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Abstract

Recent advancements in solving Bayesian inverse problems have spotlighted de-
noising diffusion models (DDMs) as effective priors. Although these have great
potential, DDM priors yield complex posterior distributions that are challeng-
ing to sample. Existing approaches to posterior sampling in this context address
this problem either by retraining model-specific components, leading to stiff and
cumbersome methods, or by introducing approximations with uncontrolled er-
rors that affect the accuracy of the produced samples. We present an innovative
framework, divide-and-conquer posterior sampling, which leverages the inher-
ent structure of DDMs to construct a sequence of intermediate posteriors that
guide the produced samples to the target posterior. Our method significantly
reduces the approximation error associated with current techniques without the
need for retraining. We demonstrate the versatility and effectiveness of our ap-
proach for a wide range of Bayesian inverse problems. The code is available at
https://github.com/Badr-MOUFAD/dcps

1 Introduction

Many problems in machine learning can be formulated as inverse problems, such as superresolution,
deblurring, and inpainting, to name but a few. They all have the same goal, namely to recover a
signal of interest from an indirect observation. One line of research addresses these problems through
the lens of the Bayesian framework by specifying two components: a prior distribution, which
embodies the specification of the signal, and a likelihood that describes the law of the observation
conditionally on the signal. Once these elements are specified, the inverse problem is solved by
sampling from the posterior distribution, which, after including the observation, contains all available
information about the signal and thus about its uncertainty as well [12]. The importance of the
specification of the prior in solving Bayesian ill-posed inverse problems is paramount. In the last
decade, the success of priors based on deep generative models has fundamentally changed the field
of linear inverse problems [40, 55, 19, 36, 24]. Recently, denoising diffusion probabilistic models
(DDMs) have received special attention. Thanks to their ability to learn complex and multimodal
data distributions, DDM represent the state-of-the-art in many generative modeling tasks, e.g. image
generation [45, 20, 50, 52, 15, 46, 49], super-resolution [43, 1], and inpainting [45, 11, 22].

Popular methods to sample from posterior distribution include Markov chain Monte Carlo (MCMC)
and variational inference; see [53, 6] and the references therein. These methods are iterative schemes
that require an explicit procedure to evaluate pointwise the prior distribution and often its (Stein)
score function [21] in order to compute acceptance ratios and construct efficient proposals. While

* Equal contribution
Corresponding authors: {yazid.janati,badr.moufad}@polytechnique.edu

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

97408 https://doi.org/10.52202/079017-3090


https://github.com/Badr-MOUFAD/dcps

sampling from the DDM priors is straightforward, posterior sampling is usually challenging since
the intractability of the posterior density and its score make them computationally prohibitive and
thus invalidate all conventional simulation methods. Although approximations exist, their associated
iterative sampling schemes can be computationally intensive and exhibit high sensitivity to the choice
of hyperparameters; see e.g. [24].

This paper proposes the DIVIDE-AND-CONQUER POSTERIOR SAMPLER (DCPS), a novel approach
to posterior sampling in Bayesian inverse problems with DDM priors. Thanks to the Markov property
of the data-generating backward diffusion, the posterior can be expressed as the marginal distribution
of a Feynman—Kac (FK) path measure [13], whose length corresponds to the number of diffusion
steps and whose user-defined potentials serve to bias the dynamics of the data-generating backward
diffusion to align with the likelihood of the observation. Besides, for a given choice of potentials, the
FK path law becomes Markovian, making it possible to express the posterior as the marginal of a
time-reversed inhomogeneous Markov chain.

This approach is tempting, yet, the backward Markov decomposition remains difficult to apply in
practice as these specific potential functions are difficult to approximate, especially when the number
of diffusion steps is large. We tackle this problem with a divide-and-conquer approach. More
precisely, instead of targeting the given posterior by a single simulation run through the full backward
decomposition, our proposed scheme targets backward a sequence (7r,w ) eL:o of distributions along the
path measure leading to the target posterior distribution (section 3). These distributions are induced
by a sequence of increasingly complex potentials and converge to the target distribution. Starting
with a sample from 7, , a draw from 7;, is formed by a combination of Langevin iterations and the
simulation of an inhomogeneous Markov chain. In other words, 7, is expressed as the final marginal
distribution of a time-reversed inhomogeneous Markov chain of moderate length k,41 —k; € N* with
an initial distribution 7r££+1. This chain, whose transition densities are intractable, is approximately
sampled using Gaussian variational inference. The rationale behind our approach stems from the
observation that the Gaussian approximation error can be reduced by shortening the length of the
intermediate FK path measures (i.e., by increasing L); a result that we show in Proposition A.1. We
finally illustrate that our algorithm can provide high-quality solutions to Bayesian inverse problems
involving a variety of datasets and tasks.

To sum up our contribution, we

» show that the existing approximations of the Markovian backward decomposition can be im-
proved using a bridge-kernel smoothing technique

¢ design a novel divide-and-conquer sampling approach that enables efficient bias-reduced sam-
pling from the posterior, and illustrate its performance on several Bayesian inverse problems
including inpainting, outpainting, Poisson imaging, and JPEG dequantization,

 propose a new technique to efficiently generate approximate samples from the backward decom-
position using Gaussian variational inference.

Notation. For (m,n) € N2 such that m < n, we let [m,n] := {m,...,n}. We use N(z; u, %)
to denote the density at x of a Gaussian distribution with mean y and covariance matrix . I; is
the d-dimensional identity matrix and J, denotes the Dirac mass at a. W5 denotes the Wasserstein
distance of order 2. We use uppercase for random variables and lowercase for their realizations.

2 Posterior sampling with DDM prior

DDM priors. We provide a brief overview of DDMs [45, 50, 20]. Suppose we can access an
empirical sample from some data distribution py,, defined on Ré. Forn € N large enough
and k € [0,n], define the distribution g, () = [ Paua(%0) qrjo (T |T0)dxo With gyjo(xk|zo) =
N(zp; /axxo, (1 — ag)lg, ), where (ay)j_ is a decreasing sequence with ap = 1 and o, approxi-
mately equals zero. The probability density g, corresponds to the marginal distribution at time % of
an auto-regressive process on R= given by Xg11 = \/ak_H/aka + \/1 — Qgt1/Qk€k11, With
Xo ~ Paua and (€x,)}_, being a sequence of i.i.d. d,-dimensional standard Gaussians.

DDMs leverage parametric approximations :Eg‘ ., of the mappings xj, — [ z¢ 9, (Zo|zk)dxo, where
o (0| Tk) X Paaa(%0)qrjo (Tk|20) is the conditional distribution of Xo given X, = ). Each i:g‘k
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is defined as &), (xx) := (xx — T — i€} (z1))/\/ak, where & is a noise predictor network trained
by minimizing a denoising objective; see [46, Eq. (5)] and Appendix A for details. Following [15,
Section 4.2], ¢ also provides an estimate of the score V log g, (1) given by 8¢ (x) = —(xk —
\/oTkigl . (@1))/(1—ay). We denote by 6* the minimizer of the denoising objective. Having access to
0*, we can define a generative model for py,, by adopting the denoising diffusion probabilistic model
(DDPM) framework of [20]. As long as n is large enough, g,, can be confused with a multivariate
standard Gaussian. Define the bridge kernel qy|o j+1(2k|T0, Tri1) X Grjo(Zk|T0) Qrorr1)k (Trr1]2r)
which is a Gaussian distribution with mean piyo,41 (20, k1) and diagonal covariance ai‘ pr1ld,
defined in Appendix A.1. Define the generative model for py,., as

* nil *
pg:n(xﬂrn) = pp(Tn) Hk:o p2|k+1(xk|xk+1) ) (2.1

where for every k € [[1,n — 1], the backward transitions are
0* : N
Propiot1 (Tl Th41) = @rjo k1 (T| B0 g (Tht1), Thot1) (2.2
s 2 0F .
with p0‘1(~\x1) = 5533\*1(11
have access to a pre-trained DDM and omit the superscript 8* from the notation, writing simply

p and I, when referring to the generative model and the denoiser, respectively. In addition,
we denote by p,. the k-th marginal of p,., and write, for all (¢,m) € [0,n]? such that £ < m,

-1
pE\m(xdzm) = ?:E pk‘|k’+1(xk‘xk+1)'

y and p,,(zn) = N(zn;0,1q,). In the following, we assume that we

Posterior sampling. Let g, be a nonnegative function on R%. When solving Bayesian inverse
problems, g, is taken as the likelihood of the signal given the observation specified using the forward
model (see the next section). Our objective is to sample from the posterior distribution

mo(Z0) = go(w0) po(w0)/Z , (2.3)

where Z := [ go(x0) po(z0)dxo is the normalizing constant and the prior p,, is the marginal of (2.1)
w.r.t. zg, in which case the posterior (2.3) can be expressed as

n—1

1
mo(z0) = z /90(530) H pk|k+1(:vk|xk+1)pn(xn) din .
k=0

Thus, Equation (2.3) can be interpreted as the marginal of a time-reversed FK (Feynman—Kac) model
with a non-trivial potential only for k = 0; see [13] for a comprehensive introduction to FK models.
In this work, we twist, without modifying the law of the FK model, the backward transitions Pkt
by artificial positive potentials (g, )7_,, each being a function on R% , and write

n—1

1
mo(x0) = /gn(xn)pn(xn) kl;[g Mpmﬂ(xklxkﬂ) dz1:p - 24

This allows the posterior of interest to be expressed as the time-zero marginal of an FK model with
n—1

initial distribution p,,, Markov transition kernels (pk‘ k1) h—o> and (g;)r—o-

Recent works that aim to sample from the posterior (2.3) generally employ the FK representation
(2.4). These studies, however, adopt varying auxiliary potentials [10, 47, 60, 4, 54, 59]. FK models
can be effectively sampled using sequential Monte Carlo (SMC) methods; see, e.g., [13, 9]. SMC
methods sequentially propagate weighted samples, whose associated weighted empirical distributions
target the flow of the FK marginal distributions. The effectiveness of this technique depends heavily
on the choice of intermediate potentials (gk)zzl, as discussed in [54, 59, 7, 16]. However, SMC
methods require a number of samples proportional and often exponential in the dimensionality of the
problems hence limiting their application in these setups due to the resulting probabitive memory cost
[2]. On the other hand, reducing the number of samples makes them vulnerable to mode collapse.

In the following, we will focus on a particular choice of potential functions (g,,)_, for which the
posterior my can be expressed as the time-zero marginal distribution of a time-reversed Markov
chain. The transition densities of this chain are obtained by twisting the transition densities of
the generative model with the considered potential functions. More precisely, define, for all k,
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the potentials g; (zx) := [ go(xo) Py (@olx) dzo. Note that these potentials satisfy the recursion
Goi1(@es1) = [ gh(n) Py 41 (@k|Trs1) dzk. Builing upon that, define the Markov transitions

Tkt (Tk|Thg1) = Mpkmﬂ(kakﬂ)v 2.5)
Gh1(Thot1)
allowing the posterior (2.4) to be rewritten as
n—1
mo(20) = /Wn(xn) I 7o @rlen) devn s my(20) = gh(za)pa(@a) /2. (26)
k=0

In other words, the distribution 7 is the time-zero marginal of a Markov model with transition
densities (ﬂk‘ & H)g:n_l and initial distribution 7,,. According to this decomposition, a sample
X{ from the posterior (2.3) can be obtained by sampling X ~ 7, and then, recursively sampling
X~ T C1XG ) from k= n — 1 till k = 0. In practice, however, neither the Markov
transition densities 7 klko1 OT the probability density function 7, are tractable. The main challenge
in estimating 7 k|k+1 Stems essentially from the intractability of the potential g; () as it involves
computing an expectation under the high-cost sampling distribution py, i Clon).

Recent works have focused on developing tractable approximations of Pojk (|xx). For the Diffusion
Posterior Sampling (DPS) algorithm [10], the point mass approximation 6j0‘k($k) of Py W ClTr)
results in the estimate Vy, log go (2, (xx)) of Vaz, log gi(zx). Then, given a sample Xj1, an
approximate sample X, from ”k\k+1('|Xk+1) is obtained by first sampling X}, ~ pk\k+1('|Xk+l)
and then setting

X =Xp + Cv!ﬂk+1 log go(£0|k’+l(xk+1))|-’ﬂk+1:Xk+l ’ 2.7
where ¢ > 0 is a tuning parameter. As noted in [48, 7, 4], the DPS updates (2.7) do not lead to
an accurate approximation of the posterior 7, even in the simplest examples; see also Section 4.
Alternatively, [47] proposed the Pseudoinverse-Guided Diffusion Model (I1IGDM), which uses a
Gaussian approximation of py,, (-|zx) with mean &, (z)) and diagonal covariance matrix set to
(1 — ag)I4,, which corresponds to the covariance of Q) « (-] if e had been a standard Gaussian;
see [47, Appendix 1.3]. More recently, [17, 4] proposed to approximate the exact KL projection of
P . (Tolxy) onto the space of Gaussian distributions by noting that both its mean and covariance
matrix can be estimated using iol «(Z) and its Jacobian matrix. We discuss in more depth the related
works in Appendix B.

3 The DCPS algorithm

Smoothing the DPS approximation. The bias of the DPS updates (2.7) stems from the point mass
approximation of the conditional distribution Pojk (| ). This approximation becomes more accurate
as k tends to zero and is crude otherwise. We aim here to mitigate the resulting approximation
errors. A core result that we leverage in this paper is that for any (k,¢) € [0,n]? such that £ < k,
we can construct an estimate i (lzk) of py; (+|x) that bears a smaller approximation error than
the estimate 5%%(% ») relatively to py, (+|y ). Formally, let py, ([x%) denote any approximation of

po‘k(~|xk), such as that of the DPS or IIGDM, and define the approximation of p, (-|zx)

Doy (@e| i) == /QZlo,k(xZ‘x(hxk)po|k(x0|xk)dl‘Ov (3.1

where qy|o,i(¢| 0, 1) is defined in (A.4). We then have the following result.
Proposition 3.1 (informal). Let k € [1,n]. Forall ¢ € [0,k — 1] and ), € R%,

Vou(l — ag/ap)

Wa(Dopi (-12k), Pose (7)) < (1—ap)

Wa Do)k (12k), Poi (k) - (32)

The proof is postponed to Appendix A.3. Note that the ratio in the right-hand-side of (3.2) is less than
1 and decreases as ¢ increases. As an illustration, using the DPS approximation of p0|k(' |zg), we

find that f)e‘k(xdzk) = w\o,k(iﬂdio‘k(xk), xy,) improves upon DPS in terms of approximation error.

https://doi.org/10.52202/079017-3090 97411



This observation prompts to consider DPS-like approximations on shorter time intervals; instead of
approximating expectations under p; (+|zx), such as the potential g5 (), we should transform our

initial sampling problem so that we only have to estimate expectations under Py . (-] for any £
such that the difference & — £ is small. This motivates the blocking approach introduced next.

Intermediate posteriors. We approach the original problem of sampling from 7 via a series of
simpler, intermediate posterior sampling problems of increasing difficulty. More precisely, let us
consider the intermediate posteriors defined as

Tk, (l'k() = 9k, (xk/z)pk-e (xke)/zkw with Zk-e = /gkz (zkl)pkg (xkz)dka (3.3)

where (gk ) -, are potential functions designed by the user and (kg) ‘o 1s an increasing sequence
in [0, n] such that ko = 0 and kr, = n. Here, L is typically much smaller than n. To obtain an
approximate sample from 7y = my,, the DCPS algorithm recursively uses an approximate sample
Xk,,, from 7y, to obtain an approximate sample Xy, from 7. Indeed, mirroring (2.6) it holds

kg+171
£ l
Tk, (xk/z) = /ﬂ-k‘,[+1 (xk(H»I) I I 7Tm|m+1(xm|zm+1)dxkz+1:k2+1 ) (3.4)

m:k;,

where for m € [ke, ke41 — 1],
V4 . L,
Thpia (xk4+1) = gk;rl (xk4+1)pk@+1 (mki+1 )/Zk‘[ ’

¢ A £
'/Tm|m+1(xm|1'm+1) = gm,*(xm)pm|m+1(zm“Tm'f‘l)/gm:*l(xm"‘l)
and form € [k¢ + 1, ko11],

G () = / Oy (k) Dry (ke ) A - (3.5)

We emphasize that the initial distribution 7T£e+1 in (3.4) is different from the posterior 7, as the

former involves the user-defined potential whereas the latter the intractable one. The main advantage
of our approach lies in the fact that, unlike the potentials in the transition densities (2.5), which involve
expectations under Pojk (| ), the potentials (3.5) are given by expectations under the distributions

P, |m(' |, ), which are easier to approximate in the light of Proposition 3.1. In the sequel, we use
this approximation for the estimation of the potentials (3.5); this yields approximate potentials

gm ( m) = /gke(xke)ﬁk[\m(ﬁkflxm) drg,, me [kf + 17k5+1ﬂ7 (3.6)

which serve as a substitute for the intractable g%*. Let us now summarize how our algorithm works.
Starting from a sample Xy, ,, which is approximately distributed according to LI the next sample

X}, is generated in the next two steps:

1. Perform Langevin Monte Carlo steps initialized at Xy, , and targeting wé ,» yielding X7

kep1®
2. Simulate a Markov chain (X ])f@: Ko initialized with X, , = X f;Hl and whose transition
from X, to X is the minimizer of
KL(AY 1 (X)) |l w1 (1K), (3.7

where A7, . | is a mean-field Gaussian approximation with parameters ¢ := (ji,5) € R% xR‘iIO.

jli+1

X is drawn from A$i (Xie)

i (| Xj41), where ©;(X41) is a minimizer of the proxy of (3.7).

In the following, we elaborate more on Step 1 and Step 2 and discuss the choice of the intermediate
potentials. The pseudo-code of the DCPS algorithm is in Algorithm 1.

Sampling the initial distribution. In order to perform Step 1, we use the discretized Langevin
dynamics [38] with the estimate V log g gk v T 5 ks of the score V log Wkul This estimate results
from the use of 3, L, @san approximation of Vlog Prois in combination with the approximate
potential (3.6). We then obtain the approximate sample X ¢ ki of my, -~ by running M steps of the

tamed unadjusted Langevin (TULA) scheme [5]; see Algorithm 1. Here, the intractability of the
involved densities hinder the usage of the Metropolis-Hastings corrections to reduce the inherent bias
of the Langevin algorithm.
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Sampling the transitions. We now turn to Step 2. Given X1 1, we optimize the following estimate
of Equation (3.7), where we simply replace gf by the approximation (3.6):

—/10g§5’ (@)A7 o (sl an) dag + KL 4 Clej) o540 Clagi) -

Letting )\]‘J+1(xj|xj+1) = N(zj; fi;, diag(e®)), where the variational parameters [i;, 0, are in Ry,
the previous estimate yields the objective

A oA Al x 0;
L;(fg,0552541) = —E[log ;" (1 + €%/ Z)]
0l T 2 1 dz ei)jﬂﬂ,
n 1/ — MQJU+1( s+l _ 52 Dy — — . 38)
JJ\JH i=1 Tjlj+1
where Z is d,-dimensional standard Gaussian and ;|41 (1) is the mean of (2.2). Note here that
we have used the reparameterization trick [26] and the closed-form expression of the KL divergence
between two multivariate Gaussian distributions. We optimize the previous objective using a few
steps of SGD by estimating the first term on the r.h.s. with a single sample as in [26]. For each

_ 2 RPN N -
J € [ke, ker1 — 1], we use p1)41 and log 05|41 a8 initialization for fi; and ¥;.

Intermediate potentials. Here, we give general guidelines to choose the user-defined potentials
(g,w ) zL:r Our design choice is to rescale the input and then anneal the initial potential go. Therefore,

we suggest
Ir, (€)= 9o(5-) ™ (3.9)

where ~;,, B;, > 0 are tunable paramerters. This design choice is inspired from the tempering
sampling scheme [33] which uses the principle of progressively moving an intial distribution to
the targeted one. We provide some examples in the case of Bayesian inverse problems where the
unobserved signal and the observation are modelled jointly as a realization of (X,Y") ~ p(y|x)po(z),
where p(y|z) is the conditional density of Y given X = z. In this case, the posterior 7y of X given
Y =y is given by (2.3) with go(z) = p(y|x).

Linear inverse problems with Gaussian noise. In this case, g,(z) = N(y; Az, o Id ), where
A € Rdw*d= Popular applications in image processing include super-resolution, 1npalnt1ng, outpaint-

ing, and deblurring. We use (3.9) with (8, r,) = (\/Qhy, Ok, )s
9r, () = N(\/ar,y; Az, 00 14,) (3.10)

which corresponds to the likelihood of = given the pseudo observation /o,y under the same linear
observation model that defines g,. This choice of g,, enables exact computation of (3.6) and allows
information on the observation y to be taken into account early in the denoising process.

Low-count (or shot-noise) Poisson denoising. In a Poisson model for an image, the grey levels
of the image pixels are modelled as Poisson-distributed random variables. More specifically, let
A € R%Xds be a matrix with nonnegative entries and z € [0,255]“*H#*W where C is the
number of channels and H the height and W the width. For every ¢ € HL dy], Y; is Poisson-
distributed with mean (Ax);, and the likelihood of x given the observation is therefore given by
= 152, (Az) e e~ (M) /y1 where A > 0 is the rate. Following [10] we consider as likelihood
its normal approximation, i.e. 9o = 1 N(y;; A(Az);,y;). This model is relevant for many tasks
such as low-count photon imaging and7 computed tomography (CT) reconstruction [35, 39, 31]. We

use (3.9) with B, = Vi, = . /akl dy,
e H N(y/ak,ys; MAz) j, /A, y;) - (3.11)

JPEG dequantization. JPEG [57] is a ublqu1t0us method for lossy compression of images. Use h, to
denote the JPEG encoding function with quality factor q € [0, 100], where a small ¢ is associated
with high compression. Denote by & the JPEG decoding function that returns an image in RGB
space with a certain loss of detail, depending on the degree of compression ¢, compared to the
original image. Since we require the potential to be differentiable almost everywhere, we use the
differentiable approximation of JPEG developed in [44], which replaces the rounding function used
in the quantization matrix with a differentiable approximation that has non-zero derivatives almost
everywhere. In this case, gy (x) = N(h}(y); hii(hq(x)), 0214, ), where y is in YCbCr space. Combin-
ing this with Equation (3.9) with (Bk,,Vk,) = (k,, ok, ) and assuming that the composmon hT o hg

is a homogenious map, the intermediate potentials are g, () = N(y/ax, hi 1) h ( q(x)), 0 Id )
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4 Experiments
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Figure 1: First two dimensions of samples (in red) from each algorithm on the 25 component Gaussian mixture
posterior sampling problem with (d, dy) = (100, 1). The true posterior samples are given in blue.

In this section, we demonstrate the performance of DCPS and compare it with DPS [10], IGDM
[47], DDRM [24], REDDIFF [32], and MCGDIFF [7] on several Bayesian inverse problems. We
also benchmark our algorithm against DIFFPIR [62], DDNM [58], FPS [16], and SDA [42] but we
defer the results to the Appendix C.5.

First, we consider a simple toy experiment in which the posterior distribution is available in closed
form. Next, we apply our algorithm to superresolution (SR 4 x and 16 x), inpainting and outpainting
tasks with Gaussian and Poisson noise, and JPEG dequantization. For these imaging experiments, we
use the FFHQ256 [23] and ImageNet256 [14] datasets and the publicly available pre-trained models
of [8] and [15]. Finally, we benchmark our method on a trajectory inpainting task using the pedestrian
dataset UCY for which we have trained a Diffusion model. All details can be found in Appendix C.1.

Gaussian mixture. We first evaluate the accuracy of DCPS on a linear inverse problem with a
Gaussian mixture (GM) prior, for which the posterior can be explicitly computed: it is also a Gaussian
mixture whose means, covariance matrices, and weights are in a closed form; see Appendix C.2.
In this case, the predictor igl*k is available in a closed form;

see Appendix C.2 for more details. We consider a Gaussian Table 1: 95% confidence interval for the SW
mixture prior with 25 components in dimensions d, = 10 on the GM experiment.

and d, = 100. The potential is go(z) = N(y; Az, 07 14,)
with d, = 1 and A is a 1 x d, vector. The results are

dy =10,dy =1 d,=100,d, =1

averaged over 30 randomly 2generated replicates of the nggigo 2_’%1%‘2@ ﬁié:gg
measurement model (y, A, O'y) and the mixture weights.  DPs 5.80 + 0.75 5.68+0.73
Then, for each pair of prior distribution and measurement ~ DDRM 3.77+0.96 5.70+0.78

. IIGDM 4.2340.90 4.61+0.68
model, we generate Ny = 2000 samples with each algo-  Rrgppisre 6.36 + 1.97 747+ 0.87
rithm and compare them with N, samples from the true = MCGDirr  2.28+0.75 2.83£0.71

posterior distribution using the sliced Wasserstein (SW)

distance. For DCPS, we used L = 3 blocks and K = 2

gradient steps, respectively, and compared two configurations, denoted by DCPS5q and DCPS5¢, of
the algorithm with M = 50 and M = 500 Langevin steps, respectively. See Algorithm 1. The results
are reported in Table 1. It is worthwhile to note that DCPS outperforms all baselines except for
MCGDIFF. However, by increasing the number of Langevin steps, its performance closely matches
that of MCGDIFF.

Imaging experiment. Table 2 reports the results for the linear inverse problems with Gaussian
noise with two noise variance levels o, = 0.05 and o, = 0.3, Table 3 for the JPEG dequantization
problem with o, = 1073, QF ¢ {2, 8}, and Table 6 for the Poisson denoising task with rate
A = 0.1. For all tasks and datasets, we use the same parameters for DCPS and therefore do not
perform any task or dataset-specific tuning. We use L = 3, K = 2 gradient steps, and M = 5
Langevin steps. To ensure a fair comparison with DPS and IIGDM we use 300 DDPM steps
for DCPS and 1000 steps for both DPS and IIGDM, which ensures that all the algorithms have
the same runtime and memory footprint; see Table 4. For MCGDIFF, which has a large memory
requirement, we use N = 32 particles in the SMC sampling step and then randomly draw one
sample from the resulting particle approximation of the posterior. Finally, for DDRM we use 200
diffusion steps and for REDDIFF we use 1000 gradient steps and the parameters recommended
in the original paper. We provide the implementation details for all algorithms in Appendix C.1.
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Observation  DCPS DDRM DPS IIGDM _ REDDIFF MCGDIFF  Observation DCPS DDRM DPS IIGDM  REDDIFF - MCGDIFF

Figure 2: Sample images for inpainting with center, half, expand masks and for Super Resolution
with 4x and 16x factors. On the left: FFHQ dataset and on the right ImageNet dataset.

For the JPEG dequantization task, Table 2: Mean LPIPS value on different tasks. Lower is better.
— 10-3 _
we use gy = 107" and A = 0.1 Dataset / Task DCPS DDRM DPS IIGDM REDDIFF MCGDIFF
We only benchmark our method ataset/ gy *
against IGDM and REDDIFF,  © B 020 om  h g o
since MCGDIFF and DDRM : SR4x  0.09 018 009 033 0.36 0.15
. - SR16x 023 036 024 044 0.51 032
do not handle non-linear inverse
. . Half 025 030 031 0.4 0.76 0.80
problems. We did not include FFHQ/03 Center 010 013 0.11 062 0.75 0.55
DPS in our benchmark because - SR4x 021 026 019 077 0.77 0.65
h ‘ d to find SR16x 035 041 043 064 0.74 0.52
we have not managed to hnd a Half 035 040 044 038 044 0.83
suitable choice of hyperparam- = o Cener 018 014 031 029 0.22 045
hi bl _ 3 S SR4x 024 038 041 078 0.56 1.32
eters to achieve reasonable re SR16x 044 072 050  0.60 0.83 133
Sﬁlts- Elnally, for the Poisson- Half 040 046 048 082 0.76 0.86
shot noise case, we compare Center  0.24 025 040 0.68 0.71 0.47
. ’ P ImageNet /0.3 spyx 043 050 047 087 0.83 131
against DPS. We use the step SR16x 072 077 057 072 092 0.67
size for super-resolution recom- Average 028 035 032 057 0.60 0.67

mended in the original paper [see
10, Appendix D.1], and found, via a grid search, that the same value is also effective for the other tasks.

Evaluation. As shown in Table 2, DCPS outper-
forms the other baselines on 13 out of 16 tasks Table 3: Mean LPIPS value on JPEG dequanti-
and has the best average performance. In par- zation.

ticular, it compares favorably with IIGDM and

DPS, its closest competitors, while exhibiting the Dataset  Task DCPS 1IGDM REDDIFF
same runtime and memory requirements; see Ta- FFHQ 8£f§ g-gg 8% %
ble 4, where we give the average runtime and QF:2 0'44 & 0'50
memory usage for each algorithm. The mem-  ImageNet Sp_ o g5y o5 031

ory consumption is measured by how many sam-
ples each algorithm can generate in parallel on
a single 48GB L40S NVIDIA GPU for the Diffusion model trained on FFHQ [15].
We emphasize that DCPS is more robust to larger noise levels than IIGDM and REDDIFF, as
evidenced by the large increase in the LPIPS value for these algorithms in the case o, = 0.3. On
the JPEG dequantization task (Table 3), DCPS also shows better performance than these algorithms
and even more so for the high compression level (QF = 2). On the Poisson-shot noise tasks, DCPS
outperforms DPS by a significant margin; see Table 6. Finally, we display various reconstructions
obtained with each algorithm. More specifically, we have generated 4 samples each, with the same
seed. Figure 2 displays the first sample and the remaining ones are deferred to Appendix D. For
MCGDIFF we show 4 random samples of the same particle filter. Due to the collapse of the particle
filter in very large dimensions [2], they are all similar. Surprisingly, the samples produced by DDRM
and REDDIFF for the outpainting tasks also show striking similarities, although the samples have
been drawn independently.
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REDDIFF Observation

Figure 3: Left: JPEG dequantization with QF = 2. Middle: Poisson denoising. Right: SR 4 x Poisson denoising.

Trajectory prediction. We evaluate our algorithm ~DCPS (ous)  + MOGDIr wIIGDM
o DPS

on the UCY dataset consisting of pedestrian trajecto- v DDRM ¢ RepDIFE
ries, encoded as 2D time series with 20 time steps + +
[27, 29, 18, 30]. We pre-train a trajectory model on 06 & . o

this dataset and then use it for trajectory reconstruc-
tion tasks. The model architecture and implementation %

are detailed in Appendix C.4. We focus on the com- 04
pletion of trajectories where only a few timesteps are T N v
.. . 0.3
observed. The missing steps are filled in based on the * *
. . . .. 0 100 200 25 45 65
observations and the pre-trained prior model, similar Runtime (s) Max. samples per GPU

to the inpainting task in the previous section. We use ) ) )
MCGDIFF with 5000 particles to obtain approximate ~1aPle 4: LPIPS metric against the runtime and
samples from the posterior. Indeed, as the dimension of ™™™ cost of the algorithms.

the observation space is low (d, = 40) and MCGDIFF
is asymptotically exact as the number of particles tends
to infinity, it yields an accurate approximation of the

Table 5: ¢, distance quantiles with MCGDIFF
as reference.

. o = 0.005 y = 0.01
posterior; see [/, Proposition 2.1]. Then, we compute o 2 s 2 s
the [2. distance between the median, quantile 25, and DCPS 131 133 147 133 142 142
quantile 75 of the MCGDIFF samples and the recon- DPS 134 140 161 136 148 152
. . DDRM 148 146 1.61 159 1.62 1.61
structions of each algorithm. We report these results NGDM 136 135 147 137 143 142
in Table 5. Finally, in Figure 4 we illustrate the recon- REDDIFF  1.67 157 182 156 154 165
structed trajectories on a specific trajectory completion
problem.
¢ Reconstruction ¢ Observation ¢ Groundtruth
MCGDIFF DCPS (ours) DDRM DPS TIGDM REDDIFF
P .. -~ o |
7’52: ﬂ@a’é‘ ,.w }9—.’& 7/’ oo ;"}‘
Confidence intervals
1 R et i o
- N g “ﬁﬁ--a“i Hﬁh—"“’g’ﬂﬂ? -“'n-asm Nﬁin.--~-mm
i e e M e
- i — Hii*"““""‘“w gt 'ﬂﬁé Wﬁ*v ===== *“m e "“M Bhissa--o-eoosth
time steps

Figure 4: Trajectory completion where only the middle part of the trajectory is observed. The figures in the 1*
row display 3 reconstructions per algorithm. The 2™ and 3™ rows show confidence intervals across different
time steps. The Groundtruth is a trajectory taken from the UCY dataset.

5 Conclusion.

In this paper, we introduce DCPS to handle Bayesian linear inverse problems with DDM priors
without the need for problem-specific additional training. Our divide-and-conquer strategy helps to
reduce the approximation error of existing approaches, and our variational framework provides a
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principled method for estimating the backward kernels. DCPS applies to various relevant inverse
problems and is competitive with existing methods.

Limitations and future directions. Our method has some limitations that shed light on opportu-
nities for further development and refinement. First, the intermediate potentials that we considered
were specifically designed for each problem, meaning our method is not universally applicable to all
inverse problems. For instance, our approach can not be applied to for linear inverse problems using
latent diffusion models [41] since there is no clear choice of intermediate potentials. Therefore, in our
opinion, deriving a learning procedure that is capable to automatically design effective intermediate
potentials applicable to any g, is an important research direction. Moreover, there is an aspect of
the choice of the intermediate potentials and the number of blocks L that remains to be understood
properly. Indeed, while our backward approximations reduce the local approximation errors w.r.t.
DPS and IIGDM; nonetheless DCPS requires appropriate intermediate potentials in order to perform
well. DCPS can still provide decent performance with irrelevant intermediate potentials as long as
the number of Langevin steps, in-between the blocks, is large enough. Finally, although our method
provides decent results with the same computational cost as DPS and IIGDM, it remains slower
than REDDIFF and DDRM which which do not compute vector-jacobian product over the denoiser.
Therefore, overcoming this bottleneck when optimizing the KL objective would be a significant
improvement for our method.
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A Methodology details

A.1 Denoising Diffusion models

DDMs learn a sequence (:Eg‘t)thl of denoisers by minimizing, using SGD, the objective

T
> wilk [[len — & (VarXo + VI — arer)|?] (A1)
t=1

w.r.t. the neural network parameter #, where (¢;)7_, are i.i.d. standard normal vectors and (w;)7_,
are some nonnegative weights. We denote by 6* an estimator of the minimizer of the previous loss.
Having access to 8*, we can define a generative model for py... Let (¢x)}_, be an increasing sequence
of time instants in [0, 7] with ¢, = 0. We assume that t,, is large enough so that g, is approximately
multivariate standard normal. For convenience, we assign the index k to any quantity depending on
ty; e.g., we denote py, by py. For (j, k) € [1,n — 1]? such that j < k, define

Oz]‘(l*ak/aj)mo_k1/0[;9/0@‘(1—04]‘) (AZ)

o,k (To, Tk) 1= . o Tk »
o . (1—aj)(1 —ar/ay)
o = o . (A3)
Then the bridge kernel
410k (TjlT0, 21) = @jj0(@5120)qr j (k] T5) [ qrio(@r|20) (A4)

is a Gaussian distribution with mean 5o, & (o, x)) and covariance UJQ.‘ w1d,- DDPM [20] posits the
following variational approximation

n—1

pg:n(xom) = pn(xﬂ) H pZ|k:+1 ($k|$k+1) )
k=0

where p} ;) (TklTk41) = dyyo s (@rlEG ) (T41), 2r41) and p{ (21) = 038, (ay)- An effi-
cient generative model is then obtained by plugging in the parameter 6*.

A.2 Further details on DCPS

In this section we provide further details on Steps 1 and 2 detailed in the main paper. The complete
algorithm is given in Algorithm 1.

Tamed unadjusted Langevin. For the tamed unadjusted Langevin steps we simulate the Markov
chain (X;)}Z, where

X]‘+1 :Xj+’7G$(Xj)+\/2’YZ]’7 XOZX4+17 (A.5)

and (Z;) jlvigl are i.i.d. d -dimensional standard normal, X, + 1 is an approximate sample from 7, |
obtained from the previous iteration of the algorithm, and for all 2 € R% and v > 0,

- Vloggffl(x) + 5044 (2)
- Al % ~ .
L4+ 9[Vieg gy (z) + 8,4 (@)

G (x) (A.6)

We then set X f 1= X M, Which serves as an initialization of the Markov chain in Step 2.

Potential computation. In order to perform the tamed Langevin steps and to optimize the variational
approximation using the criterion (3.8), it is crucial to be able to compute exactly the potential (3.6).
The optimal potentials we have proposed for both linear inverse problems with Gaussian noise (3.10)
and low-count Poisson denoising (3.11) (for £ > 0) are available in a closed form:

357" (x5) = N(Vaz y, Apg(25), 25), (A7)
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where

2? = gg‘j AAT + 0'5 I dy s (Linear inverse problem)
E? = JZ JAAT + Jagdiag(y), €>0, (Poisson-shot noise)

1o (x5) = piejo,j(Zg);(x;), x;), and o’?u is defined in (A.2). As a result, the first term of the
variational criterion £(f1;, 0j; xj4+1) in (3.8), given by

E[log ;™" (f1; +e%/22)] = /10g§f7*(f€j))‘ﬁj+1(%\fﬂjﬂ)d%

can be computed exactly. Indeed, as 14|, is a linear function of x;, this expectation is simply that of a
quadratic function under a Gaussian density, given by

1 .
—3 [H\/ngy - A/‘Z\j(ﬂj)”?gﬁ)—l + tr((%4) " 'diag(e™)) | + C.

Hence, for these cases, (3.8) has a closed-form expression. However, it involves the computation of
an inverse matrix which, for many problems, can be prohibitively expensive. To avoid this inversion,
we instead optimize a biased estimate of £;(fi;,0;; xj4+1) obtained by drawing two noise vectors
(Z,Z") ~ N(0q4,, 14, ) and setting

E[log g} (f1; +e%/22)] =

L;(f1j, 053 541) = —log g (paey; iy + €"/*Z) + 07, 2)
dy

A — i1 (zie)l® 1 ) el
+ 52 752 Vi——— ] (A9

Jli+1 i=1 Jli+1

This estimator is computable for any choice choice of potential and we have found in practice that it
is sufficient to ensure good enough performance for our algorithm. Regarding the tamed unadjusted
Langevin steps, we use the same biased estimate when the matrix inversions are expensive to compute;

i.e. at each Langevin step, we approximate Gé(f( ;) by

~, o~ Va,41lo T +o Z + 5 T+ 1
Gg(Xj) — 41 gge(ﬂmﬂ( 0+1) £]e+1 f’) Ae+1( 4 ) _ (A.9)
[Vap110g g (pejer1 (Tet1) + oeper12e) + 8441 (xe + 1)

Algorithm 1 DIVIDE-AND-CONQUER POSTERIOR SAMPLER (DCPS)

Input: timesteps (k¢)%_, learning-rate ¢, numbers K and M of gradient and Langevin steps,

respectively.

Initial sample Xy, ~ N (04, 4, );

for{=L—1to0do ~
Draw Z ~ N(0q4,, I4,) and compute ny (X!

keg1
0
Xke+1 « in+1

for i = 1to M do
ZNN(OdI7IdI);

) (A9);

Xﬁul +— XﬁHl + va/(XﬁHI) ++2v7;
end for

for j = kyy1 —1to ko do
fij < ﬂj|j+1(Xf+1); v; < log 032'|j+1 La,;
for r =1to K do -
Draw (Z,Z') ~ N(04,,14,) and compute L;(f1;,0;; X5, 1) (A.8);
[ﬁﬂ “« [ﬁﬂ = GV g0, L5 (frgs 033 X5 o) | ™ Vg0, L5 (f155 033 X 11)
end for
g~ ./\/'(Odz,fdx)
Xf — f1; + diag(e®/?)e;
end for
Xk[ < Xﬁz;
end for
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A.3 Proof of Proposition 3.1
Forall k € [0,n — 1] we denote by g, ; (¥k|zk+1) the exact backward kernel which satisfies

Qk+1($k+1)Qk\k+1(fck|5Ek+1) = Qk(xk)Qk+1|k($k+1|xk) . (A.10)

Note that the backward kernels Dyje+1 are to be understood as Gaussian approximations of the true
backward kernels ¢ k1 Below we give a complete statement of the proposition and provide a proof.

Proposition A.1. Let k € [1,n]. Assume that qk|k+1($k‘$k+1) = pk‘k+1(xk|xk+1) for all
(h, 7p11) € (R%)2. Forallf € [0,k — 1] and x), € R,

<« Vol —onfoy) o

W2(ﬁz|k~('|17k)apz|k-('|17k)) = 1—ar) 2(130\k("$k)7po\k('|xk)) :

Proof of Proposition A.1. Under the assumptions of the proposition, we have, for all m > ¢,

ponarlen) = anCorlon) = [ ago oo o) o).

Indeed, by definition of the backward kernel g, (zo|2x) and (A.10), it holds that

Qgjo(@elzo)qpy o (zkle) 4o (o) o (2kl20)
QQ|0’;€($£“T0,xk)q()'k({po‘(pk) dxo d

- x
G0 (Tr|T0) 4. (z5) 0
D) q0(70)qp0(dze|70) A

= Qz|k($f|3«"k)'

As a result, we have that
P (@e|wr) = /QQQk(dmdl‘Oaxk)‘]o\]g(xouk)de7

Doy (@e|wr) = /qe\qk(dﬂ?elxo,xk)ﬁo|k(9«"o|$k)dﬂ?o,

where, by definition, p (-|zx) is a Gaussian approximation of g (-|zx) as defined in the main
paper.
Next, let I (+|7%) denote a coupling of qo‘k(~|xk) and ﬁo‘k('|$k), ie., forall A € B(R%),

/]1,4(950)11]1@1 () Tloje (@0, dolex) deodio = /]lA(mo)qo‘k(xdxk)dxo,

/HR% (20)La (G0) Toju (0, o |) daodo = /]lA(af:o)ﬁO‘k(iobk)daﬁo.
Consider then the random variables

Xypy = Vel — ag/ay)

\/Ozk/()ég(]. 70ég)xk i \/(1 — Oég)(]. 7Oék/a£)Z,

X
1— oy ol + 1—ag V91—«
o \/ag(l—oz;g/ag)j( Vg /a1l —ap) V(=) (1= ag/ayp)
sk = ———F—————Xo|k T T+ 7z,
lfozk l—ozk \/1—Oék

where (X, ka) ~ Iy (-|zx) and Z ~ N'(0g,, 14, ). Then (Xyx, Xg‘k) is distributed according
to a coupling of py; (+|x) and p, (-|x), and consequently

. R 1/2
Wa(Boye(lon),peyeClae)) < E [ X = Xepell?]

Vae(l —ar/ay) N 1/2

< YU [ Xop — Xonl2]
(1—ag)

The result is obtained by taking the infinimum of the rhs with respect to all couplings of ok (-|xg)

and ﬁo‘k(~\xk).
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B Related works.
In this section we discuss in more details existing works that bear some similarities with DCPS.

SMC based approaches. The MCGDIFF, the Twisted Diffusion sampler (TDS) of [59] using the
FK representation (2.4). MCGDIFF is specific to linear inverse problems and the potentials used
are g, (vx) = N(y/agy; Azy, (1 — ax)lg,) when o, = 0. TDS applies to any potential g, and
relies on the DPS approximation for its potentials; i.e. g, (x) = go(:ﬁol «(Zr)). In either cases, a
particle approximation of the posterior of interest 7, is obtained using the Auxiliary Particle filter
framework [37]. [16] also use particle filters for the posterior distribution; the potentials used are
g (xr) = N(/agyr; Az, akazfdm) where (yx)7_,. With yo = y is a sequence of observations
sampled according to an auto-regressive process; see [ 16, Equation 7]. The posterior is thus viewed as
approximately the time 0 marginal of a Hidden Markov model with transition Dklk+1 and observation
likelihood g,,, which is different from the FK representation (2.4). Our choice of intermediate
potentials for linear inverse problems with Gaussian noise differs from that of MCGDIFF by the
standard deviation of the observation model, which we set to be o,,. A major difference of DCPS
with these works lies in the fact that we do not rely on particle filters, thus avoiding the collapse in
very large dimensions. As we have shown in the experimental section DCPS can achieve comparable
performance to MCGDIFF in low dimensions, see Table 1 while also being efficient in very large
dimensions, see Table 2. A second and major difference is that we have derived potentials for both
the JPEG dequantization and Poisson-shot denoising tasks, which may be used to extend MCGDIFF
and FPS-SMC [16] to these problems.

RedDiff. In this work we have also proposed to use Gaussian variational inference to approximate
the intractable backward transition wi x+1- One particularity of our approach is that we do not
use amortized variational inference [26] and instead optimize the variational distribution at each
step of the diffusion. A similar approach is used in REDDIFF [32] but in a different way. Indeed,
the authors use a non-amortized Gaussian variational approximation for the posterior 7, meaning
that in order to draw one sample from REDDIFF, several steps of optimization are performed on a
score-matching-like loss. Interestingly, this approach does not require differentiating through the
denoising network and is thus faster and more memory efficient. However, we found that this comes
at the cost of performance as can be seen in Table 1, 2 and 3.

SDA. In [42], the authors introduce a posterior sampling algorithm for inverse problem where the
chosen potential approximation is

+ ’Y(l _aZ)AAT)’

go(xe) = N(y;Afg\z(W)vU; P

with v > 0 being a tunable parameter. Noteworthy, this potential is similar to one used in [47] with
a slightly different choice of variance. Then, the Score-based Data Assimilation (SDA) algorithm
proceed following the Predictor-Corrector framework [51]. In the Prediction stage, a sample Xy,
given X1 is drawn using the conditional score

Skr1(Thg1) = V1og Py (Thy1) + Viog gy g (Try1) -

In the Correction stage, a Langevin MC targeting the marginal distribution g, (x)p,, () is simulated
starting from the predicted sample following

Xith = Xp + 0u(Xp)8u(Xy) +\/206(X[)Zs . Zi ~N(0, 1),

where 0y, is a state-dependent step-size. We emphasise that due to the dependence of the step sizes
on the states, these are only Langevin-like updates that do not inherit the theoretical guarantees of
the unadjusted Langevin algorithm. While SDA and our algorithm DCPS both use Langevin, the
pivotal difference is that its purpose, in our case, is not to correct to ensure that the sample Xy,
is distributed according to the marginal 7, (z,) o< g, (zk, )Py, (k, ), but rather to ensure that the
sample is distributed according to the next distribution m; (7, ), which is the initial distribution of
the next block, as per Equation (3.4). Hence, in our case, Langevin MC is used between blocks and
not within blocks.

https://doi.org/10.52202/079017-3090 97425



C Experiments

C.1 Implementation details

In this section we provide the global implementation details for each algorithm. We provide the
specific parameters (when needed) used for each experiment (Gaussian mixture, image restoration
and trajectory inpainting) in the dedicated sections below.

DCPS. For all the experiments we implement Algorithm 1. We use the same parameters K = 2,
L = 3 and ¢ = 1 for all the experiments. For the number of Langevin steps, we set it to M = 50
and M = 500 (respectively) for the Gaussian mixture experiment and M = 5 for the imaging and
trajectory inpainting experiments.

DDRM. We have used the official implementation' and used the recommended parameters in the
original paper. We use 200 steps for DDRM and found that it works better than when we used 1000
steps.

DPS. We have implemented both Algorithm 1 (for linear inverse problems) and Algorithm 2 (for
Poisson-shot restoration) given in [10]. In all the experiments we run DPS with 1000 Diffusion steps.

RedDiff. For RedDiff, we have used the publicly available implementation?. We have empirically
found that RedDiff works best in the low observation standard deviation regime and produces spatially
coherent reconstructions in the larger noise regime but struggles with getting rid of the noise as
evidenced by the large increase in LPIPS values in Table 2. Note also that it is not clear how the
parameters of the algorithm depend on the inverse problem standard deviation; indeed, looking at
Algorithm 1 and then Appendix C.2 where the authors consider a noisy inverse problem? there seems
to be no clear dependence of A on o, (o, with our notations). In fact the authors use A = 0.25
similarly to the noiseless experiments in the main paper and we believe that the tuning is performed
only on the initial step-size of Adam. As a result, for the experiments with o, = 0.3, we have tuned
it using a grid-search in [0.1, 0.25] and retained 0.1.

IIGDM. Regarding IIGDM [47], note that there is no publicly available implementation and we
have thus implemented the noisy version of [47, Algorithm 1] in the original paper. However, we
did not manage to obtain appropriate results and found it to be quite unstable. We have further
investigated the issue and found that IIGDM is implemented in the github repository of RedDiff*,
which is by the same authors. We have noted that it has a slight difference with Algorithm 1 of the
IIGDM paper; the gradient term, coined g in [47, Algorithm 1], is multiplied by ,/a; 1oy instead
of simply /c;. We have found that this stabilizes the algorithm significantly for the linear inverse
problem experiment. We use the same rescaling for the Gaussian mixture and trajectory inpainting
experiment. However, even with this modification to the algorith we found that IIGDM does not
perform well when the noise standard deviation is large; see Table 2. For the JPEG experiment we do
not use this rescaling as we found that the algorithm remains stable.

MCGDiff. For MCGDiff we have used the official implementation® with N = 32 particles for the
imaging experiments. There are no further tuning parameters as far as we can tell.

DIFFPIR We implemented [62, Algorithm 1] and use the hyperparameters recommended in the

official, released version®.

DDNM. We adapted the implementation in the released code’ to our code base.

'https://github.com/bahjat-kawar/ddrm
*https://github.com/NVlabs/RED-diff
*https://openreview.net/pdf?id=1Y04EE3SPB
*https://github.com/NVlabs/RED-diff
*https://github.com/gabrielvc/mcg_diff
®https://github.com/yuanzhi-zhu/DiffPIR
"https://github.com/wyhuai/DDNM
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SDA. We implement the posterior sampling algorithm by combining [42, Algo 3 and 4 in Appendix
C]. In the experiments, we use two Langevin corrections steps and found that v = 0.1 works well
across problems for the diagonal approximation the same as 7 = 0.1 for the Langevin correction
steps size.

FPS We implement [16, Algorithm 2] provided in the appendix.

C.2 Gaussian mixtures

For a given dimension d,, we consider py,, a mixture of 25 Gaussian random variables. The means
of the Gaussian components of the mixture are (m;)?>, := {(8i,8j,--- ,8i,85) € R : (i,7) €
{-2,-1,0,1,2}%}. The covariance of each component is identity. The mixture (unnormalized)

weights w; ; are independently drawn from a Dirichlet distribution.

Metrics. To assess the performance of each algorithm we draw 2000 samples and compare against
2000 samples from the true posterior distribution using the Sliced Wasserstein distance by averaging
over 104 slices. In Table 1 we report the average SW and the 95% confidence interval over 30 seeds.
We found DPS and IIGDM to be sometimes unstable, resulting in NaN values. To account for these
unstabilities when computing the average SW distance, we replace NaN with 7 which is the typical
value obtained when a stable algorithm fails to sample from the posterior.

Parameters. For DPS we use (,,, = 0.1/||y — Aig‘*m(xm)ﬂ at step m of the Diffusion. As to
DCPS we use v = 10~2 for the Langevin step-size.

Denoisers. Note that the loss (A.1) can be written as

T
> wiE [[ler = & (v/arXo + V1= ae)|’]
t=1

T
w .
= Z 1 —ta E[[[V1—ozer — V1 - &) (Vg Xo + V1 — atet)Hﬂ
=1 ¢
ow
=Y - ta E [||X: — VaeXo — VI — ) (X4) %]
— 11—

T N
_ Z WOt E HXO _ Xt — \/1 — Oétég(Xt)
Vv Qi

|

Hence the minimizer is

o* Tt — /Ot ]E[X0|Xt = It]
€ (mt) = )
RV 1-— (677
which yields i"gl*t = E[Xo|X; = -]. Next, by Tweedie’s formula we have that

ry + (1 — o)V log g, (1)
Var |

Hence, since gg,,, is a mixture of Gaussians, g, is also a mixture of Gaussians with means
(y/aym;)?2, and unit covariances. Therefore, V. log ¢,(z;) and hence i‘g‘ ; () can be computed
using automatic differentiation libraries.

~0*
xon(fct) =

Measurement model. For a pair of dimensions (d,d,) the measurement model (y, A, o) is
drawn as follows: the elements d, x d, elements of the matrix are drawn i.i.d. from a standard
Gaussian distribution, then o, is drawn uniformly in [0,1] and finally we draw z* ~ pg,, and
e ~N(04,,14,) and set y = Azx* + oe.
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Table 6: Mean LPIPS value on low count Poisson restoration.
Dataset Task DCPS DPS

Denoising ~ 0.07  0.12
SR 4x 017 031

Denoising  0.17 0.24
SR 4x 036  0.80

FFHQ

ImageNet

Posterior. Having drawn both py,, and (y, A, o), the posterior can be computed exactly using
standard Gaussian conjugation formulas [3, Eq. 2.116] and hence the posterior is a Gaussian mixture

. . -1
where all the components have the same covariance matrix 3 := (I, + o, AT A)  and means
and weights given by

m; =3 (ATy/Ui + mi) ,
w; X ’LUZ‘N(y; Am;, Uildm + AAT) .

C.3 Imaging experiments

Parameters. For DCPS we set v = 1073 for the Langevin step-size. For DPS we use the
parameters recommended in the original paper, which we found to work well even on the half and
expand masks; see [10, Appendix D.1].

Evaluation. In order to evaluate each algorithm we compute the LPIPS metric [61] on each dataset
using 100 samples from the validation sets and report the average in Table 2, 3 and 6.

JPEG dequantization. We use the differentiable JPEG framework [44] which replaces the rounding
function z +— |2] used in the quantization part with x — |x] + (2 — |2])? which has non-zero
derivatives almost everywhere.

C.4 Trajectory inpainting experiment

Trajectory DDM prior. The denoiser of the diffusion model has a Transformer-like architecture.
In the entry of the network, the trajectory is augmented to a higher dimensional space (512) via dense
layer. At this stage a positional encoding [56] is added to account for the diffusion step. Afterward,
the output is flowed through a transformer encoder [56] whose feedforward layer dimension is
2048 to learn temporal dependence within the trajectory before being feed to an MLP with 4 layers
(512 — 1024 — 1024 — 512) and in between ReLLU activation functions, to output the added noise.
A Cosine noise scheduler with 1000 diffusion steps was used [34]. The UCY-student dataset was split
int a train and a validation sets with 1450 and 140 trajectories respectively. The batch size was set
to 10 times the training set, namely 145 samples The denoiser was trained to minimize the loss of
DDPM [20] for 1000 epochs using Adam solver [25] with a Cosine learning rate scheduler [28]. The
training was performed on 48GB L40S NVIDIA GPU and took roughly one minute to complete.

Metrics. The trajectory completion experiment was performed on the validation set. Every trajec-
tory was masked randomly. Leveraging MCGDIFF ’s asymptotical approximation of the posterior,
it was run with 5000 particles to sample 100 samples from the posterior and afterward these were
checked against a 100 reconstructions of each other algorithm by computing the timestep wise {5
distance between the quantile 50 (median), 25, 75 and also by computing the Sliced Wasserstein
distance. This procedure was repeated for all trajectories in the validation set and later the results of
each algorithm were aggregated by the mean ¢, distances. Finally, this experiment was performed for
two levels of noise o, = 0.005 and o, = 0.01.

C.5 Additional experiments
Here, we provide the complete tables of results on imaging and trajectories inpainting experiments

that includes in addition DIFFPIR, DDNM, FPS , and SDA. These additional experiments were
conducted during the rebuttal phase of our work.

97428 https://doi.org/10.52202/079017-3090



Table 7: Mean LPIPS value on different tasks. Lower is better.

Dataset / o, Task DCPS DDRM DPS IIGDM REeDDIFF MCGDIFF DIFFPIR DDNM SDA  FPS
Half 020 025 024 026 0.28 0.36 0.23 022 023 028

FFHQ/ 0.05 Center 005 006 007  0.19 0.12 0.24 0.06 0.05 005 009

: SR4x 009 018 0.09 033 0.36 0.15 0.13 014 010 010

SR16x 023 036 024 044 0.51 0.32 0.28 030 044 071

Half 025 030 031 064 0.76 0.80 0.30 026 026 067

FFHQ /0.3 Center 010 013 011 062 0.75 0.55 0.16 011 010 0.9

- SR4x 021 026 019 077 0.77 0.65 0.28 023 019 075

SR16x 035 041 043  0.64 0.74 0.52 0.42 039 049 071

Half 035 040 044 038 0.44 0.83 0.35 038 054 039

Imagelet /005 Comer 018 0.4 031 029 0.22 0.45 0.14 013 014 019
g - SR4x 024 038 041 078 0.56 1.32 0.36 034 085 027
SR16x 044 072 050  0.60 0.83 133 0.63 070 113 0.69

Half 040 046 048 082 0.76 0.86 0.50 044 061 071

Imagelot /03 Center 024 025 040 068 0.71 0.47 0.36 022 025 070
magelet U2 SR4x 043 050 047  0.87 0.83 131 0.61 046 114 084
SR16x 072 077 057 072 0.92 0.67 0.76 075 119 074

Average 028 035 032 057 0.60 0.67 0.35 032 048 053
Median 024 033 035 063 0.72 0.60 0.32 028 035 0.9

Table 8: /5 distance quantiles with MCGDIFF as reference.

oy = 0.005 oy =0.01
q50  ¢25  q75 ¢50  q25  q75

DCPS 1.31 133 147 1.33 142 142
DPS 1.34 140 1.61 136 148 1.52
DDRM 148 146 1.61 1.59 162 1.61
IIGDM 1.36 135 1.47 1.37 143 142
REDDIFF 1.67 1.57 1.82 1.56 1.54 1.65
DIFFPIR  1.57 1.84 198 152 194 1.89
DDNM 145 145 1.65 152 159 1.59
FPS 2.60 261 2.62 291 290 2.89
SDA 1.52 155 1.69 1.54 159 1.61

D Sample reconstructions

In this section we display the remaining samples from the experiments in the main paper. We remind
the reader that all algorithms are run with the same seed and we draw in parallel 4 samples from each
algorithm and display them in their order of appearance.

Observation  Ground truth Observation  Ground truth

DCPS

DPS

Figure 5: Denoising task with Poisson noise on FFHQ.
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DCPS

DPS

Figure 6: Denoising task with Poisson noise on ImageNet.
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Figure 7: Outpainting task with half mask on ImageNet.
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Observation  Ground truth

Observation  Ground truth

DCPS

DDRM

DPS

IIGDM

MCGDIFr
MCGDIFF

REDDIFF

Figure 8: Inpainting with box mask on FFHQ.

Observation ~ Ground truth Observation  Ground truth
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MCGDIrr

REDDIFF

Figure 9: Inpainting task with box mask on ImageNet.
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MCGDIrF TIGDM DPS DDRM DCPS

REDDIFF

DCPS

PS DDRM

D

IIGDM

MCGDIrr

REDDIFF

Observation  Ground truth

DPS

IIGDM

REDDIFF

DCPS

DDRM

MCGDIFF

Observation  Ground truth

Figure 10: Outpainting task with half mask on FFHQ.

Observation  Ground truth

Observation  Ground truth

g

MCGDIFF

REDDIFF

Figure 11: Outpainting task with half mask on ImageNet.
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Observation  Ground truth Observation  Ground truth

DCPS
DCPS

TIGDM DPS DDRM
DPS DDRM

IIGDM

MCGDIFF
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REDDIFF

Figure 12: Outpainting expend task on FFHQ.

Observation  Ground truth Observation  Ground truth

DCPS

DDRM

DPS

IIGDM

MCGDIrr
MCGDIFF

REDDIFF

Figure 13: Outpainting expend task on ImageNet.
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Observation  Ground truth Observation  Ground truth

Figure 14: SR 4x task with Poisson noise on FFHQ.
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Observation  Ground truth Observation  Ground truth

DCPS

DDRM

DPS

IIGDM
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REDDIFF
REDDIFF

Figure 15: SR 4x task on ImageNet.
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Observation  Ground truth
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Observation ~ Ground truth Observation ~ Ground truth

DCPS
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Figure 16: SR 16 x task on FFHQ.
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Figure 17: SR 16 x task on ImageNet.
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Observation ~ Ground truth Observation ~ Ground truth

DCPS
DCPS

IIGDM
IIGDM

REDDIFF
REDDIFF

Figure 18: JPEG task with QF=8 on FFHQ.

Observation  Ground truth Observation  Ground truth

DCPS
DCPS

IIGDM

IIGDM

REDDIFF
REDDIFF

Figure 19: JPEG task with QF=2 on FFHQ.
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Observation ~ Ground truth Observation ~ Ground truth

DCPS

IIGDM
IIGDM

REDDIFF
REDDIFF

Figure 20: JPEG task with QF=8 on ImageNet.

Observation  Ground truth Observation ~ Ground truth

DCPS
DCPS

IIGDM
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REDDIFF

Figure 21: JPEG task with QF=2 on ImageNet.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: The claims are clearly stated in the introduction.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have added a limitations section.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

 The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

 The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: All the assumptions needed are stated clearly.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: We have provided the exact implementation details in the appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We have provided a link with the relevant code as well as the link to download
the datasets we have used

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: These are all given in Appendix C.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We report the 95% confidence intervals for our experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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8.

10.

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We provide the memory usage and runtime for each algorithm.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

 The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
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to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We properly cite the authors that have released the datasets and models we use.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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14.

15.

Answer: [Yes]

Justification: The released code is accompanied by a README file detailing its contents,
installation instructions, and usage guidelines.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

¢ For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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