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Abstract

The generation of label noise is often modeled as a process involving a probability
transition matrix (also interpreted as the annotator confusion matrix) imposed onto
the label distribution. Under this model, learning the “ground-truth classifier”—
i.e., the classifier that can be learned if no noise was present—and the confusion
matrix boils down to a model identification problem. Prior works along this line
demonstrated appealing empirical performance, yet identifiability of the model was
mostly established by assuming an instance-invariant confusion matrix. Having
an (occasionally) instance-dependent confusion matrix across data samples is
apparently more realistic, but inevitably introduces outliers to the model. Our
interest lies in confusion matrix-based noisy label learning with such outliers taken
into consideration. We begin with pointing out that under the model of interest,
using labels produced by only one annotator is fundamentally insufficient to detect
the outliers or identify the ground-truth classifier. Then, we prove that by employing
a crowdsourcing strategy involving multiple annotators, a carefully designed loss
function can establish the desired model identifiability under reasonable conditions.
Our development builds upon a link between the noisy label model and a column-
corrupted matrix factorization mode—based on which we show that crowdsourced
annotations distinguish nominal data and instance-dependent outliers using a low-
dimensional subspace. Experiments show that our learning scheme substantially
improves outlier detection and the classifier’s testing accuracy.

1 Introduction

Deep neural networks can easily overfit to noisy labels due to its excessive expressiveness [1,2]. Many
strategies have been proposed to avoid negative impacts of label noise when training neural classifiers;
see, e.g., noisy label filtering [3–8], robust loss design [9–13], and noise generation modeling (or loss
correction) [14–22]. In the last genre, a noisy class label is modeled as a realization of a categorical
distribution, which is the ground-truth label distribution being distorted by a probability transition
matrix. The transition matrix is interpreted as the “confusion matrix” [9, 14, 18] that can effectively
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model the annotators’ expertise level and the difficulty of annotating each class/sample, and thus is
considered intuitive. Under this model, learning the “label noise-free” target neural classifier boils
down to identifying the confusion matrix.

The confusion matrix-based models have proven quite useful in practice—algorithms developed in
this line of work often exhibits appealing empirical performance; see, e.g., [9,14–17,19–21,23–31]. In
addition, these models admit interesting statistical and algebraic structures, leading to plausible results
on identifiability of the confusion matrix and/or the “ground-truth classifier”—i.e., the classifier that
can be learned if no noisy annotations were present. However, most of the aforementioned early
works considered an instance-invariant confusion matrix—i.e., a confusion matrix is not affected by
sample features, but only classes—for analytical and computational simplicity. Considering instance-
dependent confusion models is more realistic, as the sample characteristics, e.g., lightening and
resolution of an image, affect the annotation accuracy [32]. The existence of such (at least occasionally
occurred) instance-dependent noisy labels inevitably introduces outliers to the instance-invariant
confusion models, leading to performance degradation. In general, learning under instance-dependent
confusion matrices is heavily ill-posed. Hence, various problem-specific structures were exploited to
add regularization terms and constraints; see, e.g., [27, 28, 33–43]. Nonetheless, unlike the instance-
invariant confusion matrix case, identifiability guarantees of the target classifier have been largely
under-studied. The lack of theoretical understanding also affects algorithm design—many approaches
in this domain had to resort to somewhat ad-hoc treatments with multi-stage training procedures,
often involving nontrivial pre- and post-processing; see [27, 28, 33–35, 37, 39, 40].

Contributions. To advance understanding, we consider a model where instance-dependent confusion
matrices occur occasionally across the samples, and the rest of data share a common nominal
confusion matrix. This way, the instance-dependent noisy labels can be regarded as outliers. The
model is motivated by the fact that only a proportion of all instances may have a labeling difficulty
that significantly deviates from the general population [36, 44, 45]. Our contributions are as follows:

(i) Identifiability via Crowdsourcing. We first show that using the sparsity prior on outliers is
insufficient to identify the model of interest, if only one annotator is present. To circumvent this
challenge, we propose to employ a crowd of annotators—which is the common practice in data
labeling [14, 18, 20, 31]. We show that, by incorporating a carefully designed column sparsity
constraint to a coupled cross-entropy (CCE) loss from crowdsourcing [20, 31] to integrate the
annotators’ outputs, the outliers can be provably identified. Consequently, the ground-truth classifier
can be learned with generalization guarantees.

(ii) End-to-end One-Stage Implementation. Our approach features a one-stage continuous
optimization-based implementation. To be specific, our proposed learning loss allows to approximate
the column-sparsity constraint using a smoothed nonconvex ℓp (where 0 < p ≤ 1) function based
regularization (see [46]). This way, the overall loss is differentiable and can be readily tackled by
off-the-shelf optimizers. This is in contrast to many existing methods that involve multiple stages
(e.g., [27, 28, 33–35, 37, 39, 40])—and is arguably easier to implement.

We evaluate the proposed method over a number real datasets that are annotated by machine and
human annotators under various conditions and observed nontrivial improvements of testing accuracy.

Notation. The notations are summarized in the supplementary material in Sec. A.

2 Problem Statement

The Confusion Model and Learning Goal. Consider N data items {xn}Nn=1 from K classes. Here,
xn ∈ RD represents the feature vector of the nth data item. Let {yn}Nn=1 be the set of ground-truth
labels, where yn ∈ [K]. Assume that yn’s are unobserved. Instead, we observe the “noisy” version
{ŷn}Nn=1. The label ŷn ∈ [K] is noisy due to various reasons, e.g., the lack of expertise of the
annotator. In this setting, our goal is to learn a performance-guaranteed classifier using the data items
{xn}Nn=1, and noisy labels {ŷn}Nn=1. We consider the following expression of Pr(ŷn = k|xn):

Pr(ŷn = k|xn) =

K∑
k′=1

Pr(ŷn = k|yn = k′,xn)Pr(yn = k′|xn). (1)

Note that Pr(yn = k|xn) is the ground-truth label distribution given the sample xn. This is also the
distribution that the target classifier wishes to learn from. We represent the ground-truth classifier
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using a function f ♮ : RD → RK such that [f ♮(xn)]k ≜ Pr(yn = k|xn). We call f ♮ the ground-truth
classifier as it is the function that we aim to learn—and it can be learned under ideal conditions (e.g.,
when N = ∞ and the learner is a universal approximator), given that no noise is present. We define
T ♮ : RD → RK×K such that [T ♮(xn)]k,k′ ≜ Pr(ŷn = k|yn = k′,xn),∀xn. That is, T ♮(xn) is the
label transition matrix or confusion matrix of sample xn. Let [g♮

n]k ≜ Pr(ŷn = k|xn). Accordingly,
the noisy label generation process for xn

i.i.d.∼ Dx is modeled as follows:

g♮
n = T ♮(xn)f

♮(xn), (2a)

ŷn ∼ categorical(g♮
n), (2b)

where categorical(g) denotes the K-dimensional categorical distribution. Per the physical meaning
of T ♮(xn) and f ♮(xn), we have 1⊤T ♮(xn) = 1⊤,T ♮(xn) ≥ 0 and 1⊤f ♮(xn) = 1, f ♮(xn) ≥ 0,
for all n. Under this model, the main goal is to learn f ♮ from {xn}Nn=1 and {ŷn}Nn=1.

Identifiability under Instance-Invariant T ♮(x). From (2a), it becomes apparent that learning f ♮

is not a straightforward task. Even if g♮
n is observed (which is not), it is hard to identify f ♮(xn) or

T ♮(xn) from the product g♮
n = T ♮(xn)f

♮(xn). To tackle the identifiability challenge, a popular
approach is to simplify (2) by assuming that all instances have the same confusion matrix, i.e.,
T ♮(xn) = A♮ with a certain A♮ ∈ RK×K for all n [16, 18, 19, 21, 47, 48]. Under this assumption,
many used the “loss correction” based formulation, e.g., [9, 16, 19, 21, 48]. The loss correction idea
modifies the training loss of the classifier by taking the confusion matrix into consideration, e.g.,

minimize
A∈A,f∈F

− 1

N

N∑
n=1

K∑
k=1

[ŷn]k log[Af(xn)]k, (3)

where the objective is a modified cross-entropy (CE) loss. The “noise correction” term A and f are
used to learn A♮ and f ♮, respectively, ŷn ∈ {0, 1}K denotes the one-hot encoding of the noisy label
ŷn, and A and F denote appropriate constraint sets—i.e., A = {A ∈ RK×K | 1⊤A = 1⊤, A ≥ 0}
and F is a certain deep neural network function class whose outputs reside in the probability simplex.
Note that the objective is often used together with regularization and additional constraints of A
for various purposes; see, e.g., [19, 21, 30]. When N → ∞, the CE term enforces the learned
A and f to satisfy g♮

n = Af(xn) for all n [19]. Note that G̃ = [g♮
1, . . . , g

♮
N ] can be expressed

as G̃ = A♮
[
f ♮(x1), . . . ,f

♮(xN )
]
= A♮F ♮, where F ♮ = [f ♮(x1), . . . ,f

♮(xN )]. Consequently,
Eq. (3) can be understood as learning A and F such that G̃ ≈ AF . As both A♮ and F ♮ are
nonnegative matrices (due to their physical meaning), the identifiability of F ♮ can be connected to
uniqueness of the nonnegative matrix factorization (NMF) model G̃ = A♮F ♮; see [19, 21, 45].

These are interesting developments, yet the key assumption T ♮(xn) = A♮ for all n appears to be
overly stringent. As mentioned, it makes sense to believe that at least a proportion of samples have
instance-dependent T ♮(xn)’s [36, 44, 45, 49]. Not considering such samples may cause performance
degradation.

Instance-Dependent Confusion-Induced Outliers. When the instance-dependent confusion happens
sparingly instead of overwhelmingly, we can re-express T ♮(xn) using the following decomposition:

T ♮(xn) = A♮ +E♮(xn), (4)

where A♮ ∈ RK×K represents an instance-independent (class-dependent) confusion matrix—which
is the nominal confusion matrix that reflects the general annotation difficulty of the dataset. The
term E♮(xn) represents the instance-dependent “perturbation”. For many n’s, E♮(xn) = 0. When
E♮(xn) ̸= 0, we have (A♮ + E♮(xn))f

♮(xn) = A♮f ♮(xn) + e♮n, where e♮n = E♮(xn)f
♮(xn).

Using (4), the model in (2a) can be expressed as follows:

g♮
n =

{
A♮f ♮(xn) + e♮n, ∀n ∈ I
A♮f ♮(xn), ∀n ∈ Ic,

(5)

where I and Ic represent the instance index set where E♮(xn) ̸= 0 and its complement, respectively.
In other words, I is the outlier index set.

A remark is that from this point on we will ignore the structure e♮n = E♮(xn)f
♮(xn) of the outliers.

Disregarding the structure comes with some losses. For example, this way, our method is not able
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to learn E♮(xn) that could be of interest. Nonetheless, considering E♮(xn) renders extra modeling
and computational burdens. Our treatment simplifies the subsequent analytical and computational
developments, particularly, algorithm design. In addition, other types of outliers and anomalies can
also be handled by the proposed approach due to the unstructured treatment.

Challenge of Outlier Detection. Under the model in (5), the natural idea is to first identify I and
remove the impacts of outliers. Our first attempt is to explicitly model e♮n and modify (3) as follows:

minimize
A∈A,{en∈E},f∈F

− 1

N

N∑
n=1

K∑
k=1

[ŷn]k log [Af(xn) + en]k ,

subject to

N∑
n=1

1 {∥en∥2 > 0} ≤ C,

where E = {e ∈ RK | 1⊤e = 0} is the constraint set for en’s (due to the probability simplex
constraints on the model parameters in (5)) and C is a scalar that is an estimation of |I|. The idea is
to use the prior knowledge that en does not occur overwhelmingly as constraint. The hope is that
the solution of (6) can detect I, thereby enabling accurate estimation of A♮ and f ♮. However, the
following fact reveals a conflicting insight:
Fact 2.1. Assume that all f ∈ F are universal function approximators, that rank(A♮) = K, and
that N → ∞. Suppose that I ≠ ∅. Optimal solutions of Problem (6) can attain the minimal value of
the objective function and satisfy the sparsity constraint without detecting any outliers. One such
trivial solution (A⋆,f⋆, e⋆n) is A⋆ = I,f⋆(x) = A♮f ♮(xn) + e♮n, and e⋆n = 0 for all n.

This fact is easy to show (see Appendix F), yet it highlights a somewhat unexpected issue in confusion
matrix-based noisy label learning: If only one nominal confusion matrix A♮ is present (i.e., only one
annotator is employed), it does not suffice to recover the ground-truth f ♮ when there exists instance-
dependent outliers (or any other types of outliers) under the model in (5)—under the condition that
f is a universal function approximator. The practical implication is undesirable: as deep neural
networks are powerful function approximators and are usually very expressive, Fact 2.1 means that
the learned neural networks easily overfit to outliers, even if the sparsity prior on outliers is explicitly
used in the loss function.

3 Proposed Approach

Intuition: Exploiting Crowd-induced Subspace. To get around the issues illustrated in Fact 2.1,
our idea is to “create” a low-dimensional subspace where the nominal data reside while the outliers
are likely far away from. To this end, we propose a crowdsourcing approach. Consider the scenario
where M annotators label the dataset {xn}Nn=1. The noisy label provided by an annotator m for the
data item xn is denoted as ŷ(m)

n ∈ [K] and follows the generation model as follows:

ŷ(m)
n ∼ categorical(g♮(m)

n ), g♮(m)
n = A♮

mf ♮(xn) + e♮(m)
n ,∀m,n, (6)

where A♮
m is the annotator m’s confusion matrix and e

♮(m)
n is the outlier term induced by annotator

m’s instance-dependent confusion.

Putting together, we have the following expression:

G♮ =

 g
♮(1)
1 . . . g

♮(1)
N

...
. . .

...
g
♮(M)
1 . . . g

♮(M)
N

 =

 A♮
1f

♮(x1) + e
♮(1)
1 . . . A♮

1f
♮(xN ) + e

♮(1)
N

...
. . .

...
A♮

Mf ♮(x1) + e
♮(M)
1 . . . A♮

Mf ♮(xN ) + e
♮(M)
N


⇐⇒ G♮ = W ♮F ♮ +E♮, (7)

where F ♮ is defined as before, and

W ♮ = [(A♮
1)

⊤, . . . , (A♮
M )⊤]⊤, e♮n = [(e♮(1)n )⊤, . . . , (e♮(M)

n )⊤]⊤. (8)

Denote I(m) as the index set where e
♮(m)
n ̸= 0. Then I = I(1) ∪ . . . ∪ I(M) stands for the nonzero

column support of E♮.
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From (7), one can see that now the “data columns”, i.e., the columns of the matrix G♮, live in a high-
dimensional space, i.e., RMK . However, the nominal data part W ♮F ♮ resides in a K-dimensional
subspace range(W ♮) where K ≪ MK, if multiple annotators are employed. More importantly, e♮j
for j ∈ I is an MK-dimensional vector and is unlikely to be inside range(W ♮). With this geometry,
it is much more likely that one can separate the outliers from the nominal data.

Next, we will use the above intuition to build a learning loss. We will take into consideration of
practical aspects, e.g., missing annotations and finite dataset size N .

Proposed Identification Criterion & Analysis. In this section, we connect our proposed idea to
a practically convenient, end-to-end identification criterion and provide identifiability guarantees
for the desired model parameters. We consider the following empirical risk minimization under the
crowdsourcing model in (6):

minimize
{Am∈A},{e(m)

n ∈E},f∈F
Lce ≜ − 1

S

∑
(m,n)∈S

K∑
k=1

[ŷ(m)
n ]k log

[
Amf(xn) + e(m)

n

]
k
, (9a)

subject to

N∑
n=1

1

{
M∑

m=1

∥e(m)
n ∥2 > 0

}
≤ C, (9b)

where S ⊆ [M ]× [N ] denotes the set of observed noisy labels indexed by (m,n) with S = |S| (note
that all data items may not be labeled by an annotator), ŷ(m)

n is the one-hot encoding of the annotator-
provided label ŷ(m)

n , and C is an estimate of |I|. Here, the constraint sets F , A, and E are as defined
before. If e(m)

n is not considered, the objective function (9a) is sometimes referred to as coupled
cross-entropy minimization (CCEM) in the end-to-end crowdsourcing literature [20, 30, 31, 50].
CCEM has not been used together with the outlier detection constraint (9b)—and the theoretical
characterizations of the constrained formulation is unknown.

We will use the following notations in our analysis. We use I ⊆ [N ] to denote index set of the
outliers, i.e., I =

{
n | e♮n ̸= 0

}
. We also consider that the function class in our learning problem,

i.e., F , has a complexity measure RF . In particular, we adopt the so-called spectral-complexity
upper bound of the function class F [51]; see Lemma C.4 in the Appendix.

We first establish that the criterion (9) recovers the ground-truth g
♮(m)
n ’s with a reasonable accuracy.

Specifically, we hope to characterize the average estimation accuracy of ĝ
(m)
n ’s where ĝ

(m)
n =

Âmf̂(xn) + ê
(m)
n and Âm’s, ê(m)

n ’s and f̂ are estimated via solving (9):

Lemma 3.1. Assume that the observed index pairs (m,n) ∈ S are sampled uniformly at random with
replacement. Also assume f ♮ ∈ F , |I| ≤ C ≤ N/2, and that each [Amf(xn) + e

(m)
n ]k, ∀Am ∈

A,∀e(m)
n ∈ E ,∀f ∈ F are lower bounded by (1/β) for a certain β > 0. Then, with probability

greater than 1− δ, the following holds:

1

NM

N∑
n=1

M∑
m=1

∥g♮(m)
n − ĝ(m)

n ∥22 ≤ ϵg(S), ϵg(S) = O
(
βRS logS/

√
S + log (β)

√
log(1/δ)/

√
S

)
,

where R2
S = K2 log (K) + K∥X∥2

FRF/S + CMK log
√
NM and X = [xn1

, . . . ,xnS
] are the

annotated samples, in which (ms, ns) ∈ S for s = 1, . . . , S.

The proof is in Appendix C, which uses a similar idea as [31, Proposition 1] but takes into considera-
tion of the outliers. Lemma 3.1 reveals that the criterion (9) essentially recovers the complete matrix
G♮ [cf. Eq, (7)] from the noisy and incomplete observations of its entries, when S/C is sufficiently
large. To proceed, we will need a suite of assumptions and definitions:

Assumption 3.2. The outliers satisfy e♮i /∈ range(W ♮),∀i ∈ I, where rank(W ♮) = K.

Assumption 3.2 presents the key condition to disassociate instance-dependent and instance-
independent confusions. As discussed after Eq. (8), having a larger M would decrease the possibility
that any e♮n belongs to range(W ♮). We also characterize the “quantity” that e♮n is perturbed from
range(W ♮) in the following definition:

5
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outlier samples
clean samples

Figure 1: An illustration of outliers and nominal data items w.r.t. range(W ♮): (left) when M = 1,
e♮ ∈ range(W ♮), (right) while M > 1, it is highly likely that e♮ ̸= range(W ♮). In addition, the
measure κ(e) is larger for outliers that are farther from range(W ♮).

Definition 3.3. The outlier impact score κ(e♮i) of data i ∈ I is defined as

κ(e♮i) ≜ min
W∈W;h,hi∈E,

L⊂Ic,|L|=N−2|I|

(
∥W ♮F ♮(:,L)−WH∥2F + ∥W ♮f ♮

i + e♮i −Wh∥2
)

(10)

where W =
{
W = [A⊤

1, . . . ,A
⊤
M ]⊤ | Am ∈ A

}
.

A larger score κ(e♮i) implies it is easier for our criterion to distinguish the outliers from the nominal
data. Fig. 1 illustrates the geometry that we rely on to detect outliers. One can notice that when
M = 1, we always have κ(e♮i) = 0, as the outlier satisfies e♮i ∈ range(W ♮).

In addition, we consider the following assumptions to assist identifying A♮ and f ♮:
Assumption 3.4 (Class Specialists and Anchor Points). Assume that the following conditions hold:

a. There exists a near-class specialist for each class k, i.e., ∀k ∈ [K],∃mk ∈
[M ] such that ∥A♮

mk
(k, :)− e⊤k∥ ≤ ξ1, where ek is a unit vector.

b. There exists a near-anchor point sample for each class k in the dataset, i.e., ∀k ∈ [K],∃nk ∈
Ic such that ∥f ♮(xnk

)− e⊤k∥ ≤ ξ2, where ek is a unit vector.

Assumption 3.4.a. is sometimes used in the crowdsourcing literature (e.g., [52]) to characterize the
expertise of annotators. Assumption 3.4.b. is often seen in loss correction based noisy label learning;
see, e.g., [16, 21, 27]. Under Assumptions 3.2 and 3.4, we have the following result:

Theorem 3.5 (Identifiability and Generalization). Let ({Âm}, {ê(m)
n }, f̂ ) be any optimal solution

of (9) with Î =
{
n ∈ [N ] | ên = [(ê

(1)
n )⊤, . . . , (ê

(M)
n )⊤]⊤ ̸= 0

}
. Suppose that the conditions in

Lemma 3.1 holds, that we set C = |I|, and that Assumption 3.4 holds with ξ1, ξ2 ≤ 1/K. Denote
σ as the upper bound σmax(A

♮
m) ≤ σ, ∀m. In addition, assume that ∀L ⊂ Ic, |L| = N − 2 |Ic|,

rank(F ♮(:,L)) = K. Then, for some α > 0, and S > S0 where S0 as the smallest integer such that
κ(e♮i) ≥ ϵg(S0), ∀i ∈ I, the following result holds with probability greater than 1− 2/S −K/Tα:

E
x∼Dx

[
min
Π

∥f̂(x)−Π⊤f ♮(x)∥22
]
≤ K(η + ξ1 + ξ2),

min
Π

∥Âm −A♮
mΠ∥2F = Kσ2(η + ξ1 + ξ2), ∀m,

where η2 = O
(
βMTα

/
√
S
(√

M logS + (∥X∥RF )
0.25
))

, Π a permutation matrix, X is defined as
before, and T = N − |I| . In addition, we have exact outlier detection, i.e., Î = I.

The proof is in Appendix D. We should mention that we set C = |I| for notation simplicity. With a
notation-wise slightly more complicated definition of L, the same proof holds under C ≥ |I|, which
leads to T = N −C and I ⊆ Î . That is, over-estimated C still enables identifying I with the price of
discarding some nominal samples. While the criterion (9) offers the desired identifiability, it requires
the presence of class-specialist annotators and the anchor data points (c.f. Assumption 3.4), which are
considered relatively restrictive [19, 31]. In [19], the CE loss was combined with a simplex volume
minimization-based regularization to establish identifiability of f ♮ under more relaxed conditions,
namely, the sufficiently scattered condition (SSC) from the NMF literature [53]. We show that this is
also viable in the presence of outliers:

6
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Theorem 3.6 (Enhanced Identifiability). Let ({Âm}, {ê(m)
n }, f̂ ) be any optimal solution of (9)

with Ŵ ≜ [Â⊤
1 , . . . , Â

⊤
M ]⊤ admitting the minimum volume of conv{Ŵ } (i.e., the simplex spanned

by its columns) over all possible optimal solutions. Assume that we set C = |I| and that F ♮(:, Ic)
satisfies the SSC. Under Assumptions 3.2 and the same conditions used in Lemma 3.1, the following
result holds with probability greater than 1− δ, when S grows to infinity:

E
x∼Dx

[
∥f̂(x)−Π⊤f ♮(x)∥22

]
= O(|Ic|−5/8 (2∥X(:, Ic)∥FRF )

1
4 +

√
log(1/δ)/|Ic|).

In addition, we have ∥Âm −A♮
mΠ∥F = 0,∀m and Î = I.

The proof is relegated to Appendix E, which also holds for C ≥ |I| with slight modifications as
discussed before. Theorem 3.6 shows that the target classifier can be accurately estimated in the
presence of instance-dependent outliers, without needing anchor samples or class specialists.

Implementation. Our learning losses allows relatively easy implementation and optimization. We
consider the following regularized criterion:

minimize
Am∈A,e

(m)
n ∈E,f∈F

Lce + µ1Loutlier + µ2Lvol.

Note that we use Loutlier =
∑N

n=1(
∑M

m=1 ∥e
(m)
n ∥22+ζ)

p
2 where ζ > 0 and 0 < p ≤ 1 to approximate

the column-sparsity constraint. The ℓ2/ℓp nonconvex mixed quasi-norm has proven to be a very
effective approximator for column sparsity [54]. In addition, as the function is differentiable, it offers
an optimization-friendly surrogate.

For the minimum-volume loss, we use Lvol = − log det(FF⊤), where F = [f(x1), . . . ,f(xN )].
Note that the term encourages maximizing the volume of conv{F }, which in turn minimizes the
volume of conv{W } under the model G̃ = WF . Therefore, the volume of conv{W } can be
minimized via using either log det(W⊤W ) or − log det(FF⊤) as the regularizer. The reason why
we choose the latter is because minimizing log det(W⊤W ) is ill-defined—the term encourages a
rank-deficient W instead of a small-volume full-rank W . The remedy in the literature is to use
log det(W⊤W + γI) with γ > 0 [54] or adding structural constraints (e.g., diagonal dominance) to
W [19], but these require more parameter tuning and more prior knowledge.

The constraints on Am’s can be handled by adding softmax to the columns. The function class F can
be a designated deep neural network model (e.g., ResNet), where the outputs are also constrained by
softmax. The constraint on e

(m)
n can be handled by parameterizing each emn = ẽ

(m)
n −(1⊤ẽ

(m)
n )1/K,

where ẽ
(m)
n is trainable weight vector. More details of the implementation are provided in Ap-

pendix G.1. We name our approach as Crowdsourcing-based Outlier-robust criterion and INstance-
dependence-aware deep neural Network learning, abbreviated as COINNet.

4 Related Works

Our development is related to works in transition matrix-based [14–19, 21, 23, 27–29, 33, 47, 55, 56]
and sample selection-based [28, 33, 35, 37, 39] noisy label learning, confusion identification in
crowdsourcing [14, 18, 57], end-to-end crowdsourcing [20, 30, 31, 49] (with some paying particular
attention to incomplete annotations [58, 59]), and identifiability of NMF [53, 60]—see detailed
discussions of the related work in Appendix B.

A particular connection to highlight is the usage of multiple annotators as a key enabler of our
identifiability guarantees. This result (implicitly) aligns with some recently proposed approaches
that advocate for the use of multiple labels in learning under label noise [45, 49]. Specifically, the
work by [45] established the identifiability of instance-independent label noise using the consensus
of at least three similar data items with the same true label. Similarly, the work by [49] leveraged
Kruskal’s identifiability-based arguments to recommend using at least three noisy labels to establish
the identifiability of the instance-dependent noise transition matrix. These works, particularly [49],
were more concerned with the theoretical limitations other than realizable methods. They did not
connect the existence of repeated noisy labels to crowdsourcing, but used clusterability properties of
datasets to support their arguments. In this work, we advocate diversity in crowd wisdom—labels
from multiple annotators—based on an intuitive geometric characteristic of the model, which leads to
clearly realizable implementations.
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5 Experiments

Baselines. The proposed method is compared with a number of existing baselines in noisy label
learning. We choose several end-to-end crowdsourcing methods, namely, GeoCrowdNet(F)&(W)
[31], TraceReg [30], CrowdLayer [20], and Max-MIG [61]. We also employ four different instance-
dependent noisy learning approach, namely, MEIDTM [36], PTD [27], and BLTM [33]—which all use
a single annotator. In addition, we present the result of VolMinNet [19] that uses the instance-
independent confusion model and the volume minimization regularization. We also use two noise-
robust loss function-based approaches, namely GCE [10] and Reweight [21]. For baselines that were
developed for single annotator cases, we train them using the labels after majority voting. Note that all
the confusion matrix-based noise correction methods (including ours) inherently have a permutation
ambiguity (cf. the Π term in Theorems 3.5 and 3.6). Hence, we report the highest classification
accuracy attained among all possible permutation matrices for every method. In practice, Π can be
removed by additional annotator inspection on several anchor samples, but we skipped these steps to
keep the evaluation simple.

5.1 Experiments with Machine Annotations

Dataset. We consider the CIFAR-10 [62] and the STL-10 datasets [63]—see Appendix G for details.

Experiment Setup. To generate multiple noisy labels, we use M = 3 machine annotators for each
dataset. In order to simulate a wide range of annotation behaviors, we employ different classification
and clustering methods such as k-nearest neighbors (kNN), logistic regression, and convolutional
neural networks. Each machine annotator is trained by randomly choosing a subset of the training
data. We control the labeling accuracies of these machine annotators by varying the size of the
dataset and the number of epochs during their training phase. This results in annotators with different
labeling qualities, with their average individual noise rates around 20% (good), 40% (medium), and
70% (low). This way, we set up the following three cases: (i) High Noise: Three machine annotators
are with low, medium, and good quality, respectively. (i) Medium Noise: Two machine annotators
are with medium quality and one machine annotator with good quality. (i) Low Noise: One machine
annotators is with medium quality and two machine annotators with good quality. More details are in
Appendix G.2.

Neural Network and Optimizer Settings. We use ResNet-34 and ResNet-9 architectures [64] as
the backbone to run all methods on CIFAR-10 and STL-10 datasets, respectively. For our proposed
approach COINNet, we fix ζ = 10−10, p = 0.4, and µ1 = µ2 = 0.01. Adam [65] is used as the
optimizer with weight decay of 10−4, learning rate of 0.01, and batch size of 512.

More details and ablation studies with the hyperparameters are provided in Appendix G.

Results. Table 1 presents the average testing accuracy of the methods. One can see that our approach
COINNet consistently outperforms all baselines in different scenarios under test. Notably, the per-
formance gap between COINNet and the second-best method is more significant in the high noise
regime. For example, in the CIFAR-10 high noise scenario, COINNet shows around 4% improvement
over the second-best performing baseline GeoCrowdNet(F). Another key observation is that the
instance-dependent modeling based baselines such as MEIDTM, PTD, and BLTM, exhibit much degraded
performance in high-noise scenarios, possibly due to their multi-stage procedures that accumulate er-
rors easily under such circumstances. In addition, our approach outperforms the instance-independent
confusion-based baselines, such as VolMinNet, Reweight and GeoCrowdNet(W), by nontrivial
margins, showing that modeling instance-dependent outliers is indeed beneficial.

5.2 Experiments Using Real Annotations

In this section, we use three datasets to evaluate the algorithms.

CIFAR-10N. The first dataset that we use is the CIFAR-10N dataset [66]. The data has N = 60, 000
samples from K = 10 classes and the samples were labeled by M = 3 anonymous real annotators.
The error rates of the 3 annotators are 17.23%, 18.12%, and 17.64%, respectively.

LabelMe. We also test the algorithms over the LabelMe dataset [67,68]. The dataset has N = 2, 688
samples from K = 8 classes, and M = 59 anonymous real annotators were involved in labeling the
data. The average error rate is 25.95%.
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Table 1: Average classification accuracy using machine annotators in CIFAR-10 and STL-10 datasets
under different labeling scenarios. Bold black represents the best and blue represents the second best.

Method CIFAR-10 STL-10
High Noise Medium Noise Low Noise High Noise Medium Noise Low Noise

PTD 61.98 ± 0.35 65.71 ± 0.69 79.21 ± 0.41 22.94 ± 2.15 30.92 ± 5.45 23.98 ± 11.52
BLTM 52.62 ± 1.12 61.19 ± 0.45 71.36 ± 0.48 31.28 ± 2.78 30.57 ± 4.34 32.73 ± 3.45

VolMinNet 49.83 ± 2.66 50.93 ± 3.34 70.44 ± 7.32 42.38 ± 3.64 60.79 ± 4.67 64.67 ± 2.93
Reweight 59.73 ± 1.25 67.57 ± 0.62 77.40 ± 0.66 48.57 ± 8.52 54.23 ± 3.86 54.67 ± 6.93

GCE 52.14 ± 0.67 63.90 ± 0.12 73.26 ± 0.38 58.35 ± 0.74 60.65 ± 0.69 61.70 ± 2.54
MEIDTM 51.38 ± 0.62 56.20 ± 0.65 71.14 ± 0.50 55.50 ± 0.52 60.20 ± 0.22 59.84 ± 3.57

CrowdLayer 62.76 ± 3.12 67.24 ± 2.26 80.00 ± 3.02 47.83 ± 5.51 61.46 ± 4.58 66.64 ± 2.48
TraceReg 64.90 ± 0.26 71.21 ± 0.32 81.81 ± 0.42 50.14 ± 5.47 64.50 ± 0.04 65.67 ± 3.86
MaxMIG 51.92 ± 1.10 68.45 ± 0.21 83.16 ± 0.53 67.92 ± 0.49 71.75 ± 0.20 74.32 ± 0.76

GeoCrowdNet(F) 67.22 ± 0.27 71.91 ± 0.50 82.18 ± 0.39 64.70 ± 0.82 66.15 ± 0.49 68.40 ± 0.31
GeoCrowdNet(W) 64.08 ± 0.83 70.01 ± 0.08 81.53 ± 0.27 49.30 ± 4.62 61.54 ± 4.90 68.37 ± 0.41
COINNet (Ours) 71.22 ± 0.72 73.31 ± 0.09 84.14 ± 0.38 70.12 ± 0.48 73.11 ± 0.37 76.39 ± 0.58

Table 2: Average classification accuracy on CIFAR-10N, LabelMe, and ImageNet-15N datasets,
labeled by human annotators. Bold black represents the best and blue represents the second best.

Method/Dataset CIFAR-10N LabelMe ImageNet-15N
PTD 89.52 ± 0.24 84.18 ± 1.36 65.53 ± 0.18
BLTM 75.68 ± 0.47 82.10 ± 0.56 66.57 ± 0.76

VolMinNet 86.58 ± 0.21 79.97 ± 0.16 63.11 ± 1.08
Reweight 89.56 ± 0.30 84.51 ± 0.50 65.85 ± 2.93

GCE 78.01 ± 7.23 83.41 ± 0.59 64.71 ± 1.38
MEIDTM 68.69 ± 0.31 83.53 ± 0.21 72.66 ± 0.58

CrowdLayer 87.38 ± 0.43 82.80 ± 0.90 61.36 ± 2.73
TraceReg 86.57 ± 0.24 82.83 ± 0.23 68.43 ± 0.12
MaxMIG 90.11 ± 0.09 83.73 ± 0.84 81.13 ± 1.42

GeoCrowdNet(F) 87.19 ± 0.37 87.21 ± 0.39 80.45 ± 1.77
GeoCrowdNet(W) 86.43 ± 0.44 82.83 ± 0.75 68.79 ± 0.27
COINNet (Ours) 92.09 ± 0.47 87.60 ± 0.54 93.71 ± 3.26

ImageNet-15N. In addition to existing datasets, we also acquire noisy annotations by asking AMT
workers to annotate some images from ImageNet. We select K = 15 classes and submit randomly
chosen images to AMT for labeling. Eventually we collect annotations for N = 2, 514 images from
M = 100 anonymous real annotators, which serve as our training set. The average error rate of the
annotators is 42.68%. The validation and testing sets have 1,462 and 13,157 images, respectively. We
release the code and our acquired noisy annotations at https://github.com/ductri/COINNet.

Settings. For CIFAR-10N, we employ the ResNet-34 architecture to serve as f . For the LabelMe and
ImageNet-15N datasets, we employ similar settings as in [20]. Specifically, as the training sets are
small, the pretrained VGG-16 [69] and CLIP [70] models are used to first extract image embeddings
for the experiments on LabelMe and ImageNet-15N, respectively. The embeddings are then fed to
f , which is a fully connected neural network with one hidden layer and 128 hidden ReLU units.
The same encoders and architecture choices are employed for the all methods under test. For our
approach COINNet, we set µ1 = µ2 = 0.1 for LabelMe, and µ1 = µ2 = 0.01 for CIFAR-10N and
ImageNet-15N.

Results. Table 2 presents the average testing accuracy of different methods on the three datasets.
The proposed approach, COINNet, shows promising results in all cases, clearly outperforming the
baselines by a noticeable edge. This is consistent with the machine annotator experiments.

Fig. 2 demonstrates the outlier identification results using the CIFAR-10N dataset. Here, we define
the outlier indicator as sn =

∑M
m=1 ∥ê

(m)
n ∥2,∀n, where ê

(m)
n are the learned instance-dependent

perturbations in the model (5). The histogram plot of these scores in Fig. 2 clearly shows that
our method does output two types of samples, i.e., nominal samples and outliers, based on these
perturbations. In the figure, the images on the middle and the right are examples from the low
and high outlier indicator value regimes, respectively. The images with high sn values show more
instance-dependent confusion characteristics (such as background noise and blurring) compared to
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Figure 2: Histogram of the learned outlier indicator values sn =
∑M

m=1 ∥ê
(m)
n ∥22 over all training

images in the CIFAR-10N dataset (left), and examples with low (middle) and high (right) sn’s —see
more examples in Appendix H.

sn = 0.24
true label: penguin

sn = 0.26
true label: container ship

sn = 0.36
true label: airliner

sn = 0.35
true label: container ship

sn = 0.33
true label: dog

sn = 0.34
true label: tiger cat

sn = 1.55
true label: freight car

sn = 1.77
true label: trailer truck

sn = 1.71
true label: soccer ball

sn = 1.59
true label: penguin

sn = 1.57
true label: orange

sn = 1.81
true label: lemon

Figure 3: Some examples from ImageNet-15N with low (top) and high (bottom) sn’s

those in the middle. Overall, these results indicate the effectiveness of our outlier-based model in
real-world settings.

Fig. 3 shows some examples selected from high-sn and low-sn regimes from the results output by
COINNet in the ImageNet-15N experiment. Similar as before, the images in the first row that have
lower sn scores are visually much easier to recognize. The images in the second row that have about
5 times higher sn scores are apparently more visually confusing.

More experiments can be found in Appendix H.

6 Conclusion

In this work, we considered the noisy label learning problem under a confusion matrix-based model.
We developed theory and algorithms in the presence of instance-dependent outliers. Our study
revealed that relying solely on single-annotator labels is insufficient for effective outlier detection
under the model of interest. We further demonstrated that a crowdsourcing approach, leveraging
multiple annotators and a sparsity-constrained loss function, can successfully detect outliers and
identify the desired, label noise-free learning system under reasonable conditions. Our analyses and
design feature a one-stage differentiable training loss that is optimization-friendly. Empirical results
underscore the plausibility of our model and the effectiveness of our proposed method, showing
noticeable performance improvements over existing baselines.

Limitations. Our work explores a noise transition matrix-based model and treats instance-dependent
noisy labels as outliers. The key assumption is that the outliers do not occur overwhelmingly. The
assumption is useful, but also could be debatable. In principle, all labels could be generated in an
instance-dependent manner. More sophisticated models are needed to deal with this more general
case. In addition, our treatment is outlier structure-agnostic. The upshot is that this treatment can
also help exclude the negative impacts of other types of outliers. However, the downside is that the
structural prior knowledge of the outliers is not fully exploited. If the outlier-generating function
could be learned, it can help detect “difficult samples” before sending for annotation, which would
potentially save resources and reduce annotation errors. We leave this direction for future work.
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Supplementary Material of “ Noisy Label Learning with Instance-Dependent Outliers:
Identifiability via Crowd Wisdom”

A Notation

The notations used in the paper are summarized in Table 3.

Table 3: Definitions of the notations.
Notation Definition

x scalar in R
x vector in Rn, i.e., x = [x1, . . . , xn]

⊤

[x]i or x(k) ith entry of the vector x
[x]i:j subvector x such that [x]i:j = [xi, xi+1, . . . , xj ]

⊤, where j > i
X matrix in Rm×n

[X]i,j or X(i, j) (i, j)th entry of X
X(:, i) ith column of X
X ≥ 0 X(i, j) ≥ 0, ∀ (i, j)
X[:] vector representing column-wise stacking of X
∥x∥2 Euclidean norm of x
nnz(x) number of non-zero entries of x
∥x∥0 ℓ0 norm of x; also equal to nnz(x)

σmax(X) maximum singular value of X
σmin(X) minimum singular value of X
∥X∥2 spectral norm or 2-norm of X , ∥X∥2 = σmax(X)
∥X∥F Frobenius norm of X
∥X∥2,1 ℓ2,1 norm of X , i.e., ∥X∥2,1 =

∑n
i=1 ∥X(:, i)∥2

∆K the probability simplex {x ∈ RK :
∑

i[x]i = 1,x ≥ 0}
cone(X) conic hull of X: {y | y = Xθ, ∀θ ≥ 0}
convex(X) convex hull of X: {y | y = Xθ, ∀θ ≥ 0,1⊤θ = 1}

† pseudo-inverse
⊤ transpose
|C| the cardinality of the set C
[T ] {1, . . . , T} for an integer T
IK identity matrix of size K ×K
1 all-one vector with proper size
0 all-zero vector or matrix with proper size
ei unit vector with the ith element being 1
Rn
+ nonnegative orthant of Rn

1[A] Indicator function: 1[A] = 1 if the event A happens, otherwise 1[A] = 0

CE(x, y) cross entropy function: −
∑K

k=1 1[y = k] log(x(k))

B Related Work

In this section, we briefly review some of the existing works that is relevant to our proposed method.
Noisy label learning has been a prominent research focus within the machine learning community for
many years—see a survey of these methods in [71]. Among the numerous approaches proposed, those
based on label transition matrix-based models (cf. the model in (2)) have been proven effective and
several variants of the model have been introduced; see, e.g., [14–19, 21, 23, 27–29, 33, 47, 52, 55, 56].
A broad classification of them is of instance-independent models and instance-dependent models.

Instance-independent Model-based Methods. One of the earliest instance-independent label noise
models (i.e., assuming T ♮(xn) = A♮,∀n in (2)) is the random classification model (RCN) [72–74],
where true labels are flipped with a fixed noise rate independently at random. To extend this modeling
to more general scenarios, class-conditioned model (CCN) was proposed [9], where the noise rates
are assumed to be dependent on the true-class the data item belongs. CCN model has led to the
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design of several statistically consistent classifiers, as the label transition matrix acts as a correction
term for the loss associated with the noisy labels [21, 24, 26, 75]. To provably learn the CCN model,
several notions are exploited, e.g., assuming the presence of anchor data items [21], exploiting the
clusterability of data items [45], and minimizing the geometric volume of the transition matrix [19].

Instance-dependent Model-based Approaches. Instance-dependent label noise models are
naturally more plausible. In these models, each data item has a label transition matrix dependent
on the data’s attributes (cf. Eq. (2)). Recently, a number of methods studied such models by using
various simplified representations/parameterizations of the transition matrix T ♮(xn), e.g., imposing
structural assumptions on label transition matrices [27, 41, 43], bounding noise rates [28], modeling
the Bayes label transition matrix or posterior transition matrix instead of the true label transition
matrix [33, 37, 40], leveraging additional forms of supervision such as confidence scores [76], and
crafting specific regularization terms [36, 39, 42]. To be specific, the work in [27] assumed that the
label transition matrix is a convex combination of several instance-independent transition matrices
and the combination coefficients depend on the instances. The work in [28] assumed a known
bounded noise rate and proposed an instance selection-based strategy. The method proposed in [39]
also advocated an instance selection scheme, accompanied with a regularization term to combat
instance-dependent label noise. In the work [36], the simplification relies on the assumption that
many data items that lie close to each other in the feature space have similar label transition matrices.
These interesting developments showed empirical progresses, but the theoretical understanding has
been limited. Particularly, the aforementioned identifiability issue was not resolved. In addition,
most approaches resort to multi-stage training strategies which may be practically inefficient due to
potential error propagation. For example, the approach in [33] first performs instance selection, then
estimates the (Bayes-label) transition matrices, and finally estimates the classifier, in a three-stage
training scheme. Similar multi-stage approaches are employed in [27, 28, 36].

Our approach is also related to sample-selection-based approaches in noisy label learning, e.g., clean
sample selection-based methods [28, 33, 35, 37, 39]. However, most of them treat sample selection as
a pre-processing step based on strict prior assumptions (e.g., known noise rates) and then estimate the
transition matrix using these selected samples. In contrast, our proposed method and identifiability
analysis offer a more principled approach by integrating sample selection with the learning of the
classifier and transition matrices in an end-to-end fashion.

C Proof of Lemma 3.1

Lemma 3.1 is re-stated below:

Lemma C.1. Assume that the observed index pairs (m,n) ∈ S are sampled uniformly at random with
replacement. Also assume f ♮ ∈ F , |I| ≤ C ≤ N/2, and that each [Amf(xn) + e

(m)
n ]k, ∀Am ∈

A,∀e(m)
n ∈ E ,∀f ∈ F are lower bounded by (1/β) for a certain β > 0. Then, with probability

greater than 1− δ, the following holds:

1

NM

N∑
n=1

M∑
m=1

∥g♮(m)
n − ĝ(m)

n ∥22 ≤ ϵg(S), ϵg(S) = O
(
βRS logS/

√
S + log (β)

√
log(1/δ)/

√
S

)
,

where R2
S = K2 log (K) + K∥X∥2

FRF/S + CMK log
√
NM and X = [xn1 , . . . ,xnS

] are the
annotated samples, in which (ms, ns) ∈ S for s = 1, . . . , S.

The proof is essentially viewing the g
♮(m)
n estimation problem as a quantized matrix completion

problem with missing blocks. The key ideas and steps all follow the proof of the end-to-end
crowdsourcing work [31, Proposition 1] with the additional consideration of e♮(m)

n . This addition is
conceptually not hard to come up with, but the notations can be involved. Thus, we still derive the
proof in detail.
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Proof: Consider the cross entropy-based learning criterion given by

minimize
Am∈A,f∈F,e

(m)
n ∈E

1

S

∑
(m,n)∈S

CE(Amf(xn) + e(m)
n , ŷ(m)

n ), (11a)

subject to

N∑
n=1

1

{
M∑

m=1

∥e(m)
n ∥2 > 0

}
≤ C. (11b)

where S = |S|, and CE(x, y) = −
∑K

k=1 1[y = k] log(x(k)).

Let us denote the objective function in (11a) as follows:

LS(G; Ŷ) ≜
1

S

∑
(m,n)∈S

CE(g(m)
n , ŷ(m)

n ), (12)

where g
(m)
n is given by g

(m)
n = Amf(xn) + e

(m)
n , G is given by

G =

 g
(1)
1 . . . g

(1)
N

...
. . .

...
g
(M)
1 . . . g

(M)
N

 =

 A1f(x1) + e
(1)
1 . . . A1f(xN ) + e

(1)
N

...
. . .

...
AMf(x1) + e

(M)
1 . . . AMf(xN ) + e

(M)
N

 ,

and Ŷ denotes the set of observed noisy labels, i.e., {ŷ(m)
n }(m,n)∈S . Let {Âm}, {ê(m)

n } and f̂ denote
optimal solutions of the learning criterion (11). Let us also define the following:

Ĝ ≜ arg min
G∈G

LS(G; Ŷ), (13)

where

G ≜ {G ∈ RMK×N | g(m)
n = Amf(xn) + e(m)

n ,f ∈ F , e(m)
n ∈ E , ∥E∥0 ≤ C,Am ∈ A},

F ⊂ {f : RD → RK} is the neural network function class associated with the classifier function,

E = {e ∈ RK | 1⊤e = 0}, ∥E∥0 =

N∑
n=1

1

{
M∑

m=1

∥e(m)
n ∥2 > 0

}
,

A = {A ∈ RK×K | 1⊤A = 1⊤, A ≥ 0}.

Let G♮ represents the ground-truth such that

G♮ =

 g
♮(1)
1 . . . g

♮(1)
N

...
. . .

...
g
♮(M)
1 . . . g

♮(M)
N

 =

 A♮
1f

♮(x1) + e
♮(1)
1 . . . A♮

1f
♮(xN ) + e

♮(1)
N

...
. . .

...
A♮

Mf ♮(x1) + e
♮(M)
1 . . . A♮

Mf ♮(xN ) + e
♮(M)
N

 . (14)

We aim to bound ∥G♮ − Ĝ∥F. Towards this goal, we adopt the proof strategy based on the viewpoint
of matrix completion as employed in [31, 77].

Let us consider that we have S number of observations ω1, . . . , ωS such that ωs = (ms, ns, ŷ
(ms)
ns ),

where each (ms, ns) is sampled uniformly at random (with replacement) from [M ]× [N ], i.e., the
sampling probability for each (m,n) is given by πm,n = 1

NM . In addition, the noisy observations
are generated as

ŷ(ms)
ns

∼ categorical(g♮(ms)
ns

).

Let Dω denote the joint probability distribution from where the observations ωs are sampled. Then
we define the following:

LD(G, Ŷ) ≜ Eω∼Dω
[CE(g(m)

n , ŷ(m)
n )].
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We consider the following set of relations:

LD(Ĝ, Ŷ)− LD(G
♮, Ŷ) = LD(Ĝ, Ŷ)− LS(Ĝ; Ŷ) + LS(G

♮; Ŷ)− LD(G
♮, Ŷ)

+ LS(Ĝ; Ŷ)− LS(G
♮; Ŷ)

≤ LD(Ĝ, Ŷ)− LS(Ĝ; Ŷ) + LS(G
♮; Ŷ)− LD(G

♮, Ŷ)

≤ 2 sup
G∈G

∣∣∣LD(G, Ŷ)− LS(G; Ŷ)
∣∣∣ , (15)

where the first inequality is obtained since Ĝ is the optimal solution as given by (13) and hence
satisfies LS(Ĝ; Ŷ) ≤ LS(G

♮; Ŷ). The last inequality is from the given assumption that G♮ ∈ G (This
is satisfied since it is given that f ♮ ∈ F and ∥E♮∥0 ≤ C).

Next, we consider the following set of relations:

LD(Ĝ, Ŷ)− LD(G
♮, Ŷ) = Eω∼Dω

[CE(ĝ(m)
n , ŷ(m)

n )− CE(g♮(m)
n , ŷ(m)

n )]

= E(m,n,ŷm
n )∼Dω

[
−

K∑
k=1

1[ŷ(m)
n = k] log[ĝ(m)

n ]k +

K∑
k=1

1[ŷ(m)
n = k] log[g♮(m)

n ]k

]

=
M∑

m=1

N∑
n=1

πm,nEŷm
n

[
−

K∑
k=1

1[ŷ(m)
n = k] log[ĝ(m)

n ]k +

K∑
k=1

1[ŷ(m)
n = k] log[g♮(m)

n ]k

]

=
1

NM

M∑
m=1

N∑
n=1

(
K∑

k=1

−[g♮(m)
n ]k log[ĝ

(m)
n ]k +

K∑
k=1

[g♮(m)
n ]k log[g

♮(m)
n ]k

)

=
1

NM

M∑
m=1

N∑
n=1

K∑
k=1

[g♮(m)
n ]k log

[g
♮(m)
n ]k

[ĝ
(m)
n ]k

=
1

NM

M∑
m=1

N∑
n=1

DKL(g
♮(m)
n , ĝ(m)

n )

≥ 1

2NM

N∑
n=1

M∑
m=1

∥g♮(m)
n − ĝ(m)

n ∥21

≥ 1

2NM

N∑
n=1

M∑
m=1

∥g♮(m)
n − ĝ(m)

n ∥22 (16)

where we applied Pinsker’s inequality [78, 79] for the first inequality and the last inequality
uses the fact that ∥x∥1 ≥ ∥x∥2 for any vector x ∈ RK having |[x]k| ≤ 1,∀k ∈ [K]. Here
DKL(g1, g2) denotes the Kullback–Leibler divergence between any g1, g2 ∈ ∆K , i.e., DKL(g1, g2) =∑K

k=1[g1]k log
[g1]k
[g2]k]

.

Combining (15) with (16), we get

1

NM

N∑
n=1

M∑
m=1

∥g♮(m)
n − ĝ(m)

n ∥22 ≤ 4 sup
G∈G

∣∣∣LD(G, Ŷ)− LS(G; Ŷ)
∣∣∣ . (17)

Next, we proceed to characterize the R.H.S. of (17). To achieve this, we invoke the following theorem
derived from Theorem 26.5 in [80]:

Theorem C.2. [80, Theorem 26.5] Assume that ∀(m,n, ŷ
(m)
n ) and ∀G ∈ G, we have

|CE(g(m)
n , ŷ

(m)
n )| ≤ zmax. Then for any G ∈ G, the following holds with probability greater

than 1− δ: ∣∣∣LD(G, Ŷ)− LS(G; Ŷ)
∣∣∣ ≤ 2R(ℓ ◦ G ◦ S) + 4zmax

√
2 log(4/δ)

S
, (18)

where ℓ ◦ G ◦ S denotes the set

ℓ ◦ G ◦ S ≜
{(

CE(g(m1)
n1

, ŷ(m1)
n1

), . . . ,CE(g(mS)
nS

, ŷ(mS)
nS

)
)

|G ∈ G
}

and R(X ) denotes the empirical Rademacher complexity of the set X .
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To apply Theorem C.2, we need to characterize the terms zmax and R(ℓ ◦ G ◦ S). The term zmax can
be characterized as below:

zmax = max
[g]k>

1
β

y∈[K]

CE(g, y) ≤ max
[g]k>

1
β

y∈[K]

−
K∑

k=1

1[y = k] log[g]k ≤ max
[g]k>

1
β

− log[g]k = log(β). (19)

Note that in the above relation (19), we utilize the given assumption that each [g]k ≥ 1/β,∀g ∈ G.

To characterize the Rademacher complexity R(ℓ ◦ G ◦ S), we consider its definition as follows [80]:

R(ℓ ◦ G ◦ S) ≜ 1

S
E

[
sup
G∈G

S∑
s=1

σsCE(g
(ms)
ns

, ŷ(ms)
ns

)

]
, (20)

where expectation is w.r.t. the independent Rademacher random variables σs ∈ {−1, 1}. Since g
(m)
n

are vectors, we utilize the following result to upper bound R(ℓ ◦ G ◦ S):
Lemma C.3. [81] Assume that the function CE(·, y),∀y has the Lipschitz constant L. Then

E

[
sup
G∈G

S∑
s=1

σsCE(g
(ms)
ns

, ŷ(ms)
ns

)

]
≤

√
2LE

[
sup
G∈G

S∑
s=1

K∑
k=1

σsk[g
(ms)
ns

]k

]
,

where σsk is an independent (doubly indexed) Rademacher random variable and the expectations are
taken w.r.t. the Rademacher random variables.

To apply Lemma C.3, let us define a vector z ≜
(
[g

(m1)
n1 ]1, [g

(m1)
n1 ]2, . . . , [g

(mS)
nS ]K−1, [g

(mS)
nS ]K

)
∈

RSK and the set Z ◦ S ≜ {z =
(
[g

(m1)
n1 ]1, [g

(m1)
n1 ]2, . . . , [g

(mS)
nS ]K−1, [g

(mS)
nS ]K

)
|G ∈ G}. Using

these definitions, let us apply Lemma C.3 in (20) and get the following relation:

R(ℓ ◦ G ◦ S) ≤
√
2β

S
E

[
sup
G∈G

S∑
s=1

K∑
k=1

σsk[g
(ms)
ns

]k

]

=

√
2β

S
E

[
sup

z∈Z◦S

SK∑
i

σi[z]i

]

=
√
2βK

1

SK
E

[
sup

z∈Z◦S

SK∑
i=1

σi[z]i

]
=

√
2βKR(Z ◦ S), (21)

where β is an upper bound of the Lipschitz constant of the cross entropy loss function CE(g, y) =

−
∑K

k=1 1[y = k] log[g]k when g ∈ ∆K with [x]k > (1/β). ∀k.

Next, we will characterize R(Z ◦ S) using the covering number of the set Z ◦ S. To define the
covering number, let us first consider the concept of ϵ-net covering of a set. The ϵ-net covering of a
set X (denoted as X ϵ) is defined as the finite subset of X (i.e.,X ϵ ⊆ X ) such that for any x ∈ X ,
there exists an x ∈ X ϵ satisfying ∥x− x∥2 ≤ ϵ [82]. The smallest cardinality of the ϵ-nets of X is
known as the covering number of X , which is denoted as N(ϵ,X ) .

Let us consider a pair of vectors zS , zS ∈ Z ◦ S as below:

zS =
(
[g(m1)

n1
]1, [g

(m1)
n1

]2, . . . , [g
(mS)
nS

]K−1, [g
(mS)
nS

]K

)
∈ RSK , g(ms)

ns
= Ams

f(xns
) + e(ms)

ns
,

zS =
(
[g(m1)

n1
]1, [g

(m1)
n1

]2, . . . , [g
(mS)
nS

]K−1, [g
(mS)
nS

]K

)
∈ RSK , g(ms)

ns
= Amsf(xns) + e(ms)

ns
,

where Ams
belongs to the ϵ-net covering of A, f belongs to the ϵ-net covering of F , and e(ms)

ns
is

the appropriate sub-vector belonging to the ϵ-net covering of E0.

20

97280https://doi.org/10.52202/079017-3085



Let us also consider the following definitions:

uS = ([Am1
f(xn1

)]1, [Am1
f(xn1

)]2, . . . , [AmS
f(xnS

)]K−1, [AmS
f(xnS

)]K) ∈ RSK ,

uS =
(
[Am1

f(xn1
)]1, [Am1

f(xn1
)]2, . . . , [AmS

f(xnS
)]K−1, [AmS

f(xnS
)]K
)
∈ RSK ,

eS =
(
[e(m1)

n1
]1, [e

(m1)
n1

]2, . . . , [e
(mS)
nS

]K−1, [e
(mS)
nS

]K

)
∈ RSK ,

eS =
(
[e(m1)

n1
]1, [e

(m1)
n1

]2, . . . , [e
(mS)
nS

]K−1, [e
(mS)
nS

]K

)
∈ RSK ,

eNM =
(
[e

(1)
1 ]1, [e

(1)
1 ]2, . . . , [e

(M)
N ]K−1, [e

(M)
N ]K

)
∈ RNMK ,

eNM =
(
[e

(1)
1 ]1, [e

(1)
1 ]2, . . . , [e

(M)
N ]K−1, [e

(M)
N ]K

)
∈ RNMK ,

Then, we have the following relation due to triangle inequality

∥zS − zS∥2 ≤ ∥uS − uS∥2 + ∥eS − eS∥2. (22)

Next, consider the second term on the R.H.S. of (22):

∥eS − eS∥22 =

S∑
s=1

∥e(ms)
ns

− e(ms)
ns

∥22 ≤ S∥eNM − eNM∥22. (23)

We also have the following relations for the first term on the R.H.S. of (22) :

∥uS − uS∥2 =

S∑
s=1

∥Ams
f(xns

)−Ams
f(xns

)∥22

=

S∑
s=1

∥Amsf(xns)−Amsf(xns) +Amsf(xns)−Amsf(xns)∥22

≤
S∑

s=1

(
∥Ams

−Ams
∥F∥f(xns

)∥2 + ∥Ams
∥F∥f(xns

)− f(xns
)∥
)2

≤ 2

S∑
s=1

∥Ams −Ams∥2F∥f(xns
)∥22 + 2

S∑
s=1

∥Ams∥2F∥f(xns
)− f(xns)∥2

≤ 2

S∑
s=1

∥Ams
−Ams

∥2F + 2K

S∑
s=1

∥f(xns
)− f(xns

)∥2. (24)

In the above set of relations, the first inequality is by triangle inequality. The second inequality
uses that fact that (a+ b)2 ≤ 2a2 + 2b2. The third inequality uses the fact that the Frobenius norm
of Am(xn)’s are bounded by

√
K and the ℓ2 norm of f(xn) is bounded by 1. Hence, combining

(22)-(24), we get that in order to obtain an ε-net covering for the set Z ◦ S (i.e., ∥z − z∥2 ≤ ε), we
only need to show that there exists a ε

4
√
K

-net covering for F ◦ S, an ε
2
√
S

-net covering for ENM,
∀m, and a ε

4
√
S

-net covering for each A’s. Here we have

F ◦ S = {[f(x1), . . . ,f(xS)] ∈ RK×S | f ∈ F , (m,n) ∈ S},

ENM = {[e(1)⊤1 , . . . , e
(M)⊤
N ]⊤ ∈ RKNM | e(m)

n ∈ E , ∥E∥0 ≤ C, },

∥E∥0 =
∑N

n=1 1
{∑M

m=1 ∥e
(m)
n ∥2 > 0

}
. Note that the full rank matrix Am ∈ RK×K can be

represented as a K2-dimensional vector whose Euclidean norm is bounded by
√
K. Hence, the

cardinality of the ε
4
√
S

-net covering for Am ∈ RK×K is at most
(

8K
√
SK

ε

)K2

[80]. We consider the
covering number corresponding to the function class F ◦ S. Towards this, we invoke the following
lemma:
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Lemma C.4. [51, Theorem 3.3] Let fixed nonlinearities (σ1, . . . , σL) and reference matrices
(M1, . . . ,ML) be given, where σi is ρi-Lipschitz and σi(0) = 0. Let spectral norm bounds
(s1, . . . , sL), and matrix (2,1)-norm bounds b1, . . . , bL be given. Let x1, . . . ,xS be the S num-
ber of data items. Let h belongs to the following function class:

H ≜ {h : RD → RK | h(x) = σL(C1σL−1(CL−1 . . . σ1(C1(x) . . . )),∀x ∈ RD},

where Ci ∈ Rdi×di−1 with d0 = D and dL = K. Let H ◦ S denote the family of matrices obtained
by evaluating the data items with all choices of network H:

H ◦ S ≜ {[h(x1), . . . ,h(xS)] | C = (C1, . . . ,CL), ∥Ci∥2 ≤ si, ∥Ci −Mi∥2,1 ≤ bi,h ∈ H},
Then for any ϵ > 0,

logN(ϵ,H ◦ S) ≤ ∥X∥2FRH

ϵ2
,

where X = [x1, . . . ,xS ], RH = log(2H2)
(∏L

j=1 s
2
jρ

2
j

)(∑i
L(bi/si)

2/3
)3

is called as the
spectral-complexity upper bound of neural network function class H and H = maxℓ dℓ.

Using Lemma C.4, we get the cardinality of the ε
8
√
SK

-net covering for F ◦ N as below:

N

(
ε

8
√
SK

,F ◦ S
)

≤ exp

(
16K∥XS∥2FRF

ε2

)
,

where XS = [x1, . . . ,xS ] ∈ Rd×S and the parameter RF the spectral-complexity upper bound of
F .

Next, we proceed to get the cardinality of the ε
2
√
S

-net covering for ENM. Here, ENM is a set
of sparse vectors with the number of non-zero elements upper-bounded by CMK, i.e., for any
eNM ∈ ENM, ∥eNM∥0 ≤ CMK. To get the covering number of a set of sparse vectors, we invoke
the following result:
Lemma C.5. [83] Let X = {z ∈ RN |∥z∥2 ≤ q, ∥z∥0 ≤ C}. Suppose that C ≤ N

2 . Then, there
exists an ϵ-net covering denoted as X ϵ such that

N(ϵ,X ) ≤
(
eN

C

q

ϵ

)C

,

where e is the Euler’s number.

Applying Lemma C.5, we get the cardinality of ε
2
√
S

-net covering of of ENM as follows:

N

(
ε

2
√
S
, ENM

)
≤

(
eNMK

CMK

4CM
√
S

ε

)CMK

=

(
4eNM

√
S

ε

)CMK

. (25)

Note that in (25), we used the result that ∥eNM∥2 ≤
√
2CM ≤ 2CM, ∀eNM ∈ ENM.

Using the covering number results, the cardinality of the ε-net covering of set Z ◦ S is bounded by
the following:

N(ε,Z ◦ S) ≤ exp

(
16K∥XS∥2FRF

ε2

)
×

(
4eNM

√
S

ε

)CMK

×

(
8K

√
SK

ε

)K2

= exp

(
16K∥XS∥2FRF

ε2
+ CMK log

4eNM
√
S

ε
+K2 log

(
8K

√
SK

ε

))
. (26)

Now that we have characterized N(ε,Z ◦ S), we invoke the Dudley entropy chaining technique
lemma to obtain the Rademacher complexity R(Z ◦ S) [80]:
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Lemma C.6. Consider set A ⊆ Rm, let c = mina maxa∈A∥a− a∥. Then for any integer T > 0,

R(A) ≤ c2−T

√
m

+
6c

m

T∑
t=1

2−t
√
logN(c2−t, A).

Since,
∥z∥ ≤

√
S, ∀z ∈ Z ◦ S,

applying Lemma C.6 on set Z ◦ S gives

R(Z ◦ S)

≤
√
S2−T

√
SK

+
6
√
S

SK

T∑
t=1

2−t

√
logN(

√
S2−t,Z ◦ S)

≤ 2−T

√
K

+
6

K
√
S

T∑
t=1

2−t

√√√√16K∥XS∥2FRF

S4−t
+ CMK log

4eNM

2−t
+K2 log

(
8K

√
K

2−t

)

≤ 2−T

√
K

+
6

K
√
S

T∑
t=1

√√√√16K∥XS∥2FRF

S
+ 4−t

(
CMK log

4eNM

2−t
+K2 log

(
8K

√
K

2−t

))

≤ 2−T

√
K

+
6

K
√
S

T∑
t=1

√
16K∥XS∥2FRF

S
+ CMK log (4eNM) +K2 log

(
8K

√
K
)

=
2−T

√
K

+
6T

K
√
S

√
16K∥XS∥2FRF

S
+ CMK log (4eNM) +K2 log

(
8K

√
K
)
.

Choosing T = logS/(2 log 2), we get the bound

R(Z ◦ S) ≤ 1√
SK

+
6 logS

2K
√
S log 2

√
16K∥XS∥2FRF

S
+ CMK log (4eNM) +K2 log

(
8K

√
K
)
. (27)

Combining the upper bound of R(Z ◦ S) given by (27) with the upper bound of R(ℓ ◦ G ◦ S) as
given by (21) and with the results in (18) and (19), we get that with probability greater than 1− δ,∣∣∣LD(G, Ŷ)− LS(G; Ŷ)

∣∣∣ ≤ 2
√
2βKR(Z ◦ S) + 4 log(β)

√
2 log(4/δ)

S
, (28)

where RS(Z ◦ S) is upper bounded by (27).

The above relation, combined with (16), implies that with probability greater than 1− 2δ:

1

NM

N∑
n=1

M∑
m=1

∥g♮(m)
n − ĝ(m)

n ∥22 ≤ 4
√
2βKR(Z ◦ S) + 8 log(β)

√
2 log(4/δ)

S
, (29)

where R(Z ◦ S) is upper-bounded in (27).

D Proof of Theorem 3.5

To obtain the results in Theorem 3.5, we first show that the criterion correctly distinguishes
the instance-dependent and instance-independent samples, i.e., Î = I where we define Î ≜
{i ∈ [N ] | êi ̸= 0}.

Recall Âm’s, ê(m)
n ’s and f̂ are defined as in Theorem 3.5, and let ên = [(ê

(1)
n )⊤, . . . , (ê

(M)
n )⊤]⊤. We

first show that Îc ⊆ Ic. From Lemma 3.1, the following holds:

∥W ♮F ♮ +E♮ − Ŵ F̂ − Ê∥F ≤ ϵg(S) (30)
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Then the inequality also holds for any submatrix of the left hand side matrix. In particular, for i ∈ I
and S > S0,

ϵg(S0) > ϵg(S)

≥ ∥W ♮F ♮(:, {i} ∩ Ic ∩ Îc) +E♮(:, {i} ∩ Ic ∩ Îc)− Ŵ F̂ (:, {i} ∩ Ic ∩ Îc)− Ê(:, {i} ∩ Ic ∩ Îc)∥F
= ∥W ♮[f ♮

i ,F
♮(:, Ic ∩ Îc)] + [e♮i ,0, . . . ,0]− Ŵ [f̂i, F̂ (:, Ic ∩ Îc)]− [êi,0, . . . ,0]∥F

≥ ∥W ♮[f ♮
i ,F

♮(:, Ic ∩ Îc)] + [e♮i ,0, . . . ,0]− Ŵ [f̂i, F̂ (:, Ic ∩ Îc)]∥F − ∥[êi,0, . . . ,0]∥F
≥ κ(e♮i)− ∥[êi,0, ...,0]∥F (by Definition 3.3)
≥ ϵg(S0)− ∥[êi,0, ...,0]∥F (by the assumption in Theorem 3.5).

Therefore, êi ̸= 0 and that concludes Îc ⊆ I. On the other hand, since ê
(m)
n ’s minimizes∑N

n=1 1
{∑M

m=1 ∥ê
(m)
n ∥2 > 0

}
, it holds that Ic ⊆ Îc. This implies that Ic = Îc must hold.

With Ic = Îc, we have the following relation from (30):

1

MN
∥W ♮F ♮(:, Ic)− Ŵ F̂ (:, Ic)∥2F ≤ 4

√
2βKR(Z ◦ S) + 8 log(β)

√
2 log(4/δ)

S
, (31)

To proceed, we invoke a result from the work [31] considering Assumption 3.4 satisfied, and the set

Ic is uniformly chosen from [N ], with probability at least 1− 2

S
− 2K

Nα
,

E
x∼D

[
min
Π

∥f̂(x)−Πf (♮(x)∥22
]
≤ c3(ζ +

√
TKκ)2

T (1−
√
Kκ)2

+64T−5/8(2∥X∥FRF )
0.25+16

√
2 log(4S)

N

where

ζ2 = 4
√
2βKR(Z ◦ S) + 8 log(β)

√
2 log(4S)

S
= O

(
βRS logS√

S
+ log (β)

√
log (1/δ)√

S

)
,

φ2 = MTα

(
4
√
2βKR(Z ◦ S) + 8 log(β)

√
2 log(4S)

S
+ 4/S

)
κ = φ+ ξ1 + ξ2 +

√
Kξ1ξ2,

X = [xn1
, . . . ,xnS

], where (ms, ns) ∈ S,

R2
S = K2 log (K) +

K∥X∥2FRF

S
+ CMK log

√
NM,

T = N − |I| .

E Proof of Theorem 3.6

The proof of Theorem 3.6 follows similar steps in finite case presented in Theorem 3.5, except that
we have the exact recovery of Ĝ when S → ∞. We repeat the derivation here for completeness.

We first show that the criterion correctly distinguishes the instance-dependent and instance-
independent labels.

Let (Âm’s, ê(m)
n ’s and f̂ ) be an optimal solutions as state in Theorem E. From Lemma (3.1), the

following holds as the number of observations grows S infinitely large:

ĝ(m)
n = Âmf̂(xn) + ê(m)

n = gn
♮(m) = A♮

mf ♮(xn) + e♮(m)
n ,∀n,m. (32)

Consider the following relation:

G♮ =

 g
♮(1)
1 . . . g

♮(1)
N

...
. . .

...
g
♮(M)
1 . . . g

♮(M)
N

 =

 A♮
1f

♮(x1) + e
♮(1)
1 . . . A♮

1f
♮(xN ) + e

♮(1)
N

...
. . .

...
A♮

Mf ♮(x1) + e
♮(M)
1 . . . A♮

Mf ♮(xN ) + e
♮(M)
N

 . (33)
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Here, each column of the matrix G♮ is given by

[G♮]n =

A♮
1

...
A♮

M


︸ ︷︷ ︸

W ♮∈RMK×K

f ♮(xn) +

 e
♮(1)
n

...
e
♮(M)
n


︸ ︷︷ ︸
e♮
n∈RMK

=⇒ [G♮]n = W ♮f ♮(xn) + e♮n,∀n. (34)

Similarly, we can also define

Ŵ =

 Â1

...
ÂM

 , ên =

 ê
(1)
n

...
ê
(M)
n

 .

From (32), we get that

[G♮]n = Ŵ f̂(xn) + ên,∀n. (35)

We will use contradiction-based argument towards this. Let us start by considering the case where
there exists i⋆ ∈ Ic as well as i⋆ ∈ Îc holds. Then, combining (34) and (35) we get

Ŵ f̂(xi⋆) = W ♮f ♮(xi⋆),∀i⋆ ∈ Ic ∩ Îc. (36)

We can rewrite the relation (36) as

Ŵ F̂ (:, Ic ∩ Îc) = W ♮F ♮(:, Ic ∩ Îc).

Since any submatrix formed by N − 2|Ic| columns of F ♮ = [f(x1), . . . ,f(xN )] has rank K and
that rank(W ♮) = K, we get that there exists a nonsingular matrix Q ∈ RK×K such that

Ŵ = W ♮Q. (37)

Next, we consider the case where there exists i⋆ ∈ I and i⋆ ∈ Îc. Then, again from (34), (35) we
get that

Ŵ f̂(xi⋆) = W ♮f ♮(xi⋆) + e♮i⋆ (38)

However, by applying the relation (37) in (38), we get

W ♮Qf̂(xi⋆) = W ♮f ♮(xi⋆) + e♮i⋆

=⇒ W ♮Qf̂(xi⋆)−W ♮f ♮(xi⋆) = e♮i⋆

=⇒ W ♮q = e♮i⋆ ,

where q = Qf̂(xi⋆) − f ♮(xi⋆) is a nonzero vector since it is assumed that e♮i⋆ ̸= 0. The above
relation implies that e♮i⋆ ∈ range(W ♮) must hold which is a contradiction to the assumption that
e♮i⋆ /∈ range(W ♮) when i⋆ ∈ I. Hence, the relation (38) is feasible only if e♮i⋆ = 0. It means that if
there exists i⋆ ∈ Îc, we should have i⋆ ∈ Ic, leading to the conclusion that Îc ⊆ Ic.

On the other hand, if Îc ⊂ Ic holds, then
N∑

n=1

1

{
M∑

m=1

∥ê(m)
n ∥2 > 0

}
>

N∑
n=1

1

{
M∑

m=1

∥e♮(m)
n ∥2 > 0

}
.

Since ê
(m)
n ’s are the optimal solution of Problem (9) with minimal

∑N
n=1 1

{∑M
m=1 ∥ê

(m)
n ∥2 > 0

}
,

the following should hold
N∑

n=1

1

{
M∑

m=1

∥ê(m)
n ∥2 > 0

}
≤

N∑
n=1

1

{
M∑

m=1

∥e♮(m)
n ∥2 > 0

}
,
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which is a contradiction. This implies that I = Î must hold.

Since I = Î holds, we have the following relation from (32):

G♮(:, Ic) = Ĝ(:, Ic), (39)

where we utilized the following notations:

Ĝ(:, Ic) = Ŵ F̂ (:, Ic),

G♮(:, Ic) = W ♮F ♮(:, Ic),

ĝi = [g
(1)⊤
i , . . . , g

(M)⊤
i ]⊤, i ∈ Ic,

W ♮ = [A⊤♮
1 , . . . ,A⊤♮

M ]⊤

Ŵ = [Â⊤
1 , . . . , Â

⊤
M ]⊤.

Next, we connect the det(W⊤W ) term to our optimal solutions. This part is similar to the classical
proofs in [84, 85], with proper modifications. Consider the following result extracted from the proof
of [84, Theorem 1]:

Lemma E.1. Suppose a matrix Y ∈ RK×J satisfies Y ≥ 0, 1⊤Y = 1⊤ , rank(Y ) = K, and SSC.
Then, for any Ŷ = QY satisfying Ŷ ≥ 0, 1⊤Ŷ = 1⊤, the following holds:

|det(Q)| ≤ 1,

The equality holds only if Q is a permutation matrix.

Since Ŵ is the optimal solution of the criterion given by Theorem 3.6, the following holds:

det(Ŵ⊤Ŵ ) ≤ det(W ♮⊤W ♮). (40)

We also have W ♮ and F ♮(:, Ic) are of rank K. Hence, from (39), we get that Ŵ and F̂ (:, Ic)

satisfies Ŵ = W ♮Q−1, F̂ (:, Ic) = QF ♮(:, Ic), for a certain invertible matrix Q. Let us assume
that Q is not a permutation matrix, Then, we have

det(W ♮⊤W ♮) = det(Q⊤Ŵ⊤ŴQ)

= |det(Q)|2 det(Ŵ⊤Ŵ )

< det(Ŵ⊤Ŵ ),

where the last inequality is from Lemma E.1 using the SSC condition on F ♮(:, Ic). Note that the
result is a contradiction from (40). Hence, Q must be a permutation matrix. This implies that the
optimal solution Ŵ and F̂ (:, Ic) satisfies the following:

Ŵ = W ♮Π, (41a)

F̂ (:, Ic) = Π⊤F ♮(:, Ic). (41b)

F Proof of Fact 2.1

For rank(A♮) = K, when N → ∞, the objective in (6) seeks the optimal solutions A⋆, f⋆ and e⋆n
such that

A♮f ♮(x) + e♮n = A⋆f⋆(xn) + e⋆n, n ∈ [N ]. (42)

This can be seen from Lemma 3.1 with M = 1. One solution that satisfies the equality (42) and the
sparsity constraint in (6) is A⋆ = I,f⋆(x) = A♮f ♮(xn) + e♮n, and e⋆n = 0, which can always hold
when f is a universal function approximator.
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Table 4: Noise levels and methods used to train machine annotators.
Case Noise Level Training Method/Architecture

CIFAR-10
High Noise 0.26, 0.69, 0.57 Logistic Regression, k-NN, ResNet34

Medium Noise 0.26, 0.46, 0.57 k-NN, ResNet34, ResNet34
Low Noise 0.26, 0.29, 0.57 k-NN, ResNet34, ResNet34

STL-10
High Noise 0.15, 0.25, 0.69 k-NN, ResNet9, ResNet9

Medium Noise 0.15, 0.36, 0.21 ResNet9, ResNet9, ResNet9
Low Noise 0.15, 0.02, 0.21 ResNet9, ResNet9, ResNet9

Table 5: Average classification accuracy on CIFAR-10 using synthetic annotators over 3 random
trials.

Method Noise rate τ = 0.2 Noise rate τ = 0.4

η = 0.1 η = 0.3 η = 0.5 η = 0.1 η = 0.3 η = 0.5

CrowdLayer 91.01 ± 0.28 88.49 ± 0.39 84.59 ± 0.47 89.00 ± 0.31 86.47 ± 0.33 82.39 ± 0.09
TraceReg 91.76 ± 0.38 89.55 ± 0.20 83.60 ± 3.14 89.95 ± 0.19 87.28 ± 0.08 76.73 ± 1.24
MaxMIG 88.85 ± 0.29 84.99 ± 0.41 81.96 ± 0.16 86.27 ± 0.59 82.69 ± 0.57 78.60 ± 0.33

GeoCrowdNet(F) 91.36 ± 0.26 89.13 ± 0.29 85.28 ± 0.34 89.21 ± 0.43 86.73 ± 0.36 83.03 ± 0.49
GeoCrowdNet(W) 91.21 ± 0.28 88.69 ± 0.29 84.68 ± 0.44 89.16 ± 0.14 86.17 ± 0.39 81.49 ± 0.31

MEIDTM 91.27 ± 0.09 84.50 ± 4.24 52.77 ± 4.05 87.74 ± 0.09 61.33 ± 3.92 49.88 ± 1.11
PTD 79.59 ± 0.46 69.02 ± 1.61 52.56 ± 1.05 70.33 ± 0.63 50.94 ± 5.48 37.83 ± 5.87
BLTM 73.82 ± 1.77 66.27 ± 1.60 53.72 ± 1.84 66.34 ± 1.84 55.83 ± 0.67 46.20 ± 0.97

VolMinNet 89.95 ± 0.23 87.34 ± 0.26 82.60 ± 0.50 87.32 ± 0.38 83.62 ± 0.14 76.50 ± 1.13
Reweight 87.39 ± 0.82 82.35 ± 0.79 81.82 ± 0.10 88.34 ± 0.44 86.16 ± 0.55 81.67 ± 0.61

GCE 88.75 ± 0.31 86.98 ± 0.21 83.72 +/ 0.20 86.70 ± 0.15 84.58 ± 0.26 80.29 ± 0.56
COINNet (Ours) 92.23 ± 0.36 90.06 ± 0.06 86.47 ± 0.04 91.97 ± 0.02 87.90 ± 0.03 83.45 ± 0.04

G More Details on Experiment Settings and Datasets

G.1 Implementation

We train with batch size of 512, number of epochs 200, Adam optimizer with learning rate of 0.01 and
learning rate scheduler OneCycleLR [86]. We initialize Am using an identity matrix going through
softmax and em = 0 for all m ∈ [M ]. We also apply standard data augmentation including random
cropping, random flipping, when training on CIFAR-10, CIFAR-10N, and STL-10. The experiment
results are averaged over 3-5 random trials. All runs have been conducted using either Nvidia A40 or
Nvidia DGX H100 GPU. Each run of COINNet on CIFAR-10 takes about 60 minutes using Nvidia
A40, and 30 minutes using Nvidia DGX H100 GPU.

G.2 Machine Annotations

For machine annotator experiments, we consider the CIFAR-10 [62] and the STL-10 datasets [63].
The CIFAR-10 dataset consists of 60, 000 labeled color images of animals, vehicles and so on, each
having a size of 32× 32 and belonging K = 10 different classes. The images are split into training
and testing sets with size 50,000 and 10,000, respectively. The STL-10 dataset consists of 13,000
labeled images from 10 different classes, similar to CIFAR-10. Of these, 5,000 images are designated
for training and 8,000 for testing.

Table 4 shows the details regarding the individual label noise rates and training methods in our
experiments with machine annotators.

G.3 Real Annotations

For real annotation experiments, we use 2 popular public datasets: CIFAR-10N [66] and LabelMe
[67, 68], and construct the ImageNet-15N dataset with a higher number of annotators. All three
datasets are labeled by anonymous annotators from the AMT platform. The CIFAR-10N is a “noisy"
version of the popular CIFAR-10 dataset, containing 50,000 images for training, and a separate
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Figure 4: Performance of COINNet on CIFAR-10 with synthetic labels against different number of
annotators; left: τ = 0.2, η = 0.1, right: τ = 0.4, η = 0.1.

10,000 images for testing. We randomly split the training set into 47,500 and 2,500 to use as train
and validation set for all methods. Every image in CIFAR-10N has 3 labels.

The LabelMe dataset comprises 2,688 images from eight distinct classes: highway, inside city, tall
building, street, forest, coast, mountain, and open country. Out of the available images, 1,000 have
been annotated by 59 AMT workers. In total, approximately 2,547 image annotations were collected,
with labeling accuracy ranging from 0% to 100% and an average accuracy of 69.20%. To enhance the
training dataset, standard augmentation techniques such as rescaling, cropping, and horizontal flips
were applied, resulting in a training set of 10,000 images annotated by the same 59 workers—see
more details in [67]. The validation set comprises 500 images, while the remaining 1,188 images are
reserved for testing.

We select 15 classes from the ImageNet dataset with the intention of including easy-to-confuse
classes. These classes are: dog, leopard, sports_car, tiger_cat, airship, aircraft_carrier, trailer_truck,
orange, penguin, lemon, soccer_ball, airliner, freight_car, container_ship, passenger_car. We collect
annotations for N = 2, 514 images from M = 100 anonymous real annotators. These serve as
our training set. The average error rate of the annotators is 42.68%. The validation and testing
sets have 1,462 and 13,157 images, respectively. We release the noisy annotations at https:
//github.com/ductri/COINNet.

H More Experiments

H.1 Experiments with Synthetic Annotators

Noisy Label Generation. Here, we consider labels corrupted by synthetically generated annotator
confusions. To generate the confusion matrices, we utilize the following strategy. We control the
instance-independent label noise rate using a parameter τ ∈ (0, 1). By employing this parameter,
we construct the ground-truth confusion matrix A♮, where the diagonal entries of A♮ are set as
[A♮]k,k = 1 − τ,∀k, and the off-diagonal entries are set as [A♮]k,j = τ

K−1 ,∀k ̸= j. First, we
randomly select 1 − η fraction of the data samples and generate their labels using the instance-
independent confusion matrix A♮. For the remaining η percent of the samples, we adopt an instance-
dependent noise generation process, by following the strategy outlined in [27]. Specifically, for such
“outliers", the label confusions vary depending on the features of such instances.
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Table 6: Average classification accuracy on CIFAR-10 and STL-10 datasets using machine annotators;
results are averaged over 3 random trials.

Method CIFAR-10 STL-10
High Noise Medium Noise Low Noise High Noise Medium Noise Low Noise

COINNet, µ1 = 0.01, µ2 = 0.01 71.22 ± 0.72 73.31 ± 0.09 84.14 ± 0.38 70.12 ± 0.48 73.11 ± 0.37 76.39 ± 0.58
COINNet, µ1 = 0.01, µ2 = 0.00 71.04 ± 0.33 73.11 ± 0.31 83.61 ± 0.68 58.90 ± 3.44 64.47 ± 3.75 72.79 ±2.88
COINNet, µ1 = 0.00, µ2 = 0.01 71.17 ± 0.46 73.18 ± 0.91 83.51 ± 0.47 66.77 ± 4.81 72.40 ± 0.57 76.24 ± 0.52

Table 7: Average classification accuracy on CIFAR-10 using synthetic annotators; results are averaged
over 3 random trials.

Method Noise rate τ = 0.2 Noise rate τ = 0.4

η = 0.1 η = 0.3 η = 0.5 η = 0.1 η = 0.3 η = 0.5

COINNet, µ1 = 0.01, µ2 = 0.01 92.23 ± 0.36 90.06 ± 0.06 86.47 ± 0.04 91.97 ± 0.02 87.90 ± 0.03 83.45 ± 0.04
COINNet, µ1 = 0.01, µ2 = 0.00 92.23 ± 0.93 89.64 ± 0.16 86.40 ± 0.18 91.16 ± 0.07 87.98 ± 0.15 83.15 ± 0.16
COINNet, µ1 = 0.00, µ2 = 0.01 91.87 ± 0.04 89.65 ± 0.13 85.44 ± 0.31 90.21 ± 0.22 87.01 ± 0.48 66.50 ± 1.44

Table 8: Average classification accuracy over 3 random trials on real datasets.
Method CIFAR-10N

COINNet, µ1 = 0.01, µ2 = 0.01 92.09 ± 0.47
COINNet, µ1 = 0.01, µ2 = 0.00 92.26 ± 0.24
COINNet, µ1 = 0.00, µ2 = 0.01 91.51 ± 0.60

Method LabelMe
COINNet, µ1 = 0.10, µ2 = 0.10 87.60 ± 0.54
COINNet, µ1 = 0.10, µ2 = 0.00 83.64 ± 1.29
COINNet, µ1 = 0.00, µ2 = 0.10 84.85 ± 0.22

We generate synthetic noisy labels for CIFAR-10 dataset with M = 3. CIFAR-10 contains 50,000
images of size 32× 32 as training set, and 10,000 images as test set. We keep the test set untouched
while randomly splitting the train set into 2 parts (47,500; 2,500) to serve as training and validation
set. We use the same neural network architecture and the optimization settings as used in machine
annotator case. The results are presented in Table 5. One can observe that our approach consistently
perform well in all scenarios.

To demonstrate the effectiveness of the advocated crowdsourcing approach in outlier detection, we
vary the number of annotators M and present the average outlier detection rate and the testing
accuracy, where

Outlier Detection Rate =
|I ∩ {i | ∥êi∥2 ∈ top |I| values among all ∥ên∥2, n ∈ [N ]}|

|I|
.

We observe that increasing the number of annotators M shows improvement over both outlier
detection and the final accuracy score as shown in Fig. 4.

H.2 Ablation Study

Effect of regularization terms. Tables 6, 7 and 8 show the effectiveness of having both the proposed
regularization terms (i.e., sparsity and volume).

Effect of missing annotations. Table 9 and Table 10 show results under different levels of missing an-
notations under various parameters settings. Table 11 and Table 12 present results where only a single
label is available for each image. In all four cases, the proposed method demonstrates superior ro-
bustness against the negative effect of missing annotations relative to MaxMIG and GeoCrowdNet(F),
two competitive baselines.

Effect of initialization. In Table 13, we test the performance of our approach using different
initialization strategies. In particular, we conduct the machine annotator experiment on CIFAR-10
using the following initialization strategies: the confusion matrices are (i) initialized using identity
matrices, and (ii) initialized by the GeoCrowdNet(F) method. We also include the performance of
GeoCrowdNet(F) for reference. We observe a slight improvement (around 0.1-0.4%) in accuracy
when using initialization from GeoCrowdNet(F) with the cost of training GeoCrowdNet(F) for 10
epochs.
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Table 9: Average classification accuracy v.s. missing rate on CIFAR-10 using synthetic annotators;
M = 3, τ = 0.2, η = 0.3; results are averaged over 3 random trials.

missing rate 0.1 0.2 0.3 0.4 0.5
MaxMIG 85.01 ± 0.26 84.32 ± 0.20 83.90 ± 0.59 83.17 ± 0.70 81.80 ± 0.25

GeoCrowdNet(F) 83.19 ± 0.63 83.03 ± 0.41 81.83 ± 0.17 81.46 ± 0.47 81.28 ± 0.56
COINNet(Ours) 89.41 ± 0.13 89.22 ± 0.21 88.98 ± 0.55 88.53 ± 0.40 87.54 ± 0.16

Table 10: Average classification accuracy v.s. missing rate on CIFAR-10 using synthetic annotators;
M = 3, τ = 0.2, η = 0.5; results are averaged over 3 random trials.

missing rate 0.1 0.2 0.3 0.4 0.5
MaxMIG 80.97 ± 0.77 79.04 ± 0.90 79.46 ± 0.62 77.78 ± 0.72 76.15 ± 1.81

GeoCrowdNet(F) 80.32 ± 0.55 79.42 ± 0.27 78.81 ± 0.27 76.93 ± 0.39 76.01 ± 0.42
COINNet(Ours) 86.23 ± 0.14 84.98 ± 0.64 84.24 ± 0.71 83.79 ± 0.40 81.49 ± 0.59

0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.004 0.005 0.004

0.005 0.005 0.004 0.005 0.004 0.004 0.004 0.005 0.004 0.005

0.004 0.004 0.005 0.004 0.005 0.005 0.005 0.004 0.005 0.005

0.005 0.005 0.004 0.005 0.005 0.005 0.004 0.005 0.005 0.005

0.005 0.004 0.005 0.005 0.005 0.005 0.005 0.004 0.005 0.005

Figure 5: Some examples from the CIFAR-10N dataset learned with low outlier scores sn’s.

H.3 Outlier Detection in CIFAR-10N Dataset

Following the result in Fig. 2, we show more examples of nominal data items and outlier data items as
separated by our approach in Fig. 5 and Fig. 6, respectively. Clearly, more instance-varying confusing
characteristics are present in the latter case.
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Table 11: Average classification accuracy in the scenario where each image of CIFAR-10 is labeled
by only one randomly chosen annotator from M = 3 synthetic annotators; results are averaged over
3 random trials.

τ = 0.2, η = 0.3 τ = 0.2, η = 0.5

MaxMIG 81.36 ± 0.81 70.78 ± 4.66
GeoCrowdNet(F) 80.44 ± 0.18 75.31 ± 0.33
COINNet(Ours) 87.18 ± 0.29 80.96 ± 0.38

Table 12: Average classification accuracy in the scenario where each image of CIFAR-10 is labeled
by only one randomly chosen annotator from M = 3 machine annotators; results are averaged over 3
random trials—see the annotation generation settings as in Sec. 5.1.

High Noise Medium Noise Low Noise
MaxMIG 58.58 ± 0.64 67.64 ± 0.25 77.01 ± 0.25

GeoCrowdNet(F) 55.25 ± 1.09 66.91 ± 0.53 75.48 ± 0.28
COINNet(Ours) 59.76 ± 0.62 70.94 ± 0.32 80.12 ± 0.44

Table 13: Average classification accuracy with different initializations for the confusion matrices. We
use machine annotations with the same setting as described in Sec. 5.1 in the manuscript. Results are
averaged over 3 random trials.

Initialization Strategy for Am’s High Noise Medium Noise Low Noise
Identity matrix 70.37 ± 0.61 73.33 ± 0.46 83.25 ± 0.39

GeoCrowdNet(F) after training 10 epochs 71.75 ± 0.73 73.48 ± 0.27 84.26 ± 0.13
Current setting (close to an identity matrix) 71.22 ± 0.72 73.31 ± 0.09 84.14 ± 0.38

0.176 0.176 0.175 0.175 0.171 0.167 0.172 0.174 0.175 0.176

0.167 0.172 0.174 0.175 0.176 0.166 0.177 0.176 0.175 0.172
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0.172 0.174 0.175 0.172 0.167 0.173 0.177 0.174 0.176 0.176

Figure 6: Some examples from the CIFAR-10N dataset learned with high outlier scores sn’s
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our claims have been discussed and supported by our analysis in Section 2
and 3, particularly by Fact 2.1, Theorem 3.5 and Theorem 3.6 with empirical evidence in
Section 5
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have discussed the limitations at the end of Section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: We have presented all assumptions we have used in Section 3. All proof are
presented in the Appendix, particularly in Appendix D, Appendix E, Appendix F.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have described in details experiment settings as well as the implementation
techniques in Section 3, Section 5 and Appendix G. We also include our code in this
submission as supplementary material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have included code, including instruction how to run in this submission. It
is as almost the same code that we use to to produce all experiment results, except removing
all identity related information. All data we used are publicly accessible.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We describe these in Appendix G

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All experiments are repeated at least 3 times. All numbers are accompanied
with standard deviation, as described in Section 5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We have included these information in Appendix G.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have made to our best effort to remove all identity-related information in
both the main paper supplementary material.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Our work tackles the noisy labels problem which is ubiquitous, especially in
the big data era, and hence bring positive impact to society.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We do not see any potential harm in publishing data and trained models of the
proposed method.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have cited all datasets used in Section 5.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: There is no new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: There is no human subjects or crowdsourcing experiments conducted in the
work. All datasets are from published sources.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: As mentioned above, our work does not involve crowdsourcing nor research
with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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