, finding
good quality solutions often requires a global knowledge. To accumulate such knowledge requires
long distance information to accumulate in the scratchpad vector ϕ(m) over multiple iterations. To
allow this to happen we choose the approximate Lipschitz constant associated with G to be less than,
but close to 1.

4.1 Constraining the Lipschitz Constant

The primary tool we use to control the Lipschitz constant of G(·,x) is spectral normalization [15].
This is an extension of spectral norm regularization, introduced by Yoshida and Miyato [20], but it
sets the spectral norm of an operator to a fixed value rather than penalizing the norm of an operator
that differs from a predefined value. The method uses a power iteration to compute an approximation
of the spectral norm of an operator, updated after each gradient step. Computation of the spectral
norm is a costly operation, but it only has to be done at the beginning of the iterative process.

As network G consists of convolutions we divide each convolution kernel weight by the spectral
norm plus a small constant ε to ensure the spectral norm is less than one; there is one exception
in that the convolution applied to the recall connection x does not need normalizing — please see
Appendix B for full details. In addition to using the spectral norm we need to make sure all the other
transformations carried out by G are at most 1-Lipschitz. However, to avoid applying constraints to
the constant recall connection, we replace DT-R’s method of applying a single convolution on the
concatenation

[
ϕ(m),x

]
with two separate convolutional layers on ϕ(m) and x respectively whose

output is combined by element-wise addition. See Appendix A for a rigorous discussion on how the
Lipschitz behaviour we require is ensured.

Constraining Activation Functions. To guarantee convergence under the constraints provided,
any activation function used in G must be 1-Lipschitz. This includes Rectified Linear Units (ReLUs),
Exponential Linear Units (ELUs) [4], and tanh, but excludes Gaussian Error Linear Units (GELUs)
[8], which have an absolute gradient greater than 1 around x =

√
2. Results in the body of this paper

use the ELU activation for DT-L networks and the ReLU for DT-R as originally defined. Additional
results using ReLU for DT-L and ELU for DT-R can be found in Appendix D.2.

Constraining Residual Skip Connections. DT and DT-R use element-wise addition for residual
connections in recurrent blocks. The sum of two functions c : X → Y and d : X → Y applied to the
same input, with Lipschitz constants Kc and Kd respectively results in the upper bound,

∥(c(x1) + d(x1))− (c(x2) + d(x2))∥ ≤ (Kc +Kd)∥x1 − x2∥ (6)

for all x1,x2 ∈ X . In the case of a standard residual connection, one function is the identity
(id(x) = x) and the other is the block of layers B contained in the span of the residual connection.
Under our constraints, the identity is 1-Lipschitz and the block of layers is KB-Lipschitz, where
KB ∈ [0, 1). This results in a Lipschitz upper bound for the output of 1 +KB.

As a result, residual connections as addition between the identity and a block of layers can increase
the Lipschitz constant of the recurrent part even if the layers themselves are 1-Lipschitz. A solution
to this, which also allows more expression in the model, is to make each residual connection a
parametric linear interpolation between the identity output and the block output

(1− γ) id(x) + γ B(x), γ ∈ [0, 1] . (7)

DT-L applies this interpolation to each channel, c, individually; an unconstrained learnable parameter
γ̄c exists for each channel in each residual connection, then the residual parameters are set to
γc = σ(γ̄c) where σ is the logistic function to ensure that 0 ≤ γc ≤ 1.

4.2 Additional Modifications

The above changes leads to a more stable network, allowing us to make additional modifications
and still obtain convergent behaviour with improved performance. Without explicitly controlling the
Lipschitz constant, these changes often lead to complete failure of the network to solve the problem.
In our final model design we apply three extra modifications that lead to consistent improvements:
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1. Batch normalization layers [10] are added for the input and after each convolution, except
for layers in the recurrent block and the final output layer. Empirically this improves
performance.

2. A bias term is added to the recall convolution (without the Lipschitz constraint) in G. The
bias term is added to the recall convolution to mitigate the dead cell problem. Since this is
a constant addition (along with recall) it does not disrupt the convergence constraints we
have put in place (see Appendix A). A bias term is also added to the final (output) layer and,
when batch normalization is not used, to F .

3. Exponential Linear Unit (ELU) activations [4] are used instead of rectified linear unit (ReLU)
activations. This choice is influenced by the desire to promote activations staying close to
zero [4] throughout iteration, as well as mitigating the effect of the dying ReLU problem
[19] where ‘dead’ activations increase with depth [13]. Artificially deep models like DT are
therefore likely to encounter this problem. Using ReLU can also result in a rapid rate of
convergence, preventing the model from learning complex algorithms for harder tasks (see
Appendix D.2).

Our reasoning for not applying batch normalization in the recurrent block follows from Jastrzebski
et al. [11] where unsharing batch normalization statistics was necessary to avoid activations exploding.
In an architecture where the maximum number of iterations is unknown it appears infeasible to unshare
batch normalization statistics for every iteration.

Using these modifications — creating a model we call Deep Thinking with Lipschitz Constraints
(DT-L) — greatly improves the stability of training and using these networks. As we will see in
Section 5, the new DT-L network allow us to solve the same problems explored by DT and DT-R, but
using, in some cases, three orders of magnitude less parameters while achieving high performance
and a more consistent success rate during training. The increased reliability offered by DT-L allows us
to explore many other modifications enabling us to tackle more sophisticated problems. We illustrate
this by attempting to find good solutions to one of the most notoriously difficult problems, namely,
the traveling salesperson problem (TSP).

5 Results on Easy-to-Hard Problems

In this section, we compare our model (DT-L) against DT-R. Note that DT-R is an improvement of
DT by the same authors and has already been shown to have better performance [2]. We test on the
three problem classes used by Bansal et al. [2] to evaluate DT-R, namely a prefix sum problem, a
maze problem and a chess problem.

We have trained and evaluated the models on a range of different Nvidia GPU accelerators from
RTX2080Tis to A100s, as well as on M3-series Apple Silicon. Memory usage is insignificant
compared to available GPU memory. Training time is of the order of 30 minutes for the w =
32 model on the prefix-sum problem using a single RTX8000. More details can be found in
Appendix E, and code for the experiments can be found at https://github.com/Jay-Bear/
rethinking-deep-thinking.

The accuracy given in this section measures the proportion of instances where the network produces
the exact correct solution. Note that even if a predicted solution differs from the target by one element
(e.g. 1 bit in prefix sums, 1 pixel in mazes) it is considered a failure.

Prefix Sums. The prefix sum problem involves translating a string of ones and zero to a new string
that counts sequences of ones (details are described by Bansal et al. [2]). The problem is simpler than
the the maze and chess problem, and considerably faster to run. As a consequence we choose this as
the main problem to perform a comparative study.

In our experiments we compare the DT-R model to our DT-L model. Both were trained on instances
consisting of 32 bits for a maximum of 30 iterations, using IPT with α = 0.5. Both models have a
width (number of channels) of w = 32 (more details about architecture can be found in Appendix B.1).
We found that for this problem there is little change in performance above w = 32 for DT-L. In
Figure 4 we show the solution accuracy for 30 randomly-initialized models of both DT-R and DT-L
on the 512-bit test dataset versus the number of iterations (M ) to generate those solutions. We
measured the performance on 10 000 randomly generated instances of each problem. The error in
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the mean is less than 0.5% which is approximately the width of the lines in the figure. As can be
seen DT-R struggles to consistently find networks that extrapolate to larger problem settings (it only
obtains greater than 90% accuracy on two out of 30 training runs). In contrast DT-L only fails to
reach above 90% accuracy on two out of 30 training runs.
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Figure 4: Comparison between Deep Thinking with Recall and Deep Thinking with Lipschitz
Constraints on the prefix sums problem. Two left plots show the solution accuracy of inference-time
runs on 512-bit problems for 30 individual models each. Each line corresponds to the performance of
a network trained from scratch with different randomly initial weights. The accuracy is measured on
10 000 problem instances. The right plot shows the mean of all 30 for each. Models have a channel
width of w = 32. Shaded areas show 95% confidence intervals.

To emphasize DT-L’s performance on smaller widths, we selected w = 32 as the primary width for
comparison. We perform ablations on other aspects of the model in Appendix D.2.

Mazes. The mazes problem consists of drawing the correct path for a blank maze, given a starting
point and an ending point. Details about the representation of mazes is given in Schwarzschild
et al. [17] and Bansal et al. [2]. Our tests are performed on models trained on 17 × 17 mazes,
extrapolated to 33× 33 mazes. Results from multiple runs and an aggregate can be seen in Figure 5.
The maze models defined by Bansal et al. [2] are trained on 9× 9 mazes. Attempting to train DT-L
on mazes of this size resulted in the models often learning trivial solutions which did not extrapolate
to larger mazes.

Chess Puzzles. The chess puzzles problem involves identifying the next best move of the current
board state. Specifically, the model must learn to classify 1s in two cells representing the piece to
move and the location to move to, and 0s elsewhere. The models are trained on a train/validation split
of the easiest 600,000 problems, where difficulty is based on Lichess.org rankings (see Schwarzschild
et al. [17] for more detail).

This problem in particular can be viewed as different to both the prefix sums and mazes problems in
that the difficulty of the problem doesn’t come from the size. All chess puzzles in this dataset are
standard 8× 8 chess boards. For all tests on the chess dataset [17] we follow the same number of
epochs as Bansal et al. [2]. Results are shown in Figure 6. DT-L achieves very similar performance
to DT-R, seemingly hitting the same apparent ceiling on performance discussed by Bansal et al. [2].
We would like to explore the reasons for this in more detail the future, but we note that at training
time the models do not reach 100% accuracy, so it should not be a surprise that they do not always
extrapolate. It is possible that the issue arises from the structure of the data and the way it interacts
with the model architecture.

6 Benchmarking on Traveling Salesperson

To demonstrate the strength of DT-L, we have formulated the traveling salesperson problem as a
differentiable optimization task for the model to solve. This is a significantly more challenging
problem than those discussed in Section 5. The problem instance x is now the matrices of “distances”
with additional information. For arbitrary distance matrices this is known to be NP-hard. An optimal
solution corresponds to a tour (permutation of the cities) such that the sum of distances between
neighboring cities is minimized, although we seek only to find a low cost tour.
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Figure 5: Comparison between Deep Thinking with Recall and Deep Thinking with Lipschitz
Constraints on the mazes problem for small models. Two left plots show the solution accuracy of
inference-time runs on 33× 33 mazes for 14 different models each. The right plot shows the mean
of all 14 for each. Models have a channel width of w = 32. Shaded areas show 95% confidence
intervals.
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Figure 6: Comparison between Deep Thinking with Recall and Deep Thinking with Lipschitz
Constraints on the chess puzzles problem on models of two different widths, showing the mean
accuracy of inference-time runs on problems ranked in increasing difficulty between 1,000,000 and
1,100,000. Aggregate of six models, each trained on the easiest 600,000 problems, where shaded
areas show 95% confidence intervals.

The solution vector y is a binary matrix with 1s corresponding to the edges that are used in the
tour. We constructed the network so that the solution vector would correspond to a feasible solution.
Unfortunately, in doing so involves an intermediate representation where the evaluation of the cost is
non-trivial, which made the problem of learning an iterative solution very challenging. To overcome
this, we increased the expressiveness of the scratchpad vectors ϕ(m) to learn orthogonal transforms
that it applied to a part of the scratchpad vector. This considerably improved the performance of the
network. Details of the modification used are given in Appendix B.1.

6.1 TSP Results

In Table 1 we give the mean tour length for randomly generated instances from two class of problems:
symmetric random tours and asymmetric random tours. The DT-L models were trained for each
problem class on tours of size n = 15 with M = 45. We show both interpolative results (using a new
set of tours on the same size problems) and extrapolative results where we test of problems of size
n = 30 with M = 120. For comparison we provide the length of random tours, the length of tours
generated by the greedy nearest neighbor (NN) algorithm, and the length of tours from a modified
version of the NN algorithm which selects the lowest-cost NN tour out of all starting points instead
of starting from a random point (BNN).

The results in Table 1 show DT-L’s ability to learn non-trivial algorithms by performing considerably
better than random tours. That the results are worse than the nearest neighbor methods should not be
surprising, as in the asymmetric non-Euclidean case these are amongst the best known algorithms.

The models take approximately 8 hours to train on an RTX2080Ti GPU for 80,000 batches of 64
randomly generated TSPs for both symmetric and asymmetric settings with n = 15 and M = 45.
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Testing was performed on M3 Apple Silicon with MPS acceleration and takes 3.59ms per n = 15
problem instance for M = 45 and 23ms per n = 30 problem with M = 120.

Table 1: Results for TSP runs on symmetric and asymmetric instances. The results are the mean
for 12,800 random instances. For DT-L, M = 45 was used for problem size n = 15 and M = 120
for n = 30, where tour lengths are shown in column 2. Column 3 (Random Tours) gives the tour
length for random tours, while columns 4 and 5 give the tour lengths for greedy nearest neighbor
tours starting from a random point (NN) or choosing the lowest NN tour from all starting points
(BNN) respectively.

Problem DT-L Random Tours NN Tours BNN Tours

Symmetric n = 15 3.99± 0.006 7.5± 0.01 2.85± 0.005 2.31± 0.005
Symmetric n = 30 6.02± 0.007 15.0± 0.01 3.50± 0.005 2.72± 0.004
Asymmetric n = 15 4.66± 0.008 7.5± 0.01 2.82± 0.006 2.09± 0.004
Asymmetric n = 30 7.7± 0.01 15.0± 0.01 3.50± 0.006 2.53± 0.004

7 Discussion

Deep Thinking-style architectures provide a new paradigm for using machine learning for general
problem solving. The key idea is to use a recurrent architecture to find a solution through multiple
iterations. This paper has addressed a major drawback of the published models which is the instability
that frequently arises in the iteration steps. Having addressed these problems not only are we able to
obtain networks that much more reliably solve new problems, but we show that we can run much
smaller networks with similar and often better performance. To illustrate the potential of this approach
we have tackled a notoriously difficult problem, namely TSP.

Deep Thinking approaches are attractive because they learn a general problem solving strategy
that can be used to solve considerably larger instances of the problem than they were trained on.
Extrapolation to problems outside the training dataset is an area where traditional machine learning
struggles. Clearly, the problems these models extrapolate to are in the same problem class to
the training data, but it is noteworthy that the strategies learned for the problem classes we have
investigated scale in this way. Another interesting feature is that the network learns the problem
solving strategy through examples (in the case of TSP it is not even shown any low cost solutions).
Admittedly, for TSP we needed to construct a network that outputted tours and to get the quality of
results we did we introduced a mechanism for learning orthogonal transformation which we then
applied to part of the scratchpad vector. However, we did not build in any explicit rules for solving
the TSP — so much so that we do not fully understand the algorithm DT-L uses to find low cost tours,
particularly in the case of asymmetric non-Euclidean TSP.

Broader impact. Given the ubiquity of iterative algorithms in solving problems, having a mech-
anism to learn such algorithms opens up a lot of possibilities. The advantage of using a recurrent
mechanism over a feed-forward architecture is that to solve a larger problem we simply needed
to run the recurrent loop more often; this is often desirable in the real world because it might be
impossible to train on sufficient data that you can guarantee not to need to extrapolate at inference
time. Clearly, models of this kind have very many potential applications - both in developing new
(and potentially improved — could we learn an algorithm that is significantly faster or more energy
efficient than anything currently existing?) algorithms for existing problem classes where we already
have solutions, as well as in all areas of predictive modelling where we believe the input-output
relationship is best captured through a potentially-deep recurrent function. Inevitably, some of the
potential uses also have the potential for misuse.

Limitations. This work shows theoretically and empirically that it is possible to modify an architec-
ture to learn recurrent functions with convergence guarantees. The problems we solve are relatively
simple however. The performance we obtain, for example, on TSP is far from state-of-the-art, but
we believe that the contribution is significant as we are able to find a heuristic algorithm running in
M = O(n log(n)) steps through trial and error, without any explicit inductive bias towards finding
what we might consider to be a sensible algorithm. There are also clearly other potential issues with
the approach; learnability is significantly improved over previous attempts, but there are still cases
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where the model fails to learn. The use of convolutions means that the only way to capture long-term
(or large distance) dependencies in the data is through iteration; this is possibly a benefit, but other
architectures with different structural biases might work better on certain problems. We believe, in
terms of comparison to NN and BNN heuristics, this local view of the distance matrix may contribute
to the disappointing appearance of the results.

Outlook. This work leaves many open directions for future research. It would be interesting to
explore different architectures, such as Transformers, and more diverse problem settings. It would
also be fascinating to better understand what algorithms are learned by the model under different
settings and whether for example the complexity of the learned algorithm can be controlled.
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A On Being Lipschitz

As discussed in the main paper one of its major contribution is the observation that by making G(·,x)
K-Lipschitz with K < 1, then the iterative mapping defined in Equation (2) is guaranteed to converge
to a unique solution as a consequence of the Banach fixed-point theorem [1]. To engineer G(·,x) to
be K-Lipschitz we rely on a few well known properties of functions. If C : X → Z is a composition
of two Lipschitz mappings A : X → Y and B : Y → Z with Lipschitz constant KA and KB then

∥C(x)− C(y)∥ = ∥B(A(x))− B(A(y))∥ ≤ KB ∥A(x)−A(y)∥ ≤ KA KB∥x− y∥. (A1)

Thus a sufficient condition to ensure C is K-Lipschitz with K < 1 is that KA, KB < 1. This trivially
generalises to any number of compositions.

In the network G(ϕ,x) the input vector x is added to ϕ through a convolution. However, adding an
offset vector to a mapping does not affect the Lipschitz property as if A is K-Lipschitz and c is a
constant vector, then the mapping B(x) = A(x) + c satisfies

∥B(x)− B(y)∥ = ∥A(x)−A(y)∥ ≤ K ∥x− y∥. (A2)

Since during every iteration the input vector x and the convolution filters remain unchanged, the
addition of the input x (which the Deep Thinking with Recall authors termed the recall) does not
change the Lipschitz property of the network.

Finally, to ensure the Lipschitz behaviour of the convolutions we note that convolutions are equivalent
to applying a matrix, C, to some vector, v. For a matrix norm ∥C∥ that is compatible with a vector
norm ∥x∥,

∥Cv∥ ≤ ∥C∥ ∥x∥ , (A3)

where there exists a vector x where the equality conditions holds. If N = ∥C∥ then, through the
linearity of norms, D = (K/N)C will have norm K/N so that the linear mapping D(x) = Dx is
K-Lipschitz since

∥D(x)−D(y)∥ = ∥D(x− y)∥ =
K

N
∥C(x− y)∥ ≤ K

N
∥C∥ ∥x− y∥ = K ∥x− y∥. (A4)

This would be true for any normed vector space with an appropriate compatible matrix norm. In
this paper we have used the ℓ2 norm where the compatible matrix norm is the spectral norm (i.e. the
largest singular value).

To allow the algorithm being run by network G to accumulate enough information to find a good
solution we want the Lipschitz constant, K, of network G to be as close to 1 as possible. If the
network can find a good solution rapidly then it can find a scratchpad vector ϕ in a region where
the effective Lipschitz constant is less than 1. Indeed, we observed that despite Deep Thinking with
Recall most often having Lipschitz constant greater than 1, nevertheless in the few runs where a
successful network was learned, the growth in the solution

∥∥ϕ(m+1)
∥∥/

∥∥ϕ(m)
∥∥ could be less than

1. Being on the edge of the stable region seems to be helpful for the network to find good solutions
to hard problems. Consequently, in engineering the network G we attempt to make the Lipschitz
constant for most mapping layers as close to 1 as possible.

B Architecture

In this section we describe the architecture of DT [17], DT-R [2] and our network DT-L. For DT and
DT-R the architecture is identical to that described in the original paper. We include a description
here to make the comparison with DT-L clearer. The number of channels of the input, x, varies
depending on the problem class. It is 1 for prefix sums, 3 for mazes, 12 for chess and 3 for TSP.
Following DT and DT-R, the output vector, y, has two channels. During training this is used to
compute a categorical cross-entropy loss, while at inference time this is put into a max function to
obtain a binary output.

In all models the convolutions are either 3 (for prefix sum) or 3× 3 with stride 1 and padding 1. In
the figures below the boxes with rounded edges represent convolutions.
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Deep Thinking. In Figure B1 we show the Deep Thinking (DT) model. Note in this case the input
vector x is not given to the network at each iteration of G.

++
ϕm

ϕM

x

ϕm+1

GF H

ϕ0

y

Figure B1: The DT architecture of Schwarzschild et al. [18]. Arrows denote flow from one function
to the next with recurrent iterations are denoted by the dashed arrow. Single-lined rounded rectangles
denote regular convolutions. Activation functions in square boxes are ReLU.

Deep Thinking with Recall. In Figure B2 we show the architecture for the Deep Thinking with
Recall (DT-R) model. In DT-R the network is fed x every iteration and it is concatenated to the
recurrent connection.

ϕ0

∥

HF G

ϕm+1

x
ϕM

ϕm

+ + y

Figure B2: The DT-R architecture of Bansal et al. [2]. Arrows denote flow from one function to the
next with recurrent iterations are denoted by the dashed arrow. Single-lined rounded rectangles denote
regular convolutions. The recall x is concatenated (∥) to the recurrent input. Activation functions in
square boxes are ReLU by default, but we experiment with ELU in Appendix D.2.

Deep Thinking with Lipschitz Constraints. The architecture of our model, Deep Thinking with
Lipschitz Constraints (DTL) is shown in Figure B3. The convolutions with spectral norms are shown
in bold. Following common practice when working with models with skip connections we have also
added batch norms (shown as solid black rectangles). These ensure that the tensors going through
the network are normalized ensuring that their means are around zero where the non-linearity in
the activation functions are strongest. Empirically this lead to improved performance as shown by
ablation studies.

ww

γ2γ1

y

ϕ0

+

HF G

ϕm+1

x
ϕM

ϕm
+ +

Figure B3: Our basic DT-L architecture. Arrows denote flow from one function to the next with
recurrent iterations are denoted by the dashed arrow. Double-lined rounded rectangles denote
convolutions with the Lipschitz constraint applied. Single-lined rounded rectangles are regular
convolutions. Solid black rectangles denote batch-normalization operations. Activation functions
are ELU by default, but we experiment with ReLU in Appendix D.2. Plus symbols with a small
w indicate weighted summation, with the residual weighted by 1 − γ and main branch by γ (c.f.
Equation (7)). Rather than concatenating the recall x into the recurrent input we pre-process it with a
convolution and then sum with a convolved version of the recurrent input.

B.1 TSP Model

Recall that in TSP the input vector x corresponds to the matrices of distances2. The solution y is a
binary matrix showing which edges we used in the tour. Thus, the cost of the full tour is sum(x⊙ y),

2Technically these are pseudo-distances as although they are positive they are not necessarily symmetric and
are not guaranteed to satisfy the triangular inequality.
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where ⊙ denotes element-wise multiplication. This is just the sum the set of edge distances that are
used in the tour. This is schematically shown below.




0.00 0.33 0.78 0.22 0.57 0.25
0.75 0.00 0.49 0.22 0.39 0.49
0.83 0.31 0.00 0.28 0.61 0.56
0.37 0.18 0.50 0.00 0.78 0.13
0.19 0.61 0.11 0.68 0.00 0.49
0.30 0.64 0.82 0.71 0.68 0.00




⊙




0 0 0 1 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 0 0 1
0 0 1 0 0 0
1 0 0 0 0 0




=




0.00 0.00 0.00 0.22 0.00 0.00
0.00 0.00 0.00 0.00 0.39 0.00
0.00 0.31 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.13
0.00 0.00 0.11 0.00 0.00 0.00
0.30 0.00 0.00 0.00 0.00 0.00




x ⊙ y

The edge matrix y is a matrix with a 1 in each row and each column and zero elsewhere. That is, it
is a permutation matrix. Unfortunately, not all permutation matrices correspond to legal tours. The
only permutations that are allowed correspond to irreducible permutation (i.e. those consisting of a
single cycle of length n, where n is the number of cities)—these are cyclic permutations of order
n. This, arises because there are (n − 1)! tours (since the starting city is arbitrary) whereas there
are n! permutation matrices. The illegal permutations consist of multiple cycles (e.g. for a four
city problem we might have 1 ↔ 2 and 3 ↔ 4.). It is however challenging to generate irreducible
permutations. To solve this problem we use the fact that the set of permutations of order n form an
equivalence class [n] and for any permutation q ∈ Sn (where Sn is the group of all permutations of
n objects—known as the symmetric group) then if π ∈ [n] the conjugate q π q−1 ∈ [n]. This is a
well known result in group theory, but it means that if we start with an irreducible representation π
(e.g. the tour 1 → 2 → 3 → · · · → n → 1) then for any permutation matrix q the product q π q−1

represents a legal tour. Thus we set up the networks to generate a permutation matrix q. This used a
Gumbel-Sinkhorn network [14] as part of network H. Occasionally this would generate a solution
with fractional edges. To avoid this we added a term to the loss function that punished solutions with
fractional edges.

Although this procedure guarantees that the solutions correspond to feasible tours, the quality of
tours obtained when we trained the full network is poor. The problem is that the relationship between
the permutations q and the matrices of edges visited y = q π q−1 is difficult to learn. To address
this problem in the scratch-pad vector we learned three groups of channels ϕ = (ϕ1,ϕ2,m). The
last part m is a single channel which we treat as a matrix from which we compute an orthogonal
transformation. To achieve this we perform SVD to obtain usvT. We discard s to obtain an orthogonal
matrix w = uvT. We use this to transform ϕ2. This reordering significantly improves the quality of
the tours we learn. We attribute this to providing the network G with the ability to understand how
altering q will change y = q π q−1 and hence the cost of a tour. We used a differentiable version of
SVD from the PyTorch library [16]. Very occasionally this would fail, in which case we terminated
the training and start again. Although rare this was the one source of failure of the network.

For asymmetric tours we obtained improved results by making the input x have three channels. The
first being the distance matrix and the second the transpose of the distance matrix and the third a
matrix that have values of 1 in the upper triangle, 0 along the diagonal and -1 in the low triangle.
For convenience the same input was used for symmetric instances, but obviously the transposed
distance matrix is equal to the distance matrix. In addition, the scratch-pad vector learnt two matrices
ϕ = (ϕ1,ϕ2,m1,m2) from which we constructed two orthogonal matrices wi = uiv

T
i which we

used to apply both column-wise and row-wise transformations w1ϕ2w
T
2 .

With these modifications we then trained DT-L on randomly generated instances of TSP using a loss
function based on the mean cost of a single edge in the selected tour. The distances were normalized
so the maximum edge is 1. The loss function can be stated as

Ltour =
1

N

∑

ij

î
(xij − 1) · yξij

ó
(B5)

where ξ ≥ 1 is a hyperparameter that pushes values not equal to 1 closer to zero, thus preventing
solutions with fractional edges.
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Prefix Sums Models

For different widths w, we scale the channels of the convolutional layers in H (output module) as
follows:

Layer Input Channels Output Channels

Convolution 1 w w

Convolution 2 w max(2, ⌊w/2⌋)
Convolution 3 max(2, ⌊w/2⌋) 2

This ensures consistency with the w = 400 prefix sums models in [2]. For w = 32, this results in
output channels of 32, 16, and 2.

Mazes Models

For different widths w, we scale the channels of the convolutional layers in H (output module) as
follows:

Layer Input Channels Output Channels

Convolution 1 w max
(
2, 4−1w

)

Convolution 2 max
(
2, 4−1w

)
max

(
2, 4−2w

)

Convolution 3 max
(
2, 4−2w

)
2

Chess Puzzles Models

For different widths w, we scale the channels of the convolutional layers in H (output module) as
follows:

Layer Input Channels Output Channels

Convolution 1 w max
(
2, 16−1w

)

Convolution 2 max
(
2, 16−1w

)
2

Convolution 3 2 2

C Training

Unless specified otherwise:

• All models use the Adam optimizer [12] with
– a learning rate of 0.001,
– β1 = 0.9, β2 = 0.999,
– weight decay set to 0.0002 and only applied to unconstrained convolutional weights;

• incremental progress training with α = 0.5;
• exponential warmup with a warmup period of 3;
• a multi-step learning rate scheduler where milestones are calculated as a 8 : 4 : 2 : 1 ratio of

the total number of epochs, with learning rates multiplied by 0.1 at each milestone.

As an example, prefix-sums-solving models are trained to 150 epochs. With the given ratio this
produces milestones of 80, 120, and 140.

For all models, the end-of-epoch state resulting in the best validation score (accuracy for non-TSP
problems, loss for TSP) became the final result of training. This is standard practice in training deep
learning models.
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C.1 Prefix Sums

Prefix-sums-solving models were trained on 32-bit prefix sums from the EasyToHard dataset [17]
for 150 epochs, shuffled and split into 80% training samples, 20% validation samples. Each batch
contained 500 samples.

Trained models for ablation studies instead used milestones at a 4 : 2 : 1 ratio of 150 epochs instead.

Models were trained with M = 30.

C.2 Mazes

Maze-solving models were trained on 17×17 mazes from the EasyToHard dataset [17] for 50 epochs,
shuffled and split into 80% training samples, 20% validation samples. Each batch contained 50
samples.

Models were trained with M = 30.

C.3 Chess Puzzles

Chess puzzles models were trained on the easiest 600,000 chess instances from the EasyToHard
dataset [17] for 120 epochs, with batch sizes of 300 problem instances. Learning rate scheduling
followed the same 8 : 4 : 2 : 1 milestone ratio, with a multiplier of 0.1. The dataset was shuffled and
split into 80% training samples, 20% validation samples. Each batch contained 300 samples.

Models were trained with M = 30.

C.4 Traveling Salesperson

Models trained to produce tours for TSP instead use stochastic gradient descent (SGD) with a
learning rate of 0.001, Nesterov momentum of 0.9, and a weight decay of 0.0002 (applied only to
unconstrained convolutional weights).

The model trained to perform symmetric TSP used IPT with α = 0.5, whereas the model trained to
perform asymmetric TSP did not use IPT.

Since there is no dataset, we chose 1,000 samples to be an appropriate size for one epoch. With 80%
training samples and 20% validation samples, this produces 800 training batches per epoch and 200
validation samples per epoch. We generate 64 grids of distances per batch.

D Additional Results and Analysis

D.1 DT-R Stability

To show the training instability in more widths w for the prefix sums DT-R models, Figure D4 shows
extended results from Figure 3.
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Figure D4: Extended results of Figure 3. Mean training (cross-entropy) loss at each epoch for
prefix-sums-solving models of varying width w. Each curve is measured from a different random
initialization of the model throughout training, for 10 models of each width. Dotted vertical lines
indicate loss becoming NaN or infinite, where the model does not recover.

D.2 Ablation Studies

We have performed ablation studies on prefix-sums-solving models of width w = 32 and using IPT
with α = 1.0. Instead of the 8 : 4 : 2 : 1 milestone ratio (Appendix C), these models use a 4 : 2 : 1
milestone ratio, meaning the multiplier 0.1 is only applied twice instead of three times.

Activation Function. We perform a study by modifying DT-R to use ELU [4] instead of ReLU.
From Figure D5(a) it appears that ELU allows for increased extrapolation performance from DT-R
with minimal decay.

Similarly, we perform a study by modifying DT-L to use ReLU instead of ELU. It can be seen
from Figure D5(b) that, while ReLU results in faster convergence, ELU appears to provide overall
increased extrapolation performance.
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Figure D5: Mean solution accuracy at different M for (a) 5 instances of DT-R (with ReLU activations)
and 5 instances of DT-R (with ELU activations), and for (b) 5 instances of DT-L (with ReLU
activations) and 5 instances of DT-L (with ELU activations). All models have width w = 32.
Extrapolation performance tested on 512-bit prefix sum problem instances. Shaded areas show 95%
confidence intervals.

Bias in the Final Layer. DT-R has no bias terms throughout the entire model. We compare this to
a version which has a bias term in only the final layer of the model.
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Figure D6: Mean solution accuracy at different M for (a) 5 instances of DT-R (without final bias term)
and 5 instances of DT-R (with final bias term), and for (b) 5 instances of DT-L (without final bias
term) and 5 instances of DT-L (with final bias term). All models have width w = 32. Extrapolation
performance tested on 512-bit prefix sum problem instances. Shaded areas show 95% confidence
intervals.

Batch Normalization. DT-R has no batch normalization layers in the model. We perform a study
to measure the impact of adding batch normalization to DT-R (Figure D7(a)), as well as remove it
from DT-L (Figure D7(b)).
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Figure D7: Mean solution accuracy at different M for (a) 5 instances of DT-R (without batch
normalization) and 5 instances of DT-R (with batch normalization), and for (b) 5 instances of DT-L
(without batch normalization) and 5 instances of DT-L (with batch normalization). All models have
width w = 32. Extrapolation performance tested on 512-bit prefix sum problem instances. Shaded
areas show 95% confidence intervals.

E Running Times and Peak Memory Usage

After all experiments had been completed, a modified version of the spectral normalization code was
created which caches the normalized weights. This modification gives improved training times.

Table E1 provides the training times of DT-R and DT-L before this modification (the version used in
the experiments). Table E2 provides the training times of DT-L after this modification.

Table E1: Representative training times and peak memory usage for different models. Training time
is given as hours:minutes.

Batch Training Memory
Model Problem Size Epochs Hardware Time Usage

DT-R w = 32 Prefix Sums 500 150 RTX8000 00:10 1.25 GB
DT-L w = 32 Prefix Sums 500 150 RTX8000 00:30 1.34 GB
DT-R w = 32 Mazes 50 50 RTX8000 03:30 4.30 GB
DT-L w = 32 Mazes 50 50 RTX8000 04:02 4.41 GB
DT-R w = 16 Chess Puzzles 300 120 A100 02:55 10.87 GB
DT-L w = 16 Chess Puzzles 300 120 RTX8000 07:36 10.67 GB

Table E2: Representative training times and peak memory usage for different models (using spectral
normalized weight caching). Training time is given as hours:minutes.

Batch Training Memory
Model Problem Size Epochs Hardware Time Usage

DT-L w = 32 Prefix Sums 500 150 RTX8000 00:19 1.30 GB
DT-L w = 32 Mazes 50 50 RTX8000 03:15 4.42 GB
DT-L w = 16 Chess Puzzles 300 120 RTX8000 04:47 10.70 GB
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We claim an improvement to an existing type of model known as a Deep
Thinking network as a result of careful analysis of failure cases. Empirically we show that
our improved Deep Thinking with Lipschitz Constraints (DT-L) model has better training
and extrapolation performance. We also show a theoretical proof of why our proposed
changes guarantee convergence of the learned algorithm (and why the earlier approaches
did not).
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have discussed limitations in some detail and created a separate limitations
paragraph in Section 7. The approach we develop analytically has relatively few direct
limitations as the assumptions are mild. However, even on simple problems we recognise
that whilst we have made significant improvements over prior approaches there are still
times where the model fails to learn for example.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: Sketch-proofs and the intuition behind our architectural designs of a recurrent
function that converges are given in the body of the paper, with more formal proofs in the
appendices (Appendix A) and are cross-referenced. All assumptions are clearly stated.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Full details of our model design is given in Appendix B, with training details
provided in Appendix C. The main evaluation setup repeats that described by Bansal et al.
[2] and Schwarzschild et al. [18] where we use the datasets provided by Schwarzschild et al.
[17] for studying easy-to-hard generalisation. Further we provide the code for all models
and experiments (as supplementary material during review, and later as a GitHub link).
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
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(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: All code for reproducing experiments is provided (in the supplementary
material during review; to be moved to github later), including code for generating our TSP
datasets. As described above we use the open access datasets provided by Schwarzschild
et al. [17] for studying easy-to-hard generalization for the main evaluation.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Please see Appendix C for full details of the training procedure and Appendix B
for problem-specific model architectures. The broader experimental setting can be found in
Section 5 and Section 6.1 of the main paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
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7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Error bars (confidence intervals) are provided where appropriate. Because part
of the objective of the paper is to demonstrate the improvement in stability of the models,
in some cases we show data from multiple raw runs of the models, thus allowing different
cases to be seen.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: All experiments are carried out on commodity hardware, where we used GPU
resources that we had available. This is documented in Section 5 and Section 6.1, with a
fuller table of exemplar configurations and timings for different experiments in Appendix E.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
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Justification: We have studied the code of ethics and can confirm our research conforms to
all guidelines. Our research uses no human participants, and the datasets we experiment with
are created artificially to control biases. Our research does not pose any immediate security
or safety issues, however in body of the paper we recognise that their are potential broader
impacts from the approaches we are building. The approaches we develop in the paper are
aimed at being more stable and reliable, whilst also potentially using fewer parameters. As
such they are promoting positive environmental impact.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have included a discussion of potential broader impacts in Section 7.
Summarising, whilst this work is at the fundamental principles end of the spectrum, we
see many potential applications from a learning machine that can learn iterative algorithms
that extrapolate. Whilst the work does not directly have negative societal impact, it is quite
conceivable that an application that does could be built using it as the basis.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The model architectures and datasets as presented offer minimal potential for
misuse.

Guidelines:
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• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Where we have used existing code or implementations these are properly
attributed. The datasets [17] we use are referenced in the paper. The papers that develop
model architectures [2, 18] we build upon are referenced in the paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Our code and TSP dataset generator will be released on github, and are
provided in the supplementary material during review.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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Answer: [NA]
Justification: This work does not involve crowdsourcing or human participants.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This work does not involve crowdsourcing or human participants.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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