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Figure 1: MeshXL can auto-regressively generate high-quality 3D meshes. We validate that Neural
Coordinate Field (NeurCF), an explicit coordinate representation with implicit neural embeddings, is
a simple-yet-effective sequence representation for large-scale mesh modelling.

Abstract

The polygon mesh representation of 3D data exhibits great flexibility, fast rendering
speed, and storage efficiency, which is widely preferred in various applications.
However, given its unstructured graph representation, the direct generation of
high-fidelity 3D meshes is challenging. Fortunately, with a pre-defined ordering
strategy, 3D meshes can be represented as sequences, and the generation process
can be seamlessly treated as an auto-regressive problem. In this paper, we validate
Neural Coordinate Field (NeurCF), an explicit coordinate representation with
implicit neural embeddings, is a simple-yet-effective representation for large-scale
sequential mesh modeling. After that, we present MeshXL, a family of generative
pre-trained auto-regressive models that addresses 3D mesh generation with modern
large language model approaches. Extensive experiments show that MeshXL is
able to generate high-quality 3D meshes, and can also serve as foundation models
for various down-stream applications.

*Research done when Sijin Chen was a research intern at Tencent PCG.
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1 Introduction

The generation of high-quality 3D assets [61, 77, 29] is essential for various applications in video
games, virtual reality, and robotics. Among existing 3D representations [51, 38, 57, 61], 3D mesh
represents 3D data as graphs, which possesses the flexibility and accuracy representing sharp edges
as well as both flat and curved surfaces. However, the direct generation of high-quality 3D meshes is
challenging, given 1) the unstructured graph representation and 2) the demand for estimating accurate
spatial locations and connectivity within vertices.

To generate 3D meshes, many works adopt an indirect way by first producing data in other 3D
representations, such as point clouds [97, 49, 54], SDF [88, 94], and multi-view images [46, 82, 30].
After that, they adopt re-meshing methods [37] to post-process the generated geometries. There
are also attempts towards the direct generation of 3D polynomial meshes. PolyGen [53] adopts
two separate decoder-only transformers for vertices generation and vertices connectivity prediction.
MeshGPT [65] first builds a mesh VQVAE to first turn meshes into tokens, and then learns to generate
the token sequences with a GPT model [59]. Meanwhile, PolyDiff [2] directly adopts discrete
denoising diffusion [4] on the discretized mesh coordinates.

Though these methods have achieved initial success in creating 3D assets, they suffer from certain
limitations. To preserve sufficient high-frequency information, point clouds and voxels requires dense
samplings on the object surfaces, which inevitably leads to great redundancy while representing flat
surfaces. The reconstruction-based methods [82, 30, 67], however, rely heavily on the accuracy of the
multi-vew generation pipelines [46]. Additionally, the VQVAE-based 3D generation methods [88, 65]
require sophisticated multi-stage training, which less favors learning from large scale data.

To tackle the above challenges and explore the potential of scaling up 3D generative pre-training,
we introduce a simple-yet-effective way of 3D mesh representation, the Neural Coordinate Field
(NeurCF). NeurCF represents the explicit 3D coordinates with implicit neural embeddings. We show
that with a pre-defined ordering strategy, a 3D mesh can be represented by a one-and-only coordinate
sequence, which further helps us formulate 3D mesh generation as an auto-regressive problem. After
that, we present MeshXL, a family of generative pre-trained transformers [93, 59], for the direct
generation of high-fidelity 3D meshes. Without resorting to intermediate 3D representations, NeurCF
facilitates an end-to-end learning pipeline for the direct pre-training on large-scale 3D mesh data.

By organizing high-quality 3D assets from ShapeNet [9], 3D-FUTURE [22], Objaverse [17], and
Objaverse-XL [16], we achieve a collection of over 2.5 million 3D meshes to support large-scale
generative pre-training. Extensive experiments demonstrate that the NeurCF representation facilitates
MeshXL to generate higher-quality 3D meshes. By training on the collection of large-scale 3D mesh
data, MeshXL can achieve better performance with larger numbers of parameters (Fig. 3 and Tab. 5),
and surpass prior arts on multiple categories in the ShapeNet dataset [9] (Tab. 3).

In summary, our contributions can be summarized as follows:

* We validate that Neural Coordinate Field is a simple-and-effective representation of 3D mesh,
which is also friendly to large-scale auto-regressive pre-training.

* We present a family of MeshXLs that can be treated as strong base models for image-conditioned
or text-conditioned 3D mesh generation tasks.

* We show that MeshXL surpasses state-of-the-art 3D mesh generation methods, and can produce
delicate 3D meshes compatible with existing texturing methods.

2 Related Work

First, we present a concise review of existing 3D representations. Subsequently, we discuss related
works on 3D generation and recent efforts in developing 3D foundation models.

3D Representations. Researchers have long sought for accurate and efficient methods to represent
3D data. Point Cloud [54, 57, 58, 89] captures the spatial positions of discrete points in the Euclidean
space, which is preferred by various 3D sensors [15, 87, 66, 3, 7]. Mesh [53, 2, 65, 12] represents
the 3D structure with graphs. By connecting the vertices with edges, mesh can also be interpreted
into a set of polygons in the 3D space. Similar to point clouds, 3D Gaussians [38, 68] also record
the discrete Euclidean distribution in 3D space. However, each point is represented by a 3D Gaussian
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distribution function parameterized by its covariance matrix, color, and opacity. Given their fast
convergence and rendering speed, 3D gaussians are often utilized for 3D reconstruction. Neural
Radiance Field (NeRF) [51, 5] constructs a learnable volumetric function f using neural networks
trained on multi-view images. Due to its derivability and flexibility, NeRF is also favored for
3D generative models [46, 99, 76, 56]. Additionally, there are other 3D representations such as
multi-view images [74, 90, 100], voxel fields [61, 13, 45], and signed distance fields [94], among
others [64, 88, 63]. In this paper, we consider the Neural Coordinate Field (NeurCF), an explicit
spatial representation with implicit neural embeddings, and investigate its potential for scalable 3D
asset generation.

3D Generation. With the exploration of various 3D representations and the collection of large-scale
3D datasets [17, 9, 16], researchers have also put much effort exploring the generation of high-fidelity
3D assets [42, 39]. The Generative Adversarial Network (GAN) [25, 80, 1, 33] produces synthetic
3D data with a generator G, and train a discriminator network D to distinguish the generated and real
data. Additionally, the potential of diffusion models [54, 28, 62] in the direct generation of 3D data is
also widely explored [97, 2, 54, 50, 47]. The key idea behind diffusion is to transform the desired data
distribution into a simpler distribution (e.g. gaussian) and learn a desnoising model for the reverse
process. Besides, researchers have also explored the potential of diffusion models in generating
multi-view images [46, 16, 82, 43], and reconstruct them into 3D structures. In this paper, we mainly
explore the auto-regressive methods for 3D generation. AutoSDF [52] and MeshGPT [65] learn to
generate discrete tokens and reconstruct them into 3D representations with a VQVAE model [72].
PolyGen [53] adopts two decoder-only transformers that predict the location and connectivity of
vertices, sequentially. In this paper, we explore the potential of an explicit sequential modelling
method for 3D meshes, and present a family of generative pre-trained transformers, MeshXL, for
high-fidelity 3D mesh generation.

3D Foundation Models. The collection of large-scale high-quality 3D data [17, 16,9, 81, 71, 21, 22]
builds up the foundation for various 3D-related tasks [83, 27, 10, 41]. To explore the scaling
effects in 3D learning, researchers have made great endeavors in building 3D foundation models
for 3D understanding [96, 44, 98, 85, 86, 92, 100], reconstruction [30, 78, 67, 46, 16, 84, 73],
and generation [61, 29, 65, 8]. With the introduction of large-scale 3D data in both variety and
granularity [34, 41, 16], existing 3D foundation models are capable of generalizing to unseen
concepts [100, 86, 44], generating high-fidelity 3D assets [88, 36, 65], responding to complex
instructions [31, 10, 32, 41], and generating actions that interacts with the 3D environments [20, 79,
95]. In this paper, we present a fully end-to-end 3D mesh generation pipeline, explore the scaling
effect for large-scale pre-training, and test whether our method can serve as a well-trained foundation
model for various down-stream tasks.

3 Data

Data Sources. We provide details on the 3D data collections we use to train and evaluate our models.
The whole data collection is built upon four widely-acknowledged 3D mesh datasets, i.e. ShapeNet
V2 [9], 3D-FUTURE [22], Objaverse [17], and Objaverse-XL [16].

* ShapeNet V2 [9] collects about 51k 3D CAD models for 55 categories. We split the data in 9:1 for
training and validation by each category.

* 3D-FUTURE [22] present about 10k high-quality 3D mesh data for indoor furniture. However,
because of the delicate design, the objects contain many faces. Therefore, only a small proportion
of the data can be used to train our MeshXL models.

* Objaverse [17] is a large 3D data collection with more than 800k 3D objects for about 21k cate-
gories collected from Sketchfab. We split the data in 99:1 for training and validation, respectively.

* Objaverse-XL [16] further expand Objaverse [17] into a dataset with more than 10M 3D objects
with additional data collected from GitHub, Polycam, Thingiverse, and Smithsonian. We split the
Github and Thingiverse part of the Objaverse-XL dataset into 99:1 for training and validation.

Data collection and filtering. To organize existing datasets, we build up a filtering and pre-processing

pipeline to ensure that the meshes meet our demand. We first collect meshes with fewer than 800
faces, and ensure that they have corresponding UV maps for rendering. After that, we render the 3D
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Figure 2: Mesh Representation. We present the Neural Coordinate Field (NeurCF) to encode the
discretized coordinates in the Euclidean space. Benefiting from NeurCF and a pre-defined ordering
strategy, our proposed MeshXL can directly generate the unstructured 3D mesh auto-regressively.

meshes, and discard those not center-aligned or occupying less than 10% of the rendered image. For
those 3D objects with more than 800 but less than 20,000 faces, we use planar decimation to simplify
the meshes. Finally, we achieve approximately 2.5 million 3D meshes (Tab. 1).

Planar Decimation Pipeline. To ensure the quality of the decimated 3D meshes, we make sure either
a lower Hausdorff distance dpausdortr [65] Or a similar rendered views [11].

Collecting text-mesh pairs. We render the 3D meshes with 12 different views and use CogVLM [75]
to annotate 1) the front view and 2) the concatenated multi-view image. Then, we adopt the Mistral-
7B-Instruct model [35] with in-context examples to generate a fused mesh caption.

Data Statistics. We present the data statistics of our large-scale 3D mesh collection in Tab. 1.
After organizing and combing 3D assets from ShapeNet [9], 3D-FUTURE [22], Objaverse [17], and
Objaverse-XL [16], we could achieve a total of 2.5 million 3D meshes.

Table 1: Statistics for the Training Data and Validation Data. After combining four data sources,
our proposed MeshXL models are trained on approximately 2.5 million 3D meshes.

Pre-training Text-to-3D
Dataset Train Val Train Val
ShapeNet [9] 16,001 1,754 15,384 1,728
3D-Future [22] 1,603 - - -
Objaverse [17] 85,282 854 83,501 820
Objaverse-XL [16] 2,407,337 15,200 1,347,802 13,579
Total 2,510,223 17,808 1,446,678 16,127

4 Neural Coordinate Field

Neural Coordinate Field (NeurCF) is an explicit representation with implicit neural embeddings.
To be specific, for a Euclidean 3D coordinate system, we can partition the vertices coordinates into
an N3 grid. Then, each discretized coordinate p = (z,y, ) can be encoded with the coordinate
embedding layer &£, where F(p) = (£(z),E(y), E(2)). Therefore, a k-sided polynomial face f(*)

can be encoded with Epee(fP) = (F (pgi)), e F (p,(j))). For simplicity, we share the learnable
coordinate embeddings £ among axes.

Ordering. Due to the graph representation, the order of the mesh vertices and the order of the
edges among them are permutation-invariant. A pre-defined ordering strategy is essential to facilitate
the sequence modelling in MeshXL. We employ the same ordering strategy as PolyGen [53] and
MeshGPT [65]. The mesh coordinates are first normalized into a unit cube based on the mesh’s
longest axis, and discretized into unsigned integers. Within each face, the vertices are cyclically
permuted based their coordinates (z-y-x order, from lower to higher), which helps to preserve the
direction of normal vectors. Then, we order these faces based on the permuted coordinates (lower
to high). To this end, we can represent each 3D mesh with a one-and-only coordinate sequence,
aiding large-scale generative pre-training on a large collection of 3D mesh data. With the NeurCF
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Figure 3: Training and Validation Perplexity (PPL) for MeshXL Models. We train all the models
from scratch on 150 billion tokens. We observe that the performance grows with model sizes.

representation, an n-faced 3D k-sided polynomial mesh can be represented as the coordinate sequence
M € ZV*F*3 and further be encoded into Emesh = (Exace (F M), -+, Epace (f(™)).

A Sequential Mesh Representation. One direct way to represent the 3D meshes is to directly
reshape M into a vector with (n - k - 3) tokens. As a special case, an n-faced triangular mesh can
be represented by a vector with 9n tokens. Meanwhile, our representation can also be expanded
to hybrid polynomial mesh representations with the proper introduction of separate tokens. For
example, we can generate triangles within “ ” and quadrilaterals within

” also in one sequence. To identify the start and end of a mesh sequence, we add a
(“begin-of-sequence”) token before the mesh sequence and an (“end-of-sequence”) token after.

Comparisons. Since we represent each coordinate with learnable embeddings, NeurCF is an end-to-
end trainable representation for unstructured 3D meshes. Comparing to the decoupled vertex and
polygon representation in PolyGen [53], NeurCF only requires one coordinate sequence for each 3D
mesh. Additionally, NeurCF is storage and computation efficient comparing to voxel fields (O(IN?)),
since it can easily scale up the resolution with a complexity of O(N).

5 Method

We first present the architecture and training objective for MeshXL models. Then, we show that
MeshXL models can take an additional modality as the condition for controllable 3D assets generation.
After this, we investigate the effects of scaling.

Architecture. In Sec. 4, we present a simple-yet-effective way to represent a 3D mesh into a sequence.
Therefore, the learning of 3D mesh generation can be formulated as an auto-regressive problem,
which can be seaminglessly addressed by modern Large Language Model (LLM) approaches. In our
paper, we adopt the decoder-only transformers using the OPT [93] codebase as our base models. To
adapt the pre-trained OPT models to our next-coordinate prediction setting, we fine-tune the whole
model with newly-initialized coordinate and position embeddings.

Generative Pre-Training. We train MeshXL models using the standard next-token prediction loss.
Given the trainable weights 6 and an |s|-length sequence s, the generation loss is calculated as:

Is|
£MeshXL (9) = 721ng(S[i]|8[17..,7i_1];9) . (1)
i=1
For each mesh sequence, we add a token before the mesh tokens, and an token after to

identify the ending of a 3D mesh. During inference, we adopt the top-%k and top-p sampling strategy
to produce diverse outputs.

X-to-Mesh Generation. Here we mainly consider generating 3D meshes from images and texts. We
first turn the extra conditions into tokens with pre-trained encoders [18, 19]. To align the additional
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text/image feature with the mesh coordinate field, we adopt the Q-Former architecture [40] to
compress the encoded feature into a fixed-length of 32 learnable tokens as the prefix of the MeshXL
model. The overall training objective for the conditional mesh generation is shown in Eq. (2):

[s]
L x_10-mesh (9) = - Z IOg P (S[i] |3[1,'“ ;i—1]5 X) : @)
=1

During inference, the model predicts the mesh tokens after the fixed-length prefix.

Scaling Up. We present MeshXL in various sizes, including 125M, 350M, and 1.3B. The detailed
hyperparameters for training different models can be found in Tab. 2. To better analyze the scaling
effects, we train all models from scratch on 150 billion tokens. We provide both training curve and
validation perplexity for different models in Fig. 3. One can see that as the number of parameters
grows, the model achieves a lower validation perplexity, indicating a higher probability to produce
the validation data.

Table 2: Hyperparameters for different MeshXL Base Models. We present three MeshXL models
with 125M, 350M, and 1.3B parameters, respectively.

Hyperparameters MeshXL(125M) MeshXL(350M) MeshXL(1.3B)

# Layers 12 24 24

# Heads 12 16 32
dimodel 768 1,024 2,048
dpEN 3,072 4,096 8,192
Optimizer AdamW(51=0.9, 8>=0.999)
Learning rate 1.0 x 10~* 1.0 x 10~* 1.0 x 10
LR scheduler Cosine Cosine Cosine
Weight decay 0.1 0.1 0.1
Gradient Clip 1.0 1.0 1.0
Number of GPUs 8 16 32

# GPU hrs (A100) 1,944 6,000 23,232

6 Experiments

We first briefly introduce the data, metrics, and implementation details in Sec. 6.1. Then, we provide
evaluations and comparisons on the generated meshes (cf. Sec. 6.2) and ablations (cf. Sec. 6.3). We
also provide visualization results in Sec. 6.4.

6.1 Data, Metrics, and Implementation Details

Data. We pre-train the base model with 2.5 million 3D meshes collected from the combination of
ShapeNet [9], 3D-FUTURE [22], Objaverse [17], and Objaverse-XL [16]. We use planar decimation
on meshes with more than 800 faces following MeshGPT [65] and RobustLowPoly [11]. For
generative mesh pre-training, we randomly rotate these meshes with degrees from (0°, 90°, 180°,
270°), and adopt random scaling along each axis within range [0.9, 1.1] for data augmentation.

Metrics. We follow the standard evaluation protocols in MeshGPT [65] and PolyDiff [2] to measure
the quality of the generated meshes with the following metrics. We use Coverage (COV) to quantify
the diversity of the generated meshes, which is sensitive to mode dropping but cannot be used to
assess the generation quality. Minimum Matching Distance (MMD) calculates the average distance
between the reference set and their closest neighbors in the generated set, but is not sensitive to
low-quality results. The 1-Nearest Neighbor Accuracy (1-NNA) quantifies the quality and diversity
between the generation set and the reference set, whose optimal value is 50%. We also adopt the
Jensen-Shannon Divergence (JSD) score. Among all the above metrics, we use Chamfer Distance to
measure the similarity between two samples. We also render the generated meshes and adopt the
Frechet Inception Distance (FID) and Kernel Inception Distance (KID) on the rendered images for
feature-level evaluation. We multiply the MMD, JSD, and KID scores by 103.

Implementation. We conduct all the experiments on a cluster consisting 128 A100 GPUs. We train
our models under bfloat16 with the ZeRO-2 strategy [60] using the AdamW [48] optimizer with a
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Table 3: Quantitative Comparisons with Prior Arts on ShapeNet [9]. We scale MMD, JSD, KID
by 103. MeshXL can produce diverse and high-quality 3D meshes.

Category Methods COVt MMD| 1-NNA JSD| FID| KIDJ}
PolyGen [53] 7.79 16.00 99.16  228.80 63.49 43.73
GET3D [23] 11.70 15.92 99.75 15525 67.84 42.10

MeshGPT [65] 42.00 4.75 69.50 55.16 39.52 897

Chair  —yr hXT (125M) 5080 311 35655  0.60 28.15 1.48
MeshXL (350M) 5080 317 5580 966 2820 1.39
MeshXL (13B) 5160 323 5580 948 912 184
PoyGen[53] 4300 336 6720 2506 5408 1496
GET3D [23] 1680 1039 9190 22697 67.65 34.62
Tuble _MeShGPTI65] 3430 651 7505 9288 5375 775

MeshXL (125M) 51.21 2.96 57.96 12.82 4255 0.92
MeshXL (350M) 49.70 3.07 56.10 13.64 4343 1.27
MeshXL (1.3B) 52.12 2.92 56.80 1493 2229 2.03

PolyGen [53] 31.15 4.01 83.23 5525 7053 121
MeshGPT [65] 34.92 222 68.65 5732 5247 6.49
Bench  MeshXL (125M) 54.37 1.65 43.75 1643 3531 082
MeshXL (350M)  53.37 1.65 42.96 1541 3635 0.96
MeshXL (1.3B) 56.55 1.62 39.78 15.51 3550 1.60

PolyGen [53] 35.04 7.87 75.49 96.57 65.15 12.78
MeshGPT [65] 41.59 4.92 61.59 61.82 47.19 5.19
Lamp MeshXL (125M) 55.86 5.06 4824 4341 3461 0.84
MeshXL (350M) 53.52 4.18 49.41 3487 2594 192
MeshXL (1.3B) 51.95 4.89 47.27 41.89 31.66 0.99

learning rate decaying from 10~ to 10~% and a weight decay of 0.1. The detailed hyperparameters
for different models can be found in Tab. 2. To train our base models, we load the weights from the
pre-trained OPT models [93] and initialize the word embeddings and positional embeddings from
scratch. Without further specification, we generate 3D meshes with the top-k and top-p sampling
strategy with £ = 50 and p = 0.95.

6.2 [Evaluations and Comparisons

We provide quantitative as well as qualitative comparisons on both unconditional and conditional 3D
mesh generation on public benchmarks.

Unconditional Generation. We evaluate MeshXL as well as other baseline methods using the
ShapeNet [9] data in Tab. 3. We split the data by 9:1 for training and validation by each category.
For evaluation, we fine-tune our pre-trained base model and sample 1,000 meshes for each category.
Among the listed methods, we reproduce the MeshGPT [65] with a GPT2-medium model (355M) [59].
With a similar number of parameters, Mesh-XL (350M) out-performs MeshGPT by a large margin,
showing a higher COV score, a lower MMD score, and a closer 1-NNA score to 50%. This indicates
that MeshXL can produce diverse and high-quality 3D meshes.

Table 4: User Study. Compared to baseline methods, the meshes generated by MeshXL are better
aligned with human preference in terms of both geometry and designs.

Methods Quality?  Artistict  Triangulationf
PolyGen [53] 2.53 2.72 3.15
GET3D [23] 3.15 2.46 3.15
MeshXL 3.96 345 3.72
Reals 4.08 333 3.75

User Study. To evaluate how well the generated 3D meshes align with human preference, we perform
user studies on the chair category in Tab. 4 with several baseline methods [53, 23]. We recruit and
instruct the participants to score each mesh from 0 to 5 (higher is better) based on its 1) quality: the
smoothness of object surfaces and completeness of the mesh, 2) artistic: how much do you believe
this object is designed and created by artists, and 3) triangulation: how well do the connectivity
among vertices aligns with the models created by professional designing software [14]. As a baseline
evaluation, we also ask the participants to score the ground truth 3D geometries sampled from the
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Completed Mesh Ground Truth

Figure 4: Evaluation of Partial Mesh Completion. Given some partial observation of the 3D mesh
(white), MeshXL is able to produce diverse object completion results (blue).

ShapeNet data. We have collected a total of 434 valid responses. The results show that the 3D meshes
created by MeshXL are consistently preferred by human in all dimensions.

6.3 Ablation Studies

Necessity of Mesh VQVAE. Comparing to MeshGPT [65], MeshXL is an end-to-end trainable
model that produces 3D meshes with next-coordinate prediction. We show in Tab. 3 that, MeshXL
out-performs MeshGPT with similar numbers of parameters. We also show that MeshXL can produce
high quality 3D meshes with both sharp edges and smooth surfaces in Fig. 7. Furthermore, MeshXL
can save the effort training a vector quantized mesh tokenizer [65, 72], which further facilitates
generative pre-training on large scale datasets.

Effectiveness of Model Sizes. To analyze whether pre-training a larger model benefits 3D mesh
generation, we evaluate MeshXL base models with different sizes on the Objaverse [17] dataset in
Tab. 5. We observe that as the model size grows, the generated samples exhibits a larger COV, smaller
JSD score, and a closer 1-NNA to 50%, which indicates an improved diversity and quality.

Table 5: Effectiveness of Model Sizes on Objaverse. As the model size grows, MeshXL achieves a
closer 1-NNA to 50%, a larger COV and a smaller JSD, indicating better diversity and quality.

Method COVt MMD| 1-NNA JSD, FID| KID|
MeshXL (125M) 39.76 521 6734 2603 1732 448
MeshXL (350M) 4079 520 6568 23.71 1514 333
MeshXL (1.3B)  42.86 416  61.56 20.99 1249 2.94

Shape Completion. To analysis whether our method is capable of producing diverse outputs, we
adopt MeshXL (1.3B) model to predict the whole object given some partial observations. In practice,
we use 50% of the object mesh as input, and ask the model to predict the rest 50% in Fig. 4. One can
see that Mesh-XL is able to produce diverse and reasonable outputs given the partial observation of
the 3D mesh.

X-to-Mesh Generation. To adopt the MeshXL base models to the X'-to-mesh generation setting,
we adopt the Q-Former [40] to encode the additional conditions as prefixes. We showcases several
conditional generation results in Fig. 5. We show that MeshXL can generate high-quality 3D meshes
given the corresponding image or text as the additional inputs.
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Image Generated Ground Truth Text Generated Ground Truth

“A basic chair
with four leges
and an open back.”

“4 legs, solid
seat and backing.

»

“A basic looking |
square wooden table.” |

Figure 5: Evaluation of X’-to-mesh generation. We show that MeshXL can generate high-quality
3D meshes given the corresponding image or text as the additional inputs.

Texturing. We adopt Paint3D [91], a coarse-to-fine texture generation pipeline, to generate textures
for the 3D meshes produced by MeshXL in Fig. 6. We show that 3D meshes produced by MeshXL
can easily fit in existing texturing methods to produce high-quality 3D assets.

Generated Mesh Textured Mesh UV Map Generated Mesh Textured Mesh

Figure 6: Texture Generation for the Generated 3D Meshes. We adopt Paint3D [91] to generate
textures for 3D meshes produced by MeshXL.

6.4 Visualizations

We provide qualitative comparisons on the generated meshes in Fig. 7. MeshXL is able to produce
high-quality 3D meshes with both sharp edges and smooth surfaces. We also visualize the normal
vectors to compare the smoothness of object surfaces. The results show that 3D meshes generated by
GET3D [23] have rough surfaces with tens of thousands of triangles, while MeshXL depicts the 3D
shape with much smoother surfaces and less triangles.
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PolyGen MeshGPT MeshXL

Figure 7: Qualitative comparisons. We visualize the generated meshes and normal vectors.
MeshXL is able to produce high-quality 3D meshes with both sharp edges and smooth surfaces.

7 Discussions

Difference with PolyGen [53]. PolyGen treats 3D mesh data as a vertex sequence and a face sequence.
PolyGen first generates the ordered vertices with the vertex transformer, then predicts the connectivity
among vertices with the face transformer. Comparing to PolyGen, our proposed MeshXL adopts
a more straightforward approach that models the 3D mesh as a one-and-only coordinate sequence,
which further supports the direct and end-to-end pre-training on a large collection of 3D data.

Difference with MeshGPT [65]. MeshGPT consists of a mesh VQVAE [72] and a decoder-only
transformer [59]. MeshGPT first learns a mesh VQVAE to quantize the 3D meshes into discrete
tokens. After that, MeshGPT trains a decoder-only transformer to generate the discrete tokens for 3D
mesh reconstruction. In comparison, our proposed MeshXL is an end-to-end method that learns the
neural representation of coordinates and outputs 3D meshes directly.

Extensibility. Our method, MeshXL, is built upon the concept of auto-regressive methods. Therefore,
our method is not restricted to the decoder-only transformers [59, 93, 69, 70], and can also be
extended to other causal language models (i.e. Mamba [26], RWKYV [55], and xXLSTM [6]).

8 Limitations, Future Work, and Conclusions

Limitations and Future Work. The main drawback of MeshXLs is the inference time. During
sampling, MeshXL will generate 7,200 tokens for an 800-faced 3D mesh, which takes a relatively
long time because of the auto-regressive process. As for future works, recent endeavors on the
RNN-related methods [6, 55, 26] and multiple tokens prediction for LLMs [24] might open up great
opportunities in saving the inference cost.

Conclusion. We validate that NeurCF, an explicit coordinate representation with implicit neural
embeddings, is a simple-and-effective representation of 3D meshes. By modelling the 3D mesh
generation as an auto-regressive problem, we seek help from modern LLM approaches and present a
family of generative pre-trained models, MeshXL, for high-fidelity 3D mesh generation. We show
that MeshXL performs better given larger-scale training data and increased parameters. Extensive
results show our proposed MeshXL can not only generate high-quality 3D meshes, but also exhibits
great potential serving as base models for conditional 3D assets generation.
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A Appendix

A.1 More Visualization Results

Unconditional Results on ShapeNet. We visualize unconditional 3D mesh generation results for
chair, table, lamp and bench in Fig. 8. One can see that MeshXL is able to produce diverse and
high-quality 3D meshes.

|||
e

Figure 8: Gallery results. Additional generation results for chair, table, lamp, and bench.

Unconditional Generation on Objaverse. We visualize 3D meshes randomly sampled from MeshXL
base model in Fig. 9. After training on a large-scale collection of 3D mesh data, MeshXL is able to
produce diverse and high-quality 3D meshes.
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Figure 9: Gallery results. MeshXL is able to produce diverse 3D meshes with high quality.
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A.2 Mesh Quality Assessment

How well is the triangulation. We evaluate the aspect ratio, face area, and number of faces for a
better evaluation in Tab. 6. Though the meshes generated by our MeshXL have a higher average
aspect ratio, we manage to achieve a smaller variance with much less 3D faces. This indicates the
stability of our generation ability and the efficiency of the direct mesh representation. Since we train
our MeshXLs only on triangular meshes, long-thin triangles inevitably exist in our training data. By
co-training our MeshXLs on triangular meshes, 3D quads, and even hybrid representations, we could
reduce the existence of long thin triangles for better generation quality.

Table 6: Mesh Quality Assessment. We evaluate the aspect ratio, face area and number of faces for
the generated 3D meshes.

Method Aspect Ratio Face Area Number of Faces
mean std. mean  std. mean std.
GET3D [23] 6.27 116.03 0.000  0.000 27251.80 11535.135
MeshXL (125M) 10.47  16.88 0.031 0.096 327.34 174.53
MeshXL (350M) 10.25 16.09 0.032  0.099 342.24 193.97
MeshXL (1.3B) 1023 1591 0.034 0.102 320.36 195.43

A.3 Inference Time Analysis

The inference cost of MeshXL is closely related to the numbers of generated faces and the model
sizes. We perform inference cost analysis with a batch size of one using bfloat16 on a single RTX
3090. We carry out a an analysis (Tab. 7) on 1) the average inference time of generating a given
number of triangles, and 2) the average inference time of generating 3D meshes.

Table 7: Inference cost of MeshXL models. We carry out inference cost analysis on time duration
and memory usage under bfloat16 with a single RTX 3090.

num faces MeshXL (125M) MeshXL (350M) MeshXL (1.3B)
time (s) GPU mem. (GB) time (s) GPU mem. (GB) time (s) GPU mem. (GB)
100 6.30 1.59 11.30 2.98 12.08 8.41
200 12.50 1.65 22.70 3.20 24.03 9.17
400 25.21 1.85 45.81 3.78 48.09 11.17
800 49.88 2.28 92.19 5.74 96.49 21.66
avg. 29.49 - 44.65 - 49.43 -
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction of the paper clearly state the claims made,
including the contributions made in the paper and important assumptions and limitations.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The paper discusses the limitations of the work performed by the authors,
providing a balanced view of the study’s scope and potential areas for improvement.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: All the theorems, formulas, and proofs in the paper have been numbered and
cross-referenced, and all assumptions have been clearly stated or referenced in the statement
of any theorems.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper has fully disclosed all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and conclusions
of the paper.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: We will open access to the code after the paper is accepted.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized

versions (if applicable).

Providing as much information as possible in supplemental material (appended to the

paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have specified all the training and test details necessary to understand the
results.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper reports error bars and other appropriate information about the
statistical significance of the experiments, ensuring the reliability and validity of the results.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: For each experiment, the paper provides sufficient information on the computer
resource.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms in every respect with the
NeurIPS Code of Ethics, ensuring ethical standards are upheld throughout the study.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper discusses both potential positive societal impacts and negative
societal impacts of the work performed, providing a comprehensive evaluation of the study’s
broader implications.
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Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: The paper describes safeguards that have been put in place for the responsible
release of data or models that have a high risk for misuse, ensuring that appropriate measures
are taken to mitigate potential risks.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The creators or original owners of assets used in the paper are properly credited,
and the license and terms of use are explicitly mentioned and properly respected.

Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.
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 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
13. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The new assets introduced in the paper are well documented, and the docu-
mentation is provided alongside the assets.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:
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* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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